Package ‘fixedTimeEvents’

October 2, 2016

Type Package
Title The Distribution of Distances Between Discrete Events in Fixed Time
Version 1.0
Date 2016-10-01
Maintainer Kristian Hovde Liland <kristian.liland@nmbu.no>
Description Distribution functions and test for over-representation of short distances in the Liland distribution. Simulation functions are included for comparison.
License GPL (>= 2)
Imports stats
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Author Kristian Hovde Liland [aut, cre], Lars Snipen [ctb]
Repository CRAN
Date/Publication 2016-10-02 10:12:31

R topics documented:

dLiland ... 2
facL ... 3
Liland ... 4
Liland.test ... 5
NA2NaN ... 6
rrLiland .. 7
simLiland ... 8
validate.Rr .. 9

Index 10
The distribution of distances between discrete events in fixed time/space (the Liland distribution)

Description

Density, distribution function, quantile function and random generation for the Liland distribution with \(R \) trials and \(r \) successes.

Usage

\[
\begin{align*}
\text{dLiland}(x, R, r, \text{warn} = \text{FALSE}) \\
\text{pLiland}(q, R, r, \text{lower.tail} = \text{TRUE}, \text{warn} = \text{FALSE}) \\
\text{qLiland}(p, R, r) \\
\text{rLiland}(n, R, r)
\end{align*}
\]

Arguments

- \(x, q \) vector of quantiles.
- \(p \) vector of probabilities.
- \(n \) number of observations.
- \(R \) number of trials.
- \(r \) number of successes.
- \(\text{warn} \) logical indicating if a warning should be issued if approximation is used.
- \(\text{lower.tail} \) logical indicating if the lower tail of the distribution should be summed.

Details

The Liland distribution has probability mass

\[
f(X = x; R, r) = \frac{(R-x)}{\binom{R}{r}}
\]

where \(x \) is the distance between consecutive successes, \(R \) is the number of trials and \(r \) is the number of successes.

Value

\text{dLiland} gives the probability mass, \text{pLiland} gives the distribution function, \text{qLiland} gives the quantile function, and \text{rLiland} generates random Liland values.

Author(s)

Kristian Hovde Liland
References

Liland, KH & Snipen, L. FixedTimeEvents: An R package for the distribution of distances between discrete events in fixed time, SoftwareX, in press.

See Also

Liland, Liland.test, simLiland

Examples

dLiland(19, R = 1949, r = 162)
pLiland(19, R = 1949, r = 162)
qLiland(0.5, R = 1949, r = 162)
plot(pLiland(1:100, R = 1949, r = 162))

QQ-plot of Liland distribution and random Liland values
R <- 2000
r <- 120
n <- 1000
samp <- rLiland(n,R,r)
theo <- qLiland(ppoints(n),R,r)
qplot(theo,samp,
 xlab="F(x;2000,120)'", ylab='Sample (1000)', axes=FALSE)
axis(1,at=c(0,40,80,120))
axis(2,at=c(0,40,80,120))
box()
qline(samp, distribution = function(p)qLiland(p,R=2000,r=120), col='gray',lty=2)

facL

Approximated logarithm of factorials

Description

Stirling’s 2nd order approximation of the logarithm of a factorial.

Usage

facL(n)

Arguments

n

vector of integers for which to compute the logarithmic factorial.

Value

The logarithm of the factorial.
Author(s)
Kristian Hovde Liland

See Also
dliland, Liland, Liland.test, simLiland

Examples
Some values of the logarithm of factorials.
facl(c(2,10,100,1000))
log(factorial(c(2,10,100,1000)))

Fraction of two factorials
exp(facl(200)-facl(180))
factorial(200)/factorial(180)

Liland

<table>
<thead>
<tr>
<th></th>
<th>Properties of the Liland distribution</th>
</tr>
</thead>
</table>

Description
Calculates the mean and variance of the Liland distribution according to the number of trials and successes.

Usage
Liland(R, r)

Arguments
R number of trials.
 r number of successes.

Value
Returns a named vector containing the mean and variance of the Liland distribution.

Author(s)
Kristian Hovde Liland

References
Liland, KH & Snipen, L, FixedTimeEvents: An R package for the distribution of distances between discrete events in fixed time, SoftwareX, in press.
Liland.test

See Also
dliland, Liland.test, simLiland

Examples
Liland(R = 1949, r = 162)

Liland.test A test for over represented short distances in the Liland distribution.

Description
A binomial test is performed using probabilities from the Liland distribution to check if the number of distances shorter to or equal to xlim are significantly higher than the expected value. Critical value and power are supplied as separate functions.

Usage
Liland.test(y, xlim, R, r)
 ## S3 method for class 'Ltest'
 print(x, ...)
 ## S3 method for class 'Ltest'
 summary(object, ...)
Liland.crit(xlim, R, r, alpha = 0.05)
Liland.pow(xlim, R, r, y = 1:(r-1), alpha = 0.05)

Arguments
 y The number of observed short distances.
 xlim The maximum distance that is seen as short.
 R The number of trials.
 r The number of successes.
 alpha Significance level.
 x The object to printed.
 object The object to be summarized.
 ... Additional arguments for print and summary (not used).

Value
Liland.test returns a named vector of P-values with class L.test. The other methods only print.

References
Liland, KH & Snipen, L, FixedTimeEvents: An R package for the distribution of distances between discrete events in fixed time, SoftwareX, in press.
See Also
dLiland, Liland, simLiland

Examples

```r
Lt <- Liland.test(12,1,1949,162)
print(Lt)
summary(Lt)

# Critical value
Liland.crit(1, 1949, 162)

# Power
plot(Liland.pow(1, 1949, 161, alpha = 0.05), type = 'l', xlab = '#(x<2)', ylab = 'power')
```

NA2NaN

Translation of values from NA (not available) to NaN (not a number)

Description

Exchanges all occurrences of NA in a vector with NaN. A warning is issued when NAs or NaNs are found.

Usage

```r
NA2NaN(k)
```

Arguments

- `k` numerical vector possibly containing NAs.

Value

Returns a vector where possible NAs have been changed to NaNs.

Author(s)

Kristian Hovde Liland

See Also

dLiland, Liland, Liland.test, simLiland

Examples

```r
NA2NaN( c(0, 1, NA, NaN))
NA2NaN( c(0, 1, 2, NaN))
NA2NaN( c(0, 1, NA, 100))
NA2NaN( c(0, 1, 2, 100))
```
Description

r successes are drawn from R trials. This is repeated n times to produce a random vector of mean Liland distributed numbers.

Usage

```r
rrLiland(n, R, r)
```

Arguments

- `n`: number of repeated samples.
- `R`: number of Bernoulli trials.
- `r`: number of successes per sample.

Value

Vector of mean distance between successful events.

Author(s)

Kristian Hovde Liland

References

Liland, KH & Snipen, L, FixedTimeEvents: An R package for the distribution of distances between discrete events in fixed time, SoftwareX, in press.

See Also

dLiland, Liland, Liland.test, simLiland

Examples

```r
mdist <- rrLiland(1000, 25, 7)
plot(density(mdist))
```
Simulations for the Liland distribution.

Description

Three different simulations are provided for the Liland distribution. These include sampling repeatedly from a given Liland distribution, sampling from the Bernoulli distribution and summarizing, and sampling random mean Liland numbers.

Usage

simLiland(S, R, r)
simLiland2(S, R, r)
simLilandMu(S, R, r)

Arguments

S number of samples.
R number of trials or denominator of Bernoulli probability.
r number of successes or numerator of Bernoulli probability.

Value

simLiland returns a vector of simulated Liland probabilities. simLiland2 returns a list of sampled counts (res), summary of counts (counts) and order of counts (ms). simLilandMu returns a vector of simulated mean Liland numbers.

Author(s)

Kristian Hovde Liland

References

Liland, KH & Snipen, L, FixedTimeEvents: An R package for the distribution of distances between discrete events in fixed time, SoftwareX, in press.

See Also
dliland, Liland, Liland.test

Examples

simLiland(1000, 20, 10)
sl <- simLiland2(1000, 20, 10)
sl$counts[sl$ms]/1000
plot(density(simLilandMu(1000, 20, 10)))
validate.Rr

Validation of Liland distribution parameters.

Description

Checks if parameters conform to \(R \geq 2, r \geq 2 \) and \(r \leq R \).

Usage

validate.Rr(R, r)

Arguments

- \(R \) number of Bernoulli trials.
- \(r \) number of successes.

Value

No return, only testing.

Author(s)

Kristian Hovde Liland

References

Liland, KH & Snipen, L, FixedTimeEvents: An R package for the distribution of distances between discrete events in fixed time, SoftwareX, in press.

See Also
dLiland

Examples

validate.Rr(20, 10)

Not run:
\(r > R \) results in an error.
 validate.Rr(20, 30)

End(Not run)
Index

dLiland, 2, 4–9

facL, 3
fixedTimeEvents (dLiland), 2

Liland, 3, 4, 4, 6–8
Liland.crit (Liland.test), 5
Liland.pow (Liland.test), 5
Liland.test, 3–5, 5, 6–8

NA2NaN, 6

pLiland (dLiland), 2
print.Ltest (Liland.test), 5

qLiland (dLiland), 2

rLiland (dLiland), 2
rrLiland, 7

simLiland, 3–7, 8
simLiland2 (simLiland), 8
simLilandMu (simLiland), 8
summary.Ltest (Liland.test), 5

validate.Rr, 9