Package ‘fishmethods’

November 20, 2018

Version 1.11-0
Date 2018-11-21
Title Fishery Science Methods and Models
Author Gary A. Nelson <gary.nelson@mass.gov>
Maintainer Gary A. Nelson <gary.nelson@mass.gov>
Depends R (>= 2.7.0), MASS, boot, bootstrap, lme4, numDeriv
Description Functions for applying a wide range of fisheries stock assessment methods.
License GPL (>= 2)
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-11-20 17:30:08 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>agesurv</td>
<td>4</td>
</tr>
<tr>
<td>agesurvc1</td>
<td>5</td>
</tr>
<tr>
<td>alk</td>
<td>6</td>
</tr>
<tr>
<td>alkD</td>
<td>7</td>
</tr>
<tr>
<td>alldata</td>
<td>9</td>
</tr>
<tr>
<td>alkprop</td>
<td>10</td>
</tr>
<tr>
<td>alkss</td>
<td>11</td>
</tr>
<tr>
<td>astrocalc4r</td>
<td>12</td>
</tr>
<tr>
<td>bheq</td>
<td>15</td>
</tr>
<tr>
<td>bhnoneq</td>
<td>16</td>
</tr>
<tr>
<td>bonito</td>
<td>18</td>
</tr>
<tr>
<td>btlog</td>
<td>18</td>
</tr>
<tr>
<td>buffalo</td>
<td>20</td>
</tr>
<tr>
<td>catch</td>
<td>20</td>
</tr>
<tr>
<td>catch.select</td>
<td>21</td>
</tr>
<tr>
<td>catchmsy</td>
<td>22</td>
</tr>
<tr>
<td>catchsurvey</td>
<td>27</td>
</tr>
<tr>
<td>R topics documented:</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>clus.lf</td>
<td>28</td>
</tr>
<tr>
<td>clus.mean</td>
<td>30</td>
</tr>
<tr>
<td>clus.rho</td>
<td>32</td>
</tr>
<tr>
<td>clus.rho.g</td>
<td>33</td>
</tr>
<tr>
<td>clus.str.lf</td>
<td>35</td>
</tr>
<tr>
<td>clus.t.test</td>
<td>38</td>
</tr>
<tr>
<td>clus.vb.fit</td>
<td>39</td>
</tr>
<tr>
<td>codcluslen</td>
<td>40</td>
</tr>
<tr>
<td>codstrcluslen</td>
<td>41</td>
</tr>
<tr>
<td>combinevar</td>
<td>41</td>
</tr>
<tr>
<td>compare2</td>
<td>42</td>
</tr>
<tr>
<td>convmort</td>
<td>44</td>
</tr>
<tr>
<td>counts</td>
<td>45</td>
</tr>
<tr>
<td>cowcod</td>
<td>45</td>
</tr>
<tr>
<td>cpuekapp</td>
<td>46</td>
</tr>
<tr>
<td>darter</td>
<td>47</td>
</tr>
<tr>
<td>dbsra</td>
<td>47</td>
</tr>
<tr>
<td>deltadist</td>
<td>52</td>
</tr>
<tr>
<td>deplet</td>
<td>53</td>
</tr>
<tr>
<td>dlproj</td>
<td>55</td>
</tr>
<tr>
<td>epr</td>
<td>57</td>
</tr>
<tr>
<td>fm_checkdesign</td>
<td>58</td>
</tr>
<tr>
<td>fm_model_avg</td>
<td>60</td>
</tr>
<tr>
<td>fm_telemetry</td>
<td>61</td>
</tr>
<tr>
<td>fpc</td>
<td>65</td>
</tr>
<tr>
<td>gap</td>
<td>67</td>
</tr>
<tr>
<td>Gerking</td>
<td>68</td>
</tr>
<tr>
<td>goosefish</td>
<td>69</td>
</tr>
<tr>
<td>grotag</td>
<td>69</td>
</tr>
<tr>
<td>grotagplus</td>
<td>71</td>
</tr>
<tr>
<td>growhamp</td>
<td>75</td>
</tr>
<tr>
<td>growth</td>
<td>78</td>
</tr>
<tr>
<td>growthlrt</td>
<td>79</td>
</tr>
<tr>
<td>growthmultifit</td>
<td>82</td>
</tr>
<tr>
<td>growthResid</td>
<td>84</td>
</tr>
<tr>
<td>growthTraject</td>
<td>85</td>
</tr>
<tr>
<td>growtrans</td>
<td>87</td>
</tr>
<tr>
<td>haddock</td>
<td>88</td>
</tr>
<tr>
<td>Hightower</td>
<td>89</td>
</tr>
<tr>
<td>Hoenig</td>
<td>89</td>
</tr>
<tr>
<td>irm_cr</td>
<td>90</td>
</tr>
<tr>
<td>irm_h</td>
<td>94</td>
</tr>
<tr>
<td>Jensen</td>
<td>96</td>
</tr>
<tr>
<td>Jiang</td>
<td>97</td>
</tr>
<tr>
<td>kappenman</td>
<td>98</td>
</tr>
<tr>
<td>Kimura</td>
<td>98</td>
</tr>
<tr>
<td>lifetable</td>
<td>99</td>
</tr>
<tr>
<td>lingcod</td>
<td>100</td>
</tr>
</tbody>
</table>
M.empirical ... 100
maki ... 102
mature ... 103
mehaden .. 104
mort.al ... 105
mrN.single .. 106
nshrimp ... 107
opt_slot ... 108
opt_trophy .. 109
P.donacina .. 110
p gen ... 111
pinfish ... 112
plot.grotagplus .. 113
powertrend ... 115
print.grotagplus ... 117
pwpop ... 118
remp ... 119
rig ... 120
rockbass .. 121
sblen ... 122
sbotos ... 122
sbpr ... 123
schnabel ... 124
Shepherd ... 125
slca ... 126
sole ... 128
sr ... 128
striper ... 131
surveyfit .. 132
surveyref .. 133
tag_model_avg ... 134
tanaka ... 136
tROUT ... 136
tvfr ... 137
wolffish .. 138
yellowtail .. 139
ypr ... 140
zt ... 141

Index ... 143
Description

Calculates annual survival (S) and instantaneous total mortality rates (Z) from age frequency by using linear regression (standard and weighted), Heincke, Chapman-Robson, Poisson GLM and GLMER methods.

Usage

```r
agesurv(age = NULL, full = NULL, last = NULL, estimate = c("s", "z"), method = c("lr", "he", "cr", "crcb", "ripois", "wlr", "pois"))
```

Arguments

- `age`: the vector of ages. Each row represents the age of an individual.
- `full`: the fully-recruited age
- `last`: the maximum age to include in the calculation. If not specified, the oldest age is used.
- `estimate`: argument to select estimate type: "s" for annual survival, "z" for instantaneous total mortality. Default is both.
- `method`: argument to select the estimation method: "lr" for standard linear regression, "he" for Heincke, "cr" for Chapman-Robson, "crcb" for Chapman-Robson Z estimate with bias-correction (Seber p. 418) and over-dispersion correction (Smith et al., 2012), "ripois" for Millar (2015) random-intercept Poisson mixed model estimator, "wlr" for Maceine-Bettoli weighted regression, "pois" for Poisson generalized linear model with overdispersion correction. Default is all.

Details

The individual age data are tabulated and subsetted based on the `full` and `last` arguments. Most calculations follow descriptions in Seber(1982), pages 414-418. If only two ages are present, a warning message is generated and the catch curve method is not calculated. Plus groups are not allowed.

Value

- `results`: list element containing table of parameters and standard errors.
- `data`: list element containing the age frequency data used in the analysis.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
References

Examples

```r
data(rockbass)
agesurv(age=rockbass$age,full=6)
```

agesurvcl

Age-Based Survival and Mortality Estimators for Cluster Sampling

Description

Calculates the survival and mortality estimators of Jensen (1996) where net hauls are treated as samples.

Usage

```r
agesurvcl(age = NULL, group = NULL, full = NULL, last = NULL)
```

Arguments

- **age**: the vector of ages. Each row represents the age of an individual.
- **group**: the vector containing variable used to identify the sampling unit (e.g., haul). Identifier can be numeric or character.
- **full**: the fully-recruited age.
- **last**: the maximum age to include in the calculation. If not specified, the oldest age is used.

Details

The individual age data are tabulated and subsetted based on full and last. The calculations follow Jensen(1996). If only two ages are present, a warning message is generated.
Value
Matrix containing estimates of annual mortality (a), annual survival (S), and instantaneous total mortality (Z) and associated standard errors.

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also
agesurv

Examples
```r
data(Jensen)
agesurvc1(age=Jensen$age, group=Jensen$group, full=0)
```

alk

Create An Age-Length Key

Description
Creates an age-length key in numbers or proportions-at-age per size.

Usage
```r
alk(age=NULL, size=NULL, binsize=NULL, type=1)
```

Arguments
- **age**: a vector of individual age data.
- **size**: a vector of individual size data.
- **binsize**: size of the length class (e.g., 5-cm, 10, cm, etc.) used to group size data. The formula used to create bins is \(\text{trunc}(\text{size}/\text{binsize}) \times \text{binsize} + \text{binsize}/2 \). If use of the raw length classes is desired, then binsize=0.
- **type**: If type=1, numbers-at-age per size are produced. This format is used in functions alkprop, alks, and alk0. If type=2, proportions-at-age per size are produced.

Details
Create age-length keys with either numbers-at-age per size class. Records with missing size values are deleted prior to calculation. Missing ages are allowed.
Value

A table of size, total numbers at size, and numbers (or proportions)-at-age per size class.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

`alkD` `alkss` `alkprop`

Examples

```r
## Not run:
data(pinfish)
with(pinfish, alk(age=round(age,0),size=sl,binsize=10))
## End(Not run)
```

alkD

Sample Size Determination for Age Subsampling Using the D statistic

Description

Calculates the D statistic (sqrt of accumulated variance among ages; Lai 1987) for a range of age sample sizes using data from an age-length key. Assumes a two-stage random sampling design with proportional or fixed allocation.

Usage

```r
alkD(x, lss = NULL, minss = NULL, maxss = NULL, sampint = NULL, 
allocate = 1)
```

Arguments

- `x` a data frame containing an age-length key (similar to Table 8.3 on page 307 of Quinn and Deriso (1999)). The first column must contain the length intervals as numeric labels (no ranges), the second column must contain the number of samples within each length interval (L1 in Q & D), and the third and remaining columns must contain the number of samples for each age class within each length interval (one column for each age class). Column labels are not necessary but are helpful. Columns l and Al in Table 8.3 should not be included. Empty cells must contain zeros.
ls

minss

maxss

sampint

allocate

the sample size for length frequency
the minimum age sample size
the maximum age sample size. Value cannot be larger than the sample size for the length frequency (lss)
the sample size interval
the type of allocation: 1=proportional, 2=fixed.

Details

Following Quinn and Deriso (1999:pages 308-309), the function calculates the D statistic (sqrt of accumulated variance among ages; Lai 1987) for a range of age sample sizes defined by minss, maxss, and sampint at a given length sample size lss. The size of an age sample at a desired level of D can be obtained by the comparison. See reference to Table 8.8, p. 314 in Quinn and Deriso.

Value

label

comp2

list element containing the summary of input criteria
list element containing the D statistic for each age sample size given lss

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

alkss alkprop

Examples

data(alkdata)
alkD(alkdata, lss=1000, minss=25, maxss=1000, sampint=20, allocate=1)
alkdata

Description
The alldata data frame has 39 rows and 16 columns. The age-length key for Gulf of Hauraki snapper shown in Table 8.3 of Quinn and Deriso (1999)

Usage
alkdata

Format
This data frame contains the following columns:

- len length interval
- nl number measured in length interval
- A3 number of fish aged in each age class 3 within each length interval
- A4 number of fish aged in each age class 4 within each length interval
- A5 number of fish aged in each age class 5 within each length interval
- A6 number of fish aged in each age class 6 within each length interval
- A7 number of fish aged in each age class 7 within each length interval
- A8 number of fish aged in each age class 8 within each length interval
- A9 number of fish aged in each age class 9 within each length interval
- A10 number of fish aged in each age class 10 within each length interval
- A11 number of fish aged in each age class 11 within each length interval
- A12 number of fish aged in each age class 12 within each length interval
- A13 number of fish aged in each age class 13 within each length interval
- A14 number of fish aged in each age class 14 within each length interval
- A15 number of fish aged in each age class 15 within each length interval
- A16 number of fish aged in each age class 16 within each length interval

Source
alkprop

Age-Length Key Proportions-At-Age

Description
Calculates proportions-at-age and standard errors from an age-length key assuming a two-stage random sampling design.

Usage
`alkprop(x)`

Arguments
- **x**: a data frame containing an age-length key (similar to Table 8.3 on page 307 of Quinn and Deriso (1999)). The first column must contain the length intervals as single numeric labels (no ranges), the second column must contain the number of samples within each length interval (L1 in Q & D), and the third and remaining columns must contain the number of samples for each age class within each length interval (one column for each age class). Column labels are not necessary but are helpful. Columns l and Al in Table 8.3 should not be included. Empty cells must contain zeros.

Details
If individual fish from catches are sampled randomly for lengths and then are further subsampled for age structures, Quinn and Deriso (1999: pages 304-305) showed that the proportions of fish in each age class and corresponding standard errors can be calculated assuming a two-stage random sampling design. See reference to Table 8.4, page 308 in Quinn and Deriso.

Value
- **results**: list element containing a table of proportions, standard errors, and coefficients of variation for each age class.

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also
- `alkD`
- `alkss`
Description

Calculates sample sizes for age subsampling assuming a two-stage random sampling design with proportional or fixed allocation.

Usage

```r
alkss(x, lss = NULL, cv = NULL, allocate = 1)
```

Arguments

- `x` a data frame containing an age-length key (similar to Table 8.3 on page 307 of Quinn and Deriso (1999)). The first column must contain the length intervals as numeric labels (no ranges), the second column must contain the number of samples within each length interval (Ll in Q & D), and the third and remaining columns must contain the number of samples for each age class within each length interval (one column for each age class). Column labels are not necessary but are helpful. Columns 1 and Al in Table 8.3 should not be included. Empty cells must contain zeros.
- `lss` the sample size for length frequency
- `cv` the desired coefficient of variation
- `allocate` the type of allocation: 1=proportional, 2=fixed.

Details

If individual fish from catches are sampled randomly for lengths and then are further subsampled for age structures, Quinn and Deriso (1999: pages 306-309) showed that sample sizes for age structures can be determined for proportional (the number of fish aged is selected proportional to the length frequencies) and fixed (a constant number are aged per length class) allocation assuming a two-stage random sampling design. Sample sizes are determined based on the length frequency sample size, a specified coefficient of variation, and proportional or fixed allocation. The number of age classes is calculated internally. See reference to Table 8.6, p. 312 in Quinn and Deriso.

Value

- `label` list element containing the summary of input criteria
- `n` list element containing the sample size estimates for each age
Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

alk0, alkprop

Examples

data(alkdata)
alkss(alkdata, lss=1000, cv=0.25, allocate=1)

Description

This function calculates the solar zenith, azimuth and declination angles, time at sunrise, local noon and sunset, day length, and PAR (photosynthetically available radiation, 400-700 nm) under clear skies and average atmospheric conditions (marine or continental) anywhere on the surface of the earth based on date, time, and location.

Usage

astrocalc4r(day, month, year, hour, timezone, lat, lon, withinput = FALSE, seaorland = "maritime", acknowledgment = FALSE)

Arguments

day
day of month in the local time zone (integers). Value is required. Multiple observations should be enclosed with the c() function.

month
month of year in the local time zone (integers). Value is required. Multiple observations should be enclosed with the c() function.

year
year in the local time zone (integers). Value is required. Multiple observations should be enclosed with the c() function.

hour
local time for each observation (decimal hours, e.g. 11:30 PM is 23.5, real numbers). Value is required. Multiple observations should be enclosed with the c() function.
timezone

local time zone in +/- hours relative to GMT to link local time and GMT. For example, the difference between Eastern Standard Time and GMT is -5 hours. Value is required. Multiple observations should be enclosed with the c() function. timezone should include any necessary adjustments for daylight savings time.

lat

Latitude in decimal degrees (0o to 90 o in the northern hemisphere and -90 o to 0 o degrees in the southern hemisphere, real numbers). For example, 42o 30’ N is 42.5 o and 42o 30’ S is -42.5o. Value is required. Multiple observations should be enclosed with the c() function.

lon

Longitude in decimal degrees (-0 o to 180 o in the western hemisphere and 0o to 180 o in the eastern hemisphere, real numbers). For example, 110o 15’ W is -110.25 o and 110o 15’ E is 110.25o. Value is required. Multiple observations should be enclosed with the c() function.

withinput

logical:TRUE to return results in a dataframe with the input data; otherwise FALSE returns a dataframe with just results. Default is FALSE.

seaorland

text: "maritime" for typical maritime conditions or "continental" for typical continental conditions. Users must select one option or the other based on proximity to the ocean or other factors.

acknowledgment

logical: use TRUE to output acknowledgement. Default is FALSE.

Details

Astronomical definitions are based on definitions in Meeus (2009) and Seidelmann (2006). The solar zenith angle is measured between a line drawn "straight up" from the center of the earth through the observer and a line drawn from the observer to the center of the solar disk. The zenith angle reaches its lowest daily value at local noon when the sun is highest. It reaches its maximum value at night after the sun drops below the horizon. The zenith angle and all of the solar variables calculated by astrocalcTr depend on latitude, longitude, date and time of day. For example, solar zenith angles measured at the same time of day and two different locations would differ due to differences in location. Zenith angles at the same location and two different dates or times of day also differ.

Local noon is the time of day when the sun reaches its maximum elevation and minimum solar zenith angle at the observers location. This angle occurs when the leading edge of the sun first appears above, or the trailing edge disappears below the horizon (0.830 accounts for the radius of the sun when seen from the earth and for refraction by the atmosphere). Day length is the time in hours between sunrise and sunset. Solar declination and azimuth angles describe the exact position of the sun in the sky relative to an observer based on an equatorial coordinate system (Meeus 2009). Solar declination is the angular displacement of the sun above the equatorial plane. The equation of time accounts for the relative position of the observer within the time zone and is provided because it is complicated to calculate. PAR is irradiance in lux (lx, approximately W m-2) at the surface of the earth under clear skies calculated based on the solar zenith angle and assumptions about marine or terrestrial atmospheric properties. astrocalcTr calculates PAR for wavelengths between 400-700 nm. Calculations for other wavelengths can be carried out by modifying the code to use parameters from Frouin et al. (1989). Following Frouin et al. (1989), PAR is assumed to be zero at solar zenith angles >= 90o although some sunlight may be visible in the sky when the solar zenith angle is < 108o. Angles in astrocalcTr output are in degrees although radians are used internally for calculations. Time data and results are in decimal hours (e.g. 11:30 pm = 23.5 h) local time but...
internal calculations are in Greenwich Mean Time (GMT). The user must specify the local time zone in terms of +/- hours relative to GMT to link local time and GMT. For example, the difference between Eastern Standard Time and GMT is -5 hours. The user must ensure that any adjustments for daylight savings time are included in the timezone value. For example, timezone=-6 for Eastern daylight time.

Value

Time of solar noon, sunrise and sunset, angles of azimuth and zenith, eqtime, declination of sun, daylight length (hours) and PAR.

Author(s)

Larry Jacobson, Alan Seaver, and Jiashen Tang NOAA National Marine Fisheries Service Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543

<Larry.Jacobson@noaa.gov>

References

Seidelmann, P.K. 2006. Explanatory Supplement to the Astronomical Almanac. University Science Books, Sausalito, CA. This function is an R implementation of:

Examples

astrocalc4r(day=12, month=9, year=2000, hour=12, timezone=-5, lat=40.9, lon=-110)
bheq

Length-based Beverton-Holt Equilibrium Total Instantaneous Mortality Estimator

Description

Calculate the equilibrium Beverton-Holt estimator of instantaneous total mortality (Z) from length data with bootstrapped standard errors or the same using the Ehrhardt and Ault(1992) bias-correction

Usage

bheq(len, type = c(1,2), K = NULL, Linf = NULL, Lc = NULL, La = NULL, nboot = 100)

Arguments

len the vector of length data. Each row represents one record per individual fish.
type numeric indicate which estimation method to use. 1 = Beverton-Holt, 2 = Beverton-Holt with bias correction. Default is both, c(1,2).
K the growth coefficient from a von Bertalanffy growth model.
Linf the L-infinity coefficient from a von Bertalanffy growth model.
Lc the length at first capture.
La the largest length of the largest size class.
nboot the number of bootstrap runs. Default=100.

Details

The standard Beverton-Holt equilibrium estimator of instantaneous total mortality (Z) from length data (page 365 in Quinn and Deriso (1999)) is calculated. The mean length for lengths >=Lc is calculated automatically. Missing data are removed prior to calculation. Estimates of standard error are made by bootstrapping length data >=Lc using package boot.

Value

Dataframe of length 1 containing mean length>=Lc, sample size>=Lc, Z estimate and standard error.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

bhnoneq

Examples

data(pinfish)
bheq(pinfish$sl,type=1,K=0.33,Linf=219.9,Lc=120,nbreaks=200)

Description

A nonequilibrium Beverton-Holt estimator of instantaneous total mortality (Z) from length data.

Usage

bhnoneq(year=NULL, mlen=NULL, ss=NULL, K = NULL, Linf = NULL, Lc = NULL, nbreaks = NULL, styrs = NULL, stZ = NULL, graph = TRUE)

Arguments

year the vector of year values associated with mean length data. The number of year values must correspond to the number of length records. Include year value even if mean length and numbers (see below) are missing.
mlen the vector of mean lengths for lengths \(\geq Lc \). One record for each year.
ss the vector of numbers of observations associated with the mean length.
K the growth coefficient from a von Bertalanffy growth model.
Linf the \(L \)-infinity coefficient from a von Bertalanffy growth model.
Lc the length at first capture.
nbreaks the number of times (breaks) mortality is thought to change over the time series. Can be 0 or greater.
styrs the starting guess(es) of the year(s) during which mortality is thought to change. The number of starting guesses must match the number of mortality breaks, should be separated by commas within the concatenation function and should be within the range of years present in the data.
stZ the starting guesses of \(Z \) values enclosed within the concatenation function. There should be \(nbreaks+1 \) values provided.
graph logical indicating whether the observed vs predicted and residual plots should be drawn. Default=TRUE.
Details

The mean lengths for each year for lengths>=Lc. Following Gedamke and Hoening(2006), the model estimates nbbreaks+1 Z values, the year(s) in which the changes in mortality began, the standard deviation of lengths>=Lc, and standard errors of all parameters. An AIC value is produced for model comparison. The estimated parameters for the number of nbbreaks is equal to 2*nbbreaks+2. Problematic parameter estimates may have extremely large t-values or extremely small standard error. Quang C. Huynh of Virginia Institute of Marine Science revised the function to make estimation more stable. Specifically, the derivative method BFGS is used in optim which allows more reliable convergence to the global minimum from a given set of starting values, a function is included to estimate Z assuming equilibrium, sigma is estimated analytically and convergence results. Use 0 nbbreaks to get Z equilibrium.

Value

summary list element containing table of parameters with estimates, standard errors, and t-values.

convergence list element specifying if convergence was reached.

hessian list element specifying if hessian is positive definite

results list element containing, observed value, predicted values, and residuals from the model fit.

Note

Todd Gedamke provided the predicted mean length code in C++.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

Quang C. Huynh of Virginia Institute of Marine Science

References

See Also

bheq

Examples

data(goosefish)
bhnoneq(year=goosefish$year,mlen=goosefish$mlen, ss=goosefish$ss, K=0.108,Linf=126,Lc=30,nbreaks=1,styrs=c(1982),stz=c(0.1,0.3))
bonito

Data from an age and growth study of the Pacific bonito.

Description

Growth increment data derived from tagging experiments on Pacific bonito (Sarda chiliensis) used to illustrate Francis’s maximum likelihood method estimation of growth and growth variability (1988).

Usage

bonito

Format

A data frame with 138 observations on the following 4 variables.

- **tQ**: a numeric vector describing the release date
- **tR**: a numeric vector describing the recovery date
- **lQ**: a numeric vector describing the length at release in centimeters
- **lR**: a numeric vector describing the length at recapture in centimeters

Details

Note that Francis (1988) has discarded several records from the original dataset collected by Campbell et al. (1975).

Source

bt.log

Back-transformation of log-transformed mean and variance

Description

Converts a log-mean and log-variance to the original scale and calculates confidence intervals

Usage

bt.log(meanlog = NULL, sdlog = NULL, n = NULL, alpha = 0.05)
Arguments

- meanlog: sample mean of natural log-transformed values
- sdlog: sample standard deviation of natural log-transformed values
- n: sample size
- alpha: alpha-level used to estimate confidence intervals

Details

There are two methods of calculating the bias-corrected mean on the original scale. The \texttt{bt.mean} is calculated following equation 14 (the infinite series estimation) in Finney (1941). \texttt{approx.bt.mean} is calculated using the commonly known approximation from Finney (1941): \[\text{mean} = \exp(\text{meanlog} + \text{sdlog}^2/2). \] The variance is \[\text{var} = \exp(2 \times \text{meanlog} \times (Gn(2 \times \text{sdlog}^2) - Gn((n-2)/(n-1)) \times \text{sdlog}^2)) \] and standard deviation is \(\sqrt{\text{var}} \) where \(Gn \) is the infinite series function (equation 10). The variance and standard deviation of the back-transformed mean are \[\text{var.mean} = \frac{\text{var}}{n}; \] \[\text{sd.mean} = \sqrt{\text{var.mean}}. \] The median is calculated as \(\exp(\text{meanlog}) \). Confidence intervals for the back-transformed mean are from the Cox method (Zhou and Gao, 1997) modified by substituting the z distribution with the t distribution as recommended by Olsson (2005): \[\text{LCI} = \exp(\text{meanlog} + \text{sdlog}^2/2 - t(df,1-\alpha/2) \times \sqrt{(\text{sdlog}^2/n) + (\text{sdlog}^4/(2 \times (n-1)))}) \] and \[\text{UCI} = \exp(\text{meanlog} + \text{sdlog}^2/2 + t(df,1-\alpha/2) \times \sqrt{(\text{sdlog}^2/n) + (\text{sdlog}^4/(2 \times (n-1)))}) \] where \(df = n-1 \).

Value

A vector containing \texttt{bt.mean}, \texttt{approx.bt.mean}, \texttt{var}, \texttt{sd}, \texttt{var.mean}, \texttt{sd.mean}, \texttt{median}, LCI (lower confidence interval), and UCI (upper confidence interval).

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

```r
## The example below shows accuracy of the back-transformation
y<-rlnorm(100,meanlog=0.7,sdlog=0.2)
known<-unlist(list(known.mean=mean(y),var=var(y),sd=sd(y),
          var.mean=var(y)/length(y),sd.mean=sqrt(var(y)/length(y))))
est<-bt.log(meanlog=mean(log(y)),sdlog=sd(log(y)),n=length(y))[c(1,3,4,5,6)]
known; est
```
buffalo

Life Table Data for African Buffalo

Description

The `buffalo` data frame has 20 rows and 3 columns. Cohort size and deaths for African buffalo from Sinclair (1977) as reported by Krebs (1989) in Table 12.1, page 415.

Usage

`buffalo`

Format

This data frame contains the following columns:

- `age` age interval
- `nx` number alive at start of each age interval
- `dx` number dying between age interval X and X+1

Source

catch

Number of cod captured in 10 standardized bottom trawl hauls from Massachusetts, 1985

Description

The `catch` data frame has 10 rows and 1 column.

Usage

`catch`

Format

This data frame contains the following columns:

- `value` catch data

Source

Massachusetts Division of Marine Fisheries
catch.select

Selectivity Ogive from a Catch Curve

Description

Estimates selectivity-at-length from catch lengths and von Bertalanffy growth parameters.

Usage

```r
catch.select(len = NULL, lenmin = NULL, binsize = NULL, peakplus = 1, Linf = NULL, K = NULL, t0 = NULL, subobs = FALSE)
```

Arguments

- `len` vector of lengths. One row per individual.
- `lenmin` the starting length from which to construct length intervals.
- `binsize` the length interval width. Must be >0. This is used to create the lower length of intervals starting from `lenmin` to the maximum observed in `len`.
- `peakplus` numeric. Allows user to specify the number of length intervals following the length interval at the peak log(catch/deltat) to use as the start length interval in the catch curve analysis. Default = 1 based on standard catch curve analysis recommendations of Smith et al. (2012).
- `Linf` numeric. The L-infinity value from a von Bertalanffy growth equation. This is a required value.
- `K` numeric. The growth coefficient from a von Bertalanffy growth equation. This is a required value.
- `t0` numeric. The t-subzero value from a von Bertalanffy growth equation. This is a required value.
- `subobs` logical. If the "observed" selectivity for those under-represented length intervals not used in the catch curve analysis is equal to 1, the inverse logit (used in fit of selectivity ogive) can not be calculated. If `subobs` is set to `TRUE`, 1 will be substituted with 0.9999

Details

This function applies the method of Pauly (1984) for calculating the selectivity-at-length from catch lengths and parameters from a von Bertalanffy growth curve. See Sparre and Venema(1998) for a detailed example of the application.

Length intervals are constructed based on the `lenmin` and `binsize` specified, and the maximum length observed in the data vector. Catch-at-length is tabularized using the lower and upper intervals and the data vector of lengths. The inclusion of a length in an interval is determined by lower interval >= length < upper interval. The age corresponding to the interval midpoint (t) is determined using the von Bertalanffy equation applied to the lower and upper bounds of each interval, summing the ages and dividing by 2. \(\text{deltat} \) is calculated for each interval using the equation:

\[
\text{deltat} = \frac{1}{K} \left(e^{-t0} - e^{-Linf} \right)
\]
(1/k)*log((L_{inf}-L_{1})/(L_{inf}-L_{2})) where L_1 and L_2 are the lower and upper bounds of the length interval. log(catch/deltat) is the dependent variable and t is the predictor used in linear regression to estimate Z. Using the parameters from the catch curve analysis, "observed" selectivities (stobs) for the length intervals not included in the catch curve analysis are calculated using the equation: stobs=catch/(deltat*exp(a-Z*t)) where a and Z are the intercept and slope from the linear regression. The stobs values are transformed using an inverse logit (log(1/stobs-1)) and are regressed against t to obtain parameter estimates for the selectivity ogive. The estimated selectivity ogive (stest) is then calculated as stest=1/(1+exp(T1-T2*t)) where T1 and T2 are the intercept and slope from the log(1/stobs-1) versus t regression.

Value

list containing a dataframe with the lower and upper length intervals, the mid-point length interval, age corresponding to the interval mid-point, catch of the length interval, log(catch/deltat), the predicted log(catch/deltat) from the catch curve model fit (only for the peakplus interval and greater), the observed selectivities and the estimated selectivity, and two dataframes containing the parameters and their standard errors from the linear regressions for catch curve analysis and the selectivity ogive.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

data(sblen)
catch.select(len=sblen$len_inches,binsize=2,lenmin=10,peakplus=1,L_{inf}=47.5,K=0.15,
t0=-0.3)

catchmsy

Estimating MSY from catch and resilience

Description

This function estimates MSY following Martell and Froese(2012).
catchmsy

Usage

```r
catchmsy(year = NULL, catch = NULL, catchCV = NULL,
catargs = list(dist = "none", low = 0, up = Inf, unit = "MT"),
l0 = list(low = 0, up = 1, step = 0), 
l1t = list(low = 0, up = 1,
refyr = NULL),
sigv = 0, k = list(dist = "unif", low = 0, up = 1, mean = 0, sd = 0),
r = list(dist = "unif", low = 0, up = 1, mean = 0, sd = 0),
M = list(dist = "unif", low = 0.2, up = 0.2, mean = 0, sd = 0),
nsims = 10000, catchout = 0, grout = 1,
graphs = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
grargs = list(lwd = 1, pch = 16, cex = 1, nclasses = 20, mains = " ",
cex.main = 1,
cex.axis = 1, cex.lab = 1),
pstats = list(s1 = 1, m1ty = 1, mlwd = 1.5, llty = 3, llwd = 1, ulty = 3,
ulwd = 1),
grtif = list(zoom = 4, width = 11, height = 13, pointsize = 10))
```

Arguments

- **year**: vector containing the time series of numeric year labels.
- **catch**: vector containing the time series of catch data (in weight). Missing values are not allowed.
- **catchCV**: vector containing the time series of coefficients of variation associated with catch if resampling of catch is desired; otherwise, catchCV = NULL.
- **catargs**: list arguments associated with resampling of catch. dist is the specification of the resampling distribution to use ("none" = no resampling, "unif"=uniform, "norm" = normal, and "lnorm" =log-normal). If "lnorm" is selected, catch is log transformed and standard deviation on the log scale is calculated from the specified CVs using the relationship sdlog=sqrt(log(CV^2+1)). low and up are the lower and upper limit of distribution (if truncation is desired). unit is the weight unit of catch (used in graph labels; default="MT"). If "unif", the catch must be incorporated in low and up arguments. For instance, if the lower limit to sample is the value of catch, specify low=catch. If some maximum above catch will be the upper limit, specify up=50*catch. The limits for each year will be applied to catch internally.
- **l0**: list arguments for the relative biomass in year 1. low and up are the lower and upper bounds of the starting value of relative biomass (in relation to k) in year 1. step is the step increment to examine. If step=0, then l0 is randomly selected from a uniform distribution using the lower and upper starting values. If step>0, then step increments are used (in this case, the number of simulations (nsims) are used for each increment).
- **l1t**: list arguments for the depletion level in the selected reference year (refyr). low and up are the lower and upper bounds of depletion level in refyr. refyr can range from the first year to the year after the last year of catch (t+1).
- **sigv**: standard deviation of the log-normal random process error. sigv = 0 for no process error.
catchmsy

k
list arguments for the carrying capacity. **dist** is the statistical distribution name from which to sample k. **low** and **up** are the lower and upper bounds of k in the selected distribution. **mean** and **sd** are the mean and standard deviation for selected distributions. The following are valid distributions: "none", "unif" - uniform, "norm" - normal, "lnorm" - log-normal, "gamma" - gamma, and "beta" - beta distributions. "unif" requires non-missing values for **low** and **up**. "norm", "lnorm", "gamma" and "beta", require non-missing values for **low**, **up**, **mean** and **sd**. If "lnorm" is used, **mean** and **sd** must be on the natural log scale (keep **low** and **up** on the original scale). If **dist** = "none", the mean is used as a fixed value.

r
list arguments for the intrinsic growth rate. **dist** is the statistical distribution name from which to sample r. **low** and **up** are the lower and upper bounds of r in the selected distribution. **mean** and **sd** are the mean and standard deviation for selected distributions. Valid distributions are the same as in k. If **dist** = "none", the mean is used as a fixed value.

M
list arguments for natural mortality. **dist** is the statistical distribution name from which to sample M. **low** and **up** are the lower and upper bounds of M in the selected distribution. **mean** and **sd** are the mean and standard deviation for selected distributions. Valid distributions are the same as in k. M is used to determine exploitation rate (Umsy) at MSY. If **dist** = "none", the mean is used as a fixed value.

nsims
number of Monte Carlos samples.

catchout
If resampling catch, save catch trajectories from each Monte Carlos simulation - 0 = No (default), 1 = Yes.

grout
numeric argument specifying whether graphs should be printed to console only (1) or to both the console and TIF graph files (2). Use `setwd` before running function to direct .tif files to a specific directory. Each name of each file is automatically determined.

graphs
vector specifying which graphs should be produced. 1 = line plot of observed catch versus year, 2 = point plot of plausible k versus r values, 3 = histogram of plausible r values, 4 = histogram of plausible k values, 5 = histogram of M values, 6 = histogram of MSY from plausible values of l0,k,r, and Bmsy/k, 7 = histogram of Bmsy from plausible values of l0,k,r, and Bmsy/k, 8 = histogram of Fmsy from plausible values of l0,k,r, and Bmsy/k, 9 = histogram of Umsy values from Fmsy and M, 10 = histogram of overfishing limit (OFL) in last year+1 values from Umsys, and 11 = line plots of accepted and rejected biomass trajectories with median and 2.5th and 97.5th percentiles (in red). Any combinations of graphs can be selected within c(). Default is all.

grargs
list control arguments for plotting functions. **lwd** is the line width for graph = 1 and 11, **pch** and **cex** are the symbol character and character expansion value used in graph = 2, **nclasses** is the nclass argument for the histogram plots (graphs 3-11), **mains** and **cex.main** are the titles and character expansion values for the graphs, **cex.axis** is the character expansion value(s) for the x and y-axis tick labels and **cex.lab** is the character expansion value(s) for the x and y-axis labels. Single values of **nclasses**, **mains**, **cex.main**, **cex.axis**, **cex.lab** are applied to all graphs. To change arguments for specific graphs, enclose arguments within c() in order of the number specified in graphs.
catchmsy

\texttt{pstats} list control arguments for plotting the mean and 95 and management quantities on respective graphs. \(d = 0\), do not overlay values on plots, \(1\) = overlay values on plots. \texttt{mlty} and \texttt{mlwd} are the line type and line width of the mean value; \texttt{llty} and \texttt{llwd} are the line type and line width of the 2.5\% and 97.5\% quantiles.

\texttt{grtif} list arguments for the .TIF graph files. See \texttt{tiff} help file in R.

\textbf{Details}

The method of Martell and Froese (2012) is used to produce estimates of MSY where only catch and information on resilience is known.

The Schaefer production model is

\[B[t+1] = B[t] + r B[t] (1 - B[t]/k) - \text{catch[t]} \]

where \(B\) is biomass in year \(t\), \(r\) is the intrinsice rate of increase, \(k\) is the carrying capacity and \(\text{catch}\) is the catch in year \(t\). Biomass in the first year is calculated by \(B[1] = k^*lP\). For \(\text{sigv}>0\), the production equation is multiplied by \(\exp(mnorm(1,0,\text{sigv}))\) if process error is desired. The maximum sustainable yield (MSY) is calculated as

\[\text{MSY} = \frac{r \times k}{4} \]

Biomass at MSY is calculated as

\[B_{\text{msy}} = \frac{k}{2} \]

Fishing mortality at MSY is calculated as

\[F_{\text{msy}} = \frac{r}{2} \]

Exploitation rate at MSY is calculated as

\[U_{\text{msy}} = \frac{F_{\text{msy}}}{(F_{\text{msy}} + M)} \times (1 - \exp(-F_{\text{msy}} - M)) \]

The overfishing limit in last year+1 is calculated as

\[\text{OFL} = B[\text{last year +1}] \times U_{\text{msy}} \]

Length(year)+1 biomass estimates are made for each run.

If using the R GUI (not Rstudio), run \texttt{graphics.off() windows(width=10, height=12,record=TRUE) .SavedPlots <- NULL} before running the catchmsy function to recall plots.

\textbf{Value}

\texttt{Initial} dataframe containing the initial values for each explored parameter.

\texttt{Parameters} dataframe containing the mean, median, 2.5th and 97.5 plausible (likelihood=1) parameters.

\texttt{Estimates} dataframe containing the mean, median, 2.5th and 97.5 of the management quantities (i.e., MSY, \(B_{\text{msy}}, \text{etc.}\) for the plausible parameters (likelihood=1)

\texttt{Values} dataframe containing the values of \(l0, k, r, B_{\text{msy}}/k, M\) and associated management quantities for all (likelihood=0 and likelihood=1) random draws.

\texttt{endYr} value of the last year of catch data + 1 for use in function \texttt{dlproj}.
catchmsy
type designates the output object as a catchmsy object for use in function dlproj.
The biomass estimates from each simulation are not stored in memory but are automatically saved to a .csv file named "Biotraj-cmsy.csv". Yearly values for each simulation are stored across columns. The first column holds the likelihood values for each simulation (1 = accepted, 0 = rejected). The number of rows equals the number of simulations (nsims). This file is loaded to plot graph 11 and it must be present in the default or setwd() directory.
When catchout=1, catch values randomly selected are saved to a .csv file named "Catchtraj-cmsy.csv". Yearly values for each simulation are stored across columns. The first column holds the likelihood values (1= accepted, 0 = rejected). The number of rows equals the number of simulations (nsims).
Use setwd() before running the function to change the directory where .csv files are stored.

Note

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also
dbsra dlproj

Examples
Not run:
data(lingcod)
outpt<-catchmsy(year=lingcod$year,
catch=lingcod$catch,catchCV=NULL,
catargs=list(dist="none",low=0,up=Inf,unit="MT"),
l0=list(low=0.8,up=0.8,step=0),
l1=list(low=0,up=Inf,refyr=2002),
k0=list(dist="unif",low=4333,up=433300,mean=0,sd=0),
r0=list(dist="unif",low=0.015,up=0.1,mean=0,sd=0),
m0=list(dist="unif",low=0.18,up=0.18,mean=0.00,sd=0.00),
nsims=30000)

End(Not run)
catchsurvey

Catch-Survey Analysis

Description

This function applies the catch-survey analysis method of Collie and Kruse (1998) for estimating abundance from catch and survey indices of relative abundance.

Usage

catchsurvey(year = NULL, catch = NULL, recr = NULL, post = NULL, M = NULL, T = NULL, phi = NULL, w = 1, initial = c(NA,NA,NA),uprn = NA, graph = TRUE)

Arguments

year vector containing the time series of numeric year labels.
catch vector containing the time series of catch (landings) data.
recr vector containing the time series of survey indices for recruit individuals.
post vector containing the time series of survey indices for post-recruit individuals.
M instantaneous natural mortality rate. Assumed constant throughout time series.
T proportion of year between survey and fishery.
phi relative recruit catchability.
w recruit sum of squares weight.
initial initial recruit estimate, initial post-recruit estimate in year 1, and initial catchability estimate.
uprn the upper bound for the recruit and post-recruit estimates.
graph logical indicating whether observed versus predicted recruit and post-recruit indices, total abundance and fishing mortality should be plotted. Default=TRUE.

Details

Details of the model are given in Collie and Kruse (1998).

Value

List containing the estimate of catchability, predicted recruit index by year (rest), estimate of recruit abundance (R), predicted post-recruit index by year (nest), post-recruit abundance (N), total abundance (TA: R+N), total instantaneous mortality (Z), and fishing mortality (Fmort).

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
References

Examples

```r
## Example takes a bit of time to run
## Not run:
data(nshrimp)
catchesurvey(year=nshrimp$year,catch=nshrimp$c,recr=nshrimp$r,post=nshrimp$n,M=0.25,
T=0.5,phi=0.9,w=1,initial=c(500,500,0.7),uprn=10000)
## End(Not run)
```

clus.lf

Statistical Comparison of Length Frequencies from Simple Random Cluster Sampling

Description

Statistical comparison of length frequencies is performed using the two-sample Kolmogorov & Smirnov test. Randomization procedures are used to derive the null probability distribution.

Usage

```r
clus.lf(group = NULL, haul = NULL, len = NULL, number = NULL,
        binsize = NULL, resamples = 100)
```

Arguments

- `group` vector containing the identifier used for group membership of length data. This variable is used to determine the number of groups and comparisons. Identifier can be numeric or character.
- `haul` vector containing the variable used to identify the sampling unit (e.g., haul) of length data. Identifier can be numeric or character.
- `len` vector containing the length class data. There should be one record for each length class by group and haul.
- `number` vector containing the numbers of fish in each length class.
- `binsize` size of the length class (e.g., 5-cm, 10 cm, etc.) used to construct the cumulative length frequency from raw length data. The formula used to create bins is `trunc(len/binsize) * binsize + binsize/2`. If use of the raw length classes is desired, then `binsize=0`.
- `resamples` number of randomizations. Default = 100.
Details

Length frequency distributions of fishes are commonly tested for differences among groups (e.g., regions, sexes, etc.) using a two-sample Kolmogorov-Smirnov test (K-S). Like most statistical tests, the K-S test requires that observations are collected at random and are independent of each other to satisfy assumptions. These basic assumptions are violated when gears (e.g., trawls, haul seines, gillnets, etc.) are used to sample fish because individuals are collected in clusters. In this case, the "haul", not the individual fish, is the primary sampling unit and statistical comparisons must take this into account.

To test for difference between length frequency distributions from simple random cluster sampling, a randomization test that uses "hauls" as the primary sampling unit can be used to generate the null probability distribution. In a randomization test, an observed test statistic is compared to an empirical probability density distribution of a test statistic under the null hypothesis of no difference. The observed test statistic used here is the Kolmogorov-Smirnov statistic (D_s) under a two-tailed test:

$$D_s = \max |S_1(X) - S_2(X)|$$

where $S_1(X)$ and $S_2(X)$ are the observed cumulative length frequency distributions of group 1 and group 2 in the paired comparisons. $S_1(X)$ and $S_2(X)$ are calculated such that $S(X) = k/n$ where K is the number of scores equal to or less than X and n is the total number of length observations (Seigel, 1956).

To generate the empirical probability density function (pdf), haul data are randomly assigned without replacement to the two groups with samples sizes equal to the original number of hauls in each group under comparison. The K-S statistic is calculated from the cumulative length frequency distributions of the two groups of randomized data. The randomization procedure is repeated $resamples$ times to obtain the pdf of D. To estimate the significance of D_s, the proportion of all randomized D values that were greater than or equal to D_s is calculated.

It is assumed all fish caught are measured. If subsampling occurs, the number at length (measured) must be expanded to the total caught.

Data vectors described in arguments should be aggregated so that each record contains the number of fish in each length class by group and haul identifier. For example,

<table>
<thead>
<tr>
<th>group</th>
<th>tow</th>
<th>length</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>North</td>
<td>1</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>North</td>
<td>2</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>North</td>
<td>1</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>North</td>
<td>2</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>1</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>South</td>
<td>1</td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>

Value

results list element containing the D_s statistics from the observed data comparisons and significance probabilities.
clus.mean

obs_prop list element containing the observed cumulative proportions for each group.
Drandom list element containing the D statistics from randomization for each comparison.

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also
clus.str.lf

Examples

data(codcluslen)
clus.lf(group=codcluslen$region,haul=c(paste("ST-",codcluslen$tow,sep="")),
len=codcluslen$length, number=codcluslen$number,
binsize=5, resamples=100)

clus.mean \hspace{1cm} Estimation of Population Attributes and Effective Sample Size for Fishes Collected Via Cluster Sampling

Description
Calculates mean attribute, variance, effective sample size, and degrees of freedom for samples collected by simple random cluster sampling.

Usage
clus.mean(popchar = NULL, cluster = NULL, clustotal = NULL, rho = NULL, nboot = 1000)

Arguments
popchar vector of population characteristic measurements (e.g., length, weight, etc.). One row represents the measurement for an individual.
cluster vector of numeric or character codes identifying individual clusters (or hauls).
clustotal vector of total number of fish caught per cluster.
rho intracluster correlation coefficient for data. If NULL, degrees of freedom are not calculated.
nboot number of bootstrap samples for calculation of bootstrap variance. Default = 1000
Details

In fisheries, gears (e.g., trawls, haul seines, gillnets, etc.) are used to collect fishes. Often, estimates of mean population attributes (e.g., mean length) are desired. The samples of individual fish are not random samples, but cluster samples because the "haul" is the primary sampling unit. Correct estimation of mean attributes requires the use of cluster sampling formulae. Estimation of the general mean attribute and usual variance approximation follows Pennington et al. (2002). Variance of the mean is also estimated using the jackknife and bootstrap methods (Pennington and Volstad, 1994; Pennington et al., 2002). In addition, the effective sample size (the number of fish that would need to be sampled randomly to obtained the same precision as the mean estimate from cluster sampling) is also calculated for the three variance estimates. The total number of fish caught in a cluster (clustotal) allows correct computation for one- and two-stage sampling of individuals from each cluster (haul). In addition, if rho is specified, degrees of freedom are calculated by using Hedges (2007) for unequal cluster sizes (p. 166-167).

Value

Matrix table of total number of clusters (n), total number of samples (M), total number of samples measured (m), the mean attribute (R), usual variance approximation (varU), jackknife variance (varJ), bootstrap variance (varB), variance of population attribute (s2x), usual variance effective sample size (meffU), jackknife variance effective sample size, (meffJ), bootstrap variance effective sample size (meffB) and degrees of freedom (df) if applicable.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

data(codcluslen)
temp<-codcluslen[!is.na(codcluslen$region) & !is.na(codcluslen$number) & codcluslen$number>0,]
temp$station<-c(paste(temp$region,"-",temp$tow,sep=""))
total<aggregate(temp$number,list(temp$station),sum)
names(total)<c("station","total")
temp<-merge(temp,total,by.x="station",by.y="station")
newdata<-data.frame(NULL)
for(i in 1:as.numeric(length(temp[,1]))){
 for(j in 1:temp$number[i]){
 newdata<-rbind(newdata,temp[i,])
 }
}
clus.rho(popchar=newdata$length, cluster=newdata$station, clustotal=newdata$total)

CLUS.RHO

Description
Calculates the intracluster correlation coefficients according to Lohr
(1999) and Donner (1986) for a single group.

Usage
clus.rho(popchar=NULL, cluster = NULL, type = c(1,2,3), est = 0, nboot = 500)

Arguments
popchar vector containing containing the population characteristic (e.g.,
 length, weight, etc.). One line per individual.
cluster vector containing the variable used to identify the cluster. Identifier can be
 numeric or character.
type method of intracluster correlation calculation. 1 = Equation 5.8 of Lohr
 (1999), 2 = Equation 5.10 in Lohr (1999) and 3 = ANOVA. Default = c(1,2,3).
est estimate variance and percentiles of intracluster correlation coefficients via
 bootstrapping. 0 = No estimation (Default), 1 = Estimate.
nboot number of bootstrap replicates for estimation of variance. nboot = 500 (Default).

Details
The intracluster correlation coefficient (rho) provides a measure of similarity
within clusters. type = 1 is defined to be the Pearson correlation coefficient for
NM(M-1) pairs (yij,yik) for i between 1 and N and j<>k (see Lohr (1999: p.
139). The average cluster size is used as the equal cluster size
quantity in Equation 5.8 of Lohr (1999). If the clusters are perfectly homogeneous
(total variation is all between-cluster variability), then ICC=1.

type = 2 is the adjusted r-square, an alternative quantity following
Equation 5.10 in Lohr (1999). It is the relative amount of variability in the
population explained by the cluster means, adjusted for the number of degrees of freedom.
If the clusters are homogeneous, then the cluster means are
highly variable relative to variation within clusters, and the r-square will be high.

type = 3 is calculated using one-way random effects models (Donner, 1986). The formula is
rho = (BMS-WMS)/(BMS+(m-1)*WMS)
where BMS is the mean square between clusters, WMS is the mean square within clusters
and m is the adjusted mean cluster size for clusters with unequal sample size. All clusters with zero
elementary units should be deleted before calculation. type = 3 can be used with binary data (Ridout
et al. 1999)

If est=1, the bootstrap mean (value), variance of the mean and 0.025 and 0.975 percentiles are
outputted.
clus.rho.g

Value
rho values, associated statistics, and bootstrap replicates

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also
clus.lf clus.str.lf clus.mean

Examples

data(codcluslen)
 tem<-codcluslen[codcluslen[,1]=="NorthCape" & codcluslen[,3]>0,]
 outs<-data.frame(tow=NA,len=NA)
 cnt<-0
 for(i in 1:as.numeric(length(tem$number))){
 for(j in 1:tem$number[i]){
 cnt<-cnt+1
 outs[cnt,1]<-tem$tow[i]
 outs[cnt,2]<-tem$len[i]
 }
 }
 clus.rho(popchar=outs$len,cluster=outs$tow)

clus.rho.g Calculate A Common Intracluster Correlation Coefficient Among Groups

Description
Calculates a common intracluster correlation coefficients according to Donner (1986: 77-79) for two or more groups with unequal cluster sizes, and tests for homogeneity of residual error among groups and a common coefficient among groups.

Usage
clus.rho.g(popchar=NULL, cluster = NULL, group = NULL)
Arguments

popchar vector containing containing the population characteristic (e.g., length, weight, etc.). One line per individual.

cluster vector containing the variable used to identify the cluster. Identifier can be numeric or character.

group vector containing the identifier used for group membership of length data. This variable is used to determine the number of groups. Identifier can be numeric or character.

Details

The intracluster correlation coefficient (rho) provides a measure of similarity within clusters. rho is calculated using a one-way nested random effects model (Donner, 1986: 77-79). The formula is

\[
\rho = \frac{(BMS-WMS)/(BMS+(m-1)*WMS)}
\]

where BMS is the mean square among clusters within groups, WMS is the mean square within clusters and m is the adjusted mean cluster size for clusters with unequal sample sizes. All clusters with zero elementary units should be deleted before calculation. In addition, approximate 95 are generated and a significance test is performed.

Bartlett's test is used to determine if mean square errors are constant among groups. If Bartlett’s test is not significant, the test for a common correlation coefficient among groups is valid.

Value

rho value and associate statistics

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov

References

See Also

clus.str.lf clus.lf clus.mean

Examples

data(codcluslen)
temp<-codcluslen[codcluslen$number>0,]
temp$station<-c(paste(temp$region,"-",temp$tow,sep=""))
total<-aggregate(temp$number,list(temp$station),sum)
names(total)<-c("station","total")
temp<-merge(temp,total,by.x="station",by.y="station")
newdata<-data.frame(NULL)
for(i in 1:as.numeric(length(temp[,1]))){
Statistical Comparison of Length Frequencies from Stratified Random Cluster Sampling

Description

Statistical comparison of length frequencies is performed using the two-sample Kolmogorov & Smirnov test. Randomization procedures are used to derive the null probability distribution.

Usage

clus.str lf(group = NULL, strata = NULL, weights = NULL, haul = NULL, len = NULL, number = NULL, binsize = NULL, resamples = 100)

Arguments

group vector containing the identifier used for group membership of length data. This variable is used to determine the number of groups and comparisons. Identifier can be numeric or character.

strata vector containing the numeric identifier used for strata membership of length data. There must be a unique identifier for each stratum regardless of group membership.

weights vector containing the strata weights (e.g., area, size, etc.) used to calculate the stratified mean length for a group.

haul vector containing the variable used to identify the sampling unit (e.g., haul) of length data. Identifier can be numeric or character.

len vector containing the length class. Each length class record must have associated group, strata, weights, and haul identifiers.

number vector containing the number of fish in each length class.

binsize size of the length class (e.g., 5-cm, 10, cm, etc.) used to construct the cumulative length frequency from raw length data. The formula used to create bins is \(\text{trunc}(\text{len}/\text{binsize}) \times \text{binsize} + \text{binsize}/2 \). If use of the raw length classes is desired, then \(\text{binsize}=0 \).

resamples number of randomizations. Default = 100.
Details

Length frequency distributions of fishes are commonly tested for differences among groups (e.g., regions, sexes, etc.) using a two-sample Kolmogorov-Smirnov test (K-S). Like most statistical tests, the K-S test requires that observations are collected at random and are independent of each other to satisfy assumptions. These basic assumptions are violated when gears (e.g., trawls, haul seines, gillnets, etc.) are used to sample fish because individuals are collected in clusters. In this case, the "haul", not the individual fish, is the primary sampling unit and statistical comparisons must take this into account.

To test for difference between length frequency distributions from stratified random cluster sampling, a randomization test that uses "hauls" as the primary sampling unit can be used to generate the null probability distribution. In a randomization test, an observed test statistic is compared to an empirical probability density distribution of a test statistic under the null hypothesis of no difference. The observed test statistic used here is the Kolmogorov-Smirnov statistic (Ds) under a two-tailed test:

\[D_s = \max\left| S_1(X) - S_2(X) \right| \]

where \(S_1(X) \) and \(S_2(X) \) are the observed cumulative proportions at length for group 1 and group 2 in the paired comparisons.

Proportion of fish of length class \(j \) in strata-set (group variable) used to derive \(D_s \) is calculated as

\[p_j = \frac{\sum A_k \bar{X}_{jk}}{\sum A_k \bar{X}_k} \]

where \(A_k \) is the weight of stratum \(k \), \(\bar{X}_{jk} \) is the mean number per haul of length class \(j \) in stratum \(k \), and \(\bar{X}_k \) is the mean number per haul in stratum \(k \). The numerator and denominator are summed over all \(k \). Before calculation of cumulative proportions, the length class distributions for each group are corrected for missing lengths and are constructed so that the range and intervals of each distribution match.

It is assumed all fish caught are measured. If subsampling occurs, the numbers at length (measured) must be expanded to the total caught.

To generate the empirical probability density function (pdf), length data of hauls from all strata are pooled and then hauls are randomly assigned without replacement to each stratum with haul sizes equal to the original number of stratum hauls. Cumulative proportions are then calculated as described above. The K-S statistic is calculated from the cumulative length frequency distributions of the two groups of randomized data. The randomization procedure is repeated \(r \) samples times to obtain the pdf of \(D \). To estimate the significance of \(D_s \), the proportion of all randomized \(D \) values that were greater than or equal to \(D_s \) is calculated (Manly, 1997).

Data vectors described in arguments should be aggregated so that each record contains the number of fish in each length class by group, strata, weights, and haul identifier. For example,

<table>
<thead>
<tr>
<th>group</th>
<th>stratum</th>
<th>weights</th>
<th>tow</th>
<th>length</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>10</td>
<td>88</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>North</td>
<td>10</td>
<td>88</td>
<td>1</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>North</td>
<td>10</td>
<td>88</td>
<td>2</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>North</td>
<td>11</td>
<td>103</td>
<td>1</td>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>
To correctly calculate the stratified mean number per haul, zero tows must be included in the dataset. To designate records for zero tows, fill the length class and number at length with zeros. The first line in the following table shows the appropriate coding for zero tows:

<table>
<thead>
<tr>
<th>group</th>
<th>stratum</th>
<th>weights</th>
<th>tow</th>
<th>length</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>10</td>
<td>88</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>North</td>
<td>10</td>
<td>88</td>
<td>2</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>North</td>
<td>11</td>
<td>103</td>
<td>1</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>North</td>
<td>11</td>
<td>103</td>
<td>2</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>South</td>
<td>31</td>
<td>43</td>
<td>1</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>South</td>
<td>31</td>
<td>43</td>
<td>1</td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>

Value

- **results**: list element containing the Ds statistics from the observed data comparisons and significance probabilities.
- **obs_prop**: list element containing the cumulative proportions from each group.
- **Drandom**: list element containing the D statistics from randomization for each comparison.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

clus.lf

Examples

data(codestrcluslen)
clus.str.lf(
group=codestrcluslen$region,strata=codestrcluslen$stratum,
weights=codestrcluslen$weights,haul=codestrcluslen$tow,
len=codestrcluslen$length,number=codestrcluslen$number,
Description
Calculates Hedges (2007) t-statistic adjustment and degrees of freedom for a t-test assuming unequal variances and clustered data with clusters of unequal size.

Usage
clus.t.test(popchar = NULL, cluster = NULL, group = NULL, rho = NULL, alpha = 0.05, alternative = c("two.sided"))

Arguments
- popchar: vector of population characteristic measurements (e.g., length, weight, etc.). One row represents the measurement for an individual.
- cluster: vector of numeric or character codes identifying individual clusters (or hauls).
- group: vector of group membership identifiers.
- rho: common intra-cluster correlation for groups.
- alpha: alpha level used to calculate t critical value. Default=0.05
- alternative: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

Details
A two-sample t-test with unequal variances (Sokal and Rohlf, 1995) is performed on clustered data. The t-statistic and degrees of freedom are corrected for clustering according to Hedges (2007).

Value
List with null hypothesis of test and matrix table with mean of each group, rho, ntilda (Equation 14 of Hedges 2007), nu (Equation 15), degrees of freedom (Equation 16), uncorrected t-statistic, cu (Equation 18), the t-statistic adjusted for clustering, critical t value for degrees of freedom and alpha, and probability of significance.

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References
Examples

data(codcluslen)
temp<-codcluslen[codcluslen$number>0,]
temp$station<-c(paste(temp$region,"-",temp$tow,sep=""))
total<-aggregate(temp$number,list(temp$station),sum)
names(total)<-c("station","total")
temp<-merge(temp,total,by.x="station",by.y="station")
newdata<-data.frame(NULL)
for(i in 1:as.numeric(length(temp[,1]))){
 for(j in 1:temp$number[i]){n
 newdata<-rbind(newdata,temp[i,j])
 }
}
newdata<-newdata[-c(5)]
clus.t.test(popchar=newdata$length,cluster=newdata$station,
group=newdata$region,rho=0.72,
alpha=0.05,alternative="two.sided")

clus.vb.fit Fit a Von Bertalanffy growth equation to clustered data via bootstrapping

Description

Fits the von Bertalanffy growth equation to clustered length and age by using nonlinear least-squares and by bootstrapping clusters

Usage

clus.vb.fit(len=NULL,age=NULL,cluster=NULL,nboot=1000,
control=list(maxiter=10000,
minFactor=1/1024,tol=1e-5))

Arguments

len vector of lengths of individual fish
age vector of ages of individual fish
cluster haul or cluster membership identifier
nboot number of bootstrap samples
control see control under function nls.

Details

A standard von Bertalanffy growth curve is fitted to length-at-age data of each nboot sample of clusters using nonlinear least-squares (function nls). The estimated parameters and their associated standard deviations are calculated as the mean and variance of the estimates from all bootstrap fits. The average parameter correlation matrix from all bootstrap fits is provided as well.
Value

List containing a summary of successful model fits and parameter estimates, standard deviation and 95 percent confidence intervals, and the average correlation matrix.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

Examples

```r
## Not run:
data(pinfish)
with(pinfish, clus.vb.fit(len=s1, age=age, cluster=field_no, nboot=100))

## End(Not run)
```

codcluslen

Lengths of Atlantic cod caught during Massachusetts Division of Marine Fisheries bottom trawl survey, spring 1985.

Description

The codcluslen data frame has 334 rows and 4 columns.

Usage

codcluslen

Format

This data frame contains the following columns:

- `region` NorthCape = North of Cape Cod; SouthCape = South of Cape Cod
- `tow` Tow number
- `length` Length class (total length, cm)
- `number` Number in length class

Source

Massachusetts Division of Marine Fisheries

Description

The `codstrcluslen` data frame has 334 rows and 6 columns.

Usage

`codstrcluslen`

Format

This data frame contains the following columns:

- `region` NorthCape = North of Cape Cod; SouthCape = South of Cape Cod
- `stratum` Stratum number
- `tow` Tow number
- `weights` Stratum area (square nautical-miles)
- `length` Length class (total length cm)
- `number` Number in length class

Source

Massachusetts Division of Marine Fisheries, 30 Emerson Avenue, Gloucester, MA 01930

combinevar

Combining Mean and Variances from Multiple Samples

Description

This function takes multiple mean and sample variance estimates and combines them.

Usage

`combinevar(xbar = NULL, s_squared = NULL, n = NULL)`

Arguments

- `xbar` vector of means
- `s_squared` vector of sample variances
- `n` vector of number of observations
Details

If a Monte Carlo simulation is run over 1000 loops and then again over another 1000 loops, one may wish to update the mean and variance from the first 1000 loops with the second set of simulation results.

Value

Vector containing the combined mean and sample variance.

Author(s)

John M. Hoenig, Virginia Institute of Marine Science <hoenig@vims.edu>

Examples

```r
xbar <- c(5,5)
s<-c(2,4)
n <- c(10,10)
combinevar(xbar,s,n)
```

Description

Function compares graphically the readings of two age readers and calculates 2 chi-square statistics for tests of symmetry.

Usage

```r
compare2(readings, usecols = c(1,2), twosone = TRUE, plot.summary = TRUE, barplot = TRUE, chi = TRUE, pool.criterion = 1, cont.cor = TRUE, correct = "Yates", first.name = "Reader A", second.name = "Reader B")
```

Arguments

- **readings** data frame or matrix containing the readings by Reader 1 and those by Reader 2.
- **usecols** columns of the data frame or matrix corresponding to the readings of Reader 1 and those of Reader 2. Default=c(1,2).
- **twosone** logical for whether first type of graph is produced.
- **plot.summary** logical for whether summary table is put on first graph.
- **barplot** logical for whether barplot of frequency of disagreements is drawn.
- **chi** logical for whether 2 chi-square tests are performed.
- **pool.criterion** used to collapse pairs where the expected number of observations is < pooling criterion (default is 1).
cont.cor logical for whether a continuity correction should be used in 1st chisquare test.
correct character for whether "Yates" or "Edwards" continuity correction should be done (if cont.cor=TRUE).
first.name character string describing the first reader or the first aging method. The default is to specify "Reader A".
second.name character string describing the second reader or the second aging method. The default is to specify "Reader B".

Details

This function can plot the number of readings of age j by reader 2 versus the number of readings of age i by reader 1 (if twovsone=TRUE). Optionally, it will add the number of readings above, on, and below the 45 degree line (if plot.summary=TRUE). The function can make a histogram of the differences in readings (if barplot=TRUE). Finally, the program can calculate 2 chi-square test statistics for tests of the null hypothesis that the two readers are interchangeable vs the alternative that there are systematic differences between readers (if chi=TRUE). The tests are tests of symmetry (Evans and Hoenig, 1998). If cont.cor=T, then correction for continuity is applied to the McNemar-like chi-square test statistic; the default is to apply the Yates correction but if correct="Edwards" is specified then the correction for continuity is 1.0 instead of 0.5.

Value

Separate lists with tables of various statistics associated with the method.

Author(s)

John Hoenig, Virginia Institute of Marine Science, 18 December 2012. <hoenig@vims.edu>

References

Examples

data(sbotos)
compare2(readings=sbotos,usecols=c(1,2),twovsone=TRUE,plot.summary=TRUE,
barplot=FALSE,chi=TRUE,pool.criterion=1,cont.cor=TRUE,correct="Yates",
first.name="Reader A",second.name="Reader B")
Conversion of Mortality Rates

Description

Convert instantaneous fishing mortality rate (F) to annual exploitation rate (mu) and vice versa for Type I and II fisheries.

Usage

`convmort(value = NULL, fromto = 1, type = 2, M = NULL)`

Arguments

- `value`: mortality rate
- `fromto`: conversion direction: 1=from F to mu; 2 = from mu to F. Default is 1.
- `type`: type of fishery following Ricker (1975): 1=Type I; 2=Type II. Default is 2.
- `M`: natural mortality rate (for Type II fishery)

Details

Equations 1.6 and 1.11 of Ricker (1975) are used.

Value

A vector of the same length as `value` containing the converted values.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

`convmort(0.3, fromto=1, type=2, M=0.15)`
counts

Run size data for alewife (Alosa pseudoharengus)

Description

The `counts` data frame has 31 rows and 2 columns. Run size data of alewife (*Alosa pseudoharengus*) in Herring River, MA from 1980-2010

Usage

`counts`

Format

This data frame contains the following columns:

- `year` vector of run year
- `number` vector of run counts in number of fish

Source

Massachusetts Division of Marine Fisheries, 30 Emerson Avenue, Gloucester, MA

cowcod

*Catch data (metric tons) for cowcod *Sebastes levis* 1900 to 2008*

Description

Cowcod catch data from literature sources in Martell and Froese (2012).

Usage

`cowcod`

Format

A data frame with 109 observations on the following 2 variables.

- `year` a numeric vector describing the year of catch
- `catch` a numeric vector describing the annual catch in metric tons
Description

Calculates the mean cpue after replacing unusually large catches with expected values using the method of Kappenman (1999)

Usage

cpuekapp(x = NULL, nlarge = NULL, absdif = 0.001)

Arguments

 x vector of non-zero trawl catch data.
 nlarge the number of values considered unusually large.
 absdif convergence tolerance

Details

 Use function gap to choose the number of unusually large values.

Value

 kappmean list element containing new arithmetic mean.
 expectations list element containing the original observation(s) and expected order statistic(s).

Author(s)

 Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

gap
Examples

```r
## Not run:
## Data From Table 1 in Kappenman (1999)
data(kappenman)
cpuekapp(kappenman$cpue, 1)

## End(Not run)
```

darter
Catch Removal Data For Fantail Darter

Description

The *darter* data frame has 7 rows and 2 columns. Sequence of catch data for the faintail darter from removal experiments by Mahon as reported by White et al. (1982). This dataset is often used to test new depletion estimators because the actual abundance is known (N=1151).

Usage

darter

Format

This data frame contains the following columns:

- **catch**: catch data
- **effort**: constant effort data

Source

dbsra
Depletion-Based Stock Reduction Analysis

Description

This function estimates MSY from catch following Dick and MacCall (2011).
Usage

dbsra(year = NULL, catch = NULL, catchCV = NULL,
catargs = list(dist = "none", low = 0, up = Inf, unit = "MT"),
agemat = NULL, maxn=25, k = list(low = 0, up = NULL, tol = 0.01, permax = 1000),
btk = list(dist = "unif", low = 0, up = 1, mean = 0, sd = 0),
btk = list(dist = "unif", low = 0, up = 1, mean = 0, sd = 0, refyr = NULL),
fmsym = list(dist = "unif", low = 0, up = 1, mean = 0, sd = 0),
bmsyk = list(dist = "unif", low = 0, up = 1, mean = 0, sd = 0),
M = list(dist = "unif", low = 0, up = 1, mean = 0, sd = 0), nsims = 10000,
catchout = 0, grout = 0,
grahs = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),
grargs = list(lwd = 1, cex = 1, nclasses = 20, mains = " ", cex.main = 1,
cex.axis = 1, cex.lab = 1), pstats = list(ol = 1, mlty = 1, mlwd = 1.5, llt= 3, llwd = 1, ulty = 3, ulwd = 1),
grtif = list(zoom = 4, width = 11, height = 13, pointsize = 10))

Arguments

- **year**: vector containing the time series of numeric year labels.
- **catch**: vector containing the time series of catch data (in weight). Missing values are not allowed.
- **catchCV**: vector containing the time series of coefficients of variation associated with catch if resampling of catch is desired; otherwise, catchCV = NULL.
- **catargs**: list arguments associated with resampling of catch. **dist** is the specification of the resampling distribution to use ("none" = no resampling, "unif"=uniform, "norm" = normal, and "lnorm" =log-normal). If "lnorm" is selected, catch is log transformed and standard deviation on the log scale is calculated from the specified CVs using the relationship sdlog=sqrt(log(CV^2+1)). **low** and **up** are the lower and upper limit of distribution (if truncation is desired). **unit** is the weight unit of catch (used in graph labels; default="MT"). If "unif", the catch must be incorporated in **low** and **up** arguments. For instance, if the lower limit to sample is the value of catch, specify **low=catch**. If some maximum above catch will be the upper limit, specify **up=50*catch**. The limits for each year will be applied to catch internally.
- **agemat**: median age at entry to the reproductive biomass.
- **maxn**: the maximum limit of the Pella-Tomlinson shape parameter that should not be exceeded in the rule for accepting a run.
- **k**: list arguments for estimation of k (carrying capacity). **low** and **up** are the lower and upper bounds of the minimization routine and **tol** is the tolerance level for minimization. A simple equation ((btk)-(b[refyr]/k))^2 is used as the objective function. R function **optimize** is used to find k. btk is described below. **permax** is the absolute percent difference between the maximum biomass estimate and k that should not be exceeded in the rule for accepting a run (see details).
list arguments for B1/K, the relative depletive level in the first year. dist is the statistical distribution name from which to sample b1k. low and up are the lower and upper bounds of b1k in the selected distribution. mean and sd are the mean and standard deviation for selected distributions. The following are valid distributions: "none", "unif" - uniform, "norm" - normal, "lnorm" - log-normal, "gamma" - gamma, and "beta" - beta distributions. "unif" requires non-missing values for low and up. "norm", "lnorm", "gamma" and "beta" require non-missing values for low,up, mean and sd. If "lnorm" is used, mean and sd must be on the natural log scale (keep low and up on the original scale). If dist= "none", the mean is used as a fixed constant.

list arguments for Bt/K, the relative depletive level in a specific reference year (refyr). dist is the statistical distribution name from which to sample btk. low and up are the lower and upper bounds of btk in the selected distribution. mean and sd are the mean and standard deviation for selected distributions. The following are valid distributions: "none", "unif" - uniform, "norm" - normal, "lnorm" - log-normal, "gamma" - gamma, and "beta" - beta distributions. "unif" requires non-missing values for low and up. "norm", "lnorm", "gamma" and "beta" require non-missing values for low,up, mean and sd. If "lnorm" is used, mean and sd must be on the natural log scale (keep low and up on the original scale). If dist= "none", the mean is used as a fixed constant. refyr is the selected terminal year and can range from the first year to the year after the last year of catch (t+1).

list arguments for Fmsy/M. dist is the statistical distribution name from which to sample Fmsy/M. low and up are the lower and upper bounds of Fmsy/M in the selected distribution. mean and sd are the mean and standard deviation for selected distributions. Valid distributions are the same as in btk. If dist= "none", the mean is used as a fixed constant.

list arguments for Bmsy/k. dist is the statistical distribution name from which to sample Bmsy/k. low and up are the lower and upper bounds of Bmsy/k in the selected distribution. mean and sd are the mean and standard deviation for selected distributions. Valid distributions are the same as in btk. If dist= "none", the mean is used as a fixed constant.

list arguments for natural mortality. dist is the statistical distribution name from which to sample M. low and up are the lower and upper bounds of M in the selected distribution. mean and sd are the mean and standard deviation for selected distributions. Valid distributions are the same as in btk. If dist= "none", the mean is used as a fixed constant. M is used to determine exploitation rate (Umsy) at MSY.

number of Monte Carlos samples.

if catch is resampled, output the time series from every MC sample to a .csv file. 0 = no (default), 1 = yes.

numeric argument specifying whether graphs should be printed to console only (1) or to both the console and TIF graph files (2). Use setwd before running function to direct .tif files to a specific directory. Each name of each file is automatically determined.

vector specifying which graphs should be produced. 1 = line plot of observed catch versus year, 2 = histogram of plausible (accepted) k values, 3 = histogram
of plausible Bmsy values, 4 = histogram of plausible MSY values, 5 = histogram of plausible Fmsy values, 6 = histogram of Umsy values, 7 = histogram of plausible Bmsy/k values, 8 = histogram of plausible Bmsy from plausible M, 9 = histogram of plausible Bt/k values, 10 = histogram of plausible Fmsy/M values, 11 = histogram of plausible Bmsy/k values and 12 = histogram of plausible biomasses in term yr, 13 = line plots of accepted and rejected biomass trajectories with median and 2.5th and 97.5th percentiles (in red) and 14 = stacked histograms of accepted and rejected values for each input parameter and resulting estimates and if grout=2, .tif files are saved with "AR" suffix. Any combination of graphs can be selected within c(). Default is all.

grargs
list control arguments for plotting functions. lw is the line width for graph = 1 and 13, nclasses is the nclass argument for the histogram plots (graphs 2-12, 14), mains and cex.main are the titles and character expansion values for the graphs, cex.axis is the character expansion value(s) for the x and y-axis tick labels and cex.lab is the character expansion value(s) for the x and y-axis labels. Single values of nclasses, mains, cex.main, cex.axis, cex.lab are applied to all graphs. To change arguments for specific graphs, enclose arguments within c() in order of the number specified in graphs.

pstats
list control arguments for plotting the median and 2.5 and management quantities on respective graphs. ol = 0, do not overlay values on plots, 1 = overlay values on plots. lty and lwd are the line type and line width of the median value; ulty and ulwd are the line type and line width of the 2.5 and ulwd are the line type and line width of the 97.5

grtif
list arguments for the .TIF graph files. See tiff help file in R.

Details

The method of Dick and MAcCall (2011) is used to produce estimates of MSY where only catch and information on resilience and current relative depletion is known.

The delay-difference model is used to propagate biomass:

\[B[t+1] = B[t] + P[B[t-a]-C[t]] \]

where \(B[t] \) is biomass in year t, \(P[B[t-a]] \) is latent annual production based on parental biomass \(a \) years earlier and \(C[t] \) is the catch in year t. Biomass in the first year is assumed equal to k.

If Bmsy/k >= 0.5, then P[t] is calculated as

\[P[t] = g * MSY * (B[t-agemat]/k - g * MSY *(B[t-agemat]/k)^n \]

where MSy is k*Bmsy/k*Umsy, n is solved iteratively using the equation, Bmsy/k=n^(1/(1-n)), and g is \((n(n/n-1))/(n-1)\). Fmsy is calculated as Fmsy=Fmsy/M*M and Umsy is calculated as \((Fmsy/(Fmsy+M))^{(1-exp(-Fmsy-M))}\).

If Bmsy/k < 0.5, Bjoin is calculated based on linear rules: If Bmsy/k<0.3, Bjoin=0.5*Bmsy/k*k If Bmsy/k>0.3 and Bmsy/k<0.5, Bjoin=(0.75*Bmsy/k-0.075)*k

If any B[t-a]<Bjoin, then the Schaefer model is used to calculated P:

\[P[B[t-agemat-Bjoin]] = (1-n) * g * MSY * Bjoin *(n-2) * K^n(-n) \]

where \(c = (1-n) * g * MSY * Bjoin *(n-2) * K^n(-n) \)

Biomass at MSY is calculated as: Bmsy=(Bmsy/k)*k
The overfishing limit (OFL) is Umsy*B[termyr]. Length(year)+1 biomass estimates are made for each run. The rule for accepting a run is: if(min(B)>0 && max(B)<=k &&
(objective function minimum)<=tol^2) && abs(((max(B)-k)/k)*100)<=permax && n<=maxn
If using the R Gui (not Rstudio), run graphics.off() windows(width=10, height=12,record=TRUE) .SavedPlots <- NULL before running the dbsra function to recall plots.

Value

Initial dataframe containing the descriptive statistics for each explored parameter.
Parameters dataframe containing the mean, median, 2.5th and 97.5 of the plausible (accepted: likelihood(ll)=1) parameters.
Estimates dataframe containing the mean, median, 2.5th and 97.5 of the management quantities (i.e., MSY, Bmsy, etc.) from the plausible parameters (likelihood=1)
Values dataframe containing the values of likelihood, k, Bt/k, Bmsy/k, M and associated management quantities for all (likelihood=0 and likelihood=1) random draws.
agemat agemat for use in function dlproj.
endyr value of the last year of catch data + 1 for use in function dlproj.
type designates the output object as a catchmsy object for use in function dlproj.

The biomass estimates from each simulation are not stored in memory but are automatically saved to a .csv file named "Biotraj-dbsra.csv". Yearly values for each simulation are stored across columns. The first column holds the likelihood values for each simulation (1= accepted, 0 = rejected). The number of rows equals the number of simulations (nsims). This file is loaded to plot graph 13 and it must be present in the default or setwd() directory.

When catchout=1, catch values randomly selected are saved to a .csv file named "Catchtraj-dbsra.csv". Yearly values for each simulation are stored across columns. The first column holds the likelihood values (1= accepted, 0 = rejected). The number of rows equals the number of simulations (nsims).

Use setwd() before running the function to change the directory where .csv files are stored.

Note

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

catchmsy dlproj

Examples

```r
## Not run:
data(cowcod)
dbsra(year = cowcod$year, catch = cowcod$catch, catchCV = NULL,
cattargs = list(dist="none",low=0,up=Inf,unit="MT"),
agemat=11, k = list(low=100,up=15000,tol=0.01,permax=1000),
blk = list(dist="none",low=0.01,up=0.99,mean=1,sd=0.1),
btk = list(dist="beta",low=0.01,up=0.99,mean=0.1,sd=0.1,refyr=2009),
fsym = list(dist="lnorm",low=0.1,up=2,mean=-0.223,sd=0.2),
bmsyk = list(dist="beta",low=0.05,up=0.95,mean=0.4,sd=0.05),
M = list(dist="lnorm",low=0.001,up=1,mean=-2.90,sd=0.4),
nsims = 10000)
```

deltadist

Delta Distribution Mean and Variance Estimators

Description

Calculates the mean and variance of a catch series based on the delta distribution described in Pennington (1983).

Usage

deltadist(x = NULL)

Arguments

- `x` vector of catch values, one record for each haul. Include zero and nonzero catches. Missing values are deleted prior to estimation.

Details

Data from marine resources surveys usually contain a large proportion of hauls with no catches. Use of the delta-distribution can lead to more efficient estimators of the mean and variance because zeros are treated separately. The methods used here to calculate the delta distribution mean and variance are given in Pennington (1983).

Value

vector containing the delta mean and associated variance.
deplet

Description

Variable and constant effort models for the estimation of abundance from catch-effort depletion data assuming a closed population.

Usage

deplet(catch = NULL, effort = NULL, method = c("l", "d", "ml", "hosc", "hesc", "hemqle", "wh"), kwh=NULL, nboot = 500, Nstart=NULL)

Arguments

catch the vector containing catches for each removal period (in sequential order).
effort the vector containing effort associated with catch for each removal period. Rows must match those of catch.
kwh the number of capture parameters (p) to fit in method wh. NULL for all possible capture parameters.
nboot the number of bootstrap resamples for estimation of standard errors in the ml, hosc,hesc, and hemqle methods
Nstart starting value for N in method "wh". If NULL, start value is automatically determined
Details

The variable effort models include the Leslie-Davis (l) estimator (Leslie and Davis, 1939), the effort-corrected Delury (d) estimator (Delury, 1947; Braaten, 1969), the maximum likelihood (ml) method of Gould and Pollock (1997), sample coverage estimator for the homogeneous model (hesc) of Chao and Chang (1999), sample coverage estimator for the heterogeneous model (hesc) of Chao and Chang (1999), and the maximum quasi-likelihood estimator for the heterogeneous model (hemqle) of Chao and Chang (1999). The variable effort models can be applied to constant effort data by simply filling the effort vector with 1s. Three removals are required to use the Leslie, Delury, and Gould and Pollock methods.

The constant effort model is the generalized removal method of Otis et al. 1978 reviewed in White et al. (1982: 109-114). If only two removals, the two-pass estimator of N in White et al. (1982:105) and the variance estimator of Otis et al. (1978: 108) are used.

Note: Calculation of the standard error using the ml method may take considerable time.

For the Delury method, zero catch values are not allowed because the log-transform is used.

For the generalized removal models, if standard errors appear as NAs but parameter estimates are provided, the inversion of the Hessian failed. If parameter estimates and standard errors appear as NAs, then model fitting failed.

For the Chao and Chang models, if the last catch value is zero, it is deleted from the data. Zero values between positive values are permitted.

Value

Separate output lists with the method name and extension .out are created for each method and contain tables of various statistics associated with the method.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

data(darter)
deplet(catch=darter$catch,effort=darter$effort,method="hosc")

hosc.out

dlproj

This function performs projections for dbsra and catchmsy objects

Description

Make biomass projections by using inputted catch and results of dbsra or catchmsy functions

Usage

dlproj(dlobj = NULL, projyears = NULL, projtype = 1, projcatch = NULL,
grout = 1, grargs = list(lwd = 1, unit = "MT", mains = "", cex.main = 1,
cex.axis = 1, cex.lab = 1), grtif = list(zoom = 4, width = 11, height = 13,
pointsize = 10))

Arguments

dlobj function dbsra or catchmsy output object
projyears the number of years for projection. The first year will be the last year of catch
data plus one in the original dbsra or catchmsy run.
projtype the type of catch input. 0 = use median MSY from dbsra or catchmsy object, 1
= use mean MSY from dbsra or catchmsy object, 2 = user-inputted catch
projcatch if projtype = 2, a single catch value used over all projection years or a vector of
catch values (length is equal to projyears).
grout numeric argument specifying whether projection graph should be shown on the
console only (grout=1) or shown on the console and exported to a TIF graph
file (grout=2). No graph (grout== 0). If plotted, the median (solid line), mean
(dashed line), and 2.5th and 97.5 percentiles(dotted lines) are displayed. Use
setwd before running function to direct .tif file to a specific directory. The name
of .tif file is automatically determined.
grargs list control arguments for plotting functions. lwd is the line width, unit is the
biomass unit for the y-axis label, mains and cex.main are the title and character
expansion value for the graph, cex.axis is the character expansion value for the
x and y-axis tick labels and cex.lab is the character expansion value(s) for the
x and y-axis labels.
grtif list control arguments for the .TIF graph file. See tiff help file in R.
Details

The biomass estimate of the last year+1 is used as the starting biomass (year 1 in projections) and leading parameters from each plausible (accepted) run are used to project biomass ahead projyears years using either the MSY estimate (median or mean) from all plausible runs or inputted catch values. The biomass estimates are loaded from either the "Biotraj-dbsra.csv" or "Biotraj-cmsy.csv" files that were automatically saved in functions "dbsra" and "catchmsy".

Use setwd() before running the function to change the directory where .csv files are stored.

Value

type object projection type
ProjBio dataframe of biomass projections for each plausible run

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

catchmsy dbsra

Examples

```R
## Not run:
data(lingcod)
outs<-catchmsy(year=lingcod$year,
catch=lingcod$catch,catchCV=NULL,
catargs=list(dist="none",low=0,up=Inf,unit="MT"),
l0=list(low=0.8,up=0.8,step=0),
l1=list(low=0.01,up=0.25,refyr=2002),sigv=0,
k=list(dist="unif",low=4333,up=433300,mean=0,sd=0),
r=list(dist="unif",low=0.015,up=0.5,mean=0,sd=0),
bk=list(dist="unif",low=0.5,up=0.5,mean=0,sd=0),
M=list(dist="unif",low=0.24,up=0.24,mean=0.00,sd=0.00),
nsims=30000)
outbio<-dlproj(dlobj = outs, projyears = 20, projtype = 0, grout = 1)

## End(Not run)
```
Eggs-per-recruit (EPR) analysis is conducted following Gabriel et al. (1989) except fecundity-at-age is substituted for weight-at-age. Reference points of F and EPR for percentage of maximum spawning potential are calculated.

Usage

```
epr(age = NULL, fecund = NULL, partial = NULL, pmat = pmat, M = NULL, pF = NULL, pM = NULL, MSP = 40, plus = FALSE, oldest = NULL, maxF = 2, incrF = 1e-04)
```

Arguments

- `age`: vector of cohort ages. If the last age is a plus group, do not add a "+" to the age.
- `fecund`: vector of fecundity (number of eggs per individual) for each age. Length of vector must correspond to the length of the age vector.
- `partial`: partial recruitment vector applied to fishing mortality (F) to obtain partial F-at-age. Length of this vector must match length of the age vector.
- `pmat`: proportion of mature fish at each age. Length of this vector must match the length of the age vector.
- `M`: vector containing a single natural mortality (M) rate if M is assumed constant over all ages, or a vector of Ms, one for each age. If the latter, the vector length must match the length of the age vector.
- `pF`: the proportion of fishing mortality that occurs before spawning.
- `pM`: the proportion of natural mortality that occurs before spawning.
- `MSP`: the percentage of maximum spawning potential (percent MSP reference point) for which F and EPR should be calculated.
- `plus`: a logical value indicating whether the last age is a plus-group. Default is FALSE.
- `oldest`: if plus=TRUE, a numeric value indicating the oldest age in the plus group.
- `maxF`: the maximum value of F range over which EPR will be calculated. EPR is calculated for F = 0 to maxF.
- `incrF`: F increment for EPR calculation.

Details

Eggs-per-recruit analysis is conducted following Gabriel et al. (1989). The F and EPR for the percentage maximum spawning potential reference point are calculated. If the last age is a plus-group, the cohort is expanded to the oldest age and the fecund, partial, pmat, and M values for the plus age are applied to the expanded cohort ages.
Value

Reference_Points
F and EPR values for the percentage MSP
EPR_vs_F
Eggs-per-recruit values for each F increment

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

ypr sbpr

Examples

```r
data(menhaden)
epr(age=menhaden$age,fecund=menhaden$fecundity,partial=menhaden$partial,pmat=menhaden$pmat,M=menhaden$M,pF=0,pM=0,MSP=40,plus=TRUE,maxF=4,incrF=0.01,oldest=10)
```

fm_checkdesign

Check parameter structure of Hightower et al. (2001) models

Description

Check design of parameter structure before use in function `fm_telemetry`.

Usage

```r
fm_checkdesign(occasions = NULL, design = NULL, type = "F")
```

Arguments

- `occasions` : total number of occasions that will be modeled in data
- `design` : vector of characters specifying the occasion parameter structure (see details).
- `type` : character type of parameter to which design will be applied: F = fishing mortality, M = natural mortality, and P = probability of detection. Default = F.
Details

The program allows the configuration of different parameter structure for the estimation of fishing and natural mortalities, and detection probabilities. These structures are specified in design. Consider the following examples:

Example 1

Tags are relocated over seven occasions. One model structure might be constant fishing mortality estimates over occasions 1-3 and 4-6. To specify this model structure: design is c("1","4").

Note: The structures of design must always contain the first occasion for fishing mortality and natural mortality, whereas the structure for the probability of detection must not contain the first occasion.

Example 2

Tags are relocated over six occasions. One model structure might be separate fishing mortality estimates for occasion 1-3 and the same parameter estimates for occasions 4-6. The design is c("1:3*4:6").

Note: The structures of fdesign and mdesign must always start with the first occasion, whereas the structure for pdesign must always start with the second occasion.

Use the multiplication sign to specify occasions whose estimates of F, M or P will be taken from values of other occasions.

Example 3

Specification of model 3 listed in Table 1 of Hightower et al. (2001) is shown. Each occasion represented a quarter of the year. The quarter design for F specifies that quarterly estimates are the same in both years. design is c("1*14","4*17","7*20","11*24").

Example 4

In Hightower et al. (2001), the quarter and year design specifies that estimates are made for each quarter but are different for each year. design is c("1", "4", "7", "11", "14", "17", "20", "24").

If the number of occasions to be assigned parameters from other occasions are less than the number of original parameters (e.g., c("11:13*24:25")), then only the beginning sequence of original parameters equal to the number of occasions are used. For instance, in c("11:13*24:25"), only parameters 11 and 12 would be assigned to occasions 24 and 25.

If the number of occasions to be assigned parameters from other occasions are greater than the number of original parameters (e.g., c("11:12*24:26")), then the last original parameter is re-cycled. In the example c("11:12*24:26"), the parameter for occasion 12 is assigned to occasions 25 and 26.

Value

dataframe containing the parameter order by occasion.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

See Also

 fm_telemetry
Model Averaging for the Telemetry Method of Hightower et al. (2001)

Description

Calculates model averaged estimates of instantaneous fishing, natural and probability of detection for telemetry models of Hightower et al. (2001).

Usage

```
fm_model_avg(..., global = NULL, chat = 1)
```

Arguments

- `...` model object names separated by commas
- `global` specify global model name in quotes. If the global model is the first model included in the list of candidate models, this argument can be ignored.
- `chat` chat for the global model.

Details

Model estimates are generated from function `fm_telemetry`. Averaging of model estimates follows the procedures in Burnham and Anderson (2002). Variances of parameters are adjusted for overdispersion using the c-hat estimate from the global model: \(\sqrt{\text{var} \times c\text{-hat}} \). If c-hat of the global model is <1, then c-hat is set to 1. The c-hat is used to calculate the quasi-likelihood AIC and AICc metrics for each model (see page 69 in Burnham and Anderson(2002)). QAICc differences among models are calculated by subtracting the QAICc of each model from the model with the smallest QAICc value. These differences are used to calculate the Akaiake weights for each model following the formula on page 75 of Burnham and Anderson (2002). The Akaike weights are used to calculate the weighted average and standard error of parameter estimates by summing the product of the model-specific Akaike weight and parameter estimate across all models. An unconditional standard error is also calculated by \(\sqrt{\text{sum} (\text{QAICc wgt of model i} \times (\text{var of est of model i} + (\text{est of model i} - \text{avg of all est})^2)))} \).

Value

List containing model summary statistics, model-averaged estimates of fishing, natural and probability of detections and their weighted and unconditional standard errors.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
References

See Also

fm_telemetry

Examples

This is a typical specification, not a working example
Not run:
fm_model_avg(model1,model2,model3,model4,model5,model6,model7,global="model7")
End(Not run)

fm_telemetry

Estimation of Fishing and Natural Mortality from Telemetry Data

Description

The method of Hightower et al. (2001) is implemented to estimate fishing mortality, natural mortality and probability of detection from telemetry data.

Usage

```r
fm_telemetry(filetype = c(1), caphistory = NULL, Fdesign = NULL, Mdesign = NULL, 
Pdesign = NULL, whichlivecells = NULL, 
whichdeadcells = NULL, constant = 1e-14, initial = NULL, 
invtol = 1e-44, control = list(reltol=1e-8,maxit=1000000))
```

Arguments

- **filetype**: type of file to read. 1 = R character vector with individual capture histories (1 history per row), or 2 = an external text file with individual capture histories. If filetype=2, then the capture histories in the file should not be enclosed in quotes and there should not be a column name.
- **caphistory**: File or R object with capture histories. If filetype=2, location and filename of text file enclosed in quotes (e.g., “C:/temp/data.txt”).
- **Fdesign**: vector of characters specifying the occasion parameter structure for fishing mortality (F). See details.
- **Mdesign**: vector of characters specifying the occasion parameter structure for natural mortality (M). See details.
- **Pdesign**: vector of characters specifying the occasion parameter structure for the probability of detection (P). See details.
whichlivecells list containing the structure of occasion live cells to use in each release during the estimation process. Multiple ranges may be specified. For each range, specify the first release, last release, and number of observed occasions (cells) enclosed within c(). For example, to use the first 4 cells of releases 1-5, specify c(1,5,4). whichlivecells is a list object of all ranges (e.g., whichlivecells=list(c(1,5,4),c(6,26,6))). Specify whichlivecells=NULL to use all cells. The Hightower et al. (2001) specification is whichlivecells=list(c(1,5,4),c(6,6,5), c(7,26,4)).

whichdeadcells list containing the structure of occasion dead cells to use in each release during the estimation process. Same as whichlivecells. The Hightower et al. (2001) specification is whichdeadcells=list(c(1,5,4),c(6,6,6), c(7,26,4))

c control A small number to use in the multinomial log-likelihood (Obs * log(max(constant, Expected Prob))) to avoid errors if any probability is 0. If the number is too large, it may affect the minimization of the likelihood. Default is 1e-14.

initial vector of starting values for fishing and natural mortality, and the probability of detection. First position is the starting value for all Fs, the second position is the starting value for all Ms, and the third position is the starting value for all Ps (e.g., c(0.1,0.2,0.8)).

invtol the tolerance for detecting linear dependencies in the columns of a in solve (the function used to invert the hessian matrix). Adjust this value if errors about tolerance limits arise.

c control A list of control parameters for optim. See function optim for details.

Details

The telemetry method of Hightower et al. (2001) is implemented. Individual capture histories are used in the function. The function uses complete capture histories (Burnham et al., 1987) and it is the presence of specific codes in the individual capture histories that split the capture histories into live and dead arrays. F and M estimates are needed for occasions 1 to the total number of occasions minus 1 and P estimates are needed for occasions 2 to the total number of occasions.

Capture histories are coded following Burnham et al. (1987)(i.e., 0 = not relocated, and 1 = relocated) with the following exceptions:

All live relocations are coded with 1. If a fish is relocated and is dead, then D is used. For example,

101011 - fish released on occasion 1 is relocated alive on occasions 3,5 and 6
101110 - fish released on occasion 1 is relocated alive on occasions 3,4,and 5 but is relocated dead on occasion 6.

New releases are allowed to occur on multiple occasions. The capture history of newly-released individuals should be coded with a zero (0) for the occasions before their release.

100110 - fish released on occasion 1 is relocated live on occasion 4 and 5
101000 - fish released on occasion 1 is relocated live on occasion 3
010111 - fish released on occasion 2 is relocated live on occasion 4, 5 and 6
011000 - fish released on occasion 2 is relocated live on occasion 3
001101 - fish released on occasion 3 is relocated live on occasion 4 and 6
001000 - fish released on occasion 3 is relocated dead on occasion 6.
To censor fish from the analyses, specify E after the last live encounter. For example,
10111E000 - fish released on occasion 1 is relocated alive on occasions 3, 4, and 5 but is believed to
have emigrated from the area by occasion 6. The capture history before the E will be used, but the
fish is not included in the virtual release in occasion 6.

All life histories are summarized to reduced m-arrays (Burnham et al. (1987: page 47, Table 1.15).
The function optim is used to find F, M and P parameters that minimize the negative log-likelihood.
Only cells specified in whichlivecells and whichdeadcells are used in parameter estimation.

The logit transformation is used in the estimation process to constrain values between 0 and 1.
Logit-scale estimated parameters are used to calculate $S_f = 1/(1+\exp(-B))$, $S_m = 1/(1+\exp(-C))$ and
$P = 1/(1+\exp(-D))$. F and M are obtained by $-\log(S_f)$ and $-\log(S_m)$.

The standard error of S_f, S_m, P, F and M are obtained by the delta method:

$$SE(S_f) = \sqrt{\frac{\text{var}(B) \cdot \exp(2B)}{(1+\exp(B))^4}},$$
$$SE(S_m) = \sqrt{\frac{\text{var}(C) \cdot \exp(2C)}{(1+\exp(C))^4}},$$
$$SE(P) = \sqrt{\frac{\text{var}(D) \cdot \exp(2D)}{(1+\exp(D))^4}},$$
$$SE(F) = \sqrt{\frac{SE(S_f)^2}{S_f^2}},$$
$$SE(M) = \sqrt{\frac{SE(S_m)^2}{S_m^2}}.$$

All summary statistics follow Burnham and Anderson (2002). Model degrees of freedom are calcu-
lated as $n_{\text{live}} + n_{\text{dead}} + n_{\text{never}} - n_{\text{releases}} - n_{\text{par}}$ where n_{live} is the number of whichlivecells cells, n_{dead} is the number of whichdeadcells cells, n_{never} is the number of never-seen cells, n_{releases} is the number of releases and n_{par} is the number of estimated parameters. Total chi-square is calcu-
lated by summing the cell chi-square values.

The program allows the configuration of different model structures (biological realistic models) for
the estimation of fishing and natural mortalities, and detection probabilities. These structures are
specified in fdesign, mdesign and pdesign. Consider the following examples:

Example 1

Tags are relocated over seven occasions. One model structure might be constant fishing mortality
estimates over occasions 1-3 and 4-6, one constant estimate of natural mortality for the entire sam-
pling period, and one estimate of probability of detection for each occasion. To specify this model
structure: fdesign is c("1","4"), mdesign is c("1") and the pdesign is c("2:2").

Note: The structures of fdesign and mdesign must always start with the first occasion, whereas
the structure for pdesign must always start with the second occasion.

Use the multiplication sign to specify occasions whose estimates of F, M or P will be taken from
values of other occasions.

Example 2

Tags are relocated over six occasions. One model structure might be separate fishing mortality
estimates for occasions 1-3 but assign the same parameter estimates to occasions 4-6, one constant
estimate of natural mortality for occasions 1-5 and 6, and one constant probability of detection over
all occasions. The fdesign is c("1:3","4:6"), the mdesign is c("1","6") and the pdesign is c("2").

Example 3

Specification of model 18 listed in Table 1 of Hightower et al. (2001) is shown. Each occasion
represented a quarter of the year. The quarter-year design for F, M and P specifies that quarterly
estimates are made in each year. Fdesign is c("1","4","7","11","14","17","20","24"). Mdesign is c("1","4","7","11","14","17","20","24") and the Pdesign is c("2","4","7","11","14","17","20","24").

If the number of occasions to be assigned parameters from other occasions are less than the number of original parameters (e.g., c("11:13*24:25"), then only the beginning sequence of original parameters equal to the number of occasions are used. For instance, in c("11:13*24:25"), only parameters 11 and 12 would be assigned to occasions 24 and 25.

If the number of occasions to be assigned parameters from other occasions are greater than the number of original parameters (e.g., c("11:12*24:26")), then the last original parameter is re-cycled. In the example c("11:12*24:26"), the parameter for occasion 12 is assigned to occasions 25 and 26.

To assist with the parameter structures, function fm_checkdesign may be used to check the desired design before use in this function.

If values of standard error are NA in the output, the hessian matrix used to calculate the variance-covariance matrix could not be inverted. If this occurs, try adjusting the reltol argument (for more information, see function optim).

In this function, the never-seen expected number is calculated by summing the live and dead probabilities, subtracting the number from 1, and then multiplying it by the number of releases. No rounding occurs in this function.

The multinomial likelihood includes the binomial coefficient.

Model averaging of model can be accomplished using the function fm_model_avg.

Note: In Hightower et al.'s original analysis, the cell probability code in SURVIV for the dead relocation in release occasion 6 had an error. The corrected analysis changed the estimates for occasions 11-13 compared to the original published values.

Value

List containing summary statistics for the model fit, model convergence status, parameter estimates of fishing mortality, natural mortality, and probabilities of detection and standard errors by occasion, the parameter structure (Fdesign, Mdesign and Pdesign), the m-arrays, the expected (predicted) number of live and dead relocations, cell chi-square and Pearson values for live and dead relocations, matrices with the probability of being relocated alive and dead by occasion, the whichlivecells and whichdeadcells structures, and configuration label (type) used in the fm_model_avg function.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

fm_model_avg, fm_checkdesign

Examples

```r
## Not run:
# Set up for Full model of Hightower et al. (2001)
data(Hightower)
fm_telemetry(filetype=1, caphistory=Hightower$caphistory, Fdesign=c("1:26"),
             Mdesign=c("1:26"), Pdesign = c("2:25"),
             whichlivecells=list(c(1,5,4), c(6,6,5), c(7,26,4)),
             whichdeadcells=list(c(1,5,4), c(6,6,6), c(7,26,4)),
             initial=c(0.05, 0.02, 0.8),
             control=list(reltol=1e-5, maxit=100000))

# Set up for best model F(Qtr,yr), M constant, Pocc
fm_telemetry(filetype=1, caphistory=Hightower$caphistory, Fdesign=c("1", "4", "7", "11", "14", "17", "28", "24"),
             Mdesign=c("1"), Pdesign = c("2:27"),
             whichlivecells=list(c(1,5,4), c(6,6,5), c(7,26,4)),
             whichdeadcells=list(c(1,5,4), c(6,6,6), c(7,26,4)),
             initial=c(0.05, 0.02, 0.8),
             control=list(reltol=1e-8, maxit=100000))
```

```r
## End(Not run)
```
method method(s) to use to estimate fishing power correction. 1 = Ratio of Means, 2 = Randomized Block ANOVA, 3 = Multiplicative Model, 4 = Kappenman 1992. Default = c(1,2,3,4)
deletezerosets if TRUE, paired observations with any CPUE=0 are eliminated prior to estimation. Default = FALSE.
kapp_zeros for method = 4, how CPUE=0 is eliminated. "paired" eliminates the row of paired CPUE observations if CPUE = 0 is present for any observation within the pair, "ind" eliminates CPUE = 0 from the individual CPUE vectors.
boot_type the method for bootstrapping data. "paired" = resample paired CPUE observations, "unpaired" = resample individual CPUE vectors
nboot the number of bootstrap replicates. Default = 1000.
dint the lower and upper limits of the function interval searched by function uniroot to solve Kappenman’s d.
rint the lower and upper limits of the function interval searched by function optimize to solve Kappenman’s r.
decimals the number of decimal places for output of estimates.
alpha the alpha level used to calculate confidence intervals.

Details

The four methods for estimating fishing power correction factors given in Wilderbuer et al. (1998) are encoded.

If paired CPUE observations are both zero, the row is automatically eliminated. If deletezerosets = TRUE, the paired CPUE observations with any CPUE = 0 will be eliminated.

Zeroes are allowed in methods 1, 2 and 3.

For the Kappenman method (method=4), only non-zero CPUEs are allowed. Use kapp_zeros to select the elimination method. An unequal number of observations between vessels is allowed in this method and can result using kapp_zeros = "ind". FPC is derived by using the methodology where r that minimizes the sum of squares under the first conjecture relative to the second is estimated (Kappenman 1992: 2989; von Szalay and Brown 2001).

Standard errors and confidence intervals of FPC estimates are derived for most methods by using an approximation formula (where applicable), jackknifing and/or bootstrapping. Specify the type of bootstrapping through boot_type. For methods 1-3, jackknife estimates are provided only when boot_type="paired". If method = 4, jackknife estimates are provided only when boot_type="paired" and kapp_zeros="paired".

Confidence intervals are provided for the approximation formulae specified in Wilderbuer et al (1998), the jackknife estimates and bootstrap estimates. Confidence intervals for the jackknife method are calculated using the standard formula (estimate+/-z[alpha/2]*jackknife standard error). Bootstrap confidence intervals are derived using the percentile method (Haddon 2001).

Value

A dataframe containing method name, sample size for cpue1 (n1) and cpue2 (n2), mean cpue1, mean cpue2, fishing power correction (FPC), standard error from approximation formulae (U_SE), standard error from jackknifing (Jack_SE), standard error from bootstrapping (Boot_SE), lower
and upper confidence intervals from approximation formulae (\(\text{U}_\text{LCI} \) and \(\text{U}_\text{UCI} \)), lower and upper confidence intervals from jackknifing (\(\text{Jack}_\text{LCI} \) and \(\text{Jack}_\text{UCI} \)) and lower and upper confidence intervals from bootstrapping (\(\text{Boot}_\text{LCI} \) and \(\text{Boot}_\text{UCI} \)).

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples
```r
## Not run:
# FPC for flathead sole from von Szalay and Brown 2001
data(sole)
  fpc(cpue1=sole$nmfs,cpue2=sole$adfg,boot_type="unpaired",kapp_zeros="ind",method=c(4),
       alpha=0.05)
## End(Not run)
```

gap

Tukey's Gapping

Description
This function finds unusual spaces or gaps in a vector of random samples

Usage
```r
gap(x = NULL)
```

Arguments

x vector of values
Details

Values (x) are sorted from smallest to largest. Then Z values are calculated as follows:
\[Z_{n-i+1} = i^{\star}(n-i)(X_{n-i+1} - X_{n-i})^{0.5} \]
where \(n \) is the sample size
for \(i = 2, ..., n \) calculate the 25 percent trimmed mean and divide into Z. This standardizes the distribution of the weighted gaps around a middle value of one. Suspiciously large observations should correspond to large standardized weighted gaps.

Value

vector of standardized weighted gaps

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

```r
y<-c(rnorm(10,10,2),1000)
gap(y)
```

Description

The `gerking` data frame has 14 rows and 3 columns. Marked and released sunfish in an Indiana lake for 14 days by Gerking (1953) as reported by Krebs (1989, Table 2.1).

Usage

`gerking`

Format

This data frame contains the following columns:

- `C` column of number of captures (column names is unnecessary).
- `R` column of number of recaptures (column name is unnecessary).
- `nM` column of number of newly marked animal (column name is unnecessary).

Source

goosefish

Mean Length and Numbers of Lengths for Northern Goosefish, 1963-2002

Description

The goosefish data frame has 40 rows and 3 columns. The mean lengths (mlen) by year and number (ss) of observations for length>=smallest length at first capture (Lc) for northern goosefish used in Gedamke and Hoenig (2006).

Usage

goosefish

Format

This data frame contains the following columns:

- **year**: year code
- **mlen**: mean length of goosefish, total length (cm)
- **ss**: number of samples used to calculate mean length

Source

grotag

Description

This function estimates parameters of Francis (1988)'s growth model using tagging data. The data are fitted using a constrained maximum likelihood optimization performed by optim using the "L-BFGS-B" method.

Usage

grotag(L1 = NULL, L2 = NULL, T1 = NULL, T2 = NULL, alpha = NULL, beta = NULL, design = list(nu = 0, m = 0, p = 0, sea = 0), stvalue = list(sigma = 0.9, nu = 0.4, m = -1, p = 0.01, u = 0.4, w = 0.4), upper = list(sigma = 5, nu = 1, m = 2, p = 1, u = 1, w = 1), lower = list(sigma = 0, nu = 0, m = -2, p = 0, u = 0, w = 0), gestimate = TRUE, st.ga = NULL, st.gb = NULL, st.galow = NULL, st.gaup = NULL, st.glow = NULL, st.gbup = NULL, control = list(maxit = 10000))
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Vector of length at release of tagged fish</td>
</tr>
<tr>
<td>L2</td>
<td>Vector of length at recovery of tagged fish</td>
</tr>
<tr>
<td>T1</td>
<td>Vector of julian time at release of tagged fish</td>
</tr>
<tr>
<td>T2</td>
<td>Vector of julian time at recovery of tagged fish</td>
</tr>
<tr>
<td>alpha</td>
<td>Numeric value giving an arbitrary length alpha</td>
</tr>
<tr>
<td>beta</td>
<td>Numeric value giving an arbitrary length beta (beta > alpha)</td>
</tr>
<tr>
<td>design</td>
<td>List specifying the design of the model to estimate. Use 1 to designate whether a parameter(s) should be estimated. Type of parameters are: nu=growth variability (1 parameter), m=bias parameter of measurement error (1 parameter), p= outliers probability (1 parameter), and sea=seasonal variation (2 parameters: u and w). Model 1 of Francis is the default settings of 0 for nu, m, p and sea.</td>
</tr>
<tr>
<td>stvalue</td>
<td>Starting values of sigma (s) and depending on the design argument, nu, m, p, u, and w used as input in the nonlinear estimation (function optim) routine.</td>
</tr>
<tr>
<td>upper</td>
<td>Upper limit of the model parameters’ (nu, m, p, u, and w) region to be investigated.</td>
</tr>
<tr>
<td>lower</td>
<td>Lower limit of the model parameters’ (nu, m, p, u, and w) region to be investigated.</td>
</tr>
<tr>
<td>gestimate</td>
<td>Logical specifying whether starting values of ga and gb (growth increments of alpha and beta) should be estimated automatically. Default = TRUE.</td>
</tr>
<tr>
<td>st.ga</td>
<td>If gestimate=FALSE, user-specified starting value for ga.</td>
</tr>
<tr>
<td>st.gb</td>
<td>If gestimate=FALSE, user-specified starting value for gb.</td>
</tr>
<tr>
<td>st.galow</td>
<td>If gestimate=FALSE, user-specified lower limit for st.ga used in optimization.</td>
</tr>
<tr>
<td>st.gaup</td>
<td>If gestimate=FALSE, user-specified upper limit for st.ga used in optimization.</td>
</tr>
<tr>
<td>st.glow</td>
<td>If gestimate=FALSE, user-specified lower limit for st.gb used in optimization.</td>
</tr>
<tr>
<td>st.gbup</td>
<td>If gestimate=FALSE, user-specified upper limit for st.gb used in optimization.</td>
</tr>
<tr>
<td>control</td>
<td>Additional controls passed to the optimization function optim.</td>
</tr>
</tbody>
</table>

Details

The methods of Francis (1988) are used on tagging data to the estimate of growth and growth variability. The estimation of all models discussed is allowed. The growth variability defined by equation 5 in the reference is used throughout.

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>table</td>
<td>list element containing the model output similar to Table 3 of Francis (1988). The Akaike’s Information Criterion (AIC) is also added to the output.</td>
</tr>
<tr>
<td>VBparms</td>
<td>list element containing the conventional parameters of the von Bertalanffy model (Linf and K).</td>
</tr>
<tr>
<td>correlation</td>
<td>list element containing the parameter correlation matrix.</td>
</tr>
<tr>
<td>predicted</td>
<td>list element containing the predicted values from the model.</td>
</tr>
<tr>
<td>residuals</td>
<td>list element containing the residuals of the model fit.</td>
</tr>
</tbody>
</table>
Flexible maximum likelihood estimation of growth from multiple tagging datasets.

Description

This is an extension of fishmethods function grotag to allow a wider variety of growth models and also the simultaneous analysis of multiple tagging datasets with parameter sharing between datasets (see Details).

As in grotag, the data are fitted using a constrained maximum likelihood optimization performed by optim using the "L-BFGS-B" method. Estimated parameters can include galpha, gbeta (mean annual growth at reference lengths alpha and beta); b (a curvature parameter for the Schnute models); Lstar (a transitional length for the asymptotic model); m, s (mean and s.d. of the measurement error for length increment); nu, t (growth variability); p (outlier probability); u, w (magnitude and phase of seasonal growth).

Usage

grotagplus(tagdata, dataID=NULL, alpha, beta = NULL, model=list(mean="Francis", var="linear", seas="sinusoid"), design, stvalue, upper, lower, fixvalue=NULL, traj.Linit=c(alpha,beta),control = list(maxit = 1e000), debug = FALSE)
Arguments

tagdata Dataframe with components L1, L2 (lengths at release and recovery of tagged fish), T1, T2 (julian times (y) at release and recovery), and (optionally), a numeric or character vector (named by argument dataID) identifying which dataset each data record belongs to (with n datasets this must include n unique values). Other components are ignored, as are any records with missing values in the required components.

dataID Name of optional component of tagdata identifying separate datasets within tagdata. The default dataID=NULL means there is no such component (so there is only one dataset).

alpha Numeric value giving an arbitrary length alpha.

beta Numeric value giving an arbitrary length beta (must have beta > alpha).

model List with components mean, var, seas, specifying which model equations to use for the mean (or expected) growth, individual variability in growth, and seasonal variation in growth (see Details for valid values). The default is that of model 4 in Francis (1988).

design List specifying the design of the estimation: which parameters are estimated, and whether multiple values are estimated. There should be one component for each parameter of the model specified by model. Each component must be either 0 (not estimated), 1 (same parameter value estimated for all data), or, when there are multiple datasets, a list in which each component is a sub-vector of unique(tagdata[[dataID]]) and all members of unique(tagdata[[dataID]]) occur in one and only one component of the list (e.g., galpha=list("Area2",c("Area1", "Area3")) means that two values of galpha are to be estimated: one applying to the dataset Area2, and the other to datasets Area1 and Area3).

stvalue List containing starting values of estimated parameters, used as input in the non-linear estimation (function optim) routine. There should be one component for each estimated parameter (except, optionally, galpha and gbeta). Each component should be either a single number or a vector whose length is the number of separate values of that parameter (as specified in design). In the latter case, the order of the parameter values should correspond to that in design (e.g., if design$galpha is as above and stvalue$galpha=c(10,15) then 10 will apply to Area2 and 15 to Area1 & Area3). If galpha or gbeta are omitted from stvalue then their starting values are calculated from the data.

lower Lists containing lower limits for each parameter, with structure as for stvalue. galpha and/or gbeta may be omitted if they don’t appear in stvalue.

upper Lists containing upper limits for each parameter, with structure as for stvalue. galpha and/or gbeta may be omitted if they don’t appear in stvalue.

fixvalue Optional list containing fixed values for parameters that are needed (according to model) but are not being estimated (according to design) and do not have default values (the only default parameter values are nu = 0, m = 0, p = 0). The list should have one named component for each fixed parameter. Usually, each component will be a single number. See example below for the required format when a fixed parameter takes different values for different datasets.

traj.Linit Vector of initial length(s) for output growth trajectories. Default is c(alpha,beta).
control Additional controls passed to the optimization function `optim`.
deebug Output debugging information.

Details

Valid values of `model$mean` are "Francis" as in Francis (1988), "Schnute" as in Francis (1995), "Schnute.ep0" special case of Schnute - see eqns (5.3), (5.4) of Francis (1995). "asymptotic" as in Cranfield et al. (1996).

Valid values of `model$var` are "linear" as used in the example in Francis (1988) - see eqn (5). "capped" as in eqn (6) of Francis (1988). "exponential" as in eqn (7) of Francis (1988).

"asymptotic" as in eqn (8) of Francis (1988). "least-squares" ignore individual variability and fit data by least-squares, as in Model 1 of Francis (1988).

The option of multiple data sets with parameter sharing is intended to allow for the situation where we wish to estimate different mean growth for two or more datasets but can reasonably assume that other parameters (e.g., for growth variability, measurement error, outlier contamination) are the same for all datasets. This should produces stronger estimates of these other parameters. For example, Francis & Francis (1992) allow growth to differ by sex, and in Francis & Winstanley (1989) it differs by stock and/or habitat.

grotagplus may fail if parameter starting values are too distant from their true value, or if parameter bounds are too wide. Try changing these values. Sometimes reasonable starting values can be found by fitting the model with other parameters fixed at plausible values.

Value

- `parest` Parameter estimates and their s.e.s.
- `parfix` Parameter values, if any, fixed by user.
- `correlations` Correlations between parameter estimates. When there are multiple estimates of a parameter these are numbered by their ordering in argument `design`, so in example given above `galphal` would apply to `Area1`, and `galphal2` to `Area2` and `Area3`.
- `stats` Negative log-likelihood and AIC statistic.
- `model` The three components of the grotagplus argument model.
- `datasetnames` The dataset names, if there are multiple datasets.
- `pred` Dataframe of various predicted quantities need for residual plots - one row per data record.
- `Linf.k` Values of parameters Linf and k as calculated between equations (1) and (2) of Francis (1988) (but not possible for the Schnute model). These are provided for computational convenience only; they are not comparable with Linf and k estimated from age-length data. Comparisons of growth estimates from tagging and age-length data are better done using output `meananngrowth`.
- `meananngrowth` Data for plot of mean annual growth vs length, as in Fig. 8 of Francis and Francis (1992).
- `traj` Data for plots of growth trajectories like Fig. 2 of Francis (1988).
Author(s)

Chris Francis <chrisfrancis341@gmail.com>
Marco Kienzle <Marco.Kienzle@gmail.com>
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@state.ma.us>

References

See Also

plot.grotagplus print.grotagplus

Examples

Model 4 of Francis (1988)
data(bonito)
grotagplus(bonito, alpha=35, beta=55,
 design=list(galpha=1, gbeta=1, s=1, nu=1, m=1, p=1, u=1, w=1),
 stvalue=list(s=0.81, nu=0.3, m=0, p=0.01, u=0.5, w=0.5),
 upper=list(s=3, nu=1, m=2, p=0.1, u=1, w=1),
 lower=list(s=0.1, nu=0.1, m=-2, p=0, u=0, w=0))

Model 1 of Francis (1988), using least-squares fit
 grotagplus(bonito, alpha=35, beta=55,
 model=list(mean="Francis", var="least-squares", seas="none"),
 design=list(galpha=1, gbeta=1, s=1, p=0),
 stvalue=list(s=1.8), upper=list(s=3), lower=list(s=1))

Paphies donacina model in Table 4 of Cranfield et al (1996) with asymptotic model
data(P.donacina)
grotagplus(P.donacina, alpha=50, beta=80,
 model=list(mean="asymptotic", var="linear", seas="none"),
 design=list(galpha=1, gbeta=1, Lstar=0, s=1, nu=0, m=0, p=0),
 stvalue=list(galpha=10, gbeta=1.5, s=2),
 upper=list(galpha=15, gbeta=2.7, s=4),
 lower=list(galpha=7, gbeta=0.2, s=0.5),
 fixvalue=list(Lstar=80))
`# Paphies donacina model in Table 4 of Cranfield et al (1996) with asymptotic model
data(P.donacina)
grotagplus(P.donacina, alpha=50, beta=80,
 model=list(mean="asymptotic", var="linear", seas="none"),
 design=list(galpha=1, gbeta=1, Lstar=0, s=1, nu=0, m=0, p=0),
 stvalue=list(galpha=10, gbeta=1.5, s=2),
 upper=list(galpha=15, gbeta=2.7, s=4),
 lower=list(galpha=7, gbeta=0.2, s=0.5),
 fixvalue=list(Lstar=80))

Model 4 fit from Francis and Francis (1992) with different growth by sex
data(rig)
grotagplus(rig, dataID="Sex", alpha=70, beta=100,
 model=list(mean="Francis", var="linear", seas="none"),
 design=list(galpha=1, gbeta=1, Lstar=0, s=1, nu=0, m=0, p=0),
 stvalue=list(galpha=c(5,4), gbeta=c(3,2), s=2, nu=0.5),
 upper=list(galpha=c(8,6), gbeta=c(5,4), s=4, nu=1),
 lower=list(galpha=c(3,2), gbeta=c(1.5,1), s=0.5, nu=0.2))

Example where all parameters are fixed
to the values estimated values for model 4 of Francis and Francis (1992)]
grotagplus(rig, dataID="Sex", alpha=70, beta=100,
 model=list(mean="Francis", var="linear", seas="none"),
 design=list(galpha=0, gbeta=0, s=0, nu=0, m=0, p=0),
 stvalue=list(), upper=list(), lower=list(),
 fixvalue=list(galpha=list(design=list("F", "M"), value=c(5.87, 3.67)),
 gbeta=list(design=list("F", "M"), value=c(2.52, 1.73)), s=1.57, nu=0.58))

growhamp von Bertalanffy Growth Models for Tagging Data Incorporating Individual Variation

Description

Function fits growth models of Hampton (1991) to length and time-at-large data from tagging studies

Usage

```r
growhamp(L1 = NULL, L2 = NULL, TAL = NULL,
models = c(1, 2, 3, 4, 5, 6, 7),
method = c("Nelder-Mead", "Nelder-Mead", "Nelder-Mead",
    "Nelder-Mead", "Nelder-Mead", "Nelder-Mead"),
varcov = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
linf = list(startLinf = NULL, lowerLinf = NULL, upperLinf = NULL),
K = list(startK = NULL, lowerK = NULL, upperK = NULL),
sigma2_error = list(startsigma2 = NULL, lowersigma2 = NULL, uppersigma2 = NULL),
```
sigma2_Linf = list(startsigma2 = NULL, lowersigma2 = NULL, uppersigma2 = NULL),
sigma2_K = list(startsigma2 = NULL, lowersigma2 = NULL, uppersigma2 = NULL),
mu_measure = 0, sigma2_measure = 0,
control = list(maxit = 1000))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>L1</code></td>
<td>Vector of release lengths. Each row presents the length of an individual.</td>
</tr>
<tr>
<td><code>L2</code></td>
<td>Vector of recapture lengths.</td>
</tr>
<tr>
<td><code>TAL</code></td>
<td>Vector of associated time-at-large data. Calculated as the recapture date minus release date.</td>
</tr>
<tr>
<td><code>models</code></td>
<td>The models to fit. 1 = Faber model, 2 = Kirkwood and Somers model, 3 = Kirkwood and Somers model with model error, 4 = Kirkwood and Somers model with model and release-length-measurement error, 5 = Sainsbury model, 6 = Sainsbury model with model error, and 7 = Sainsbury model with model and release-length-measurement error. Default is all: c(1,2,3,4,5,6,7).</td>
</tr>
<tr>
<td><code>method</code></td>
<td>Character vector of optimization methods used in <code>optim</code> to solve parameters for each model. A different method can be selected for each model. Choices are "Nelder-Mead", "BFGS", "CG", "L-BFGS-B" and "SANN". See help for <code>optim</code>. Default is "Nelder-Mead". If there are fewer values specified in <code>method</code> than the number specified in <code>models</code>, a warning message is produced and the last value in the <code>method</code> vector is used for the remaining models.</td>
</tr>
<tr>
<td><code>varcov</code></td>
<td>Logical vector specifying whether the parameter variance-covariance matrix of each model should be outputted. A different logical can be specified for each model. If there are fewer values specified in <code>varcov</code> than the number specified in <code>models</code>, a warning message is produced and the last value in the <code>varcov</code> vector is used for the remaining models.</td>
</tr>
<tr>
<td><code>Linf</code></td>
<td>A list of starting (startLinf), lower bound (lowerLinf) and upper bound (upperLinf) of Linfinity of the von Bertalanffy equation used in the optimization. The lower and upper bounds are used only with method "L-BFGS-B".</td>
</tr>
<tr>
<td><code>K</code></td>
<td>A list of starting (startK), lower bound (lowerK) and upper bound (upperK) of K (growth coefficient) of the von Bertalanffy equation used in the optimization. The lower and upper bounds are used only with method "L-BFGS-B".</td>
</tr>
<tr>
<td><code>sigma2_error</code></td>
<td>A list of starting (startsigma2), lower bound (lowersigma2) and upper bound (uppersigma2) of the error variance used in the optimization. The lower and upper bounds are used only with method "L-BFGS-B". This parameter is used in models 1,3,4,6 and 7.</td>
</tr>
<tr>
<td><code>sigma2_Linf</code></td>
<td>A list of starting (startsigma2), lower bound (lowersigma2) and upper bound (uppersigma2) of the Linfinity variance used in the optimization. The lower and upper bounds are used only with method "L-BFGS-B". This parameter is used in models 2,3,4,5,6, and 7.</td>
</tr>
<tr>
<td><code>sigma2_K</code></td>
<td>A list of starting (startsigma2), lower bound (lowersigma2) and upper bound (uppersigma2) of the K (growth coefficient) variance used in the optimization. The lower and upper bounds are used only with method "L-BFGS-B". This parameter is used in models 5,6, and 7.</td>
</tr>
</tbody>
</table>
mu_measure Release measurement error. This parameter is used in models 4 and 7. Default=0.

sigma2_measure Variance of release measurement error. This parameter is used in models 4 and 7. Default=0.

control A list of control parameters for optim. See function optim for details.

Details

The seven models are fitted by maximum likelihood using formulae shown in Hampton 1991. Due to the number of parameters estimated, some models can be sensitive to the initial starting values. It is recommended that the starting values are tested for sensitivity to ensure the global minimum has been reached. Sometimes, the hessian matrix, which is inverted to obtain the variance-covariance matrix, will not be positive definite and therefore will produce an error. Again, try different starting values for parameters and lower and upper bounds if applicable.

Value

results list element containing the parameter estimates in table format for each model. Column names are model, Linf, K, s2Linf (variance of Linf), s2K (variance of K), s2error (error variance), boundary (0 = no issues; 1 = one or more parameter estimates are at constraint boundaries), -Log Likelihood, AIC (Akaike’s Information Criterion, and method

varcov if varcov=TRUE, list element containing the variance-covariance matrix for each model.

residuals list element containing the residuals (observed-predicted values) for each model.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

mort.al

Examples

Not run:
Models 1,2 and 3 below are models 1,2, and 4 in Table 4.17 of ##Quinn and Deriso
data(trout)
growhamp(L1=trout$L1,L2=trout$L2,TAL=trout$dt,models=c(1,2,3),
 method=c("Nelder-Mead","Nelder-Mead","L-BFGS-B"),
 varcov=c(TRUE,TRUE,TRUE),
 Linf=list(startLinf=650,lowerLinf=400,upperLinf=800),
 control=list(control=optim(par=NA,control=list(maxit=10000),method="L-BFGS-B")))
K=list(startK=0.30,lowerK=0.01,upperK=1),
sigma2_error=list(startsigma2=100,lowersigma2=0.1,uppersigma2=10000),
sigma2_Linf=list(startsigma2=100,lowersigma2=0.1,uppersigma2=100000),
sigma2_K=list(startsigma2=0.5,lowersigma2=1e-8,uppersigma2=10))

End(Not run)

growth fitting Growth Curves to Length- or Weight-at-Age Data

Description

Fits three growth models to length and weight-at-age data.

Usage

growth(intype=1,unit=1,size=NULL,age=NULL,calctype=1,wgtby=1,s2=NULL,error=1,
 specwgt=0.0001,Sinf=NULL,K=NULL,t0=NULL,B=3,graph=TRUE,
 control=list(maxiter=10000,minFactor=1/1024,tol=1e-5))

Arguments

intype
 the input format: 1= individual size data; 2 = mean size data. Default intype=1.
unit
 the size unit: 1= length; 2 = weight. Default unit=1.
size
 the vector of size (length or weight) data.
age
 the vector of ages associated with the size vector.
calctype
 if intype=1, 1 = use individual size data; 2 = calculate mean size from individual
 size data. Default calctype=1.
wgtby
 weighting scheme: 1 = no weighting; 2 = weight means by inverse variance.
 Weighting of individual data points is not allowed. Default wgtby=1.
s2
 if intype=2 and wgtby=2, specify vector of sample variances associated with
 mean size-at-age data.
error
 the error structure: 1 = additive; 2 = multiplicative. Default error=1.
specwgt
 if intype=1 and wgtby=2, the weight value to use for cases where var=0 or only
 one individual is available at a given age.
Sinf
 the starting value for L-infinity or W-infinity of the growth models. Required.
K
 the starting value for K of the growth models.
t0
 the starting value for t0 of the growth models.
B
 the length-weight equation exponent used in the von Bertalanffy growth model
 for weight. Default B=3.
graph
 logical value specifying if fit and residual plots should be drawn. Default graph
 = TRUE.
control
 see function nls.
Three growth models (von Bertalanffy, Gompertz and logistic) are fitted to length- or weight-at-age data using nonlinear least-squares (function \textit{nls}). If individual data are provided, mean size data can be calculated by specifying \textit{calctype}=2. When fitting mean size data, observations can be weighted by the inverse sample variance(\textit{wgtby}=2), resulting in weighted nonlinear least squares. Additive or multiplicative error structures are specified via \textit{error}. See page 135 in Quinn and Deriso (1999) for more information on error structures.

If unit is weight, the exponent for the von Bertalanffy growth in weight model is not estimated and must be specified (\textit{B}).

Plots of model fit and residuals are generated unless \textit{graph}=FALSE.

Value

List containing list elements of the equation/structure and \textit{nls} output for each model. Information from \textit{nls} output can be extracted using standard functions (e.g., \textit{summary}()).

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

data(pinfish)
growth(intype=1,unit=1, size=pinfish$SL, age=pinfish$age,
 calctype=1, wgtby=1, error=1, sInf=200, K=0.3, t0=-1)
Arguments

len the vector of lengths of individual fish.
age the vector of ages associated with the length vector.
group the vector of character names specifying group association. The first character in the name must be a letter.
model code indicating the growth model to use. 1 = von Bertalanffy, 2= Gompertz and 3= logistic. Default=1.
error the error variance assumption. 1= constant variance for all lijs; 2= constant variance for all mean lengths at age; 3=var of lij varies with age. See methods a-c in Kimura (1980: pp. 766). The required statistics for each type of error are calculated from the individual length-age observations.
select the selection of starting values of L-infinity, K, and t0. 1=automatic selection, 2=user-specified. If select=1, initial starting values of L-infinity, K, and t0 are calculated from Walford lines (Everhart et al. 1975), and ages represented as decimal values are truncated to the integer before linear regression is applied. If select=2, the user must specify the values of L-infinity, K, and t0.
Linf if select=2, the starting values of L-infinity of the von Bertalanffy equation for each group.
K if select=2, the starting values of K of the von Bertalanffy equation for each group.
t0 if select=2, the starting values of t0 of the von Bertalanffy equation for each group.
plottype the type of plot for each model. 1= observed versus predicted, 2= residuals. Default= 0 (no plot).
control see function nls.

Details

Following Kimura (1980), the general model (one L-infinity, K, and t0 for each group) and four sub models are fitted to the length and age data using function nls (nonlinear least squares). For each general model-sub model comparison, likelihood ratios are calculated by using the residual sum-of-squares and are tested against chi-square statistics with the appropriate degrees of freedom. Individual observations of lengths-at-age are required. If error variance assumptions 2 or 3, mean lengths and required statistics are calculated. The parameters are fitted using a model.matrix where the 1st column is a row of 1s representing the parameter estimate of the reference group (lowest alpha-numeric order) and the remaining group columns have 1 if group identifier is the current group and 0 otherwise. The group number depends on the alph-numeric order. See function model.matrix.
The model choices are:
von Bertalanffy La=Linf(1-exp(-K*(a-t0)))
Gompertz La=Linf*exp(-exp(-K*(a-t0)))
Logistic La=Linf/(1+exp(-K*(a-t0)))
To extract the VB parameters for each group under an hypothesis:
x$'model Ho'$coefficients
x$'model H1'$coefficients
x$'model H2'$coefficients
x$'model H3'$coefficients
x$'model H4'$coefficients
where \(x \) is the output object.

As an example, let’s say three groups were compared. To get the L-infinity estimates for each group,
\[
\text{Linf1} <- x$'model Ho'$coefficients[1]
\]
\[
\text{Linf2} <- \text{Linf1} + x$'model Ho'$coefficients[2]
\]
\[
\text{Linf3} <- \text{Linf1} + x$'model Ho'$coefficients[3]
\]
For models H1, H2, H3 and H4, the parameter L1 or K1 or t01 will be shared across groups.

If RSSHX > RSSH0, less information is accounted for by RSSHX model (where X is hypothesis 1, 2,...etc.). If Chi-square is significant, RSSH0 is the better model. If Chi-square is not significant, RSSHX is the better model.

Value

results list element with the likelihood ratio tests comparing von Bertalanffy models.
model Ho list element with the nls fit for the general model.
model H1 list element with the nls for model H1 (Linf1=Linf2=...=Linfn) where n is the number of groups.
model H2 list element with the nls fit for model H2 (K1=K2=...=Kn).
model H3 list element with the nls fit for model H3 (t01=t02=...=t0n).
model H4 list element with the nls fit for model H4 (Linf1=Linf2=...=Linfn, K1=K2=...=Kn, t01=t02=...=t0n).
rss list element with the residual sum-of-squares from each model.
residuals list element with the residuals from each model.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

```r
# Normally, the length and age data will represent data for individuals.
# Kimura's data are mean lengths-at-age but are usable because error=2
# will calculate mean lengths-at-age from individual data. Since only
# one value is present for each age, the mean length will be calculated
# as the same value.

data(Kimura)
growthlrt(len=Kimura$length, age=Kimura$age, group=Kimura$sex, model=1, error=2, select=1, plottype=2)
```

Description

Fits a von Bertalanffy, Gompertz or logistic growth curve to length and age for two or more groups.

Usage

```r
growthmultifit(len=NULL, age=NULL, group=NULL, model=1, fixed=c(1, 1, 1), error=1, select=1, Linf=c(NULL), K=c(NULL), t0=c(NULL), plot=FALSE, control=list(maxiter=10000, minFactor=1/1024, tol=1e-5))
```

Arguments

- **len**
 - the vector of lengths of individual fish.

- **age**
 - the vector of ages associated with the length vector.

- **group**
 - the vector of character names specifying group association. The first character in the name must be a letter.

- **model**
 - which model to fit. 1 = von Bertalanffy, 2 = Gompertz, and 3 = logistic. Default = 1.

- **fixed**
 - arguments specifying that Linf, K or t0 should be fitted as a constant between groups or as separate parameters for each group. 1 = single parameter between groups, 2 = separate parameters for each group. The order of fixed is c(Linf, K, t0).

- **error**
 - the error variance assumption. 1 = constant variance for all lijs; 2 = constant variance for all mean lengths at age; 3 = var of lij varies with age. See methods a-c in Kimura (1980: pp. 766). The required statistics for each type of error are calculated from the individual length-age observations.

- **select**
 - the selection of starting values of L-infinity, K, and t0. 1 = automatic selection, 2 = user-specified. If select = 1, initial starting values of L-infinity, K, and t0 are calculated from Walford lines (Everhart et al. 1975), and ages represented as decimal values are truncated to the integer before linear regression is applied. If select = 2, the user must specify values of L-infinity, K, and t0 for each group.
growthmultifit

Linf if select=2, the starting values for L-infinity of the von Bertalanffy equation, one for each group.
K if select=2, the starting values for K of the von Bertalanffy equation, one for each group.
t0 if select=2, the starting value for t0 of the von Bertalanffy equation, one for each group.
plot logical argument specifying whether observed versus predicted and residuals graphs should be plotted. Default is FALSE.
control see function nls.

Details
A von Bertalanffy, Gompertz or logistic model is fitted to the length and age data of two or more groups using function nls (nonlinear least squares). Parameters can be estimated for each group or as constants across groups. Individual observations of lengths-at-age are required. If error variance assumptions 2 or 3, mean lengths and required statistics are calculated. The parameters are fitted using a model.matrix where the 1st column is a row of 1s representing the parameter estimate of the reference group (group with lowest alpha-numeric order) and the remaining group columns have 1 if group identifier is the current group and 0 otherwise. See function model.matrix. This is a companion function to function growthlrt. If errors arise using automatic selection, switch to select=2.

When separate parameters are estimated for each group, estimates for the the non-reference groups would be the reference-group estimated parameters (e.g., Linf1 or K1 or t01) plus the coefficient estimate for the nth group (e.g., group 2: Linf2 or K2, or t02) based on the alpha-numeric order. If the parameter is assumed constant across groups, then estimates of Linf1 or K1 or t01 is used as the parameter for each group. The von Bertalanffy equation is Lt=Linf*1-exp(-K*(age-t0)). The Gompertz equation is Lt=exp(-exp(-K*(age-t0))). The logistic equation is Lt=Linf/(1+exp(-K*(age-t0))).

Value
 results list element containing summary statistics of nls fit
 residuals list element with the residuals from the model.

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also
growthlrt
growthResid

Examples

data(Kimura)
growthmultifit(len=Kimura$length, age=Kimura$age, group=as.character(Kimura$sex),
model=1, fixed=c(2,1,1),
error=1, select=1, Linf=NULL, K=NULL, t0=NULL, plot=FALSE, control=list(maxiter=10000,
minFactor=1/1024, tol=1e-5))

growthResid

Plot residuals of growth model fitted to tag data

Description

Plot residuals (observed - expected growth increments) vs relative age at the time of tagging and versus time at liberty.

Usage

growthResid(K, Linf, dat, lentag, lenrec, timelib, graph = 1,
main = "Residuals of growth increments",
cex.lab=1.5, cex.axis=1.5, cex.main=1,
xlab1="Relative age, yr", xlab2="Time at liberty, yr",
ylab="Observed - expected increment",
xlim1=NULL, xlim2=NULL, ylim=NULL, col=1, returnvec=FALSE,
returnlimits=FALSE, warn=TRUE,...)

Arguments

K parameter of the von Bertalanffy growth equation
Linf parameter of the von Bertalanffy growth equation
dat dataframe containing length at tagging, length at recapture and time at liberty. These must be named lentag, lenrec and timelib or else column 1 must contain the length at tagging, column 2 must contain length at recapture and column 3 must contain time at liberty
lentag alternative way to pass data to function
lenrec alternative way to pass data to function
timelib alternative way to pass data to function
graph which graph to plot - 1: residuals versus Relative age, 2: residuals versus time-at-liberty
main an overall title for the plot
cex.lab The magnification to be used for x and y labels relative to the current setting of cex
cex.axis The magnification to be used for axis annotation relative to the current setting of cex
cex.main The magnification to be used for main titles relative to the current setting of cex
growthTraject

xlab1 a title for the x axis 1
xlab2 a title for the x axis 2
ylab a title for the y axis
xlim1 lower and upper limits of x axis 1 e.g., c(0,100)
xlim2 lower and upper limits of x axis 2 e.g., c(0,100)
ylim lower and upper limits of y axis e.g., c(0,100)
col color of points in plot
returnvec logical - if TRUE, function returns a dataframe with the computed age at tagging and the residual (obs - pred increment)
returnlimits logical - if TRUE, function returns the x and y limits for the plot
warn logical - if TRUE, function issues a warning if names of variables in dat do not match the 3 names expected.
... other arguments to pass to plot

Details

Function plots residuals (observed - expected growth increments) vs relative age at the time of tagging and vs time at liberty from VB growth model fitted to tagging data. Relative age is calculated by inverting the von Bertalanffy growth curve.

Value

output If returnvec = TRUE, computed age and residuals. If returnlimits=TRUE, x and y limits for plot

Author(s)

Janos Hoenig Virginia Institute of Marine Science May 2013 <hoenig@vims.edu>

Examples

data(bonito)
temp<-bonito[bonito$T2-bonito$T1]>0,]
growthResid(0.19,97.5,lentag=temp$L1, lenrec=temp$L2,timelib=c(temp$T2-temp$T1),graph=1)

growthTraject Plot growth trajectories obtained from tagging data

Description

Age and length coordinates for the time of tagging and time of recapture are plotted as line segments overlayed on the von Bertalanffy growth curve
growthTraject

Usage

growthTraject(K, Linf, dat, lentag, lenrec, timelib, subsets=NULL, main = "Growth trajectories & fitted curve", cex.lab=1.5, cex.axis=1.5, cex.main=1, xlab="Relative age, yr", ylab="Length, cm", xlim=NULL, ylim=NULL, ltytraject=1, lwdtraject=1, coltraject=1, ltyvonb=1, lwdvonb=2, colvonB="red", returnvec=FALSE, returnlimits=FALSE, warn=TRUE, ...)

Arguments

K parameter of the von Bertalanffy growth equation
Linh parameter of the von Bertalanffy growth equation
dat dataframe containing length at tagging, length at recapture and time at liberty. These must be named lentag, lenrec and timelib or else column 1 must contain the length at tagging, column 2 must contain length at recapture and column 3 must contain time at liberty OR the variables must be named lentag, lenrec and timelib
lentag alternative way to pass data to function
lenrec alternative way to pass data to function		timelib alternative way to pass data to function
subsets factor or integer variable specifying subsets of the data to be plotted with separate colors or line types
main an overall title for the plot
cex.lab The magnification to be used for x and y labels relative to the current setting of cex
cex.axis The magnification to be used for axis annotation relative to the current setting of cex
cex.main The magnification to be used for main titles relative to the current setting of cex
xlab a title for the x axis
ylab a title for the y axis
xlim lower and upper limits of x axis e.g., c(0,100)
ylim lower and upper limits of y axis e.g., c(0,100)
ltytraject line type for the growth trajectories
lwdtraject line width for the growth trajectories
coltraject line color for the growth trajectories
ltyvonB line type for the fitted von Bertalanffy growth curve
lwdvonB line width for the fitted von Bertalanffy growth curve
colvonB line color for the fitted von B. curve
returnvec logical for whether the coordinates of the line segments should be returned
returnlimits logical for whether the x-axis and y-axis limits should be returned
warn logical - if TRUE, function issues a warning if names of variables in dat do not match the 3 names expected.
... other arguments to pass to plot
Details

The relative age at tagging is computed from the inverted von Bertalanffy growth equation (i.e., age expressed as a function of length); the age at recapture is taken to be the age at tagging plus the time at liberty. Then the (age, length) coordinates for the time of tagging and time of recapture are plotted as a line segment. Additional parameters control the format of the plot as follows. A call to plot() sets up the axes. Then a call to arrows() draws the line segments. Finally, a call to curve() adds the von Bertalanffy growth curve. Specifying additional graphical parameters is permissible but these will be passed only to plot().

Value

output if returnvec = TRUE, coordinates of the line segments are returned. If return-limits=TRUE, x and y limits for plot are returned

Author(s)

Janos Hoenig Virginia Institute of Marine Science May 2013 <hoenig@vims.edu >

Examples

data(bonito)
 temp<-bonito[cbonito$T2-bonito$T1]>0,]
 growthTraject(0,19,97.5,len/tag=temp$L1, len/rec=temp$L2,timelib=c(temp$T2-temp$T1))

\begin{verbatim}
growtrans

\end{verbatim}

Description

Generates a growth transition matrix from parameters of the von Bertalanffy growth equation following Chen et al. (2003)

Usage

growtrans(Lmin = NULL, Lmax = NULL, Linc = NULL, Linf = NULL, SELinf = NULL,
 k = NULL, SEK = NULL, rhoLinfK = NULL)

Arguments

Lmin Mid-point of starting size class.
Lmax Mid-point of end size class. This should be one increment larger than Linf.
Linc Size class increment.
Linf L-infinity parameter of the von Bertalanffy growth equation.
SELinf Standard error of Linf.
K Growth parameter of the von Bertalanffy growth equation.
SEK Standard error of K.
rhoLinfK Correlation between Linf and K. Usually from a parameter correlation matrix.
Details

Transition probabilities are calculated by using formulae 3-9 and procedures in Chen et al. (2003). Negative growth increments result if Lmax is beyond Linf, so the transition matrix is truncated at Linf. The last size class acts as a plus group and has a probability of 1.

Value

A matrix of dimensions n size classes x n size classes.

Note

This function is based on an example EXCEL spreadsheet provided by Yong Chen.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

For Chen et al. 2003
growtrans(Lmin=40,Lmax=101,Linf=100,SELinf=15,K=0.100588,SEK=0.04255,rhoLinfK=0.94)

haddock Biological data for haddock (Melanogrammus aeglefinus)

Description

The haddock data frame has 15 rows and 4 columns. Age, weight at spawning, partial recruitment, and fraction mature data for haddock (Melanogrammus aeglefinus) used by Gabriel et al. (1989) to calculate spawning stock biomass-per-recruit.

Usage

haddock

Format

This data frame contains the following columns:

- **age**: vector of ages
- **ssbwgt**: vector of weights at spawning for each age
- **partial**: partial recruitment vector
- **pmat**: vector of fraction of females mature at age
Source

Hightower
Original data used in Hightower et al. (2001)

Description

The Hightower has 51 rows and 1 column. The complete capture histories of striped bass for Lake Gaston, North Carolina.

Usage

Hightower

Format

This data frame contains the following columns:

caphistory capture histories of 51 striped bass

Source

Thanks to Joe Hightower of NC Cooperative Fish and Wildlife Research Unit for providing his original data.

Hoenig
Tag Data from Hoenig et al. (1998)

Description

The Hoenig list containing 8 components of data. Data were obtained from the Hoenig et al.(1998).

Usage

Hoenig
Format

This list contains the following components:

- `relyrs` vector of start and end years of release years
- `recapyr`s vector of start and end years of recapture years
- `N` vector of number of tags released in each release year
- `recapharv` recapture matrix of harvested fish
- `lambda` vector of reporting rates (one for each recapture year)
- `phi` vector of initial tag loss (one for each recapture year)
- `Fyr` vector of years to estimate fishing mortality
- `Myr` vector of years to estimate natural mortality

Source

irm_cr

Age-Independent Instantaneous Rates Model of Jiang et al. (2007)
Incorporating Catch and Release Tag Returns

Description

The age-independent instantaneous rates model of Jiang et al. (2007) for estimating fishing and natural mortality from catch-release tag returns is implemented assuming known values of initial tag survival (phi) and reporting rate (lambda).

Usage

```r
irm_cr(relyrs = NULL, recapyr = NULL, N = NULL, recapharv = NULL, 
recaprel = NULL, hlambda = NULL, rlambda = NULL, hphi = NULL, 
rphi = NULL, hmrate = NULL, Fyr = NULL, Fyr = NULL, Myr = NULL, 
initial = c(0.1, 0.05, 0.1), lower = c(0.0001, 0.0001, 0.0001), 
upper=c(5,5,5),maxiter=10000)
```

Arguments

- `relyrs` vector containing the start and end year of the entire release period (e.g., c(1992, 2006)).
- `recapyr` vector containing the start year and end year of entire recapture period (e.g., c(1992, 2008)).
- `N` vector of total number of tagged fish released in each release year (one value per year).
matrix of the number of tag recoveries of harvested fish by release year (row) and recovery year (column). The lower triangle (blank cells) may be filled with -1s as place holders. Missing values in the upper triangle (release/recovery cells) are not allowed.

matrix of the number of tag recoveries of fish recaptured and re-released with the tag removed by release year (row) and recovery year (column). The lower triangle (blank cells) may be filled with -1s as place holders. Missing values in the upper triangle (release/recovery cells) are not allowed.

vector of reporting rate estimates (lambda) for harvested fish. One value for each recovery year.

vector of reporting rate estimates (lambda) for recaptured fish re-released with tag removed. One value for each recovery year.

vector of initial tag survival estimates (phi) for harvested fish. One value for each recovery year. 1 = no loss

vector of initial tag survival estimates (phi) for recaptured fish re-released with tag removed fish. One value for each recovery year. 1 = no loss

vector of hooking mortality rates. One value for each recovery year.

vector of year values representing the beginning year of a period over which to estimate a constant fishing mortality rate (F). If estimation of F for each recovery year is desired, enter the year value for each year. The first year value must be the start year for the recovery period.

vector of year values representing the beginning year of a period over which to estimate a constant tag mortality rate (FA). If estimation of FA for each recovery year is desired, enter the year value for each year. The first year value must be the start year for the recovery period.

vector of year values representing the beginning year of a period over which to estimate a constant natural mortality rate (M). If estimation of M for each recovery year is desired, enter the year value for each year. The first year value must be the start year for the recovery period.

vector of starting values for fishing, tag, and natural mortality estimates. First position is the starting value for all Fs, second position is the starting value for all FAs, and the third position is the starting value for all Ms (e.g., c(0.1,0.1,0.2)).

vector of lower bounds of F, FA, and M estimates used in optimization routine. First position is the lower value for all Fs, second position is the lower value for all FAs, and the third position is the lower value for all Ms.

vector of upper bounds of F, FA, and M estimates used in optimization routine. First position is the upper value for all Fs, second position is the upper value for all FAs, and the third position is the upper value for all Ms.

maximum number iterations used in the optimization routine.

Details

Jiang et al (2007) provides an extension of the Hoenig et al. (1998) instantaneous tag return model to account for catch/release of tagged fish. The benefits of this instantaneous rates model are that
data from tagged fish that are recaptured and released alive are directly incorporated in the estimation of fishing and natural mortality. Jiang et al. models mortality of harvested fish and the mortality experienced by the tag because fish are often released after the tag has been removed. Therefore, additional tag mortality parameters are estimated in the model. The age-independent model of Jiang et al. is implemented here and initial tag loss and reporting rates are assumed known. This model assumes that tagged fish are fully-recruited to the fishery and that fishing took place throughout the year. Similar to Hoenig et al. (1998), observed recovery matrices from the harvest and catch/release fish with removed tags are compared to expected recovery matrices to estimate model parameters. Asymmetric recovery matrices are allowed (release years > release years). All summary statistics follow Burnham and Anderson (2002). Model degrees of freedom are calculated as the number of cells from the harvested and released recapture matrices and not-seen vector minus the number of estimated parameters. Total chi-square is calculated by summing cell chi-square values for all cells of the harvest, released, and not seen matrices. C-hat, a measure of overdispersion, is estimated by dividing the total chi-square value by the model degrees of freedom. Pooling of cells to achieve an expected cell value of 1 is performed and pooled chi-square and c-hat metrics are additionally calculated. Pearson residuals are calculated by subtracting the observed numbers of recoveries in each cell from the predicted numbers of recoveries and dividing each cell by the square-root of the predicted cell value. The variance of instantaneous total mortality \(Z \) is calculated by:

\[
\text{var}F + \text{hmrate}^2 \times \text{var}FA + \text{var}M + 2 \times \text{sum} (\text{cov}(F,M) + \text{hmrate}^2 \times \text{cov}(F,FA) + \text{hmrate}^2 \times \text{cov}(FA,M)),
\]

and the variance of survival \(S \) is calculated from \(Z \) using the delta method. The `optim` routine is used to find the parameters that minimize the -1*negative log-likelihood.

The program allows the configuration of different model structures (biological realistic models) for the estimation of fishing, natural, and tag mortalities. Consider the following examples:

Example 1

Release years range from 1991 to 2003 and recovery years from 1991 to 2003. One model structure might be constant fishing mortality estimates over the recovery years of 1991-1994 and 1995-2003, one constant estimate of tag mortality and one constant estimate of natural mortality for the entire recovery period. To designate this model structure, the beginning year of each interval is assigned to the `fyr` vector (e.g., `fyr<-c(1991,1995)`), and the beginning year of the recovery period is assigned to the `fayr` vector and the `myr` vector (e.g., `fayr<-c(1991); myr<-c(1991)`). The first value of each vector must always be the beginning year of the recovery period regardless of the model structure.

Example 2

Averaging of model results can be accomplished using the function `tag_model_avg`.

Value

List containing summary statistics for the model fit, model convergence status, parameter correlation matrix, estimates of fishing mortality, natural mortality, tag mortality, total instantaneous
mortality (Z), and survival (S) and their variances and standard errors by year, observed and predicted recoveries for harvested, released, and "not-seen" fish, cell chi-square and Pearson values for harvested, released, and "not seen" fish, and a model configuration label (type) used in the tag_model_avg function.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

irm_h tag_model_avg

Examples

```
## Data come from Appendix Table A2 and model structure from model (a) in
## Table 3.2 of Jiang (2005)
## Example takes a bit of time to run
## Not run:
data(Jiang)
model1<-irm_cr(relyrs = Jiang$relyrs, recapyrs = Jiang$recapyrs,
N = Jiang$N, recapharv = Jiang$recapharv, recaprel = Jiang$recaprel,
hlambda = Jiang$hlambda, rlambda = Jiang$rlambda, hphi = Jiang$hphi,
rphi = Jiang$rphi, hmrate = Jiang$hmrate, Fyr = Jiang$Fyr,
FAYr = Jiang$FAYr, Myr = Jiang$Myr, initial = c(0.1,0.05,0.1),
lower = c(0.0001,0.0001,0.0001), upper=c(5,5,5),maxiter=10000)
```
Description

The age-independent instantaneous rates model of Hoenig et al. (1998) for estimating fishing and natural mortality from tag returns of harvested fish is implemented assuming known values of initial tag survival (\(\phi \)) and reporting rate (\(\lambda \)).

Usage

\[
\text{irm}_h(\text{relyrs} = \text{NULL}, \text{recapyrs} = \text{NULL}, N = \text{NULL}, \text{recapharv} = \text{NULL}, \\
\lambda = \text{NULL}, \phi = \text{NULL}, \text{Fyr} = \text{NULL}, \text{Myr} = \text{NULL}, \text{initial} = \text{NULL}, \\
\text{lower} = c(0.0001, 0.0001), \text{upper} = c(5, 5), \text{maxiter} = 10000)
\]

Arguments

- \text{relyrs} vector containing the start and end year of the entire release period (e.g., \(c(1992, 2006) \)).
- \text{recapyrs} vector containing the start year and end year of entire recapture period (e.g., \(c(1992, 2008) \)).
- \(N \) vector of total number of tagged fish released in each release year (one value per year).
- \text{recapharv} matrix of the number of tag recoveries of harvested fish by release year (row) and recovery year (column). The lower triangle (blank cells) may be filled with -1s as place holders. Missing values in the upper triangle (release/recovery cells) are not allowed.
- \(\lambda \) vector of reporting rate estimates for harvested fish. One value for each recovery year.
- \(\phi \) vector of initial tag survival estimates (\(\phi \)) for harvested fish. One value for each recovery year. 1=no loss
- \text{Fyr} vector of year values representing the beginning year of a period over which to estimate a constant fishing mortality rate (\(F \)). If estimation of \(F \) for each recovery year is desired, enter the year value for each year. The first year value must be the start year for the recovery period.
- \text{Myr} vector of year values representing the beginning year of a period over which to estimate a constant natural mortality rate (\(M \)). If estimation of \(M \) for each recovery year is desired, enter the year value for each year. The first year value must be the start year for the recovery period.
- \text{initial} vector of starting values for fishing, and natural mortality estimates. First position is the starting value for all \(F \)s and second position is the starting value for all \(M \)s (e.g., \(c(0.1, 0.2) \)).
lower vector of lower bounds of F and M estimates used in optimization routine. First position is the lower value for all Fs and second position is the lower value for all Ms. Default = 0.0001.

upper vector of upper bounds of F and M estimates used in optimization routine. First position is the upper value for all Fs and second position is the upper value for all Ms. Default = 5

maxiter maximum number iterations used in the optimization routine.

Details

The instantaneous tag return model of Hoening et al. (1998) assuming known initial tag loss and reporting rates is implemented. This model assumes that tagged fish are fully-recruited to the fishery and that fishing took place throughout the year. The observed recovery matrices are compared to expected recovery matrices to estimate model parameters. Asymmetric recovery matrices are allowed (recovery years > release years). All summary statistics follow Burnham and Anderson (2002). Model degrees of freedom are calculated as the number of all cells from the harvested recovery matrix and not-seen vector minus the number of estimated parameters. Total chi-square is calculated by summing cell chi-square values for all cells of the harvest, released, and not seen matrices. C-hat, a measure of overdispersion, is estimated by dividing the total chi-square value by the model degrees of freedom. Pooling of cells to achieve an expected cell value of 1 is performed and pooled chi-square and c-hat metrics are additionally calculated. Pearson residuals are calculated by subtracting the observed numbers of recoveries in each cell from the predicted numbers of recoveries and dividing each cell by the square-root of the predicted cell value. The optim routine is used to find the parameters that minimize the -1*negative log-likelihood. The variance of instantaneous total mortality (Z) is calculated by \(\text{var}\,F + \text{var}\,M + 2\text{cov}(F,M) \), and the variance of survival (S) is estimated from the variance of Z using the delta method.

The program allows the configuration of different model structures (biological realistic models) for the estimation of fishing and natural mortalities. Consider the following examples:

Example 1

Release years range from 1991 to 2003 and recovery years from 1991 to 2003. One model structure might be constant fishing mortality estimates over the recovery years of 1991-1994 and 1995-2003, and one constant estimate of natural mortality for the entire recovery period. To specify this model structure, the beginning year of each interval is assigned to the Fyr vector (e.g., Fyr<-(1991, 1995)), and the beginning year of the recovery period is assigned to the Myr vector (e.g., Myr<-(1991)). The first value of each vector must always be the beginning year of the recovery period regardless of the model structure.

Example 2

Averaging of model results can be accomplished using the function tag_model_avg.
Value

List containing summary statistics for the model fit, model convergence status, parameter correlation matrix, estimates of fishing mortality, natural mortality, total instantaneous mortality (Z), and survival (S) and their variances and standard errors by year, observed and predicted recoveries for harvested, released, and "not-seen" fish, cell chi-square and Pearson values for harvested, released, and "not seen" fish and a model configuration label (type) used in the `tag_model_avg` function.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

`irm_cr` `tag_model_avg`

Examples

```r
# Data come from Table 4 and model structure from Table 5 under "year-specific F,
# constant M" in Hoenig et al. (1998)
data(Hoenig)
model1<-irm_h(relyrs = Hoenig$relyrs, recapyrs = Hoenig$recapyrs,
N = Hoenig$N, recapharv = Hoenig$recapharv, lambda = Hoenig$lambda,
phi = Hoenig$phi, Fyr = Hoenig$Fyr, Myr = Hoenig$Myr, initial = c(0.1,0.1),
lower = c(0.0001,0.0001),upper = c(5,5), maxiter = 10000)
```

<table>
<thead>
<tr>
<th>Jensen</th>
<th>Age Frequency Data for Lake Whitefish By Individual Haul</th>
</tr>
</thead>
</table>

Description

The Jensen data frame has 312 rows and 2 columns. The age data are from reconstructed catches of lake whitefish reported by Jensen (1996) in Table 1 and were expanded to individual observations from the age frequency table.

Usage

Jensen
Format

This data frame contains the following columns:

- **group** net haul label
- **age** age of an individual fish

Source

Tag Data from Jiang (2005)

Description

The Jiang list containing 13 components of data. Data were obtained from the Jiang (2005).

Usage

Jiang

Format

This list contains the following components:

- **relyrs** vector of start and end years of release years
- **recapyrs** vector of start and end years of recapture years
- **N** vector of number of tags released in each release year
- **recapharv** recapture matrix of harvest fish
- **recaprel** recapture matrix of recaptured and re-released fish with tag removed
- **hlambda** vector of reporting rates of harvested fish (one value for each recapture year)
- **rlambda** vector of reporting rates of recaptured and re-released fish (one value for each recapture year)
- **hphi** vector of initial tag loss of harvested fish (one value for each recapture year)
- **rphi** vector of initial tag loss of harvested fish (one value for each recapture year)
- **hmrate** vector of hooking mortality rates (one value for each recapture year)
- **Fyr** vector of years to estimate fishing mortality
- **FAyr** vector of years to estimate tag mortality
- **Myr** vector of years to estimate natural mortality

Source

The kappenman data frame has 55 rows and 1 column.

This data frame contains one column:

- **cpue**: Pacific cod cpue from 1994

The Kimura data frame has 24 rows and 3 columns. Mean length-at-age data for male and female Pacific hake as reported by Kimura (1980)

This data frame contains the following columns:

- **age**: fish age
- **length**: mean length of fish of age age
- **sex**: sex code

Description

Life tables are constructed from either numbers of individuals of a cohort alive at the start of an age interval (nx) or number of individuals of a cohort dying during the age interval (dx).

Usage

lifetable(age = NULL, numbers = NULL, r = NULL, type = 1)

Arguments

age vector of age intervals (e.g., 0 to maximum cohort age).
numbers number of individual alive (nx) or dead (dx)
r known rate of increase (r) for methods 3 and 4
type numeric value of method to use to calculate life table.

Details

Following Krebs (1989:413-420), standard life tables are calculated given age intervals and either cohort size or deaths. X=age interval, nx=number of individuals of a cohort alive at the start of age interval X, lx = proportion of individuals surviving at the start of age interval X, dx = number of individuals of a cohort dying during the age interval X, qx=finite rate of mortality during the age interval X to X+1, px=finite rate of survival during the age interval X to X+1, ex=mean expectation of life for individuals alive at start of age X. For method 5, dx is corrected for population growth by $dx' = dx * \exp(r * x)$ and in method 6, nx is corrected for the same by $nx' = nx * e(r * x)$. See Krebs for formulae.

Value

Dataframe containing life table values.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
References

Examples

data(buffalo)
lifetable(age=buffalo$age,numbers=buffalo$nx,type=2)

<table>
<thead>
<tr>
<th>lingcod</th>
<th>Catch data (metric tons) for lingcod 1889 to 2001</th>
</tr>
</thead>
</table>

Description

Lingcod catch data from literature sources in Martell and Froese (2012).

Usage

lingcod

Format

A data frame with 113 observations on the following 2 variables.

- **year**: a numeric vector describing the year of catch
- **catch**: a numeric vector describing the annual catch in metric tons

Details

Note some data points are not exactly the same as shown in Figure 7 of Martell and Froese 2012.

<table>
<thead>
<tr>
<th>M.empirical</th>
<th>Estimation of Natural Mortality Rates from Life History Parameters</th>
</tr>
</thead>
</table>

Description

Usage

M.empirical(Linf = NULL, Winf = NULL, k1 = NULL, Kw = NULL, TC = NULL, tmax = NULL, tm = NULL, GSI = NULL, Wdry = NULL, Wwet = NULL, Bl = NULL, TK = NULL, BM = NULL, method = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12))
Arguments

Linf Length-infinity value from a von Bertalanffy growth curve (total length-cm).

Winf Weight-infinity value from a von Bertalanffy growth curve (wet weight-grams).

Kl Kl is the growth coefficient (per year) from a von Bertalanffy growth curve for length.

Kw Kw is the growth coefficient (per year) from a von Bertalanffy growth curve for weight.

TC the mean water temperature (Celsius) experienced by the stock.

tmax the oldest age observed for the species.

tm the age at maturity.

GSI gonadosomatic index (wet ovary weight over wet body weight).

Wdry total dry weight in grams.

Wwet total wet weight at mean length in grams.

Bl body length in cm.

TK mean temperature (Kelvin).

BM maximum body mass (kJ - kiloJoules)

Details

Please read the references below for details about equations. Some estimates of M will not be valid for certain fish groups.

Value

A matrix of M estimates.

Note

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
References

Examples

M.empirical(Linf=30.1,Kl=0.31,TC=24,method=c(1))

maki

Data from Maki et al. 2001

Description

The maki data frame has 876 rows and 2 columns. From Table 1 for 3 years combined

Usage

maki

Format

This data frame contains the following columns:

capture_age age at capture
age_mature age at first maturity (from spawning checks on scales)
mature

Estimation of proportion mature at age when immature fish are unavailable

Description

Calculates proportion mature-at-age based on Maki et al. (2001).

Usage

```r
mature(cap_age=NULL, mature_age=NULL, age_all_immature=NULL,
age_all_mature=NULL, initial=NULL, nrandoms=1000)
```

Arguments

- `cap_age` vector of ages representing age when fish was capture. One record per individual.
- `mature_age` vector of ages representing age at which individual mature. One record per individual.
- `age_all_immature` age at which all fish are deemed immature. All ages below this age are assumed immature also.
- `age_all_mature` age at which all fish are deemed mature. All ages above this age are also assumed mature.
- `initial` starting values for proportion estimates. There should be `age_all_mature - age_all_immature-2` values. If not, the last value is used for missing values or if the vector is too large, the vector is truncated.
- `nrandoms` the number of randomizations used to estimate standard errors.

Details

Estimation of probability follows Maki et al. (2001). The standard errors of parameters are estimated via Monte Carlos methods where the number of each maturing age for each capture age are randomly draw from a multinomial distribution parameterized with probabilities and total sample size of the original data. The methods of Maki et al. (2001) are applied to the randomized data and the randomization is repeated `nrandoms` times. The mean and standard deviation of all runs are treated as the parameter estimates and standard errors.

Value

a list object containing the estimated proportions-at-age and standard errors, the original data and expected values
Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

```
## Not run:
## Maki data for 3 years combined
data(maki)
mature(cap_age=maki$capture_age,mature_age=maki$age_mature,age_all_immature=2, 
age_all_mature=8,initial=c(0.1,0.05,0.05,0.05),nrandoms=1000)

## End(Not run)
```

menhaden

Biological data for menhaden (Brevoortia tyrannus)

Description

The menhaden data frame has 15 rows and 4 columns. Age, fecundity-at-age, partial recruitment, fraction mature, and natural mortality data for menhaden to calculate eggs-per-recruit.

Usage

menhaden

Format

This data frame contains the following columns:

- **age** vector of ages
- **fecundity** vector of weights at spawning for each age
- **partial** partial recruitment vector
- **pmat** vector of fraction of females mature at age
- **M** vector of natural mortality value-at-age

Source

Description

Calculates total instantaneous (Z), natural mortality (M) and/or fishing mortality (F) using times-at-large data and methods of Gulland (1955) and McGarvey et al. (2009).

Usage

```r
mort.al(relyr = NULL, tal = NULL, N = NULL, method = c(1, 2, 3),
np = 0, stper = NULL, nboot = 500)
```

Arguments

- `relyr`: a vector of release year (or cohort) for individual times-at-large observations.
- `tal`: a vector of individual times-at-large observations.
- `N`: a vector of number of releases for each release year (or cohort). Each individual observation from a release year should have the same N value.
- `method`: 1 = McGarvey et al., 2 = Gulland. Default is all (i.e., c(1,2)).
- `np`: the number of periods over which to combine data to make period estimates of mortality. Set np=0 to estimate mortality for each release year.
- `stper`: vector of year values representing the beginning year of each period over which to estimate mortality. The first year in c() must always be the first release year.
- `nboot`: the number of resamples for the Gulland method.

Details

The methods of Gulland (1955) and McGarvey et al (2009) are used to estimate Z, F and M (depending on the method) from tagging times-at-large data. For the Gulland method, the standard error of the Z, M, and F estimates are made using a parametric bootstrap method similar to Tanaka (2006). When periods are specified, period-specific mortality estimates and standard errors are derived by averaging release-year-specific mortality estimates. The standard errors are calculated by taking the square-root of the averaged variances of the estimates. To combine data over all years prior to estimation, change all relyr within a period to the same year value.

Value

dataframe containing the M, F and Z estimates and associated standard errors by period.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
References

Examples

```r
## Not run:
data(tanaka)
mort.ale(rely = tanaka$relyr, tal = tanaka$tal, N = tanaka$N)
## End(Not run)
```

mrN.single

Estimate of Population Size from a Single Mark-Recapture Experiment

Description

Estimates population sizes, standard errors, and confidence intervals for the bias-corrected Petersen and the Bailey binomial estimators.

Usage

```r
mrN.single(M = NULL, C = NULL, R = NULL, alpha = 0.05)
```

Arguments

- `M` Number of marked animals released
- `C` Number of animals captured
- `R` Number of animals recaptured
- `alpha` alpha level for confidence intervals

Details

The bias-corrected Petersen estimator and its variance (Seber 2002: p.60), and the Bailey binomial estimator and its variance (Seber 2002: p.61) are calculated. The hypergeometric distribution is used to estimate confidence intervals for the Petersen model and the binomial distribution is used to estimate confidence intervals for the Bailey model.
Value

Dataframe containing the population estimates (N), standard errors of N, the lower confidence limits (LCI), and the upper confidence limits(UCI).

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

mrN.single(M=948,C=421,R=167)

<table>
<thead>
<tr>
<th>nshrimp</th>
<th>Data for Gulf of Maine northern shrimp</th>
</tr>
</thead>
</table>

Description

Recruit and postrecruit survey indices and catch data for Gulf of Maine northern shrimp (Pandulus borealis), 1985-2007

Usage

data(nshrimp)

Format

A data frame with 23 observations on the following 4 variables.

- `year` a numeric vector describing the year
- `r` a numeric vector of the recruit index
- `n` a numeric vector of the postrecruit index
- `C` a numeric vector of the landings (in numbers)

Source

opt_slot

Optimum Slot and Trophy Size Limits for Recreational Fisheries

Description

Calculates optimum trophy catch given a slot size over a range of F values. Also, finds Fmax for a cohort given age-at-first recruitment, age-at-first-entry, slot age, and age at which fish are considered trophy size following Jensen (1981).

Usage

```r
opt_slot(M = NULL, N = 1000, recage = NULL, entage = NULL,
trage = NULL, slage = NULL, stF = 0, endF = 2, intF = 0.05)
```

Arguments

- `M` natural mortality
- `N` cohort size
- `recage` age-at-first recruitment
- `entage` age-at-entry into the fishery
- `slage` upper age of slot for legal fish
- `trage` age of fish considered trophy size
- `stF` starting F of range to explore
- `endF` ending F of range to explore
- `intF` increment of F

Details

Value

- `Catch` dataframe containing range of Fs and associated total catch, nontrophy, and trophy catch of designated cohort size
- `Fmax` F at which trophy catch is maximum given slot

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

opt_trophy

See Also

opt_trophy

Examples

Example from Jensen (1981) page 661
opt_slot(M=0.70,N=1000,recage=1,entage=1,slage=3,trage=4)

Description

Calculates optimum trophy catch over a range of F values and finds Fmax for a cohort given age-at-first recruitment, age-at-first-entry, and age at which fish are considered trophy size following Jensen (1981).

Usage

opt_trophy(M = NULL, N = 1000, recage = NULL, entage = NULL,
trage = NULL, stF = 0, endF = 2, intF = 0.05)

Arguments

M natural mortality
N cohort size
recage age-at-first recruitment
entage age-at-entry into the fishery
trage age of fish considered trophy size
stF starting F of range to explore
endF ending F of range to explore
intF increment of F

Details

Value

Catch dataframe containing range of Fs and associated total catch and trophy catch of designated cohort size
Fmax F at which trophy catch is maximum

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
References

See Also
opt_slot

Examples
Example from Jensen (1981) page 659
opt_trophy(M=0.70,N=1000,recage=1,entage=1,trace=4)

P.donacina

Data from a growth study of New Zealand intertidal clams.

Description
Growth increment data derived from a tagging experiment on Paphis donacina

Usage
P.donacina

Format
A data frame with 150 observations on the following 4 variables.
T1 a numeric vector describing the release date (y)
T2 a numeric vector describing the recovery date (y)
L1 a numeric vector describing the length at release (mm)
L2 a numeric vector describing the length at recapture (mm)

Details
Note that the data have been corrected for measurement bias, as described by Cranfield et al (1996).

Source
Description

Calculates the probability of a management value exceeding a reference point with or without error.

Usage

```
pgen(est=NULL, limit=NULL, estSD=0, limSD=0, corr=0, dist=1, comp=1, nreps=10000)
```

Arguments

- `est`: management value (mv) or vector containing individual parameter values from, say, bootstrap runs.
- `limit`: reference point (rp) or vector containing individual reference point values from, say, bootstrap runs.
- `estSD`: standard deviation of management value if a single value is used. Must be >0 if a single value is used. If a vector of individual values is provided, estSD is not used.
- `limSD`: standard deviation of reference point if a single value is used. If a vector of individual values is provided, limSD is not used. limSD = 0 if the reference point is considered a point estimate (no error).
- `corr`: correlation between est and limit. Only used if est and limit are single values with error.
- `dist`: assumed distribution of est or limit if they are single values with error. 1 = normal; 2 = log-normal.
- `nreps`: the number of samples to draw to create normal or log-normal distributions. User should explore different sample sizes to determine if the probability obtained is stable.

Details

Randomization methods as approximations to Equations 1, 2 and 3 in Shertzer et al. (2008) are used to calculate the probability that a management value with error (e.g., fishing mortality) passes a reference point without (Eq. 1) or with (Eq. 2) error. Either may be represented by a single value and its associated standard deviations or a vector of individual values that represent results from, say, bootstrap runs. If log-normal is assumed, mv and rp and associated standard deviations must be in natural log-units (i.e., meanlog and sdlog).

If the management value and reference point are specified as single values with standard deviations, samples of size `nreps` are drawn randomly from the specified distribution parameterized with `est` and `limit` and associated standard deviations. If `corr`>0 (Eq. 3), then the `est` and `limit` distributions are drawn from a multivariate normal (function `mvnorm`) distribution. If log-normal is assumed,
function `mvnrnorm` is used with the meanlog and sdlog estimates and then output values are bias-corrected and back-transformed.

If the management value and the reference point are represented by vectors of individual values, the probability is calculated by tallying the number of management values that exceed (or pass) the reference points and then dividing by number of est values*number of limit values. If either the management value or reference point is specified as a single value with standard deviation, then a vector of individual values of size equal to the size of the other vector is generated by using the `rnorm` or `rlnorm` function parameterized with the single value and its standard deviation.

Value

probability value of comparison

Note

Chris Legault of the National Marine Fisheries Service, Woods Hole, MA provided R code for the randomization method and Daniel Hennen of the the National Marine Fisheries Service, Woods Hole, MA provided the R code for using mvnrnorm to obtain log-normal distributions.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

```r
## est = 2010 Spawning Stock Biomass of Striped Bass, limit = SSB Reference Point
pgen(est=50548,limit=36881,estSD=5485,limSD=1901,corr=0.05, dist=1, comp=2, nreps=1000)
```

Description

The pinfish data frame has 670 rows and 4 columns.

Usage

`pinfish`
Format

This data frame contains the following columns:

- **field_no**: haul identifier
- **sl**: standard length (mm) of individual pinfish
- **age**: age in year with decimal extension reflecting age past January 1
- **sex**: sex of fish. 1=male, 2=female, 0 = unknown

Source

plot.grotagplus
Plotting Tagging-Growth Objects

Description

Plotting method for output from function grotagplus, which has class "grotagplus".

Usage

```r
## S3 method for class 'grotagplus'
plot(x, plot.type = "meangrowth", Linitial = NULL, resid.spec = list(Pearson = T,
  x = "mean.delL"), xlim = NULL, ylim = NULL, pch = 20, leg.loc = NULL,
  age.based.growth = NULL, ...)
```

Arguments

- **x**: Growth-model fit to tagging data as output by function "grotagplus".
- **plot.type**: Character string identifying the type of plot required: "meangrowth" = mean annual growth vs initial length; "traj" = one-year growth trajectory of fish of initial length specified by `Linitial`; or "resid" = plot of ordinary or Pearson residuals (plot details specified by `resid.spec`).
- **Linitial**: Initial length to use for plot of growth trajectory.
- **resid.spec**: List, specifying details of a residual plot, with components "Pearson" (logical, if T [default] plot Pearson residuals, otherwise simple residuals) and "x" (the x-variable in the plot - either "L1", length at tagging; "delT", time at liberty; or "mean.delL", expected length increment).
- **xlim**: Allow the user to set x-limits for a plot that differ from those defined by the range of the plotted data.
- **ylim**: Allow the user to set y-limits for a plot that differ from those defined by the range of the plotted data.
- **pch**: Allows the user to change the plotting symbol for residual plots from the default pch=20.
leg.loc

Allows the user to change the legend location from its default position ("topright" for meangrowth and resid; "topleft" for traj). Note that a legend is used only for traj or for other plots with multiple datasets.

age.based.growth

This argument allows the user to add, to a meangrowth plot, growth estimates (plotted as dashed lines) from age-length datasets. It should be a list of vectors, each of which contains estimates of mean length corresponding to a vector of increasing ages whose increments are always 1 year (the ages are not included in the argument because they are not used in the plot, and the age vectors need not be the same in each component). If the list is named then the names will be interpreted as identifying different datasets. If a name appears in fit$datasetnames the age-based growth will be plotted with the same colour as the corresponding tagging growth. If the list is not named then it must be of the same length as fit$datasetnames (or of length 1 if there is only one dataset in the tagging data) and it will be assumed that the ith component corresponds to the ith tagging dataset.

... Other graphical parameters. See par

Details

Examples of the three plot types are given in Figs 7 & 8 of Francis and Francis (1992), for "resid" and "meangrowth", respectively; and in Fig. 2 of Francis (1988), for "traj".

plot.type="meangrowth" is the recommended way for plotting growth rates estimated from tagging data. Argument age.based.growth allows a rough comparison between these growth estimates and those from age-length data (the comparison is between the mean growth at length L and that at the age for which the mean length is L).

The traj plot, as well as showing the mean (i.e., expected) growth (solid line), shows 95 (dashed lines) and with (dotted lines) allowance for measurement error.

In residual plots, a dashed lowess line is plotted for each dataset to indicate any trend and, for Pearson residuals, dotted lines at +/- 2 indicate approximate 95

For fits using multiple datasets, colour is used to distinguish the datasets. Use "palette" to change the match between colour and dataset (the ith colour in the palette is associated with the ith element in fit$datasetnames).

Author(s)

Chris Francis <chrisfrancis341@gmail.com>
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@state.ma.us>
Marco Kienzle <Marco.Kienzle@gmail.com>

References

powertrend

Power Analysis For Detecting Trends

Description

Usage

powertrend(trend = 1, A1 = NULL, PSE = NULL, pserel = 1, maxyrs = 3, pR = 100, step = 5, alpha = 0.05, tail = 2, graph = TRUE)
Arguments

trend 1 = Linear, 2 = Exponential. Default = 1.
A1 the start year abundance. In actuality, it can be population size, productivity, diversity, mortality rate, etc.
PSE the proportional standard error (SE(A)/A) = CV in Gerrodette (1987;1991).
psrel the relationship between abundance and PSE: 1 = 1/sqrt(A1), 2 = constant, 3 = sqrt(A1). Default = 1.
maxyrs the maximum number of samples or years to project start year abundance. Default = 3.
pr the highest positive percent change to investigate. Default = 100.
step the increment of the range of percent change to investigate. Default = 5.
alpha the alpha level (Type I error) to use. Default = 0.05.
tail type of tailed test: 1 = one-tailed, 2= two-tailed. Default = 2.
graph logical specifying whether a graph of power versus percent change should be produced. Default is TRUE.

Details

The probability that an upward or downward trend in abundance (power) will be detected is calculated using linear regression given number of samples (maxyrs), estimates of sample variability (PSE) and abundance-PSE relationship (psrel), and percent rate of change. The program calculates power for each step increment beginning at -100 percent for declining changes and ending at pr percent for increasing changes. See Gerrodette (1987;1991) for full details. It is assumed that time intervals between samplings is equal.

Value

Dataframe containing columns of number of samples (years), trend selected (trend), the PSE (pse), alpha level (alpha), tail of test (tail), percent change (r) over maxyrs, and power (power).

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

powertrend(A1=1000,PSE=0.1)
Description

Printing method for output from function grotagplus, which has class "grotagplus".

Usage

```r
## S3 method for class 'grotagplus'
print(x, precision = c(est = "sig3", stats = "dec1", cor = "dec2"), ...)
```

Arguments

- `x`
 Growth-model fit to tagging data as output by function "grotagplus".
- `precision`
 Named character vector specifying the printing precision for each of three categories of output: "est" (applies to fixed and estimated parameters and to Linf.k); "stats" (for negloglikl and AIC); and "cor" (for the parameter correlation matrix). Values should be either "sigx", for `x` significant figures, or "decx" for `x` decimal places.
- `...`
 Other print parameters.

Details

Outputs from grotagplus are produced to a precision which is usually much greater than is warranted. To see this full precision print individual components, e.g., print(fit$parest).

Author(s)

Chris Francis <chrisfrancis341@gmail.com>
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@state.ma.us>
Marco Kienzle <Marco.Kienzle@gmail.com>

See Also

`grotagplus` `plot.grotagplus`

Examples

```r
# Model 4 of Francis (1988)
data(bonito)
fit <- grotagplus(bonito, alpha=35, beta=55, 
  design=list(galpha=1, gbeta=1, s=1, nu=1, m=1, p=1, u=1, w=1), 
  stvalue=list(s=0.81, nu=0.3, m=0, p=0.01, u=0.5, w=0.5), 
  upper=list(s=3, nu=1, m=2, p=0.1, u=1, w=1), 
  lower=list(s=0.1, nu=0.1, m=-2, p=0, u=0, w=0))
print(fit)
```
pwpop

Estimate Net Reproductive Rates Over Multiple Periods Of An Abundance Time Series Using Piecewise Regression

Description

Function estimates net reproductive rates for periods of change over a time series of abundance data.

Usage

```
pwpop(abund = NULL, year = NULL, periods = NULL, Cs = NULL, 
      startR = NULL, upperR = NULL, lowerR = NULL, graph = TRUE)
```

Arguments

- `abund`: the vector of time series of abundance data (e.g. run counts, indices of relative abundance, etc.).
- `year`: the vector of years associated with abundance data.
- `periods`: the number of periods over which to fit the population model.
- `Cs`: the vector of user-specified initial starting value for year(s) of change - number of values equals `periods` - 1 (enclose within `c()`).
- `startR`: the vector of user-specified initial starting values for R - one value for each period (enclose within `c()`).
- `upperR`: the vector of user-specified upper limits for R (one for each period) used in optimization (enclose within `c()`).
- `lowerR`: the vector of user-specified lower limits for R (one for each period) used in optimization (enclose within `c()`).
- `graph`: Logical specifying whether a graph of observed versus predicted values is plotted. Default=TRUE.

Details

A simple population model is fitted to abundance data to estimate the net reproductive rate for specified periods of time. The model is $N_t = N_0 R^t$ where N_t is the abundance at time t, N_0 is the estimated initial population size and R is the net reproductive rate. R can be used as an indication that the population is stable ($R=1$), is increasing ($R>1$) or is declining ($R<1$) over a specified time period. The fitted equation is the linearized form: $\log(N_t) = \log(N_0) + \log(R) t$, where log is the natural-log; therefore, zeros are not allowed.

To simultaneously estimate the parameters for periods of trends in the abundance data, a piecewise regression approach is used. The linearized model is fitted separately to data for each period but models are linked so that the ending year for the preceding period is also the intercept for the current period. As an example, the models for three periods are

- $\log(N_1, t) = \log(N_1, 0) + \log(R_1) t$ for $t < C_1$
- $\log(N_2, t) = \log(N_1, 0) + C_1 (\log(R_1) - \log(R_2)) + \log(R_2) t$ for $t \geq C_1$ and $t < C_2$

\[\log(N_3,t) = \log(N_1,0) + C_1(\log(R_1)-\log(R_2)) + C_2(\log(R_2)-\log(R_3)) + \log(R_3)t \] for \(t \geq C_2 \)

The parameters estimated for these models are \(\log(N_1,0) \), \(\log(R_1) \), \(C_1 \), \(\log(R_2) \), \(C_2 \), and \(\log(R_3) \). \(t \) is time starting at 1 for the first year of abundance and ending at \(x \) for the last year of abundance (year information is still needed for plotting). Entered \(C \) value are converted to the same scale as \(t \). Back-transform the \(\log(R) \) values using \(\exp \) to obtain the \(R \) values for each period. The function \texttt{optim} is used to obtain parameter estimates and associated standard errors by minimizing the sum of squares \((\log(N)-\log(\text{pred}))^2 \). Add first year-1 to each \(C \) to put estimates on year scale.

Value

- **Estimates**: list element with the parameter estimates and associated standard errors, residual sum of squares, Akaike’s Information Criterion for least squares (AIC), and coefficient of determination \((r^2) \).
- **Data**: list element with the abundance data, years, \(t \), log predicted values, and back-transformation predicted values.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

```r
dataHcountsI
dataPopHabundCnumberLyearLPtLPpredictLPbacktransform
```

remp

Random Number Generation from an Empirical Distribution

Description

Generates random numbers from a distribution created with empirical data

Usage

```r
remp(n,obs=NULL)
```

Arguments

- **n**: number of random observations to generate.
- **obs**: vector of empirical observations.
Details

An empirical probability distribution is formed from empirical data with each observation having 1/T probability of selection, where T is the number of data points. The cumulative distribution function (cdf) is then created so that cumulative probability of the smallest observation = 0 and the largest observation = 1. Random values are generated by applying the probability integral transform to the empirical cdf using uniformly distributed random variable (U) on the interval [0,1]. If U corresponds directly to the cdf probability of a particular empirical observation, then the actual observation is selected. If U falls between cdf probabilities of empirical observations, then an observation is obtained by linear interpolation.

Value

random observation(s)

Note

Jon Brodziak of the National Marine Fisheries Service, Honolulu, HI described this technique in his AGEPRO program.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

Examples

```r
# Striped bass recruits per spawning stock biomass ratios
# for 2001-2011 from 2013 assessment
ratios<-c(799.22,794.78,969.81,1838.80,1101.45,1117.46,1126.16, 
1647.51,1882.30,1966.13,2189.25)
# Select new recruits per SSB ratio for projection
remp1(ratios)
```

Description

Tagging growth increment data for New Zealand rig (Mustelus lenticulatus), after removal of outliers, as analysed in models 2-4 of Table 6 of Francis and Francis (1992).

Usage

`rig`
Format

A data frame with 114 observations and the following components

- **L1**: Length at release (cm)
- **L2**: Length at recapture (cm)
- **T1**: Time of release (y from 1 January 1981)
- **T2**: Time of recapture (y from 1 January 1981)
- **Sex**: Sex of fish (F or M)

Source

Description

The `rockbass` data frame has 243 rows and 1 column. The age data are from a sample of rock bass trap-netted from Cayuga Lake, New York by Chapman and Robson, as reported by Seber (2002; page 417) and were expanded to individual observations from the age frequency table.

Usage

`rockbass`

Format

This data frame contains the following columns:

- **age**: age of individual rock bass in years

Source

sblen

Total length (inches) of striped bass collected by Massachusetts volunteer anglers in 2014

Description

sblen data frame has 311 rows and 1 columns. Total length of striped bass

Usage

sblen

Format

This data frame contains the following columns:

- **len_inches** vector of lengths

Source

Massachusetts Division of Marine Fisheries, 30 Emerson Avenue, Gloucester, MA

sbotos

Otolith ages of striped bass made by two age readers

Description

The sbotos data frame has 135 rows and 2 columns. Ages of striped bass interpreted from the same otolith sections by two age readers

Usage

sbotos

Format

This data frame contains the following columns:

- **reader1** vector of ages
- **reader2** vector of ages

Source

Massachusetts Division of Marine Fisheries, 30 Emerson Avenue, Gloucester, MA
Spawning stock biomass-per-recruit (SBPR) analysis is conducted following Gabriel et al. (1989). Reference points of F and SBPR for a percentage of maximum spawning potential are calculated.

Usage

```r
sbpr(age = NULL, ssbwgt = NULL, partial = NULL, pmat = pmat, 
M = NULL, pF = NULL, pM = NULL, MSP = 40, plus = FALSE, 
oldest = NULL, maxF = 2, incrF = 1e-04, graph = TRUE)
```

Arguments

- **age**: vector of cohort ages. If the last age is a plus group, do not add a "+" to the age.
- **ssbwgt**: vector of spawning stock weights for each age. Length of vector must correspond to the length of the age vector.
- **partial**: partial recruitment vector applied to fishing mortality (F) to obtain partial F-at-age. Length of this vector must match length of the age vector.
- **pmat**: proportion of mature fish at each age. Length of this vector must match the length of the age vector.
- **M**: vector containing a single natural mortality (M) rate if M is assumed constant over all ages, or a vector of Ms, one for each age. If the latter, the vector length match the length of the age vector.
- **pF**: the proportion of fishing mortality that occurs before spawning.
- **pM**: the proportion of natural mortality that occurs before spawning.
- **MSP**: the percentage of maximum spawning potential (percent MSP reference point) for which F and SBPR should be calculated.
- **plus**: a logical indicating whether the last age is a plus-group. Default=FALSE.
- **oldest**: if plus=TRUE, a numeric value indicating the oldest age in the plus group.
- **maxF**: the maximum value of F range over which SBPR will be calculated. SBPR is calculated for $F = 0$ to $maxF$.
- **incrF**: F increment for SBPR calculation.
- **graph**: a logical indicating whether SPR and Percent Max SPR versus F should be plotted. Default=TRUE.

Details

Spawning stock biomass-per-recruit analysis is conducted following Gabriel et al. (1989). The F and SBPR for the percentage maximum spawning potential reference point are calculated. If the last age is a plus-group, the cohort is expanded to the oldest age and the ssbwgt, partial, pmat, and M values for the plus age are applied to the expanded cohort ages.
Value

Reference_Points
F and SBPR values for the percentage MSP
SBPR_vs_F
Spawning stock biomass-per-recruit values for each F increment

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also
ypr

Examples

data(haddock)
sbpr(age=haddock$age,ssbwgt=haddock$ssbwgt,partial=haddock$partial, pmat=haddock$pmat,M=0.2,pF=0.2, pM=0.1667,MSP=30,plus=FALSE,maxF=2, incrF=0.001)

schnabel

Population Size Estimates from Repeated Mark-Recapture Experiments

Description
Estimates of population abundance from Schnabel (1938) and Schumacher and Eschmeyer (1943) are calculated from repeated mark-recapture experiments following Krebs (1989).

Usage
schnabel(catch = NULL, recaps = NULL, newmarks = NULL, alpha = 0.05)

Arguments
catch
A vector containing the number of animal caught in each mark-recapture experiment.
recaps
A vector containing the number of animal recaptured in each mark-recapture experiment.
newmarks
A vector containing the newly marked animals in each mark-recapture experiment.
alpha
the alpha level for confidence intervals. Default = 0.05
Details

All computations follow Krebs (1989: p. 30-34). For the Schnabel method, the poisson distribution is used to set confidence intervals if the sum of all recaptures is <50, and the t distribution is used if the sum of all recaptures is >=50. For the Schumacher-Eschmeyer method, the t distribution is used to set confidence intervals.

Value

Dataframe containing the population estimates for the Schnabel and Schumacher & Eschmeyer methods (N), the inverse standard errors (invSE), lower (LCI) and upper (UCI) confidence intervals, and the type of distribution used to set confidence intervals (CI Distribution).

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

data(Gerking)
schnabel(catch=Gerking$C, recaps=Gerking$R, newmarks=Gerking$nM, alpha=0.10)

Shepherd

Seasonal Length Frequencies for Raja clavata

Description

The Shepherd data frame has 24 rows and 4 columns. The seasonal length frequency data of Raja clavata are from Shepherd’s working document.

Usage

Shepherd

Format

This data frame contains the following columns:

- **length**: lower limit of length interval
- **f1**: length frequency from first sampling event in year.
- **f2**: length frequency from second sampling event in year.
- **f3**: length frequency from third sampling event in year.
Source

slca

A Weakly Parametric Method for the Analysis of Length Composition Data

Description

Shepherd’s method for the decomposition of seasonal length frequencies into age classes.

Usage

```r
slca(x, type = 1, fryr=NULL, Linf = NULL, K = NULL, t0 = NULL,
Lrange = NULL, Krange = NULL)
```

Arguments

- **x**
 - The dataframe containing the seasonal length frequencies. The first column contains the lower limit of the length bin as a single numeric value, and the second and remaining columns contain the number of fish in each length bin for each seasonal length frequency. The increment of length frequencies should be constant, e.g. every 3 cm. Empty cells must be coded as zeros. Column headers are not required.

- **type**
 - The analysis to be conducted: 1 = *explore*, 2 = *evaluate*.

- **fryr**
 - The fraction of the year corresponding to when each seasonal length frequency was collected. Enter one numeric value for each length frequency separated by commas within the concatenation function, e.g. `c(0.2,0.45)`. Values must be entered for type=1 and type=2.

- **Linf**
 - The von Bertalanffy L-infinity parameter. If type=2, then value must be entered.

- **K**
 - The von Bertalanffy growth parameter. If type=2, then value must be entered.

- **t0**
 - The von Bertalanffy t-sub zero parameter. If type=2, the value must be entered.

- **Lrange**
 - The L-infinity range (minimum and maximum) and increment to explore. If type=1, then values must be entered. The first position is the minimum value, the second position is the maximum value, and the third position is the increment. Values should be separated by commas within the concatenation function, e.g. `c(100,120,10)`.

- **Krange**
 - The K range and increment to explore. If type=1, then values must be entered. The first position is the minimum value, the second position is the maximum value, and the third position is the increment. Values should be separated by commas within the concatenation function, e.g. `c(0.1,0.3,0.02)`.
Details

There are two analytical steps. In the "explore" analysis, a set of von Bertalanffy parameters that best describes the growth of the seasonal length groups is selected from a table of goodness-of-fit measures mapped over the range of specified K and L-infinity values. Once the best K and L-infinity parameters are selected, the corresponding t0 value is obtained off the second table. In the "evaluate" analysis, the selected parameters are used to 'slice' the seasonal length frequencies into age classes.

Value

If type=1, tables of goodness of fit measures versus L-infinity and K parameters, and t0 values versus L-infinity and K parameters. If type=2, table of age classes produced from slicing the length frequencies.

Note

Shepherd's Fortran code provided in his original working document was translated into R code.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

#Data are from Shepherd working document - seasonal length frequencies
for Raja clavata.
data(Shepherd)

#explore
slca(Shepherd,1,fyr=c(0.2,0.45,0.80),Lrange=c(100,150,10),
 Krange=c(0.1,0.3,0.02))

#evaluate
slca(Shepherd,2,fyr=c(0.2,0.45,0.80),Linf=120,K=0.2,t0=0.57)
sole

Flathead sole CPUEs

Description

Flathead sole CPUEs for a side-by-side trawl calibration study of National Marine Fisheries Service (NMFS) and Alaska Department of Fish and Game (ADFG) vessels

Usage

```r
data(sole)
```

Format

A data frame with 33 observations on the following 3 variables.

- `haul` a numeric vector of the experimental paired haul number
- `nmfs` catch-per-unit-effort (kg per km²) for the NMFS vessel Peggy Jo from 33 experimental hauls
- `adfg` catch-per-unit-effort (kg per km²) for the ADFG vessel Resolution from 33 experimental hauls

Source

Data were graciously provided by Paul G. von Szalay, National Marine Fisheries Service, Seattle, Washington.

sr

Estimation and Model Comparison of Stock-Recruitment Relationships

Description

This function fits 14 models of recruitment-stock relationships to recruitment numbers and spawning stock (e.g., spawning stock biomass or fecundity) data and provides model selection statistics for determining the best model fit.

Usage

```r
sr(recruits = NULL, stock = NULL, model = c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14),
select = 1, initial = list(RA = NULL, RB = NULL, Rrho = NULL, BHA = NULL,
BHB = NULL, BHRho = NULL,
SHA = NULL, SHB = NULL, SHC = NULL, DSA = NULL, DSB = NULL, DSC = NULL,
MYA = NULL, MYB = NULL,
MYC = NULL), control = list(maxit = 10000), plot = FALSE)
```
Arguments

recruits a vector of numbers of recruits
stock any spawning stock quantity (e.g., spawning biomass, numbers, fecundity) corresponding to the vector of recruits.
model the model to fit. Models are 0 = Density-Independent, 1 = Ricker with uncorrelated normal errors (N-U), 2 = Ricker with uncorrelated log-normal errors (L-U), 3 = Ricker with correlated normal errors (N-C), 4 = Ricker with correlated log-normal errors (L-C), 5 = Beverton-Holt with uncorrelated normal errors, 6 = Beverton-Holt with uncorrelated log-normal errors, 7 = Beverton-Holt with correlated normal errors, 8 = Beverton-Holt with correlated log-normal errors, 9 = Shepherd with uncorrelated normal errors, 10 = Shepherd with uncorrelated log-normal errors, 11 = Deriso-Schnute with uncorrelated normal errors, 12 = Deriso-Schnute with uncorrelated log-normal errors, 12 = Myers depensatory model with uncorrelated normal errors, and 14 = Myers depensatory model with uncorrelated log-normal errors. Default is all.
select method used to determine starting values. 1 = automatic, 2 = user-specified. Default=1. Automatic selection of starting might not always work given the data provided.
initial if select = 2, list of starting values for each equation type. See equation parameter names in Details.
control see function optim.
plot logical indicating whether an observed-predicted plot should be produced. Default = FALSE.

Details

The following equations are fitted:

Ricker: \(\text{recruits} = RA \times \text{stock} \times \exp(-RB \times \text{stock}) \)
Beverton-Holt: \(\text{recruits} = \frac{(BHA \times \text{stock})}{1+(BHA \times \text{stock})/BHB} \)
Shepherd: \(\text{recruits} = \frac{(SHA \times \text{stock})}{1+SHB \times \text{stock}^SHC} \)
Deriso-Schnute: \(\text{recruits} = \frac{DSA \times \text{stock} \times (1-DSB \times DSC \times \text{stock})}{1/DSC} \)
Myers: \((MYA \times \text{datar}D \times \text{stock}^MYC)/(1+((\text{datar}D \times \text{stock}^MYC)/MYB)) \)

Maximum likelihood is used to estimate model parameters. For uncorrelated normal errors, the negative log-likelihood is

\[n/2 \times \log(2 \times \pi) + n \times \log(\sqrt{\text{sigma}^2}) + 1/(2 \times \text{sigma}^2) \times \text{sum(} \text{recruits} - \text{predicted} \text{)}^2 \]

where \(n \) is the number of observation, \(\text{sigma}^2 \) is the maximum likelihood of residual variance and predicted is the model predicted recruits. \(\text{sigma}^2 \) is calculated internally as

\(\text{sigma}^2 = \text{sum}((\text{recruits} - \text{predicted})^2)/n. \)

For uncorrelated log-normal errors, the negative log-likelihood is

\[n/2 \times \log(2 \times \pi) + n \times \log(\sqrt{\text{lsigma}^2}) + \text{sum(log(} \text{recruits} \text{)} + 1/(2 \times \text{lsigma}^2) \times \text{sum(} \text{log(} \text{recruits} \text{-} \text{log(predicted)} \text{)}^2 \text{)}^2 \]

\(\text{lsigma}^2 \) is calculated internally as \(\text{lsigma}^2 = \text{sum(} \text{log(} \text{recruits} \text{-} \text{log(predicted)} \text{)}^2 \text{)}^2)/n. \)
For correlated normal errors, the negative log-likelihood is
\[
\frac{n}{2} \ln(2\pi) + n \ln(\sqrt{\sigma_2}) + 0.5 \ln(1 - \rho^2) + \\
\frac{1}{2\sigma_2} \sum_{k=2}^{n} \left((1 - \rho^2)(\text{predicted}[k] - \text{recruits}[k])^2 \right)
\]
where \(\rho \) is the estimated autocorrelation (AR1) parameter, \(\sigma_2 \) is the white noise residual variance, and \(\sum_R \) is calculated as
\[
\text{for}(k \in 2:n) \text{ sumR} < - \text{sumR} + (\text{recruits}[k] - \rho \ast \text{recruits}[k-1] - \text{predicted}[k] + \rho \ast \text{predicted}[k-1])^2
\]
\(\sigma_2 \) is calculated internally as
\[
\text{res} = \text{recruits} - \text{predicted} \\
\text{es} = c(\text{res}[1:c(length(\text{res})-1)] \ast \rho) \\
\sigma_2 = \text{sum}((\text{res}[-1] - \text{es})^2) / c(n-1)
\]
For correlated log-normal errors, the negative log-likelihood is
\[
\frac{n}{2} \ln(2\pi) + n \ln(\sqrt{\ln(\sigma_2)}) + \ln(\text{sum}(\log(\text{recruits}))) + 0.5 \ln(1 - \rho^2) + \\
\frac{1}{2\ln(\sigma_2)} \sum_{k=2}^{n} \left((1 - \rho^2)(\text{log(\text{predicted}[k])} - \text{log(\text{recruits}[k]))}^2 \right)
\]
where \(\ln \sum_R \) is calculated as
\[
\text{for}(k \in 2:n) \ln \sumR < - \ln \sumR + (\log(\text{recruits}[k]) - \phi \ast \log(\text{recruits}[k-1]) \\
- \log(\text{predicted}[k]) + \rho \ast \log(\text{predicted}[k-1]) + (1 - \phi) \ast \ln(\sigma_2)^2)^2
\]
\(\ln(\sigma_2) \) is calculated as
\[
\text{res} = \log(\text{recruits}) - \log(\text{predicted}) \\
\text{es} = c(\text{res}[1:c(length(\text{res})-1)] \ast \phi) \\
\ln(\sigma_2) = \text{sum}((\text{res}[-1] - \text{es})^2) / c(n-1)
\]
Correlated error structures are available for the Ricker and Beverton-Holt model only. The names for specification of starting values of the AR1 parameter are \(\text{rrho} \) and \(\text{bhrho} \).

Akaike Information Criterion for small sample sizes (AICc), Akaike weights and evidence ratios (Burnham and Anderson 2002) are provided for each model selected above.

This function uses function \(\text{optim} \) to estimate parameters and function \(\text{hessian} \) in package \(\text{numDeriv} \) to calculate the hessian matrix from which standard errors are derived.

Value

Lists containing estimation results. \(\text{results} \) contains parameter estimates, associated standard errors, residual variances, negative log-likelihoods and AICc values for each model. If the standard errors are NaN, the hessian could not be inverted (i.e., poor model fit). \(\text{evidence_ratios} \) contains Akaike weights and evidence ratios for model selection. \(\text{convergence} \) contains convergence criterion: 0 = no problems, >0 = problems (see function \(\text{optim} \)). \(\text{correlations} \) contains the estimated parameter correlations. Correlation will be NA if hessian could not be inverted. \(\text{predicted} \) contains the predicted values from each model. \(\text{residuals} \) contains the residuals from each model.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
References

Examples

```r
## Not run:
data(striper)
outs<-sr(recruits=striper$recruits, stock=striper$stock, select=2, model=c(5,6,7,8),
    initial=list(RA=5e3, RB=2e-5, Rrho=0.1,
    BHA=8e3, BHB=1e8, BHRho=0.1,
    SHA=1.5e3, SHB=5.6e8, SHC=1,
    DSA=9e3, DSB=9e-5, DSC=1.14,
    MYA=1e6, MYB=1e5, MYC=0.4), plot=TRUE)
## End(Not run)
```

striper Recruitment Numbers and Female Spawning Stock Biomass for Striped Bass

Description

The striper data frame has 34 rows and 2 column. Estimates of recruits and female spawning stock biomass for striped bass from the Atlantic State Marine Fisheries 2016 stock assessment.

Usage

striper

Format

This data frame contains the following columns:

- recruits number of recruits
- stock female spawning stock biomass (metric tons)

Source

http://www.asmfc.org
Description

This function applies the time series method of Pennington (1986) for estimating relative abundance to a survey series of catch per tow data.

Usage

```r
surveyfit(year = NULL, index = NULL, logtrans = TRUE, graph = TRUE)
```

Arguments

- `year`: vector containing the time series of numeric year labels.
- `index`: vector containing the time series of mean catch per tow data.
- `logtrans`: a logical value indicating whether the natural log-transform should be applied to the mean catch per tow values. Default is TRUE.
- `graph`: a logical value indicating whether a graph of the observed and model fit should be drawn. Default is TRUE.

Details

Parameters for a first difference, moving average model of order 1 are estimated from the trawl time series using function `arima`. Following Equation 4 in Pennington (1986), fitted values are calculated from the model residuals and the estimate of theta.

Value

List containing summary statistics (sample size (n), the first three sample autocorrelations (r1-r3) for the first differenced logged series) and parameter estimates (theta, theta standard error, and sigma2), the observed log-transformed index and fitted values, and the ARIMA function output.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

`surveyref`
Examples

```r
data(yellowtail)
surveyfit(year=yellowtail$year,index=yellowtail$index)
```

surveyref
Quantitative reference points from stock abundance indices based on research surveys

Description

This function implements the methodology of Helser and Hayes (1995) for generating quantitative reference points from relative abundance indices based on research surveys.

Usage

```r
surveyref(x = NULL, refpt = 25, compyear = NULL, reffix = FALSE, refrange = NULL, nboot = 500, allboots = FALSE, nreps = 10000)
```

Arguments

- `x`: output object from function `surveyfit`.
- `refpt`: the lower quantile (percentile) of the fitted time series used as the reference point.
- `compyear`: the index year to compare to the reference point. Multiple years can be included in the comparison using the `c()` function.
- `reffix`: a logical value specifying whether the lower quantile should be determined from a fixed set of years. Default = FALSE.
- `refrange`: If `reffix` = TRUE, the beginning and ending year of the time series to include in determination of the lower quantile. The values should be enclosed within `c()` (e.g., `c(1963,1983)`).
- `nboot`: the number of bootstrap replicates.
- `allboots`: a logical value specifying whether the fitted values for the bootstrap replicates should be included in the output. Default = FALSE.
- `nreps`: the number of samples to draw in function `pgen`. Default = 10000.

Details

Using the output object from function `surveyfit`, the methodology of Helser and Hayes (1995) is applied to generate the probability distribution that the abundance index value for a given year lies below the value of a lower quantile (reference point). The procedure is: 1) add to the original fitted time series residuals randomly selected with replacement from the Pennington model fit, 2) repeat this `nboot` times to create new time series, 3) fit the Pennington model to each new time series using the original theta estimate to get `nboot` replicates of new fitted time series, and 4) determine the lower quantile for each new fitted time series. The probability of the abundance index being less than the quartile reference point is calculated using function `pgen` with `comp`=1.
If comparisons between the current year's index and the reference point will be made year-after-year, Helser and Hayes (1995) recommend using a fixed set of years to select the lower quantile. This procedure will avoid a change in reference point over time as a survey time series is updated. Use arguments reffix and reffrange to accomplish this.

Value

list containing the lower quantile of the original fitted time series and the mean quantile of the fitted bootstrap replicates (comp_refpt), the original fitted time series values versus the mean of the fitted bootstrap time series values (comp_fitted), the empirical distribution of the selected index (emp_dist_index), the empirical distribution of the lower quantile (emp_dist_refpt), the probability that the index value lies below the reference point for a given decision confidence level (prob_index), and, if argument allboots is TRUE, the fitted values of the bootstrap replicates (boot_runs).

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

surveyfit

Examples

data(wolffish)
out<-surveyfit(year=wolffish$year,index=wolffish$index,logtrans=TRUE)
surveyref(out,refpt=25,compyear=c(1990))

tag_model_avg

Model Averaging for Instantaneous Rates Tag Return Models

Description

Calculates model averaged estimates of instantaneous fishing, natural and total mortality, and survival rates for instantaneous rates tag return models (Hoenig et al. (1998) and Jiang et al. (2007)).

Usage

tag_model_avg(..., global = NULL)
Arguments

... model object names separated by commas

global specify global model name in quotes. If the global model is the first model included in the list of candidate models, this argument can be ignored.

Details

Model estimates are generated from functions `irm_cr` and `irm_h`. Averaging of model estimates follows the procedures in Burnham and Anderson (2002). Variances of parameters are adjusted for overdispersion using the c-hat estimate from the global model: \(\sqrt{\text{var} \times \text{c-hat}} \). If c-hat of the global model is <1, then c-hat is set to 1. The c-hat is used to calculate the quasi-likelihood AIC and AICc metrics for each model (see page 69 in Burnham and Anderson(2002)). QAICc differences among models are calculated by subtracting the QAICc of each model from the model with the smallest QAICc value. These differences are used to calculate the Akaike weights for each model following the formula on page 75 of Burnham and Anderson (2002). The Akaike weights are used to calculate the weighted average and standard error of parameter estimates by summing the product of the model-specific Akaike weight and parameter estimate across all models. An unconditional standard error is also calculated by \(\sqrt{\sum(\text{QAICc wgt of model i \times (var of est of model i + (est of model i - avg of all est)^2))}} \).

Value

List containing model summary statistics, model-averaged estimates of fishing, natural, tag, and total mortality, and survival and their weighted and unconditional standard errors.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also

`irm_h` `irm_cr`

Examples

```r
## This is a typical specification, not a working example
## Not run:
tag_model_avg(model1,model2,model3,model4,model5,model6,model7,global="model7")
## End(Not run)
```
Description

The `tanaka` data frame has 138 rows and 3 columns. The number of returns and the mean times-at-large from Table 2 of Tanaka (2006) were used to generate individual times-at-large data from a random normal distributions using a CV of 0.1.

Usage

tanaka

Format

This data frame contains the following columns:

- `relyr` release year (cohort)
- `tal` individual times-at-large (in years)
- `N` Total number of releases for relear year (cohort)

Source

Description

The `trout` data frame has 102 rows and 3 columns. Release lengths, recapture lengths and times-at-large for trout trout in the Kenai River from Table 4.10 of Quinn and Deriso (1999).

Usage

`trout`

Format

This data frame contains the following columns:

- `L1` vector of release lengths
- `L2` vector of recapture lengths
- `dt` vector of times-at-large
vbfr

Francis’ re-parameterization of the von Bertalanffy growth equation for length-age data

Description

Fits the re-parameterized von Bertalanffy growth equation of Francis (1988) by using nonlinear least-squares

Usage

vbfr(age = NULL, L = NULL, agephi = NULL, agepsi = NULL, graph = TRUE, gestimate = TRUE, Lphiparms = c(NA, NA, NA), Lchiparms = c(NA, NA, NA), Lpsiparms = c(NA, NA, NA), control = list(maxiter = 10000))

Arguments

age Vector of ages of individual fish.
L Vector of lengths of individual fish.
agephi Arbitrary reference age phi
agepsi Arbitrary reference age psi. agepsi>agephi.
graph Logical specifying whether observed versus predicted, and residual plots should be drawn. Default=TRUE.
gestimate Logical specifying whether automatic generation of starting values of lphi, lchi and lpsi should be used. Default=TRUE. If gestimate=FALSE, user-specified starting, lower and upper limits of parameters must be entered.
Lphiparms If gestimate=FALSE, starting value, lower limit and upper limit of lphi used in nls.
Lchiparms If gestimate=FALSE, starting value, lower limit and upper limit of lchi used in nls.
Lpsiparms If gestimate=FALSE, starting value, lower limit and upper limit of lpsi used in nls.
control see control under function nls.
Details

Francis (1988) re-parameterized the von Bertalanffy growth equation for age-length in order to make equivalent comparison of parameters to parameters of a common model used to estimate growth from tagging data. Three parameters, l_{phi}, l_{chi} and l_{psi}, are estimated. The re-parameterization also has better statistical properties than the original equation.

The formulae to get the conventional von Bertalanffy parameters are:

$$L_{inf} = l_{phi} + \frac{(l_{psi}-l_{phi})}{(1-r^2)}$$

where $r = \frac{(l_{psi}-l_{chi})}{(l_{chi}-l_{phi})}$

$$K = -\frac{(2*\log(r))}{(age_{psi}-age_{phi})}$$

$$t_0 = age_{phi} + \frac{(1/K)*\log((L_{inf}-l_{phi})/L_{inf})}{L_{inf}}$$

If $gestimate=\text{TRUE}$, unconstrained nonlinear least-squares (function nls) is used to fit the model. If $gestimate=\text{FALSE}$, constrained nonlinear least-squares is used (algorithm "port" in nls).

Value

nls object of model results. Use $summary$ to extract results.

Author(s)

Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

Examples

data(pinfish)
with(pinfish,vbfr(age=age,L=sl,agephi=3,agepsi=6))

Description

The $wolffish$ data frame has 25 rows and 2 columns. The mean catch per tow values were digitized from Figure 4 of Helser and Hayes (1995) and back-transformed to the original scale.

Usage

$wolffish$
yellowtail

Format

This data frame contains the following columns:

- **year** survey year of catch per tow
- **index** mean catch per tow value (untransformed)

Source

yellowtail

<table>
<thead>
<tr>
<th></th>
<th>Fall average catch per tow for southern New England yellowtail flounder</th>
</tr>
</thead>
</table>

Description

The *yellowtail* data frame has 22 rows and 2 columns. The average catch per tow values were digitized from Figure 4 of Pennington (1986).

Usage

yellowtail

Format

This data frame contains the following columns:

- **year** survey year of catch per tow
- **index** average catch per tow value (untransformed)

Source

Yield-per-recruit (YPR) analysis is conducted following the modified Thompson-Bell algorithm. Reference points Fmax and F0.1 are calculated.

Usage

\[
ypr(\text{age} = \text{NULL}, \text{wgt} = \text{NULL}, \text{partial} = \text{NULL}, \text{M} = \text{NULL}, \\
\text{plus} = \text{FALSE}, \text{oldest} = \text{NULL}, \text{maxF} = 2, \text{incrF} = 0.001, \text{graph} = \text{TRUE})
\]

Arguments

- **age**: the vector of cohort ages, e.g. c(1,2,3,4,5). If the last age is a plus group, do not add a "+" to the age.
- **wgt**: the vector of catch weights for each age, e.g. c(0.2,0.4,0.7,1.0,1.2). Length of vector must correspond to the length of the age vector.
- **partial**: the partial recruitment vector applied to fishing mortality (F) to obtain partial F-at-age. Length of the partial recruitment vector must correspond to the length of the age vector.
- **M**: vector containing a single natural mortality (M) rate if M is assumed constant over all ages, or a vector of Ms, one for each age. If the latter, the vector length must correspond to the length of the age vector.
- **plus**: a logical value indicating whether the last age is a plus-group. Default is FALSE.
- **oldest**: if plus=TRUE, a numeric value indicating the oldest age in the plus group.
- **maxF**: the maximum value of F range over which YPR will be calculated. YPR is calculated for F = 0 to maxF.
- **incrF**: F increment for YPR calculation.
- **graph**: logical indicating whether YPR versus F should be plotted. Default=TRUE.

Details

Yield-per-recruit analysis is conducted following the modified Thompson-Bell algorithm. Reference points Fmax and F0.1 are calculated. If the last age is a plus-group, the cohort is expanded to the oldest age and the wgt, partial, and M values for the plus age are applied to the expanded cohort ages.

Value

<table>
<thead>
<tr>
<th>Reference Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F and yield-per-recruit values for Fmax and F0.1</td>
<td></td>
</tr>
<tr>
<td>F_vs_YPR</td>
<td>Yield-per-recruit values for each F increment</td>
</tr>
</tbody>
</table>
zt

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>

References

See Also
sbpr

Examples
data(haddock)
yp(haddock$age,haddock$ssbwgt,haddock$partial,M=0.4,
plus=TRUE,oldest=100,maxF=2,incrF=0.01)

zt

Z-transform or center a time series

Description
Z-transforms observations of a time series or centers observations of a time series to the mean.

Usage
zt(x = NULL, ctype = 1)

Arguments
x
vector of observations. Missing values are allowed.
ctype
the type of transformation. 1 = Z transform ((x - mean x)/ sd x); 2 = center (x - mean x). Default = 1

Details
Z-transforms observations of a time series or centers observations of a time series to the mean.

Value
vector containing the transformed time series.

Author(s)
Gary A. Nelson, Massachusetts Division of Marine Fisheries <gary.nelson@mass.gov>
Examples

```r
data(wolffish)
zt(wolffish$index)
```
Index

*Topic MISC
astrocalc4r, 12

*Topic \textasciitilde kwd1
dlproj, 55
growthResid, 84
growthTraject, 85

*Topic \textasciitilde kwd2
dlproj, 55
growthResid, 84
growthTraject, 85

*Topic datasets
alkdata, 9
bonito, 18
buffalo, 20
catch, 20
codcluslen, 40
codstrcluslen, 41
counts, 45
cowcod, 45
darter, 47
Gerking, 68
goosefish, 69
haddock, 88
Hightower, 89
Hoenig, 89
Jensen, 96
Jiang, 97
kappenman, 98
Kimura, 98
lingcod, 100
maki, 102
menhaden, 104
nshrimp, 107
P. donacina, 110
pinfish, 112
rig, 120
rockbass, 121
sblen, 122
sbotos, 122

Shepherd, 125
sole, 128
striper, 131
tanaka, 136
tROUT, 136
wolffish, 138
yellowtail, 139

*Topic htest
clus.str.1f, 35
growthlrt, 79

*Topic misc
agesurv, 4
agesurvcl, 5
alk, 6
alkD, 7
alkprop, 10
alkss, 11
bheq, 15
bhnoneq, 16
bt.log, 18
catch.select, 21
catchmsy, 22
catchsurvey, 27
clus.1f, 28
clus.mean, 30
clus.rho, 32
clus.rho.g, 33
clus.str.1f, 35
clus.t.test, 38
clus.vb.fit, 39
combinevar, 41
compare2, 42
convmort, 44
cpuekapp, 46
dbsra, 47
deltadist, 52
deplet, 53
epr, 57
fm_checkdesign, 58
Hightower, 89
Hoenig, 89

irm_cr, 90, 96, 135
irm_h, 93, 94, 135

Jensen, 96
Jiang, 97

kappenman, 98
Kimura, 98

lifetable, 99
lingcod, 100

M. empirical, 100
maki, 102
mature, 103
menhaden, 104
mort.al, 77, 105
mrN.single, 106

nshrimp, 107

opt_slot, 108, 110
opt_trophy, 109, 109

P. donacina, 110
pgen, 111
pinfish, 112
plot.grotagplus, 74, 113, 117
powertrend, 115
print.grotagplus, 74, 115, 117
pwpop, 118

remp, 119
rig, 120
rockbass, 121

sblen, 122
sbotos, 122
sbpr, 58, 123, 141
schnabel, 124
Shepherd, 125
slca, 126
sole, 128
sr, 128
striper, 131
surveyfit, 132, 134
surveyref, 132, 133

tag_model_avg, 93, 96, 134
tanaka, 136
troll, 136

vbr, 137

wolffish, 138

yellowtail, 139

ypr, 58, 124, 140

zt, 141