Package ‘flatr’

November 16, 2017

Type Package
Title Transforms Contingency Tables to Data Frames, and Analyses Them
Version 0.1.1
Author Scott D. Graham
Maintainer Scott D. Graham <scott.grah95@gmail.com>
Description Contingency Tables are a pain to work with when you want to run regressions.
This package takes them, flattens them into a long data frame, so you can more easily analyse them!
As well, you can calculate other related statistics. All of this is done so in a 'tidy' manner,
so it should tie in nicely with 'tidyverse' series of packages.
Depends R(>= 3.4.2), stats, dplyr, tibble, magrittr
Suggests testthat
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-11-16 09:49:33 UTC

R topics documented:

 flatten_ct .. 2
 goodness_of_fit .. 2
 lung_cancer .. 3
 print.ct_goodness_of_fit 4

Index 5
flatten_ct

Flatten i*j*k contingency tables into tidy data.

Description

`flatten_ct()` takes a i*j*k array, and turns it into a tibble.

Usage

`flatten_ct(data)`

Arguments

- `data` An i*j*k array.

Value

A tibble with 3 columns.

Examples

`flatten_ct(lung_cancer)`

goodness_of_fit

Calculate the Chi^2 and G^2 Statistics

Description

Calculates the goodness of fit test statistics for contingency tables.

Usage

`goodness_of_fit(model, type = "Chisq", ...)`

Arguments

- `model` a GLM regression model.
- `type` either "Chisq" or "Gsq", which determines the type of goodness of fit test that is ran. Defaults to "Chisq".
- `...` Further arguments passed to or from other methods.
Value

A list with class "ct_goodness_of_fit" containing the following components:

- **test**: the type of test used.
- **model**: the name of the inputted model.
- **statistic**: The value of the test statistic as determined by the type parameter.
- **df**: The number of degrees of freedom. This equals the number of combinations for explanatory variables less the number of parameters in the model.
- **p.value**: The p-value calculated under a Chi-Squared distribution.

Examples

```r
lung_logit <- 
  lung_cancer %>% 
  flatten_ct() %>% 
  glm( 
    Lung ~ Smoking, 
    family = binomial, 
    data = . 
  )

goodness_of_fit(model = lung_logit, type = "chisq")

lung_logit %>% 
  goodness_of_fit(type = "gsq")

lung_cancer %>% 
  flatten_ct() %>% 
  glm( 
    Lung ~ City + Smoking, 
    family = binomial, 
    data = . 
  ) %>% 
  goodness_of_fit()
```

Description

Usage

```r
lung_cancer
```
Format

- An Array with 2*2*8 dimensions
- **Smoking** Whether or not a person smokes.
- **Lung** Whether or not a person has lung cancer.
- **City** Name of the city a person lives in.

Examples

- `lung_cancer`

print.ct_goodness_of_fit

Print method for goodness_of_fit()

Description

- Creates a nice looking output for the goodness_of_fit() function

Usage

```r
## S3 method for class 'ct_goodness_of_fit'
print(x, ...)
```

Arguments

- `x` A list
- `...` Further arguments passed to or from other methods.
Index

*Topic datasets
 lung_cancer, 3

flatten_ct, 2

goodness_of_fit, 2

lung_cancer, 3

print.ct_goodness_of_fit, 4