Title: A friendly MCMC framework

Depends: R (>= 3.3.0)

License: MIT + file LICENSE

Encoding: UTF-8

Language: en-US

LazyData: true

URL: https://github.com/USCbiostats/fmcmc

BugReports: https://github.com/USCbiostats/fmcmc/issues

Suggests: covr, knitr, rmarkdown, mcmc, tinytest, mvtnorm, adaptMCMC

Imports: parallel, coda, stats, methods, MASS

RoxygenNote: 7.0.2

VignetteBuilder: knitr

NeedsCompilation: no

Author: George Vega Yon [aut, cre] (<https://orcid.org/0000-0002-3171-0844>), Paul Marjoram [ctb, ths] (<https://orcid.org/0000-0003-0824-7449>), National Cancer Institute (NCI) [fnd] (Grant Number 5P01CA196569-02), Fabian Scheipl [rev] (JOSS reviewer, <https://orcid.org/0000-0001-8172-3603>)

Maintainer: George Vega Yon <g.vegayon@gmail.com>

Repository: CRAN

Date/Publication: 2020-04-23 00:14:15 UTC
R topics documented:

append_chains . 2
check_initial . 3
convergence-checker . 3
cov_recursive . 5
fmcmc . 6
kernel_adapt . 7
kernel_mirror . 9
kernel_new . 11
kernel_normal . 14
kernel_ram . 15
kernel_unif . 17
MCMC . 18
new_progress_bar . 24
plan_update_sequence . 25
reflect_on_boundaries . 25

Index 27

append_chains Append MCMC chains (objects of class coda::mcmc)

Description

Combines two or more MCMC runs into a single run. If runs have multiple chains, it will check that all have the same number of chains, and it will join chains using the rbind function.

Usage

append_chains(...)

Default S3 method:
append_chains(...)

S3 method for class 'mcmc.list'
append_chains(...)

S3 method for class 'mcmc'
append_chains(...)

Arguments

... A list of mcmc or mcmc.list class objects.

Value

If mcmc.list, an object of class mcmc.list, otherwise, an object of class mcmc.
check_initial

Checks the initial values of the MCMC

Description

This function is for internal use only.

Usage

```r
check_initial(initial, nchains)
```

Arguments

- `initial`: Either a vector or matrix.
- `nchains`: Integer scalar. Number of chains.

Details

When `initial` is a vector, the values are recycled to form a matrix of size `nchains * length(initial)`.

Value

A named matrix.

Examples

```r
init <- c(.4, .1)
check_initial(init, 1)
check_initial(init, 2)

init <- matrix(1:9, ncol=3)
check_initial(init, 3)

# check_initial(init, 2) # Returns an error
```

convergence-checker

Convergence Monitoring

Description

Built-in set of functions to be used in companion with the argument `conv_checker` in `MCMC`. These functions are not intended to be used in a context other than the `MCMC` function.
convergence-checker

Usage

convergence_gelman(freq = 1000L, threshold = 1.1, check_invariant = TRUE, ...)

convergence_geweke(
 freq = 1000L,
 threshold = 0.025,
 check_invariant = TRUE,
 ...
)

convergence_heildel(freq = 1000L, ..., check_invariant = TRUE)

convergence_auto(freq = 1000L)

Arguments

freq

Integer scalar. Frequency of checking.

threshold

Numeric value. A Gelman statistic below the threshold will return TRUE.

check_invariant

Logical. When TRUE the function only computes the Gelman diagnostic using variables with greater than 1e-10 variance.

... Further arguments passed to the method.

Details

In the case of convergence_geweke, threshold sets the p-value for the null $H_0 : Z = 0$, i.e. equal means between the first and last chunks of the chain. See coda::geweke.diag. This implies that the higher the threshold, the lower the probability of stopping the chain.

In the case that the chain has more than one parameter, the algorithm will return true if and only if the test fails to reject the null for all the parameters.

For the convergence_heildel, see coda::heidel.diag for details.

The convergence_auto function is the default and is just a wrapper for convergence_gelman and convergence_geweke. This function returns a convergence checker that will be either of the other two depending on whether nchains in MCMC is greater than one—in which case it will use the Gelman test—or not—in which case it will use the Geweke test.

Value

A function passed to MCMC to check automatic convergence.
Description

These algorithms are used in `kernel_adapt()` to simplify variance-covariance recalculation at every step of the algorithm.

Usage

```r
cov_recursive(
    X_t,
    Cov_t,
    Mean_t,
    Mean_t_prev,
    t.,
    eps = 0,
    Sd = 1,
    Ik = diag(length(X_t))
)
```

```r
mean_recursive(X_t, Mean_t_prev, t.)
```

Arguments

- `X_t` Last value of the sample
- `Cov_t` Covariance in t
- `Mean_t, Mean_t_prev` Vectors of averages in time t and t-1 respectively.
- `t.` Sample size up to t-1.
- `Sd, eps, Ik` See `kernel_adapt()`.

Details

The variance covariance algorithm was described in Haario, Saksman and Tamminen (2002).

References

Examples

```r
# Generating random data (only four points to see the difference)
set.seed(1231)
n <- 3
X <- matrix(rnorm(n*4), ncol = 4)
```
These two should be equal
mean_recursive(
 X_t = X[1,],
 Mean_t_prev = colMeans(X[-1,]),
 t. = n - 1
)

These two should be equal
cov_recursive(
 X_t = X[1,],
 Cov_t = cov(X[-1,]),
 Mean_t = colMeans(X),
 Mean_t_prev = colMeans(X[-1,]),
 t. = 1e3 - 1
)

Speed example ---
set.seed(13155511)
X <- matrix(rnorm(1e3*100), ncol = 100)

ans0 <- cov(X[-1,])
t0 <- system.time({
 ans1 <- cov(X)
})

t1 <- system.time(ans2 <- cov_recursive(
 X[1,], ans0,
 Mean_t = colMeans(X),
 Mean_t_prev = colMeans(X[-1,]),
 t. = 1e3 - 1
))

Comparing accuracy and speed
range(ans1 - ans2)
t0/t1

fmcncm

A friendly MCMC framework

Description

The fmcncm package provides a flexible framework for implementing MCMC models using a lightweight
in terms of dependencies. Among its main features, fmcncm allows:
Details

- Implementing arbitrary transition kernels.
- Incorporating convergence monitors for automatic stop.
- Out-of-the-box parallel computing implementation for running multiple chains simultaneously.

For more information see the packages vignettes:

vignette("workflow-with-fmcmc", "fmcmc")
vignette("user-defined-kernels", "fmcmc")

References

kernel_adapt Adaptive Metropolis (AM) Transition Kernel

Description

Implementation of Haario et al. (2001)’s Adaptive Metropolis.

Usage

```r
kernel_adapt(
  mu = 0,
  bw = 0L,
  lb = -.Machine$double.xmax,
  ub = .Machine$double.xmax,
  freq = 1L,
  warmup = 500L,
  Sigma = NULL,
  Sd = NULL,
  eps = 1e-04,
  fixed = FALSE,
  until = Inf
)
```

```r
kernel_am(
  mu = 0,
  bw = 0L,
  lb = -.Machine$double.xmax,
  ub = .Machine$double.xmax,
  freq = 1L,
  warmup = 500L,
```
kernel_adapt

Sigma = NULL,
Sd = NULL,
eps = 1e-04,
fixed = FALSE,
until = Inf
)

Arguments

mu
Either a numeric vector or a scalar. Proposal mean. If scalar, values are recycled
to match the number of parameters in the objective function.

bw
Integer scalar. The bandwidth, is the number of observations to include in the
computation of the variance-covariance matrix.

lb, ub
Either a numeric vector or a scalar. Lower and upper bounds for bounded ker-
nels. When of length 1, the values are recycled to match the number of parame-
ters in the objective function.

freq
Integer scalar. Frequency of updates. How often the variance-covariance matrix
is updated. The implementation is different from that described in the original
paper (see details).

warmup
Integer scalar. The number of iterations that the algorithm has to wait before
starting to do the updates.

Sigma
The variance-covariance matrix. By default this will be an identity matrix during
the warmup period.

Sd
Overall scale for the algorithm. By default, the variance-covariance is scaled to
$2.4^2/d$, with d the number of dimensions.

eps
Double scalar. Default size of the initial step (see details).

fixed
Logical scalar or vector of length k. Indicates which parameters will be treated
as fixed or not. Single values are recycled.

until
Integer scalar. Last step at which adaptation takes place (see details).

Details

While it has been shown that under regular conditions this transition kernel generates ergodic chains
even when the adaptation does not stop, some practitioners may want to stop adaptation at some
point.

kernel_adapt Implements the adaptive Metropolis (AM) algorithm of Haario et al. (2001). If
the value of bw is greater than zero, then the algorithm folds back AP, a previous version which is
known to have ergodicity problems.

The parameter eps has two functions. The first one is to set the initial scale for the multivariate
normal kernel, which is replaced after warmup steps with the actual variance-covariance computed
by the main algorithm. The second usage is in the equation that ensures that the variance-covariance
is greater than zero, this is, the ε parameter in the original paper.

The update of the covariance matrix is done using cov_recursive() function, which makes the
updates faster. The freq parameter, besides of indicating the frequency with which the updates
are done, it specifies what are the samples included in each update, in other words, like a thinning
kernel_mirror

parameter, only every freq samples will be used to compute the covariance matrix. Since this implementation uses the recursive formula for updating the covariance, there is no practical need to set freq != 1.

kernel_am is just an alias for kernel_adapt.

Value

An object of class `fmcmc_kernel`. `fmcmc_kernel` objects are intended to be used with the `MCMC()` function.

References

See Also

Other kernels: `kernel_mirror`, `kernel_new()`, `kernel_normal()`, `kernel_ram()`, `kernel_unif()`

Examples

```r
# Update every-step and wait 1,000 steps before starting to adapt
kern <- kernel_adapt(freq = 1, warmup = 1000)

# Two parameters model, the second parameter with a restricted range, i.e.
# a lower bound of 1
kern <- kernel_adapt(lb = c(-.Machine$double.xmax, 0))
```

kernel_mirror
Mirror Transition Kernels

Description

NMirror and UMirror transition kernels described in Thawornwattana et al. (2018).

Usage

```r
kernel_nmirror(
  mu = 0,
  scale = 1,
  warmup = 500L,
  nadapt = 4L,
  arate = 0.4,
  lb = -.Machine$double.xmax,
  ub = .Machine$double.xmax,
  fixed = FALSE,
  scheme = "joint"
)
```
kernel_umirror(
 mu = 0,
 scale = 1,
 warmup = 500L,
 nadapt = 4L,
 arate = 0.4,
 lb = -.Machine$double.xmax,
 ub = .Machine$double.xmax,
 fixed = FALSE,
 scheme = "joint"
)

Arguments

mu, scale Either a numeric vector or a scalar. Proposal mean and scale. If scalar, values are recycled to match the number of parameters in the objective function.

warmup Integer. Number of steps required before starting adapting the chains.

nadapt Integer. Number of times the scale is adjusted for adaptation during the warmup (burn-in) period.

arate Double. Target acceptance rate used as a reference during the adaptation process.

lb, ub Either a numeric vector or a scalar. Lower and upper bounds for bounded kernels. When of length 1, the values are recycled to match the number of parameters in the objective function.

fixed, scheme For multivariate functions, sets the update plan. See `plan_update_sequence()`.

Details

The `kernel_nmirror` and `kernel_umirror` functions implement simple symmetric transition kernels that pivot around an approximation of the asymptotic mean.

In the multidimensional case, this implementation just draws a vector of independent draws from the proposal kernel, instead of using, for example, a multivariate distribution of some kind. This will be implemented in the next update of the package.

During the warmup period (or burnin as described in the paper), the algorithm adapts both the scale and the reference mean of the proposal distribution. While the mean is adapted continuously, the scale is updated only a handful of times, in particular, `nadapt` times during the warmup time. The adaptation is done as proposed by Yang and Rodriguez (2013) in which the scale is adapted four times.

Value

An object of class `fmcmc_kernel`. `fmcmc_kernel` objects are intended to be used with the `MCMC()` function.
References

See Also

Other kernels: kernel_adapt(), kernel_new(), kernel_normal(), kernel_ram(), kernel_unif()

Examples

Normal mirror kernel with 5 adaptations and 1000 steps of warmup (burnin)
kern <- kernel_nmirror(nadapt = 5, warmup = 1000)

Same as before but using a uniform mirror and choosing a target acceptance rate of 24%
kern <- kernel_umirror(nadapt = 5, warmup = 1000, arate = .24)

Description

The function kernel_new is a helper function that allows creating fmcmc_kernel objects which are passed to the MCMC() function.

Usage

kernel_new(proposal, ..., logratio = NULL, kernel_env = new.env(hash = TRUE))

Arguments

proposal, logratio

Functions. Both receive a single argument, an environment. This functions are called later within MCMC (see details).

...

In the case of kernel_new, further arguments to be stored with the kernel.

kernel_env

Environment. This will be used as the main container of the kernel’s components. It is returned as an object of class c("environment","fmcmc_kernel").
Details

The objects fmcmc_kernels are environments that in general contain the following objects:

- **proposal**: The function used to propose changes in the chain based on the current state. The function must return a vector of length equal to the number of parameters in the model.

- **logratio**: This function is called after a new state has been proposed, and is used to compute the log of the Hastings ratio.

 In the case that the logratio function is not specified, then it is assumed that the transition kernel is symmetric, this is, log-ratio is then implemented as:

 \[
 \text{function(env) \{ env$f1 - env$f0 \}}
 \]

- **...**: Further objects that are used within those functions.

Both functions, proposal and logratio, receive a single argument, an environment, which is passed by the MCMC() function during each step using the function `environment()`.

The passed environment is actually the environment in which the MCMC function is running, in particular, this environment contains the following objects:

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Integer. The current iteration.</td>
</tr>
<tr>
<td>theta1</td>
<td>Numeric vector. The last proposed state.</td>
</tr>
<tr>
<td>theta0</td>
<td>Numeric vector. The current state</td>
</tr>
<tr>
<td>f</td>
<td>The log-unnormalized posterior function (a wrapper of fun passed to MCMC).</td>
</tr>
<tr>
<td>f1</td>
<td>The last value of (f(\theta_1))</td>
</tr>
<tr>
<td>f0</td>
<td>The last value of (f(\theta_0))</td>
</tr>
<tr>
<td>kernel</td>
<td>The actual fmcmc_kernel object.</td>
</tr>
<tr>
<td>ans</td>
<td>The matrix of samples defined up to (i - 1).</td>
</tr>
</tbody>
</table>

These are the core component of the MCMC function. The following block of code is how this is actually implemented in the package:

```r
for (i in 1L:nsteps) {
  # Step 1. Propose
  theta1[] <- kernel$proposal(environment())
  f1 <- f(theta1)

  # Checking f(theta1) (it must be a number, can be Inf)
  if (is.nan(f1) | is.na(f1) | is.null(f1))
    stop(
      "fun(par) is undefined (" , f1, ")",
      "Check either -fun- or the -lb- and -ub- parameters. ",
      call. = FALSE
    )

  # Step 2. Hastings ratio
  if (R[i] < kernel$logratio(environment())) {
    theta0 <- theta1
    f0 <- f1
  }
}
For an extensive example on how to create new kernel objects see the vignette vignette("user-defined-kernels","fmcmc").

Value

An environment of class fmcmc_kernel which contains the following:

- proposal A function that receives a single argument, an environment. This is the proposal function used within MCMC().
- logratio A function to compute log ratios of the current vs the proposed step of the chain. Also used within MCMC().
- ... Further arguments passed to kernel_new.

Behavior

In some cases, calls to the proposal() and logratio() functions in fmcmc_kernels can trigger changes or updates of variables stored within them. A concrete example is with adaptive kernels. Adaptive Metropolis and Robust Adaptive Metropolis implemented in the functions kernel_adapt() and kernel_ram() both update a covariance matrix used during the proposal stage, and furthermore, have a warmup stage that sets the point at which both will start adapting. Because of this, both kernels have internal counters of the absolute step count which allows them activating, scaling, etc. the proposals correctly.

1. When running multiple chains, MCMC will create independent copies of a baseline passed fmcmc_kernel object. These are managed together in a fmcmc_kernel_list object.
2. Even if the chains are run in parallel, if a predefined kernel object is passed it will be updated to reflect the last state of the kernels before the MCMC call returns.

References


See Also

Other kernels: kernel_adapt(), kernel_mirror, kernel_normal(), kernel_ram(), kernel_unif()

Examples

# Example creating a multivariate normal kernel using the mvtnorm R package
# for a bivariate normal distribution
library(mvtnorm)
# Define your Sigma
sigma <- matrix(c(1, .2, .2, 1), ncol = 2)

# How does it looks like?
sigma
# [,1] [,2]
# [1,] 1.0 0.2
# [2,] 0.2 1.0

# Create the kernel
kernel_mvn <- kernel_new(
  proposal = function(env) {
    env$theta0 + as.vector(mvtnorm::rmvnorm(1, mean = 0, sigma = sigma.))
  },
  sigma. = sigma
)

# As you can see, in the previous call we passed sigma as it will be used by
# the proposal function
# The logaratio function was not necesary to be passed since this kernel is
# symmetric.

---

**kernel_normal**

Gaussian Transition Kernel

### Description
Gaussian Transition Kernel

### Usage

```r
kernel_normal(mu = 0, scale = 1, fixed = FALSE, scheme = "joint")
```

```r
ekernel_normal_reflective(
 mu = 0,
 scale = 1,
 lb = -.Machine$double.xmax,
 ub = .Machine$double.xmax,
 fixed = FALSE,
 scheme = "joint"
)
```

### Arguments

- **mu, scale** Either a numeric vector or a scalar. Proposal mean and scale. If scalar, values are recycled to match the number of parameters in the objective function.
- **fixed, scheme** For multivariate functions, sets the update plan. See `plan_update_sequence()`.
kernel_ram

lb, ub

Either a numeric vector or a scalar. Lower and upper bounds for bounded kernels. When of length 1, the values are recycled to match the number of parameters in the objective function.

Details

The kernel_normal function provides the canonical normal kernel with symmetric transition probabilities.

The kernel_normal_reflective implements the normal kernel with reflective boundaries. Lower and upper bounds are treated using reflecting boundaries, this is, if the proposed $\theta'$ is greater than the $\text{ub}$, then $\theta' - \text{ub}$ is subtracted from $\text{ub}$. At the same time, if it is less than $\text{lb}$, then $\text{lb} - \theta'$ is added to $\text{lb}$ iterating until $\theta$ is within $[\text{lb}, \text{ub}]$.

In this case, the transition probability is symmetric (just like the normal kernel).

Value

An object of class fmcmc_kernel. fmcmc_kernel objects are intended to be used with the MCMC() function.

See Also

Other kernels: kernel_adapt(), kernel_mirror, kernel_new(), kernel_ram(), kernel_unif()

Examples

# Normal kernel with a small scale (sd) of 0.05
kern <- kernel_normal(scale = 0.05)

# Using boundaries for the second parameter of a two parameter chain
# to have values in [0, 100].
kern <- kernel_normal_reflective(
  ub = c(.Machine$double.xmax, 100),
  lb = c(-.Machine$double.xmax, 0)
)

kernel_ram

Robust Adaptive Metropolis (RAM) Transition Kernel

Description

Implementation of Vihola (2012)'s Robust Adaptive Metropolis.
Usage

```r
kernel_ram(
 mu = 0,
 eta = function(i, k) min(c(1, i^(-2/3) * k)),
 qfun = function(k) stats::rt(k, k),
 arate = 0.234,
 freq = 1L,
 warmup = 0L,
 Sigma = NULL,
 eps = 1e-04,
 lb = -.Machine$double.xmax,
 ub = .Machine$double.xmax,
 fixed = FALSE,
 until = Inf
)
```

Arguments

- **mu**: Either a numeric vector or a scalar. Proposal mean. If scalar, values are recycled to match the number of parameters in the objective function.
- **eta**: A function that receives the MCMC environment. This is to calculate the scaling factor for the adaptation.
- **qfun**: Function. As described in Vihola (2012)'s, the qfun function is a symmetric function used to generate random numbers.
- **arate**: Numeric scalar. Objective acceptance rate.
- **freq**: Integer scalar. Frequency of updates. How often the variance-covariance matrix is updated.
- **warmup**: Integer scalar. The number of iterations that the algorithm has to wait before starting to do the updates.
- **Sigma**: The variance-covariance matrix. By default this will be an identity matrix during the warmup period.
- **eps**: Double scalar. Default size of the initial step (see details).
- **lb, ub**: Either a numeric vector or a scalar. Lower and upper bounds for bounded kernels. When of length 1, the values are recycled to match the number of parameters in the objective function.
- **fixed**: Logical scalar or vector of length k. Indicates which parameters will be treated as fixed or not. Single values are recycled.
- **until**: Integer scalar. Last step at which adaptation takes place (see details).

Details

While it has been shown that under regular conditions this transition kernel generates ergodic chains even when the adaptation does not stop, some practitioners may want to stop adaptation at some point.
The idea is similar to that of the Adaptive Metropolis algorithm (AM implemented as `kernel_adapt()` here) with the difference that it takes into account a target acceptance rate.

The `eta` function regulates the rate of adaptation. The default implementation will decrease the rate of adaptation exponentially as a function of the iteration number.

**Value**

An object of class `fmcmc_kernel`.

**References**


**See Also**

Other kernels: `kernel_adapt()`, `kernel_mirror`, `kernel_new()`, `kernel_normal()`, `kernel_unif()`

**Examples**

```r
Setting the acceptance rate to 30 % and deferring the updates until
after 1000 steps
kern <- kernel_ram(arate = .3, warmup = 1000)
```

---

**kernel_unif**

*Uniform Transition Kernel*

**Description**

Uniform Transition Kernel

**Usage**

`kernel_unif(min. = -1, max. = 1, fixed = FALSE, scheme = "joint")`

`kernel_unif_reflective`

```r
min. = -1,
max. = 1,
lb = min.,
ub = max.,
fixed = FALSE,
scheme = "joint"
```

)
Arguments

- **min., max.** Passed to `stats::runif()`.
- **fixed, scheme** For multivariate functions, sets the update plan. See `plan_update_sequence()`.
- **lb, ub** Either a numeric vector or a scalar. Lower and upper bounds for bounded kernels. When of length 1, the values are recycled to match the number of parameters in the objective function.

Details

The `kernel_unif` function provides a uniform transition kernel. This (symmetric) kernel function by default adds the current status values between [-1,1].

The `kernel_unif_reflective` is similar to `kernel_unif` with the main difference that proposals are bounded to be within [lb, ub].

Value

An object of class `fmcmc_kernel`. `fmcmc_kernel` objects are intended to be used with the `MCMC()` function.

See Also

Other kernels: `kernel_adapt()`, `kernel_mirror`, `kernel_new()`, `kernel_normal()`, `kernel_ram()`

Examples

```r
Multivariate setting with 4 parameters in which we set the kernel to make
proposals one parameter at-a-time in a random ordering.
kern <- kernel_unif(scheme = "random")
```

Description

A flexible implementation of the Metropolis-Hastings MCMC algorithm.

Usage

```r
MCMC(
 initial, # initial
 fun, # function
 nsteps, # number of steps
 ..., # additional arguments
 nchains = 1L, # number of chains
 burnin = 0L, # burn-in
 thin = 1L, # thinning
 kernel = kernel_normal(),
)```
multicore = FALSE,
conv_checker = NULL,
c1 = NULL,
progress = interactive() && !multicore,
chain_id = 1L
)

S3 method for class 'mcmc'
MCMC(
 initial,
 fun,
 nsteps,
 ...,
 nchains = 1L,
 burnin = 0L,
 thin = 1L,
 kernel = kernel_normal(),
 multicore = FALSE,
 conv_checker = NULL,
 c1 = NULL,
 progress = interactive() && !multicore,
 chain_id = 1L
)

S3 method for class 'mcmc.list'
MCMC(
 initial,
 fun,
 nsteps,
 ...,
 nchains = 1L,
 burnin = 0L,
 thin = 1L,
 kernel = kernel_normal(),
 multicore = FALSE,
 conv_checker = NULL,
 c1 = NULL,
 progress = interactive() && !multicore,
 chain_id = 1L
)

Default S3 method:
MCMC(
 initial,
 fun,
 nsteps,
 ...,
 nchains = 1L,
burnin = 0L,
thin = 1L,
kern = kernel_normal(),
multicore = FALSE,
conv_checker = NULL,
cl = NULL,
progress = interactive() && !multicore,
chain_id = 1L
)

Arguments

initial Either a numeric matrix or vector, or an object of class coda::mcmc or coda::mcmc.list (see details). initial values of the parameters for each chain (See details).
fun A function. Returns the log-likelihood.
nsteps Integer scalar. Length of each chain.
... Further arguments passed to fun.
nchains Integer scalar. Number of chains to run (in parallel).
burnin Integer scalar. Length of burn-in. Passed to coda::mcmc as start.
thin Integer scalar. Passed to coda::mcmc.
kern An object of class fmcmc_kernel.
multicore Logical. If FALSE then chains will be executed in serial.
conv_checker A function that receives an object of class coda::mcmc.list, and returns a logical value with TRUE indicating convergence. See the "Automatic stop" section and the convergence-checker manual.
cl A cluster object passed to parallel::clusterApply.
progress Logical scalar. When set to TRUE shows a progress bar. A new bar will be show every time that the convergence checker is called.
chain_id Integer scalar (internal use only). This is an argument passed to the kernel function and it allows it identify in which of the chains the process is taking place. This could be relevant for some kernels (see kernel_new()).

Details

This function implements MCMC using the Metropolis-Hastings ratio with flexible transition kernels. Users can specify either one of the available transition kernels or define one of their own (see kernels). Furthermore, it allows easy parallel implementation running multiple chains in parallel. In addition, we incorporate a variety of convergence diagnostics, alternatively the user can specify their own (see convergence-checker).

We now give details of the various options included in the function.

Starting point

By default, if initial is of class mcmc, MCMC will take the last nchains points from the chain as starting point for the new sequence. If initial is of class mcmc.list, the number of chains in initial must match the nchains parameter.
If initial is a vector, then it must be of length equal to the number of parameters used in the model. When using multiple chains, if initial is not an object of class mcmc or mcmc.list, then it must be a numeric matrix with as many rows as chains, and as many columns as parameters in the model.

Multiple chains

When nchains > 1, the function will run multiple chains. Furthermore, if cl is not passed, MCMC will create a PSOCK cluster using parallel::makePSOCKcluster with parallel::detectCores clusters and attempt to execute using multiple cores. Internally, the function does the following:

```r
# Creating the cluster
cores <- parallel::detectCores()
cores <- ifelse(nchains < cores, nchains, cores)
cl <- parallel::makePSOCKcluster(ncores)

# Loading the package and setting the seed using clusterRNGStream
invisible(parallel::clusterEvalQ(cl, library(fmcmc)))
parallel::clusterSetRNGStream(cl, .Random.seed)
```

When running in parallel, objects that are used within fun must be passed through . . . , otherwise the cluster will return with an error.

The user controls the initial value of the parameters of the MCMC algorithm using the argument initial. When using multiple chains, i.e., nchains > 1, the user can specify multiple starting points, which is recommended. In such a case, each row of initial is use as a starting point for each of the chains. If initial is a vector and nchains > 1, the value is recycled, so all chains start from the same point (not recommended, the function throws a warning message).

Automatic stop

By default, no automatic stop is implemented. If one of the functions in convergence-checker is used, then the MCMC is done by bulks as specified by the convergence checker function, and thus the algorithm will stop if, the conv_checker returns TRUE. For more information see convergence-checker.

Value

An object of class coda::mcmc from the coda package. The mcmc object is a matrix with one column per parameter, and nsteps rows. If nchains > 1, then it returns a coda::mcmc.list.

References

Examples

```r
# Univariate distributed data with multiple parameters ------------------------
# Parameters
```r
set.seed(1231)
n <- 1e3
pars <- c(mean = 2.6, sd = 3)

Generating data and writing the log likelihood function
D <- rnorm(n, pars[1], pars[2])
fun <- function(x) {
 x <- log(dnorm(D, x[1], x[2]))
 sum(x)
}

Calling MCMC, but first, loading the coda R package for
diagnostics
library(coda)
ans <- MCMC(
 fun, initial = c(mu=1, sigma=1), nsteps = 2e3,
 kernel = kernel_normal_reflective(scale = .1, ub = 10, lb = 0)
)

Plotting the output
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(1,2))
boxplot(as.matrix(ans),
 main = expression("Posterior distribution of"~mu~"and"~sigma),
 names = expression(mu, sigma), horizontal = TRUE,
 col = blues9[c(4,9)],
 sub = bquote(mu == .(pars[1])~, and"~sigma == .(pars[2])
)
abline(v = pars, col = blues9[c(4,9)], lwd = 2, lty = 2)
plot(apply(as.matrix(ans), 1, fun), type = "l",
 main = expression(L("{"~mu,sigma~"}"~"|"~D)),
 ylab = expression(L("{"~mu,sigma~"}"~"|"~D))
)
par(oldpar)

In this example we estimate the parameter for a dataset with
With 5,000 draws from a MVN() with parameters M and S.

Loading the required packages
library(mvtnorm)
library(coda)

Parameters and data simulation
S <- cbind(c(.8, .2), c(.2, 1))
M <- c(0, 1)
set.seed(123)
D <- rmvnorm(5e3, mean = M, sigma = S)

Function to pass to MCMC
fun <- function(pars) {
```
# Putting the parameters in a sensible way
m <- pars[1:2]
s <- cbind( c(pars[3], pars[4]), c(pars[4], pars[5]) )

# Computing the unnormalized log likelihood
sum(log(dmvnorm(D, m, s)))

# Calling MCMC
ans <- MCMC(
  initial = c(mu0=5, mu1=5, s0=5, s01=0, s2=5),
  fun,
  kernel = kernel_normal_reflective(
    lb = c(-10, -10, .01, -5, .01),
    ub = 5,
    scale = 0.01
  ),
  nsteps = 1e4,
  thin = 20,
  burnin = 5e3
)

# Checking out the outcomes
plot(ans)
summary(ans)

# Multiple chains -----------------------------------------------------------
# As we want to run -fun- in multiple cores, we have to
# pass -D- explicitly (unless using Fork Clusters)
# just like specifying that we are calling a function from the
# -mvtnorm- package.

fun <- function(pars, D) {
  # Putting the parameters in a sensible way
  m <- pars[1:2]
  s <- cbind( c(pars[3], pars[4]), c(pars[4], pars[5]) )

  # Computing the unnormalized log likelihood
  sum(log(dmvnorm(D, m, s)))
}

# Two chains
ans <- MCMC(
  initial = c(mu0=5, mu1=5, s0=5, s01=0, s2=5),
  fun,
  nchains = 2,
  kernel = kernel_normal_reflective(
    lb = c(-10, -10, .01, -5, .01),
    ub = 5,
    scale = 0.01
  ),
  nsteps = 1e4,
new_progress_bar

thin = 20,
burnin = 5e3,
D = D
)

summary(ans)

new_progress_bar  Progress bar

Description

A simple progress bar. This function is used in MCMC when the function has been called with a single processor.

Usage

new_progress_bar(
n, 
probs = c(0, 0.25, 0.5, 0.75, 1), 
width = getOption("width", 80), 
symbol = "/", 
... 
)

Arguments

n          Integer. Number of steps.
probs      Double vector. Quantiles where to put marks
width      Integer. Width of the bar in characters.
symbol    Character. Single character symbol to print each bar.
...        Further arguments passed to cat() such as file and append.

Value

A function that can be included at the interior of a loop to mark the progress of the loop. It receives a single argument, i, which is the number of the current step.

Examples

x <- new_progress_bar(20)
for (i in 1:20) {
  Sys.sleep(2/20)
  x(i)
}
**plan_update_sequence**  

**Parameters’ update sequence**

**Description**

Parameters’ update sequence

**Usage**

plan_update_sequence(k, nsteps, fixed, scheme)

**Arguments**

- **k**: Integer. Number of parameters
- **nsteps**: Integer. Number of steps.
- **fixed**: Logical scalar or vector of length k. Indicates which parameters will be treated as fixed or not. Single values are recycled.
- **scheme**: Scheme in which the proposals are made (see details).

**Details**

The parameter scheme present on the currently available kernels sets the way in which proposals are made. By default, scheme = "joint", proposals are done jointly, this is, at each step of the chain we are proposing new states for each parameter of the model. When scheme = "ordered", a sequential update schema is followed, in which, at each step of the chain, proposals are made one variable at a time. If scheme = "random", proposals are also made one variable at a time but in a random scheme.

Finally, users can specify their own sequence of proposals for the variables by passing a numeric vector to scheme, for example, if the user wants to make sequential proposals following the scheme 2, 1, 3, then scheme must be set to be scheme = c(2,1,3).

**Value**

A logical vector of size nsteps x k.

---

**reflect_on_boundaries**  

**Reflective Boundaries**

**Description**

Adjust a proposal according to its support by reflecting it. This is the workhorse of kernel_normal_reflective and kernel_unif_reflective. It is intended for internal use only.
Usage

reflect_on_boundaries(x, lb, ub, which)

Arguments

  x            A numeric vector. The proposal
  lb, ub       Numeric vectors of length length(x). Lower and upper bounds.
  which        Integer vector. Index of variables to be updated.

Value

  An adjusted proposal vector.
Index

append_chains, 2
automatic-stop (convergence-checker), 3

cat(), 24
check_initial, 3
coda::geweke.diag, 4
coda::heidel.diag, 4
coda::mcmc, 2, 20, 21
coda::mcmc.list, 20, 21
convergence-checker, 3, 20, 21
convergence_auto (convergence-checker), 3
convergence_gelman (convergence-checker), 3
convergence_geweke (convergence-checker), 3
convergence_heidel (convergence-checker), 3
cov_recursive, 5
cov_recursive(), 8
environment(), 12

fmcmc, 6
fmcmc_kernel, 9, 10, 15, 17, 18, 20
fmcmc_kernel (kernel_new), 11

kernel_adapt, 7, 11, 13, 15, 17, 18
kernel_adapt(), 5, 13, 17
kernel_am (kernel_adapt), 7
kernel_mirror, 9, 9, 13, 15, 17, 18
kernel_new, 9, 11, 11, 15, 17, 18
kernel_new(), 20
kernel_nmirror (kernel_mirror), 9
kernel_normal, 9, 11, 13, 14, 17, 18
kernel_normal_reflective, 25
kernel_normal_reflective (kernel_normal), 14
kernel_ram, 9, 11, 13, 15, 15, 18
kernel_ram(), 13

kernel_unif (kernel_mirror), 9
kernel_unif, 9, 11, 13, 15, 17, 17
kernel_unif_reflective, 25
kernel_unif_reflective (kernel_unif), 17
kernels, 20
kernels (kernel_new), 11

MCMC, 3, 4, 11, 12, 18, 24
MCMC(), 9–13, 15, 18
mean_recursive (cov_recursive), 5
Metropolis-Hastings (MCMC), 18

new_progress_bar, 24
parallel::clusterApply, 20
parallel::detectCores, 21
parallel::makePSOCKcluster, 21
plan_update_sequence, 25
plan_update_sequence(), 10, 14, 18

rbind, 2
reflect_on_boundaries, 25
stats::runif(), 18

27