Package ‘fitur’

October 13, 2022

Title Fit Univariate Distributions
Version 0.6.2
Description Wrapper for computing parameters for univariate distributions using MLE. It creates an object that stores d, p, q, r functions as well as parameters and statistics for diagnostics. Currently supports automated fitting from base and actuar packages. A manually fitting distribution fitting function is included to support directly specifying parameters for any distribution from ancillary packages.

URL https://github.com/tomroh/fitur
BugReports https://github.com/tomroh/fitur/issues
Depends R (>= 3.3.0)
Imports stats, fitdistrplus, actuar, e1071, ggplot2, gofstat, shiny (>= 0.13), miniUI (>= 0.1.1), rstudioapi (>= 0.5), DT
Suggests knitr, rmarkdown
License MIT + file LICENSE
Encoding UTF-8
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Thomas Roh [aut, cre]
Maintainer Thomas Roh <thomas@roh.engineering>
Repository CRAN
Date/Publication 2021-10-06 16:30:02 UTC

R topics documented:

build_dist .. 2
calc_moments 3
DiscreteUniform 3
fit_dist_addin 4
fit_empirical 4
Build Distribution Functions

Description

A wrapper for building function families given a numeric vector and the distribution

Usage

build_dist(x, distribution)

Arguments

x
numeric vector
distribution
distribution character name

Value

list of distribution functions for d, p, q, r, and parameters

Examples

fittedDists <- build_dist(rpois(100,5), 'pois')
dpois(x = 5, lambda = 5)
fittedDists$dpois(5)
pois(5, 5)
fittedDists$ppois(5)
qpois(0.5, 5)
fittedDists$qpois(0.5)
set.seed(8257)
rpois(100, 5)
set.seed(8257)
fittedDists$rpois(100)
fittedDists$parameters
calc_moments

Calculate moments of a numeric vector

Description

Calculate moments of a numeric vector

Usage

\[
\text{calc_moments}(x)
\]

Arguments

- \(x\) a numeric vector

Value

a named vector of descriptive statistics

Examples

\[
x \leftarrow \text{rexp}(1000, 2)
\text{calc_moments}(x)
\]

DiscreteUniform

The Discrete Uniform Distribution

Description

The Discrete Uniform Distribution

Usage

\[
\text{ddunif}(x, \text{min} = 0, \text{max} = 1)
\]

\[
\text{pdunif}(q, \text{min} = 0, \text{max} = 1)
\]

\[
\text{qdunif}(p, \text{min} = 0, \text{max} = 1)
\]

\[
\text{rdunif}(n, \text{min} = 0L, \text{max} = 1)
\]
Arguments

- **x**: vector of (non-negative integer) quantiles
- **min**: minimum value of distribution (integer)
- **max**: maximum value of distribution (integer)
- **q**: vector of quantiles
- **p**: vector of probabilities
- **n**: number of random values to return

Value

ddunif gives the density, pdunif gives the distribution function, qdunif gives the quantile function, rdunif generates random deviates

Examples

```r
ddunif(0:1)
pdunif(1)
qdunif(0.5)
rdunif(10)
```

fit_dist_addin

Fit Univariate Distributions Addin

Description

Interactively submit a numeric vector and choose what distributions that you want to run fit diagnostics. Click done to have the desired distribution code put into your cursor position.

Usage

```r
fit_dist_addin()
```

fit_empirical

Fit Empirical Distribution

Description

Fit Empirical Distribution

Usage

```r
fit_empirical(x)
```
Arguments

- \(x \) integer or double vector

Value

If integer vector then list of family functions for d, p, q, r, and parameters based on each integer value. If it is a double vector then list of family functions for d, p, q, r, and parameters based on Freedman-Diaconis rule for optimal number of histogram bins.

Examples

```r
set.seed(562)
x <- rpois(100, 5)
empDis <- fit_empirical(x)

# probability density function
plot(empDis$dempDis(0:10),
xlab = 'x',
ylab = 'dempDis')
# cumulative distribution function
plot(x = 0:10,
y = empDis$pempDis(0:10),
    type = 'l',
    xlab = 'x',
    ylab = 'pempDis')
# quantile function
plot(x = seq(.1, 1, .1),
y = empDis$qempDis(seq(.1, 1, .1)),
    type = 'p',
    xlab = 'x',
    ylab = 'qempDis')
# random sample from fitted distribution
summary(empDis$r(100))

empDis$parameters

set.seed(562)
x <- rexp(100, 1/5)
empCont <- fit_empirical(x)

# probability density function
plot(x = 0:10,
y = empCont$dempCont(0:10),
    xlab = 'x',
    ylab = 'dempCont')
# cumulative distribution function
plot(x = 0:10,
y = empCont$pempCont(0:10),
    type = 'l',
    xlab = 'x',
    ylab = 'pempCont')
# quantile function
```
fit_univariate

Description

Fit Univariate Distribution

Usage

fit_univariate(x, distribution, type = "continuous")

Arguments

x numeric vector
distribution character name of distribution
type discrete or continuous data

Value

a fitted list object of d, p, q, r distribution functions and parameters, MLE for probability distributions, custom fit for empirical

Examples

Fit Discrete Distribution
set.seed(42)
x <- rpois(1000, 3)
fitted <- fit_univariate(x, 'pois', type = 'discrete')
density function
plot(fitted$dpois(x=0:10),
xlab = 'x',
ylab = 'dpois')
distribution function
plot(fitted$ppois(seq(0, 10, 1)),
xlab= 'x',
ylab = 'ppois')
quantile function
plot(fitted$qpois,
xlab= 'x',

plot(x = seq(.5, 1, .1),
y = empCont$empCont(seq(.5, 1, .1)),
type = 'p',
xlab = 'x',
ylab = 'empCont')
random sample from fitted distribution
summary(empCont$r(100))

empCont$parameters
fit_univariate_man

Fit Univariate Distributions by Specifying Parameters

Description

Fit Univariate Distributions by Specifying Parameters

Usage

fit_univariate_man(distribution, parameters)

Arguments

distribution distribution character name
parameters named vector of parameters to set

Value

list of distribution functions for d, p, q, r, and parameters
Examples

```r
gofTests
Examples

manFun <- fit_univariate_man('norm', c(mean = 2, sd = 5))
set.seed(5)
m1 <- mean(manFun$rnorm(100000))
set.seed(5)
m2 <- mean(rnorm(100000, 2, 5))
identical(m1, m2)
```

gen_dist_fun

Generate Single Distribution Function

Description

Generate Single Distribution Function

Usage

```r
gen_dist_fun(f, parameters, ...)
```

Arguments

- `f` one of distribution functions
- `parameters` new parameters for distribution
- `...` arguments to pass on to distribution function

Value

one of parameterized distribution functions in d, p, q, r

GOFTests

Wrappers to compute goodness of fit test froms distfun objects

Description

Wrappers to compute goodness of fit test froms distfun objects
Usage

ks_test(distfun, x, ...)

S3 method for class 'distfun'
ad_test(distfun, x)

ad_test(distfun, x)

S3 method for class 'distfun'
cvm_test(distfun, x)

cvm_test(distfun, x)

Arguments

distfun a distfun object
x numeric vector
... arguments to be passed on to test function

Value

goodness of fit object

Examples

x <- rgamma(100, 1, 1)
fit <- fit_univariate(x, 'gamma')
ks_test(fit, x)
ad_test(fit, x)
cvm_test(fit, x)

gof_tests Goodness of Fit Testing

Description

Apply all goodness of fit tests and return a data.frame with the results

Usage

gof_tests(fits, x)

Arguments

fits a list object produced from fit_univariate, fit_empirical, or fit_univariate_man
x numeric vector of sample data
Value

a data.frame of test statistic results for each distribution

Examples

```r
set.seed(84)
x <- rgamma(100, 1, 1)
dists <- c('gamma', 'lnorm', 'weibull')
multipleFits <- lapply(dists, fit_univariate, x = x)
gof_tests(multipleFits, x)
```

is.distfun

Test if object is a distfun object

Description

Test if object is a distfun object

Usage

```r
is.distfun(x)
```

Arguments

- `x` an R object to be tested

Value

TRUE if `x` is a distfun object, FALSE otherwise

Mode

Find Mode

Description

Find Mode

Usage

```r
Mode(x)
```

Arguments

- `x` vector of data

Value

mode of data
plot_density
Density Comparison Plot

Description
Density Comparison Plot

Usage

```r
plot_density(x, fits, nbins)
```

Arguments

- `x` numeric vector of sample data
- `fits` a list object produced from `fit_univariate`, `fit_empirical`, or `fit_univariate_man`
- `nbins` number of bins for histogram

Value

ggplot of empirical histogram of `x` compared to theoretical density distributions

Examples

```r
library(ggplot2)
set.seed(37)
x <- rgamma(10000, 5)
dists <- c('gamma', 'lnorm', 'weibull')
fits <- lapply(dists, fit_univariate, x = x)
plot_density(x, fits, 30) + theme_bw()
```

plot_pp
P-P Plot

Description

P-P Plot

Usage

```r
plot_pp(x, fits)
```

Arguments

- `x` numeric vector of sample data
- `fits` a list object produced from `fit_univariate`, `fit_empirical`, or `fit_univariate_man`
Value

ggplot of percentile-percentile comparison of theoretical distribution

Examples

library(ggplot2)
set.seed(37)
x <- rgamma(10000, 5)
dists <- c('gamma', 'lnorm', 'weibull')
fits <- lapply(dists, fit_univariate, x = x)
plot_pp(x, fits) +
theme_bw()

plot_qq(x, fits) +
theme_bw()

Description

Q-Q Plot

Usage

plot_qq(x, fits)

Arguments

x numeric vector of sample data
fits a list object produced from fit_univariate, fit_empirical, or fit_univariate_man

Value

ggplot of quantile-quantile comparison of theoretical distribution

Examples

library(ggplot2)
set.seed(37)
x <- rgamma(10000, 5)
dists <- c('gamma', 'lnorm', 'weibull')
fits <- lapply(dists, fit_univariate, x = x)
plot_qq(x, fits) +
theme_bw()
Index

ad_test (GOFTests), 8
build_dist, 2
calc_moments, 3
cvm_test (GOFTests), 8
ddunif (DiscreteUniform), 3
DiscreteUniform, 3
fit_dist_addin, 4
fit_empirical, 4
fit_univariate, 6
fit_univariate_man, 7
gen_dist_fun, 8
gof_tests, 9
GOFTests, 8
is.distfun, 10
ks_test (GOFTests), 8
Mode, 10
pdunif (DiscreteUniform), 3
plot_density, 11
plot_pp, 11
plot_qq, 12
qdunif (DiscreteUniform), 3
rdunif (DiscreteUniform), 3