Package ‘fmri’

November 15, 2019

Version 1.9.2.1
Date 2019-11-14
Title Analysis of fMRI Experiments
Depends R (>= 3.2.0), awsMethods (>= 1.1-1), nlmex
Imports parallel, metafor, methods, aws
Suggests tcltk, tkrplot, fastICA, adimpro (>= 0.9), oro.nifti
LazyData true
Description Contains R-functions to perform an fMRI analysis as described in
Tabelow et al. (2006) <DOI:10.1016/j.neuroimage.2006.06.029>,
Polzehl et al. (2010) <DOI:10.1016/j.neuroimage.2010.04.241>,
Tabelow and Polzehl (2011) <DOI:10.18637/jss.v044.i11>.
License GPL (>= 2)
Copyright This package is Copyright (C) 2006-2019 Weierstrass
Institute for Applied Analysis and Stochastics.
URL http://www.wias-berlin.de/software/imaging/
Note This software comes with NO warranty! It is NOT intended to be
used in clinical applications! For evaluation only!
RoxygenNote 6.1.0
NeedsCompilation yes
Author Karsten Tabelow [aut, cre],
Joerg Polzehl [aut],
Brandon Whitcher [ctb],
Dames Sibyllle [ctb]
Maintainer Karsten Tabelow <tabelow@wias-berlin.de>
Repository CRAN
Date/Publication 2019-11-15 16:00:03 UTC
R topics documented:

- Convert Between fmridata and oro.nifti .. 3
- cutroi .. 4
- extractData ... 5
- fmri.cluster .. 5
- fmri.design ... 7
- fmri.designG .. 8
- fmri.detrend .. 10
- fmri.lm .. 11
- fmri.lmePar .. 13
- fmri.metaPar .. 18
- fmri.pvalue ... 22
- fmri.searchlight .. 24
- fmri.sgroupICA ... 25
- fmri.sICA .. 27
- fmri.smooth ... 28
- fmri.stimulus .. 30
- gen_fmridata .. 32
- getSearchlightPattern .. 33
- hvred .. 33
- ICAfingerprint ... 34
- niftiImage2fmri ... 35
- plot.fmridata ... 36
- plot.fmriICA ... 38
- plot.fmripvalue ... 39
- print.fmridata .. 40
- read.AFNI ... 41
- read.ANALYZE ... 42
- read.DICOM ... 44
- read.NIFTI ... 45
- setmask .. 46
- sincfilter ... 47
- slicetiming ... 48
- summary.fmridata ... 49
- write.AFNI ... 50
- write.ANALYZE .. 51
- write.NIFTI .. 52

Index 54
Convert Between fmridata and oro.nifti

Convert Between fmridata and oro.nifti Objects

Description

NIfTI data can be converted between fmridata S3 objects (from the fmri package) and nifti S4 objects.

Usage

oro2fmri(from, value = NULL, level = 0.75, mask=NULL, setmask = TRUE)
fmri2oro(from, value = NULL, verbose = FALSE, reorient = FALSE, call = NULL)

Arguments

from is the object to be converted.
value NULL
level is the quantile level defining the mask.
mask array or nifti-object containing the mask. If set this replaces the mask defined by argument level.
setmask is a logical variable (default = TRUE), whether to define a suitable mask based on level.
verbose is a logical variable (default = FALSE) that allows text-based feedback during execution of the function.
reorient is a logical variable (default = TRUE) that enforces Qform/Sform transformations.
call keeps track of the current function call for use in the NIfTI extension.

Details

These functions enhance the capabilities of fmri by allowing the exchange of data objects between nifti and fmridata classes.

Value

The function oro2fmri produces an S3 object of class fmridata. The function fmri2oro produces an S4 object of class nifti.

Author(s)

Brandon Whitcher <bwhitcher@gmail.com>

See Also

read.NIFTI
Description

This function cuts a region-of-interest (ROI) from input data.

Usage

cutroi(data, xind = 1:dim[,1], yind = 1:dim[,2],
 zind = 1:dim[,3], tind = 1:dim[,4])

Arguments

data Object of class fmridata.
xind vector of roi-indices for first data index
yind vector of roi-indices for second data index
zind vector of roi-indices for third data index
tind vector of roi-indices for 4th data index

Details

Cut a region of interest from fmridata.

Value

Corresponding cutted fmridata object.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

See Also

read.AFNI, read.ANALYZE, read.NIFTI

Examples

Should be DIRECTLY executable !! ---
#-- Define data, use random,
#-- or do help(data=index) for the standard data sets.
extractData

Extract data or residuals from a fmridata object

Description

The function extracts data stored as raw within an object of class 'fmridata'.

Usage

extractData(z, what = "data")

Arguments

z

an object of class 'fmridata'

what

either "data" or "residuals".

Details

The function extracts data stored as raw within an object of class 'fmridata'.

Value

an array of dimension data$dim containing either the fmri-data or residuals.

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

See Also

fmri.lm

fmri.cluster

Cluster thresholding.

Description

Detection of activated regions using cluster thresholding.

Usage

fmri.cluster(spm, alpha = 0.05, ncmi = 2, minimum.signal = 0)
Arguments

- **spm**: fmrispm object
- **alpha**: multiple test (over volume and cluster sizes) adjusted significance level used for thresholds.
- **ncmin**: minimal cluster size used. An activation is detected if for any clustersize in \(\text{nvmin} \geq 20 \) the size specific threshold is exceeded.
- **minimum.signal**: allows to specify a (positive) minimum value for detected signals. If \(\text{minimum.signal} > 0 \) the thresholds are to conservative, this case needs further improvements.

Details

Approximate thresholds for the existence of a cluster with mean t-statistics exceeding a 1-beta threshold \(k_{nc} \) for cluster size \(nc \) are based on a simulation study under the hypothesis and adjusted for both degrees of freedom, number of voxel in mask and spatial correlation. \(\beta \) is chosen such that under the hypothesis the combined (over cluster sizes \(\text{ncmin} \geq 20 \)) test has approximate significance level \(\alpha \).

Value

Object with class attributes "fmripvalue" and "fmridata"

- **pvalue**: p-values of voxelwise t-statistics for voxel that were detected for any cluster size, a value of 1 otherwise.
- **weights**: voxelsize ratio
- **dim**: data dimension
- **hrf**: expected BOLD response for contrast (single stimulus only)

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

See Also

- fmri.lm, fmri.pvalue, fmri.searchlight

Examples

```r
## Not run: fmri.cluster(fmrispmobj)
```
Description

Return a design matrix for a linear model with given stimuli and possible polynomial drift terms.

Usage

```r
fmri.design(stimulus, order = 2, cef = NULL, verbose = FALSE)
```

Arguments

- `stimulus`: matrix containing expected BOLD response(s) for the linear model as columns or list of expected BOLD responses containing matrices of dimension scans, number of slices as returned by function `fmri.stimulus`.
- `order`: order of the polynomial drift terms
- `cef`: confounding effects
- `verbose`: Report more if TRUE

Details

The stimuli given in `stimulus` are used as first columns in the design matrix.
The order of the polynomial drift terms is given by `order`, which defaults to 2.
Confounding effects can be included in a matrix `cef`.
The polynomials are defined orthogonal to the stimuli given in `stimulus`.

Value

design matrix of the linear model

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>, Joerg Polzehl <polzehl@wias-berlin.de>

References

See Also

`fmri.stimulus`, `fmri.lm`
Examples

```r
# Example 1
hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)
z <- fmri.design(hrf, 2)
par(mfrow=c(2, 2))
for (i in 1:4) plot(z[, i], type="l")
```

Description

This function returns a design matrix for multi-subject fMRI data to fit a Linear Mixed-effects Model (one-stage procedure) with given stimuli, polynomial drift terms and a set of known population parameters.

Usage

```r
fmri.designG(hrf, subj = 1, runs = 1, group = NULL, XG = NULL)
```

Arguments

- `hrf`: vector or matrix containing expected BOLD response(s) for one session, typically a `fmri.stimulus` object.
- `subj`: number of subjects in the study.
- `runs`: number of repeated measures within subjects.
- `group`: optional vector to define groups. It is expected one value per subject. A grouping factor can also be part of `XG`.
- `XG`: optionally, a group-level design matrix of class "data.frame", which contains population parameters such as ages or gender corresponding to the subjects. It is expected one value per subject.

Details

Based on the dimensionality of the `hrf` object, which provides the total number of scans (time-points) within each session, the entered number of subjects and repeated measures the auxiliary variables: "subj", "run", "scan" and "session" are generated as first part of the returned design matrix.

If no group argument is specified, only one population will be assumed; otherwise group labels are replicated within sessions of the same subject.

First a design matrix for a single run is created by calling: `x <- fmri.design(hrf, order = 2)`.
Hence the polynomial drift terms are defined orthogonal to the stimuli (see `fmri.design`). This matrix is replicated blockwise to all sessions assuming the same experimental design for all runs. The first drift term, a column of ones, is called "drift0" and models an intercept.

If given, further subject characteristics are filled in the design matrix.
Value

A design matrix as a data frame, which contains the following variables:

- `subj`: consecutive subject number: 1 to `subj` specified as factor
- `run`: consecutive run number within the subjects: 1 to `runs` specified as factor
- `scan`: consecutive scan number: 1 to `T` within each session
- `session`: consecutive experiment number: 1 to `(subj*runs)` specified as factor
- `group`: grouping variable specified as factor, one group by default
- `hrf`, `hrf2`, ...: replicated expected BOLD-response(s)
- `drift0`, `drift1`, `drift2`: replicated polynomial drift terms created with `fmri.design(hrf, order = 2)` orthogonal to the stimuli given in `hrf`
- ...: further expanded between-subject factors and covariates

Author(s)

Sibylle Dames

References

See Also

`fmri.stimulus`, `fmri.design`, `fmri.lmePar`

Examples

```r
subj <- 6
runs <- 1
scans <- 121
times <- c(12, 48, 84, 120, 156, 192, 228, 264)
duration <- 24
tr <- 2.5

hrf <- fmri.stimulus(scans, times, duration, tr, times = TRUE)
x.group <- fmri.designG(hrf, subj = subj, runs = runs)
# View(x.group)
```
fmri.detrend
Detrend fMRI time series

Description
Detrend fMRI dataset with a polynomial of given degree

Usage
```r
fmri.detrend(data, degree = 1, nuisance=NULL, accoef = 0)
```

Arguments
- `data`: fMRI dataset of class "fmridata"
- `degree`: Degree of the polynomial used to detrend the data. defaults to 1 (linear trends).
- `nuisance`: Matrix of additional nuisance parameters to regree against.
- `accoef`: Coefficient of AR(1) model used for prewhitening. default 0.

Details
The function can be used to detrend the time series of an fMRI dataset `data` (of class "fmridata") using polynomials. If the argument `degree` is larger than 0 (default: 1) the polynomial trends up to the given degree are removed from the data. If the argument `accoef` is larger than 0 (default: 0) prewhitening using an AR(1) model is performed.

Value
Detrended data object of class "fmridata".

Author(s)
Joerg Polzehl <polzehl@wias-berlin.de>

References

See Also
- `fmri.lm`

Examples
```r
# Example 1
data <- list(ttt=writeBin(rnorm(32*32*32*107),raw(),4),
             mask=array(1,c(32,32,32)),dim=c(32,32,32,107))
class(data) <- "fmridata"
data <- fmri.detrend(data,2)
```
Description

Estimate the parameters and variances in a linear model.

Usage

```r
fmri.lm(ds, z, mask = NULL,
    actype = c("smooth", "noac", "ac", "accalc"),
    contrast = c(1), verbose = FALSE)
```

Arguments

- **ds**: Data object of class "fmridata"
- **z**: Designmatrix specifying the expected BOLD response(s) and additional components for trend and other effects. This can either be a matrix (in case that no slice timing is required at this stage) or an 3D - array with 3rd dimension corresponding to the slice number. It can be interpreted as stacked array of of design matrices for the individual slices.
- **mask**: Array of dimensionality of the data describing a (brain) mask the computation should be restricted to. The default is the mask given with the data.
- **actype**: String describing the type of handling autocorrelation of time series. One of "smooth", "noac", "ac", "accalc".
- **contrast**: Contrast vector for the covariates.
- **verbose**: Verbose mode, default is FALSE.

Details

This function performs parameter estimation in the linear model. It implements a two step procedure. After primary estimation of the parameters in the first step residuals are obtained. If actype %in% c("ac", "accalc", "smooth") an AR(1) model is fitted, in each voxel, to the time series of residuals. The estimated AR-coefficients are corrected for bias. If actype=="smooth" the estimated AR-coefficients are spatially smoothed. If actype %in% c("ac", "smooth") the linear model is pre-whitened using the estimated (and possibly smoothed) AR-coefficients. Parameter and variance estimates are then obtained from the pre-whitened data. The argument keep describes the amount of data which is returned. The estimated effects

\[\hat{\gamma}_i = C^T \tilde{\beta}_i \]

and their estimated variances are returned as well as the residuals and temporal autocorrelation. cbeta then contains the corresponding parameter estimates and thus is a vector of corresponding length in each voxel.

If z is an 3-dimensional array the third component is assumed to code the design matrix information for the corresponding slice, i.e. design matrices to differ with respect to slice timing effects.
that if motion correction needs to be performed in preprocessing slice time correction may be better carried out on the data before image registration using, e.g., function `slicetiming`.

If warning "Local smoothness characterized by large bandwidth" occurs, check `scorr` elements. If correlation drops with lag towards zero, data has been pre-smoothed. Adaptive smoothing the SPM can then only be of limited use. If correlation does not go to zero, check the residuals of the linear model for unexplained structure (spin saturation in first scans? discard them!).

Value

object with class attributes "fmrism" and "fmridata"

- `beta`: estimated parameters
- `cbeta`: estimated contrast of parameters
- `var`: estimated variance of the contrast of parameters.
- `varm`: covariance matrix of the parameters given by `vvector`
- `res`: raw (integer size 2) vector containing residuals of the estimated linear model up to scale factor `resscale`
- `resscale`: `resscale*extractData(object,"residuals")` are the residuals.
- `dim`: dimension of the data cube and residuals
- `arfactor`: estimated autocorrelation parameter
- `rxyz`: array of smoothness from estimated correlation for each voxel in resel space (for analysis without smoothing)
- `scorr`: array of spatial correlations with maximal lags 5, 5, 3 in x,y and z-direction.
- `bw`: vector of bandwidths (in FWHM) corresponding to the spatial correlation within the data.
- `weights`: ratio of voxel dimensions
- `vwghts`: ratio of estimated variances for the stimuli given by `vvector`
- `mask`: head mask.
- `df`: Degrees of freedom for t-statistics.
- `hrf`: expected BOLD response for contrast

Author(s)*

Karsten Tabelow `<tabelow@wias-berlin.de>`, Joerg Polzehl `<polzehl@wias-berlin.de>`

References

fmri.lmePar

Description

Group maps are directly estimated from the BOLD time series data of all subjects using `lme` from R package `nlme` to fit a Linear Mixed-effects Model with temporally correlated and heteroscedastic within-subject errors. Voxel-wise regression analysis is accelerated by optional parallel processing using R package `parallel`.

Usage

```r
fmri.lmePar(bold, z, fixed = NULL, random = NULL, mask = NULL, 
ac = 0.3, vtype = "individual", cluster = 2, 
wghts = c(1, 1, 1))
```

Arguments

- **bold**: a large 4D-Array with the aggregated fMRI data of all subjects that were previously registered to a common brain atlas. Be careful with the assembly of this array, the order of the data sets has to be compatible with the design matrix: "z". If not the whole brain but a region is analyzed, vectors with region-indices can be preserved by adding as attributes (e.g. `attr(bold,"xind") <-xind`).

- **z**: a design matrix for a multi-subject and/or multi-session fMRI-study of class "data.frame" specifying the expected BOLD response(s) and additional components for trend and other effects. Typically a `fmri.designG` object. This data frame contains all variables named in the model. There are some indispensable variables: "group", "subj", "session" and "run", which define the different strata. That information will be used for setting up the residual variance structure.

Examples

```r
## Not run:
# Example 1
data <- list(ttt=writeBin(rnorm(32*32*32*107), raw(), 4),
            mask=array(TRUE, c(32, 32, 32)), dim=c(32, 32, 32, 107))
class(data) <- "fmridata"
hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)
z <- fmri.design(hrf,2)
model <- fmri.lm(data, z, verbose=TRUE)
plot(extractData(data)[16, 16, 16, ])
lines(extractData(data)[16, 16, 16, ] - extractData(model, "residuals")[16, 16, 16, ], col=2)
## End(Not run)
```
fixed optionally, a one-sided linear formula describing the fixed-effects part of the model. Default settings are: fixed <-~ 0 + hrf + session + drift1:session + drift2:session in case of one detected group, and the same but "hrf" replaced with "hrf:group" if two group levels in z are found. Since an intercept would be a linear combination of the session factor-variable modeling session-specific intercepts, it is excluded.

random optionally, a one-sided formula of the form ~ x1 + ... + xn | g1/.../gm, with ~ x1 + ... + xn specifying the model for the random effects and g1/.../gm the grouping structure.

Default is always the basic model without covariates, i.e.
random <-~ 0 + hrf|subj if no repeated measures in z are found (nlevels(z$run)==1),
random <-~ 0 + hrf|subj/session if repeated measures and
random <-~ 0 + hrf|session if repeated measures but one subject only.
In case of two independent groups:
random <-list(subj = pdDiag(~ 0 + hrf:group)) is used.

mask if available, a logical 3D-Array of dimensionality of the data (without time component) describing a brain mask. The computation is restricted to the selected voxels.

ac if available, a numeric 3D-Array of dimensionality of the data (without time component) with spatially smoothed autocorrelation parameters should be used in the AR(1) models fitted in each voxel, e.g. locally estimated and smoothed AR(1)-coefficients from \texttt{fmri.lm} applied to the first subject. Alternatively, a global approach with uniform value can be used. In this case enter a number between 0 and 1. Default is 0.3 applied to all voxels.

vtype a character string choosing the residual variance model. If "equal", homoscedastic variance across subjects is assumed setting weights argument in function \texttt{lme()} to zero, whereas "individual" allows different within-subject variances. Default method is "individual" that means subject-specific error variances using formula: weights <-varIdent(form =~ 1|subj).

cluster number of threads for parallel processing, which is limited to available multicore CPUs. If you do not know your CPUs, try: detectCores() from parallel package. Presets are 2 threads. cluster = 1 does not use parallel package.

wghts a vector of length 3 specifying ratio of voxel dimensions. Isotropic voxels (e.g. MNI-space) are set as default.

Details

\texttt{fmri.lmePar()} fits the configured Linear Mixed-effects Model separately at each voxel and extracts estimated BOLD contrasts, corresponding squared standard errors and degrees of freedom as well as the residuals from resulting \texttt{lme()} objects to produce a statistical parametric map (SPM) for the group(s). Voxel-by-voxel analysis is performed by either the function \texttt{apply} or \texttt{parApply} from parallel package, which walks through the \texttt{bold} array.

If one group is analyzed, from each fitted model the first fixed-effects coefficient and corresponding parameters are stored in results object. This should be the first specified predictor in the fixed-effects part of the model (verify the attribute of "df" in returned object). However, in two-sample case this
principle does not work. The order changes, estimated session-specific intercepts now comes first and the number of these coefficients is not fixed. Therefore in current version it has explicitly been looked for the coefficient names: "hrf:group1" and "hrf:group2". Available functions within the \texttt{nlme} package to extract estimated values from \texttt{lme()} objects do not operate at contrast matrices. Spatial correlation among voxels, e.g. through the activation of nearby voxels, is ignored at this stage, but corrects for it, when random field theory define a threshold for significant activation at inference stage.

It is recommended to check your model syntax and residuals choosing some distinct voxels before running the model in loop (see Example, step 1); especially for more advanced designs! Error handling default is to stop if one of the threads produces an error. When this occurs, the output will be lost from any voxel, where the model has fitted successfully.

\textbf{Value}

An object of class "\texttt{fmrispm}" and "\texttt{fmridata}", basically a list with components:

- \texttt{cbeta, cbeta2} estimated BOLD contrast parameters separated for the groups 1 and 2
- \texttt{var, var2} estimated variance of the contrast parameters separated for the groups 1 and 2
- \texttt{mask} brain mask
- \texttt{res, res2} raw (integer size 2) vector containing residuals of the estimated Linear Mixed-effects Model up to scale factor \texttt{resscale} separated for the groups 1 and 2
- \texttt{resscale, resscale2} \texttt{resscale+extractData(object,"residuals")} are the residuals of group 1 and group 2 respectively.
- \texttt{arfactor} autocorrelation parameters used in AR(1)-model
- \texttt{rxyz, rxyz2} array of smoothness from estimated correlation for each voxel in resel space separated for the groups 1 and 2 (for analysis without smoothing)
- \texttt{scorr, scorr2} array of spatial correlations with maximal lags 5, 5, 3 in x, y and z-direction separated for the groups 1 and 2
- \texttt{bw, bw2} vector of bandwidths (in FWHM) corresponding to the spatial correlation within the data separated for the groups 1 and 2
- \texttt{weights} ratio of voxel dimensions
- \texttt{dim, dim2} dimension of the data cube and residuals separated for the groups 1 and 2
- \texttt{df, df2} degrees of freedom for t-statistics reported in \texttt{lme()} objects for the extracted regression coefficients separated for the groups 1 and 2. The name of the coefficient belonging to this df-value appears as attribute.
- \texttt{subjects} number of subjects in the study
- \texttt{subj.runs} number of repeated measures within subjects
- \texttt{sessions} number of total sessions that were analyzed
- \texttt{groups} number of groups in the study
- \texttt{fixedModel} fixed-effects model
- \texttt{randomModel} random-effects model
- \texttt{VarModel} assumption about the subject error variances
cluster number of threads run in parallel
attr(*,"design")
 design matrix for the multi-subject fMRI-study
attr(*,"approach")
 one-stage estimation method

Note
Maybe the computing power is insufficient to carry out a whole brain analysis. You have two opportunities: either select and analyze a certain brain area or switch to a two-stage model.

Current Limitations
The function cannot handle experimental designs with:
- more than two independent groups
- more than one stimulus (task)
- paired samples with varying tasks
- user defined contrasts

Author(s)
Sibylle Dames

References

See Also
lme, fmri.designG, fmri.design, fmri.stimulus, fmri.metaPar

Examples
```r
# Not run: # Generate some fMRI data sets: noise + stimulus
dx <- dy <- dz <- 32
dt <- 107
hrf <- fmri.stimulus(dt, c(18, 48, 78), 15, 2)
stim <- matrix(hrf, nrow= dx*dy*dz, ncol=dt, byrow=TRUE)
mask <- array(FALSE, c(dx, dy, dz))

ds1 <- list(ttt=writeBin(1.0*rnorm(dx*dy*dz*dt) + as.vector(5*stim),
             raw(), 4), mask=mask, dim=c(dx, dy, dz, dt))
ds2 <- list(ttt=writeBin(1.7*rnorm(dx*dy*dz*dt) + as.vector(3*stim),
             raw(), 4), mask=mask, dim=c(dx, dy, dz, dt))
ds3 <- list(ttt=writeBin(0.8*rnorm(dx*dy*dz*dt) + as.vector(1*stim),
             raw(), 4), mask=mask, dim=c(dx, dy, dz, dt))
ds4 <- list(ttt=writeBin(1.2*rnorm(dx*dy*dz*dt) + as.vector(2*stim),
             raw(), 4), mask=mask, dim=c(dx, dy, dz, dt))
```
class(ds1) <- class(ds2) <- class(ds3) <- class(ds4) <- "fmridata"

Construct a design matrix for a multi-subject study
subj <- 4
runs <- 1
z <- fmri.designG(hrf, subj = subj, runs = runs)

Assembly of the aggregated BOLD-Array
Bold <- array(0, dim = c(dx,dy,dz,subj*runs*dt))
Bold[1:dx,1:dy,1:dz,1:(dt*1)] <- extractData(ds1)
Bold[1:dx,1:dy,1:dz,(dt*1+1):(dt*2)] <- extractData(ds2)
Bold[1:dx,1:dy,1:dz,(dt*2+1):(dt*3)] <- extractData(ds3)
Bold[1:dx,1:dy,1:dz,(dt*3+1):(dt*4)] <- extractData(ds4)

Step 1: Check the model
y <- Bold[16, 16, 16,] # choose one voxel
M1.1 <- lme(fixed = y ~ 0 + hrf + session + drift1:session + drift2:session,
 random = ~ 0 + hrf|subj,
 correlation = corAR1(value = 0.3, form = ~ 1|subj/session, fixed=TRUE),
 weights = varIdent(form =~ 1|subj),
 method = "REML",
 control = lmeControl(rel.tol=1e-6, returnObject = TRUE),
 data = z)
summary(M1.1)

Residual plots
plot(M1.1, resid(.[,type = "response"] ~ scan|subj)
qqnorm(M1.1, ~resid(.[,type = "normalized"]|subj, abline = c(0,1))

Testing the assumption of homoscedasticity
M1.2 <- update(M1.1, weights = NULL, data = z)
anova(M1.2, M1.1)

Model fit: observed and fitted values
fitted.values <- fitted(M1.1)
plot(y[1:dt], type="l", main = "Subject 1", xlab = "scan",
 ylab = "BOLD-signal", ylim = c(-5,5))
lines(fitted.values[1], lty=1, lwd=2)

plot(y[(dt+1):(2*dt)], type="l", main = "Subject 2", xlab = "scan",
 ylab = "BOLD-signal", ylim = c(-5,5))
lines(fitted.values[2], lty=1, lwd=2)

plot(y[(2*dt+1):(3*dt)], type="l", main = "Subject 3", xlab = "scan",
 ylab = "BOLD-signal", ylim = c(-5,5))
lines(fitted.values[3], lty=1, lwd=2)

plot(y[(3*dt+1):(4*dt)], type="l", main = "Subject 4", xlab = "scan",
 ylab = "BOLD-signal", ylim = c(-5,5))
lines(fitted.values[4], lty=1, lwd=2)

Step 2: Estimate a group map
without parallelizing
```
spm.group1a <- fmri.lmePar(Bold, z, mask = mask, cluster = 1)
# same with 4 parallel threads
spm.group1b <- fmri.lmePar(Bold, z, mask = mask, cluster = 4)
# Example for two independent groups
group <- c(1, 1, 4, 4)
z2 <- fmri.designG(hrf, subj = subj, runs = runs, group = group)
spm.group2 <- fmri.lmePar(Bold, z2, mask = mask, cluster = 4)
## End(Not run)
```

fmri.metaPar

Linear Mixed-effects Meta-Analysis model for fMRI data

Description

Group maps are estimated from BOLD effect estimates and their variances previously determined for each subject. The function `rma.uni` from R package `metafor` is used to fit mixed-effects meta-analytic models at group level. Voxel-wise regression analysis is accelerated by optional parallel processing using R package `parallel`.

Usage

```
fMRI.metaPar(Cbold, Vbold, XG = NULL, model = NULL, method = "REML",
             weighted = TRUE, knha = FALSE, mask = NULL, cluster = 2,
             wghts = c(1, 1, 1))
```

Arguments

- **Cbold**: a 4D-Array with the aggregated individual BOLD contrast estimates in standard space, e.g. all cbeta maps obtained from single-session analysis with `fmri.lm` may put together. Dimensions 1 to 3 define the voxel space, dimension 4 indicates a subject. If not the whole brain but a region is analyzed, vectors with region-indices can be preserved by adding as attributes (e.g. `attr(Cbold,"xind") <- xind`).

- **Vbold**: a 4D-Array with the aggregated variance estimates for the contrast parameters in Cbold, e.g. all var maps obtained from single-session analysis with `fmri.lm` may put together. Dimensions 1 to 3 define the voxel space, dimension 4 indicates a subject.

- **XG**: optionally, a group-level design matrix of class “data.frame” to include one or more moderators in the model. By default, an intercept is added to the model.

- **model**: optionally, a one-sided formula of the form: `model <- ~ mod1 + mod2 + mod3` describing a model with moderator variables. Adding “-1” removes the intercept term.

- **method**: a character string specifying whether a fixed- (method = "FE") or a random/mixed-effects model (method = "REML", default) should be fitted. Further estimators for random/mixed-effects models are available, see documentation of `rma.uni` function for more details.
weighted

logical indicating whether weighted (weighted = TRUE, default) or unweighted estimation should be used to fit the model.

knh

logical specifying whether the method by Knapp and Hartung (2003) should be used for adjusting standard errors of the estimated coefficients (default is FALSE). The Knapp and Hartung adjustment is only meant to be used in the context of random- or mixed-effects models.

mask

if available, a logical 3D-Array of dimensionality of the data (without 4th subject component) describing a brain mask. The computation is restricted to the selected voxels.

cluster

number of threads for parallel processing, which is limited to available multicore CPUs. If you do not know your CPUs, try: detectCores() from parallel package. Presets are 2 threads. cluster = 1 does not use parallel package.

wghts

a vector of length 3 specifying ratio of voxel dimensions. Isotropic voxels (e.g. MNI-space) are set as default.

details

fmri.metaPar() fits the configured linear mixed-effects meta-analytic (MEMA) model separately at each voxel and extracts the first regression coefficient (usually the overall group mean), corresponding squared standard errors and degrees of freedom as well as the residuals from resulting rma.uni() objects, to obtain a statistical parametric map (SPM) for the group. Voxel-by-voxel analysis is performed by either the function apply or parApply from parallel package, which walks through the Cbold array.

This two-stage approach reduces the computational burden of fitting a full linear mixed-effects (LME) model, fmri.lmePar would do. It assumes first level design is same across subjects and normally distributed not necessarily homogeneous within-subject errors. Warping to standard space has been done before first-stage analyses are carried out. Either no masking or a uniform brain mask should be applied at individual subject analysis level, to avoid loss of information at group level along the edges.

At the second stage, observed individual BOLD effects from each study are combined in a meta-analytic model. There is the opportunity of weighting the fMRI studies by the precision of their respective effect estimate to take account of first level residual heterogeneity (weighted = TRUE). This is how to deal with intra-subject variability. The REML estimate of cross-subject variability (tau-squared) assumes that each of these observations is drawn independently from the same Gaussian distribution. Since correlation structures cannot be modeled, multi-subject fMRI studies with repeated measures cannot be analyzed in this way.

Spatial correlation among voxels, e.g. through the activation of nearby voxels, is ignored at this stage, but corrects for it, when random field theory define a threshold for significant activation at inference stage.

It is recommended to check your model syntax and residuals choosing some distinct voxels before running the model in loop (see Example). Error handling default is to stop if one of the threads produces an error. When this occurs, the output will be lost from any voxel, where the model has fitted successfully.

value

An object of class "fmrispm" and "fmridata", basically a list with components:
Meta analyses tend to be less powerful for neuroimaging studies, because they only have as many degrees of freedom as number of subjects. If the number of subjects is very small, then it may be impossible to estimate the between-subject variance (tau-squared) with any precision. In this case the fixed effect model may be the only viable option. However, there is also the possibility of using a one-stage model, that includes the full time series data from all subjects and simultaneously estimates subject and group levels parameters (see `fmri.lmePar`). Although this approach is much more computer intensive, it has the advantage of higher degrees of freedom (> 100) at the end.

Current Limitations
The function cannot handle:

- experimental designs with a within-subject (repeated measures) factor
- paired samples with varying tasks, unless the contrast of the two conditions is used as input

Note
Author(s)
Sibylle Dames

References

See Also

rma.uni, fmri.lm, fmri.lmePar

Examples

Not run: ## Generate some fMRI data sets: noise + stimulus
dx <- dy <- dz <- 32
dt <- 107
hrf <- fmri.stimulus(dt, c(18, 48, 78), 15, 2)
stim <- matrix(hrf, nrow= dx*dy*dz, ncol=dt, byrow=TRUE)
mask <- array(FALSE, c(dx, dy, dz))
ds1 <- list(ttt=writeBin(1.0*rnorm(dx*dy*dz*dt) + as.vector(5*stim),
raw(), 4), mask = mask, dim = c(dx, dy, dz, dt))
ds2 <- list(ttt=writeBin(1.7*rnorm(dx*dy*dz*dt) + as.vector(3*stim),
raw(), 4), mask = mask, dim = c(dx, dy, dz, dt))
ds3 <- list(ttt=writeBin(0.8*rnorm(dx*dy*dz*dt) + as.vector(1*stim),
raw(), 4), mask = mask, dim = c(dx, dy, dz, dt))
ds4 <- list(ttt=writeBin(1.2*rnorm(dx*dy*dz*dt) + as.vector(2*stim),
raw(), 4), mask = mask, dim = c(dx, dy, dz, dt))
class(ds1) <- class(ds2) <- class(ds3) <- class(ds4) <- "fmridata"

Stage 1: single-session regression analysis
x <- fmri.design(hrf, order=2)
spm.sub01 <- fmri.lm(ds1, x, mask, actype = "smooth", verbose = TRUE)
spm.sub02 <- fmri.lm(ds2, x, mask, actype = "smooth", verbose = TRUE)
spm.sub03 <- fmri.lm(ds3, x, mask, actype = "smooth", verbose = TRUE)
spm.sub04 <- fmri.lm(ds4, x, mask, actype = "smooth", verbose = TRUE)

Store observed individual BOLD effects and their variance estimates
subj <- 4
Cbold <- array(0, dim = c(dx, dy, dz, subj))
Cbold[,1] <- spm.sub01$cbeta
Cbold[,2] <- spm.sub02$cbeta
Cbold[,3] <- spm.sub03$cbeta
Cbold[,4] <- spm.sub04$cbeta

Vbold <- array(0, dim = c(dx, dy, dz, subj))
Vbold[,1] <- spm.sub01$var
Vbold[,2] <- spm.sub02$var
Vbold[,3] <- spm.sub03$var
Vbold[,4] <- spm.sub04$var

Stage 2: Random-effects meta-regression analysis
a) Check your model
library(metafor)
M1.1 <- rma.uni(Cbold[16,16,16,],
 Vbold[16,16,16,],
 method = "REML",
 weighted = TRUE,
 knha = TRUE,
 verbose = TRUE,
 control = list(stepadj=0.5, maxiter=2000, threshold=0.001))

Control list contains convergence parameters later used
at whole data cube. Values were adjusted to fMRI data.

summary(M1.1)
forest(M1.1)
qqnorm(M1.1)

b) Estimate a group map
without parallelizing
spm.group1a <- fmri.metaPar(Cbold, Vbold, knha = TRUE,
 mask = mask, cluster = 1)

same with 4 parallel threads
spm.group1b <- fmri.metaPar(Cbold, Vbold, knha = TRUE,
 mask = mask, cluster = 4)

End(Not run)

fmri.pvalue

<table>
<thead>
<tr>
<th>P-values</th>
</tr>
</thead>
</table>

Description

Determine p-values.

Usage

```
fMRIvalue(spm, mode="basic", na.rm=FALSE, minimum.signal = 0, alpha= 0.05)
```
Arguments

- **spm**
 fmrispm object

- **mode**
 type of pvalue definition

- **na.rm**
 na.rm specifies how NA's in the SPM are handled. NA's may occur in voxel where the time series information did not allow for estimating parameters and their variances or where the time series information where constant over time. A high (1e19) value of the variance and a parameter of 0 are used to characterize NA's. If na.rm=TRUE the pvalue for the corresponding voxels is set to 1. Otherwise pvalues are assigned according to the information found in the SPM at the voxel.

- **minimum.signal**
 allows to specify a (positive) minimum value for detected signals. If minimum.signal >0 the thresholds are to conservative, this case needs further improvements.

- **alpha**
 Significance level in case of mode="FDR"

Details

If only a contrast is given in spm, we simply use a t-statistic and define p-values according to random field theory for the resulting gaussian field (sufficiently large number of df - see ref.). If spm is a vector of length larger than one for each voxel, a chisq field is calculated and evaluated (see Worsley and Taylor (2006)). If delta is given, a cone statistics is used.

The parameter mode allows for different kinds of p-value calculation. mode="voxelwise" refers to voxelwise tests while mode="Bonferroni" adjusts the significance level for multiple testing. An alternative is mode="FDR" specifying signal detection by False Discovery Rate (FDR) with proportion of false positives level specified by alpha. The other choices apply results on excursion sets of random fields (Worsley 1994, Adler 2003) for smoothed SPM's. "basic" corresponds to a global definition of the resel counts based on the amount of smoothness achieved by an equivalent Gaussian filter. The propagation condition ensures, that under the hypothesis

$$\hat{\Theta} = 0$$

adaptive smoothing performs like a non adaptive filter with the same kernel function which justifies this approach. "local" corresponds to a more conservative setting, where the p-value is derived from the estimated local resel counts that has been achieved by adaptive smoothing. In contrast to "basic", "global" takes a global median to adjust for the randomness of the weighting scheme generated by adaptive smoothing. "global" and "local" are more conservative than "basic", that is, they generate slightly larger p-values.

Value

Object with class attributes "fmripvalue" and "fmridata"

- **pvalue**
 p-value. use with plot for thresholding.

- **weights**
 voxelsize ratio

- **dim**
 data dimension

- **hrf**
 expected BOLD response for contrast (single stimulus only)

- **alpha**
 maximal pvalue as scale information

- **thresh**
 actual threshold used
Note

Unexpected side effects may occur if spm does not meet the requirements, especially if a parameter estimate vector of length greater than 2 through argument vvector in fmri.lm has been produced for every voxel.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

References

See Also

fmri.lm, fmri.smooth, plot.fmridata, fmri.cluster, fmri.searchlight

Examples

Not run: fmri.pvalue(smoothresult)

Description

Detection of activated regions using searchlights.

Usage

```r
fmri.searchlight(spm, alpha = 0.05, radius, minimum.signal = 0,
kind = c("abs", "squared"))
```

Arguments

- `spm` fmrispm object
- `alpha` multiple test (over volume) adjusted significance level.
- `radius` radius of searchlight. Value needs to be larger or equal than 1.
- `minimum.signal` allows to specify a (positive) minimum value for detected signals. If minimum.signal >0 the thresholds are to conservative, this case needs further improvements.
- `kind` Kind of statistics used for aggregation over search light region. "abs" specifies averaging of absolute voxelwise t-statistics while "squared" corresponds to averaging of squares of these statistics.
Details

The function computes mean statistics (depending on kind) over a searchlight region of radius radius. Approximate voxelwise p-values are determined with respect an empirical (simulated) distribution of the searchlight statistics under the null hypothesis a central t-distributed spm. Thresholding used FDR with rate alpha.

Value

Object with class attributes "fmripvalue" and "fmridata"

pvalue voxelwise p-value if exceeding FDR-critical value, 1 otherwise.
weights voxelsize ratio
dim data dimension
hrf expected BOLD response for contrast (single stimulus only)

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

References

See Also

fmri.lm, fmri.pvalue, fmri.cluster

Examples

Not run: fmri.searchlight(fmrismobj)

```r

fmr.isgroupICA

Spatial group ICA for fMRI

Description

Combine ICA results from multiple runs or multiple subjects in group fMRI studies

Usage

fmr.isgroupICA(icaobjlist, thresh = 0.75, minsize=2)
```
Arguments

icaobjlist List of results obtained by function \texttt{fmri.sICA} for a series of fmri data sets (multiple runs or multiple subjects).
thresh threshold for cluster aggregation. Needs to be in (0,1).
minsize Minimal size of cluster to consider in IC aggregation. Needs to be larger than 1.

Details

The fMRI time series need to be preprocessed and registered before the ICA decomposition is performed.

The function employs a hierarchical clustering algorithm (complete linkage) on the combined set of spatial independent components obtained from the individual time series. A distance matrix is obtained from correlations of the independent component images. Aggregation of two components from the same fmri series is prevented in the algorithm.

Value

An object of class "\texttt{fmrigroupICA}" with components

- icacomp Mean IC's over cluster members for cluster of size larger or equal minsize
- size Size of selected clusters
- cl Number of selected clusters
- cluster Cluster membership corresponding to thresh.
- height Distance value at which the cluster was created. Elements correspond to elements of cluster.
- hdm Object returned by function \texttt{hclust}.

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

References

See Also

\texttt{fmri.sICA}, \texttt{plot.fmrigroupICA}, \texttt{hclust}
fmri.sICA

**Spatial ICA for fmri data**

Description

Uses fastICA to perform spatial ICA on fMRI data.

Usage

```r
fmri.sICA(data, mask=NULL, ncomp=20,
  alg.typ=c("parallel","deflation"), fun=c("logcosh","exp"),
  alpha=1, detrend=TRUE, degree=2, nuisance= NULL, ssmooth=TRUE,
  tsmooth=TRUE, bwt=4, bws=8, unit=c("FWHM","SD"))
```

Arguments

- **data**
 fMRI dataset of class "fmridata"
- **mask**
 Brain mask, if NULL then data$mask is used.
- **ncomp**
 Number of ICA components to compute.
- **alg.typ**
 Alg. to be used in fastICA.
- **fun**
 Test functions to be used in fastICA.
- **alpha**
 Scale parameter in test functions, see fastICA.
- **detrend**
 Trend removal (polynomial)
- **degree**
 degree of polynomial trend
- **nuisance**
 Matrix of additional nuisance parameters to regress against.
- **ssmooth**
 Should spatial smoothing be used for variance reduction
- **tsmooth**
 Should temporal smoothing be be applied
- **bws**
 Bandwidth for spatial Gaussian kernel
- **bwt**
 Bandwidth for temporal Gaussian kernel
- **unit**
 Unit of bandwidth, either standard deviation (SD) of Full Width Half Maximum (FWHM).

Details

If specified polynomial trends and effects due to nuisance parameters, e.g., motion parameters, are removed. If smooth=TRUE the resulting residual series is spatially smoothed using a Gaussian kernel with specified bandwidth. ICA components are the estimated using fastICA based on data within brain mask. The components of the result are related as \(X_{KW} = scomp[mask,] \) and \(X = scomp[mask,]*A \).
Value

object of class "fmriICA" list with components

scomp 4D array with ICA component images. Last index varies over components.
X pre-processed data matrix
K pre-processed data matrix
W estimated un-mixing matrix
A estimated mixing matrix
mask Brain mask
pixdim voxelsize
TR Repetition Time (TR)

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

See Also

plot.fmriICA,ICAfingerprint,fastICA

fmri.smooth Smoothing Statistical Parametric Maps

Description

Perform the adaptive weights smoothing procedure

Usage

fmri.smooth(spm, hmax = 4, adaptation="aws",
 lkern="Gaussian", skern="Plateau", weighted=TRUE,...)

Arguments

spm object of class fmrispm
hmax maximum bandwidth to smooth
adaptation character, type of adaptation. If "none" adaptation is off and non-adaptive kernel smoothing with lkern and bandwidth hmax is used. Other values are "aws" for adaptive smoothing using an approximative correction term for spatial smoothness in the penalty (fast), "fullaws" for adaptive smoothing using variance estimates from smoothed residuals in the penalty (CPU-time about twice the time compared to adaptation="aws" and "segment" for a new approach based on segmentation using multi-scale tests.
1kern specifies the location kernel. Defaults to "Gaussian", other choices are "Triangle" and "Plateau". Note that the location kernel is applied to \((x-x_j)^2/h^2\), i.e. the use of "Triangle" corresponds to the Epanechnicov kernel in nonparametric kernel regression. "Plateau" specifies a kernel that is equal to 1 in the interval (0,3), decays linearly in (3,1) and is 0 for arguments larger than 1.

lkern="Plateau" and lkern="Triangle" allow for much faster computation (saves up to 50% CPU-time). lkern="Plateau" produces a less random weighting scheme.

skern specifies the kernel for the statistical penalty. Defaults to "Plateau", the alternatives are "Triangle" and "Exp". "Plateau" specifies a kernel that is equal to 1 in the interval (0,3), decays linearly in (3,1) and is 0 for arguments larger than 1. lkern="Plateau" and lkern="Triangle" allow for much faster computation (saves up to 50% CPU-time). lkern="Plateau" produces a less random weighting scheme.

weighted (logical) determines if weights contain the inverse of local variances as a factor (Weighted Least Squares). weighted=FALSE does not employ the heteroscedasticity of variances for the weighting scheme and is preferable if variance estimates are highly variable, e.g. for short time series.

Further internal arguments for the smoothing algorithm usually not to be set by the user. Allows e.g. for parameter adjustments by simulation using our propagation condition. Usefull exceptions can be used for adaptation="segment": Specifically alpha (default 0.05) defines the significance level for the signal detection. It can be choosen between 0.01 and 0.2 as for other values we did not determine the critical values for the statistical tests. delta (default 0) defines the minimum signal which should be detected. restricted determines if smoothing for voxel detected to be significant is restricted to use only voxel from the same segment. The default is restricted=FALSE. restricted slightly changes the behaviour under the alternative, i.e. not the interpretation of results.

Details

This function performs the smoothing on the Statistical Parametric Map spm. hmax is the (maximal) bandwidth used in the last iteration. Choose adaptation as "none" for non adaptive smoothing. 1kern can be used for specifying the localization kernel. For comparison with non adaptive methods use "Gaussian" (hmax times the voxelsize in x-direction will give the FWHM bandwidth in mm), for better adaptation use "Plateau" or "Triangle" (default, hmax given in voxel). For 1kern="Plateau" and 1kern="Triangle" thresholds may be inaccurate, due to a violation of the Gaussian random field assumption under homogeneity. 1kern="Plateau" is expected to provide best results with adaptive smoothing.

skern can be used for specifying the kernel for the statistical penalty. "Plateau" is expected to provide the best results, due to a less random weighting scheme.

The function handles zero variances by assigning a large value (1e20) to these variances. Smoothing is restricted to voxel with spm$mask.

Value

object with class attributes "fmrispm" and "fmridata", or "fmrisegment" and "fmridata" for segmentation choice

cbeta smoothed parameter estimate
fmri.stimulus

Description
Create the expected BOLD response for a given task indicator function.

Usage
```r
fmri.stimulus(scans = 1, onsets = c(1), durations = c(1), TR = 2,
              times = FALSE, sliceorder = NULL,
              type = c("canonical", "gamma", "boxcar", "user"),
              par = NULL, scale = 10, hrf = NULL, verbose = FALSE)
```

Author(s)
Joerg Polzehl <polzehl@wias-berlin.de>, Karsten Tabelow <tabelow@wias-berlin.de>

References

Examples
```r
## Not run: fmri.smooth(spm, hmax = 4, lkern = "Gaussian")
```
Arguments

scans number of scans
onsets vector of onset times (in scans)
durations vector of duration of ON stimulus in scans or seconds (if !is.null(times))
TR time between scans in seconds (TR)
times onset times in seconds. If present onsets arguments is ignored.
sliceorder order of slice acquisition. If provided separate expected bold responses are calculated for the slices taking slice acquisition times into account. Default: no slice timing.
type One of "canonical", "gamma", "boxcar", "user"
par Possible parameters to the HRF.
scale Temporal undersampling factor
hrf If type is "user" this should be a function evaluating the hemodynamic response function
verbose Report more if TRUE

Details

The functions calculates the expected BOLD response for the task indicator function given by the argument as a convolution with the hemodynamic response function.

If sliceorder provides an ordering of slice acquisitions a matrix of expected bold responses with columns corresponding to the slice number is computed.

For type is "canonical" the latter is modelled by the difference between two gamma functions as given in the reference (with the defaults for a1, a2, b1, b2, cc given therein):

\[
\left(\frac{t}{d_1}\right)^{a_1}\exp\left(-\frac{t-d_1}{b_1}\right) - c\left(\frac{t}{d_2}\right)^{a_2}\exp\left(-\frac{t-d_2}{b_2}\right)
\]

The parameters a1, a2, b1, b2, cc of this function can be changed through the argument par in this order.

Other choices are a simple gamma function

\[
\frac{1}{k\tau_h(k-1)!}\left(\frac{t}{\tau_h}\right)^k\exp\left(-\frac{t}{\tau_h}\right)
\]

or the "boxcar" stimulus, or a user defined function hrf.

The dimension of the function value is set to c(scans,1).
If !is.null(times) durations are specified in seconds.

Value

Vector with dimension c(scans,1) or a matrix with dimension c(scans, number of slices).
AUTHOR(S)

Karsten Tabelow <tabelow@wias-berlin.de>, Joerg Polzehl <polzehl@wias-berlin.de>

REFERENCES

SEE ALSO

fmri.design, fmri.lm

EXAMPLES

Example 1
hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)
z <- fmri.design(hrf, 2)
par(mfrow=c(2, 2))
for (i in 1:4) plot(z[, i], type="l")
getSearchlightPattern
Extract searchlight pattern from a SPM

Description
For a provided spm object and a mask of voxel the function extracts the values of the parameter estimates within the searchlight region and for all voxel in the mask.

Usage
```
getSearchlightPattern(spm, voxel, radius)
```

Arguments
- `spm`: an object of class `fmrispm`
- `voxel`: a mask (logical) with dimensionality compatible to the spm
- `radius`: radius of the searchlight

Value
An array of dimension `c(nb, nsl, nvox)` with `nb` the number of estimated parameters in `spm$beta`, `nsl` the number of voxel in the searchlight and `nvox` the number of voxel in the mask provided as second argument

Author(s)
Joerg Polzehl <polzehl@wias-berlin.de>

See Also
- `fmri.searchlight`, `fmri.lm`

hvred
Translation between smoothness and bandwidth for Gaussian kernel

Description
Translation table between smoothness and bandwidth for Gaussian kernel

Usage
```
data(hvred)
```

Format
The format is: num [1:500, 1:2] 0.101 0.102 0.103 0.104 0.105 ...
Examples

```r
data(hvred)
## maybe str(hvred) ; plot(hvred) ...
```

ICAfingerprint IC fingerprinting

Description

Implements ICA fingerprinting mainly following De Martino et. al., Neuroimage 2007.

Usage

```r
ICAfingerprint(icaobj, nbin = 256, plot = FALSE)
```

Arguments

- `icaobj` object returned by function `fmri.sICA`.
- `nbin` number of bins for entropy estimation
- `plot` provide results as star plots.

Details

For some characteristics normalization of values differs from De Martino et. al.. Frequency bands are obtained from periodogram estimated instead of using Welch’s method.

Value

object of class ”fmriICA” list with components

- `scomp` 4D array with ICA component images. Last index varies over components.
- `X` pre-processed data matrix
- `K` pre-processed data matrix
- `W` estimated un-mixing matrix
- `A` estimated mixing matrix
- `mask` Brain mask
- `pixdim` voxelsize
- `TR` Repetition Time (TR)
- `fingerprint` matrix of IC characteristics. Columns correspond to IC’s.

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>
niftiImage2fmri

References
De Martino et. al., Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers, Neuroimage 34 (2007) 177-194.

See Also
 fmri.sICA, plot.fmriICA, fastICA

niftiImage2fmri Create fmridata object from niftiImage

Description
Transforms a niftiImage (created by readNifti from package RNiftyReg) into an object with class fmridata

Usage
niftiImage2fmri(niftiobj, level = 0.75, mask=NULL, setmask = TRUE, indx = NULL, indy = NULL, indz = NULL, avoidnegs = FALSE)

Arguments
niftiobj an object of class niftiImage
level quantile used in mask definition
mask array or nifti-object containing the mask. If set this replaces the mask defined by argument level.
setmask if TRUE create a brain mask
indx index vector for subcube definition
indy index vector for subcube definition
indz index vector for subcube definition
avoidnegs if TRUE change the mean to avoid negative image intensities

Details
This function can be used in connection with readNifti from package RNiftyReg to read large fMRI series from nifti files. The resulting fmridata-object stores the image data as 2 byte integer in raw format, in contrast for the 4 byte real used with other functions.

Value
an object of class fmridata

Author(s)
Joerg Polzehl <polzehl@wias-berlin.de>
plot.fmridata

See Also
read.AFNI, read.DICOM, read.ANALYZE, read.NIFTI

plot.fmridata I/O functions

Description
Visualize fMRI data and (intermediate) results.

Usage
S3 method for class 'Var'
plot(x, anatomic = NULL, maxpvalue = 0.05,
 spm = TRUE, pos = c(-1, -1, -1), type = "slice",
 slice = 1, view = "axial", zlim.u =
 NULL, zlim.o = NULL, col.o = heat.colors(256), col.u =
 grey(0:255/255), cutoff = c(0, 1), ...)
S3 method for class 'Var'
plot(x, anatomic = NULL,
 slice = 1, view = c("axial", "coronal", "sagittal"), zlim.u =
 NULL, zlim.o = NULL, col.o = c(rainbow(64, start = 2/6, end = 4/6),
 rainbow(64, start = 0, end = 1/6)),
 col.u = grey(0:127/127), verbose = FALSE, ...)

Arguments
x object of class "fmrisegment", "fmrispm" or "fmridata"
anatomic overlay of same dimension as the functional data, or fmridata object (if of x is
maxpvalue maximum p-value for thresholding
spm logical. if class is "fmrispm" decide whether to plot the t-statistics for the esti-
mated effect (spm=TRUE) or the estimated effect itself (spm=FALSE).
pos voxel to be marked on output
type string. "slice" for slicewise view and "3d" for 3d view.
slice number of slice in x, if anatomic is of "fmridata" class
view "axial", "coronal", or "sagittal", if anatomic is of "fmridata" class
zlim.u full range for anatomical underlay used for color scale, if anatomic is of "fmridata" class
zlim.o full range for functional overlay used for color scale, if anatomic is of "fmridata" class
col.u color scale for anatomical underlay, if anatomic is of "fmridata" class, default
grey(0:255/255)
plot.fmridata

col.o

color scale for functional overlay, if anatomic is of "fmridata" class, default

heat.colors(256)

cutOff

not yet documented

verbose

tell something on the progress?

... additional arguments for plot

Details

Provides a sliceswise view of "fmridata" objects with anatomic overlay (if appropriate, that is for class "fmripvalue"). For objects of class "fmrispm" it plots the t-statistics for the estimated effects if spm is TRUE, or the estimated effect otherwise. For objects of class "fmridata" only a plot of the data slices itself is produced. If device is specified as "png", "jpeg", "ppm" output is done to a file. A grey/color scale is provided in the remaining space.

For objects of class "fmrisegment" the smoothed signal size is shown in the activation segments (two-sided test!).

If type is "3d" a 3 dimensional interactive view opens. Sliders to move in the data cube are given ("x", "y", "z", and "t" if class is "fmridata" only). Time series are shown if available. For objects of class "fmrispm" a slider is created to remove information for voxels with smaller signals than a cut-off value from the plot. Use pvalues for statistical evaluation. If spm is FALSE the estimated BOLD response together with a confidence interval corresponding to maxpvalue is drawn. For objects of class "fmripvalue" the pvalues with overlay are shown.

Value

If 'type' is "3d" the Tk-object is returned. (Remove the diplay with tkdestroy(object))

Note

3 dimensional plotting requires the tkrplot package.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

References

See Also

fmri.pvalue

Examples

Not run: plot(pvalue)
plot.fmriICA

Diagnostics plots for objects of class "fmriICA"

Description

The function generates plots for inspecting independent components obtained by spatial independent component analysis.

Usage

S3 method for class 'fmriICA'
plot(x, comp = 1, center = NULL, thresh = 1.5, ...)
S3 method for class 'fmrigroupICA'
plot(x, comp = 1, center = NULL, thresh = 1.5, ...)

Arguments

x
 object returned by function fmri.sICA or preferably function ICAfingerprinting in case of plot.fmriICA and object returned by function fmri.sgroupICA in case of plot.fmrigroupICA

comp
 number of the independent component to inspect.

center
 coordinates for central point to determine axial, coronal and sagittal slices for display. If NULL the central point of the image cube is selected. center needs to be within the brain mask.

thresh
 Threshold value

... currently not used

Details

The function generates diagnostic plots for the independent component specified in comp. It provides axial, coronal and sagittal images as determined by center. Values exceeding the threshold are displayed using a color scale. An IC fingerprint is given as a star plot. Additionally the time series corresponding to the spatial IC and its spectral density are plotted.

Value

nothing returned.

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

References

De Martino et. al., Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers, Neuroimage 34 (2007) 177-194.
See Also

fmri.sICA, ICAFingerprint.fastICA

plot.fmripvalue

Visualize fMRI p-value maps

Description

Visualize objects created by function fmri.pvalue

Usage

S3 method for class 'fmripvalue'
plot(x, template = NULL, mask = NULL,
 view = c("axial", "coronal", "sagittal", "orthographic"),
 slices = NULL, ncol = 1, nrow = 1, center = NULL, ...)

Arguments

x
 object of class 'fmripvalue'

template
 Anatomical image of same origin and direction as pvalue map in x$pvalue.

mask
 optional brain mask

view
 Either 'orthographic' or one of 'axial', 'coronal' or 'sagittal'

slices
 If view != "orthographic" vector of slice numbers to use. If not provided the
 ncol*nrow slices with strongest signals are selected

ncol
 If view != "orthographic" number of slices per row

nrow
 If view != "orthographic" number of rows in display.

center
 If view == "orthographic" center of orthographic view. If not provided the
 center is chosen to provide maximal information.

...
 additional parameters (not evaluated)

Value

list with components

comp1
 slices, numbers refer to spm

comp2
 center, numbers refer to spm

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

See Also

fmri.pvalue, ~~~
print.fmridata

Description

'print' method for class "fmridata".

Usage

S3 method for class 'fmridata'
print(x, ...)

Arguments

x an object of class fmridata, usually, a result of a call to fmri.lm, fmri.smooth, fmri.pvalue, read.AFNI, or read.ANALYZE.

... further arguments passed to or from other methods.

Details

The method tries to print information on data, like data dimension, voxel size, value range.

Value

none

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

References

See Also

summary.fmridata

Examples

Not run: print(data)
Description
Read HEAD/BRIK file.

Usage
read.AFNI(filename, vol=NULL, level=0.75, mask=NULL, setmask=TRUE)

Arguments
- filename: name of the file (without extension)
- vol: vector of volumes of the dataset to be read
- level: Quantile level defining the mask
- mask: array or nifti-object containing the mask. If set this replaces the mask defined by argument level.
- setmask: Logical (default TRUE), whether to define a suitable mask based on level

Details
The function reads a HEAD/BRIK file. If vol is given (defaults to NULL), only volumes in this vector are read, in order to save memory.

Value
Object of class "fmridata" with the following list entries:
- ttt: raw vector (numeric size 4) containing the four dimensional data cube (the first three dimensions are voxel dimensions, the fourth dimension denotes the time).
- header: header information list
- format: data source. string "HEAD/BRIK"
- delta: voxel size in mm
- origin: position of the datacube origin
- orient: data orientation code. see AFNI documentation
- dim: dimension of the datacube
- weights: weights vector coding the relative voxel sizes in x, y, z-direction.
- mask: head mask

Author(s)
Karsten Tabelow <tabelow@wias-berlin.de>
References

See Also

write.AFNI, read.ANALYZE

Examples

```r
## Not run: afni <- read.AFNI("afnifile")
```

Description

Read fMRI data from ANALYZE file(s).

Usage

```r
read.ANALYZE(prefix = "", numbered = FALSE, postfix = "", picstart = 1, numbpic = 1, level = 0.75, mask=NULL, setmask=TRUE)
```

Arguments

- `prefix`: string(s), part of the file name before the number or vector of strings for filename (if `numbered` is `FALSE`)
- `numbered`: logical. if `FALSE` only `prefix` is taken as file name (default).
- `postfix`: string, part of the file name after the number
- `picstart`: number of the first image to be read.
- `numbpic`: number of images to be read
- `level`: Quantile level defining the mask
- `mask`: array or nifti-object containing the mask. If set this replaces the mask defined by argument `level`.
- `setmask`: Logical (default `TRUE`), whether to define a suitable mask based on `level`

Details

This function reads fMRI data files in ANALYZE format. If `numbered` is `FALSE`, only the vector of strings in `prefix` is used for file name (default).

If `numbered` is `TRUE`, it takes the first string in `prefix` and `postfix` and a number of the form "007" in between to create the file name.

The number is assumed to be 3 digits (including leading zeros). First number is given in `picstart`, while `numbpic` defines the total number of images to be read. Data in multiple files will be combined into a four dimensional datacube.
Value

Object of class "fmridata" with the following list entries:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttt</td>
<td>raw vector (numeric size 4) containing the four dimensional data cube (the first three dimensions are voxel dimensions, the fourth dimension denotes the time).</td>
</tr>
<tr>
<td>header</td>
<td>header information of the data</td>
</tr>
<tr>
<td>format</td>
<td>data source. string "ANALYZE"</td>
</tr>
<tr>
<td>delta</td>
<td>voxel size in mm</td>
</tr>
<tr>
<td>origin</td>
<td>position of the datacube origin</td>
</tr>
<tr>
<td>orient</td>
<td>data orientation code</td>
</tr>
<tr>
<td>dim</td>
<td>dimension of the datacube</td>
</tr>
<tr>
<td>weights</td>
<td>weights vector coding the relative voxel sizes in x, y, z-direction</td>
</tr>
<tr>
<td>mask</td>
<td>head mask</td>
</tr>
</tbody>
</table>

Note

Since numbering and naming of ANALYZE files widely vary, this function may not meet your personal needs. See Details section above for a description.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

References

See Also

write.ANALYZE, read.AFNI

Examples

```r
## Not run: analyze <- read.ANALYZE("analyze",TRUE,"file",31,107)
```
Description

Read DICOM file.

Usage

read.DICOM(filename, includedata = TRUE)

Arguments

- filename: name of the file
- includedata: logical. should data be read too? defaults to TRUE.

Details

The function reads a DICOM file.

Value

Object with the following list entries:

- header: header information as raw data
- ttt: image data if requested. raw vector (numeric size 4) containing the four dimensional data cube (the first three dimensions are voxel dimensions, the fourth dimension denotes the time).
- format: data source. string "DICOM"
- delta: voxel size in mm
- series: series identifier
- image: image number within series
- dim: dimension of the data if available

Note

Since the DICOM standard is rather complicated, there may be cases where this function cannot read a DICOM file. Known issue: it cannot read header with implicit VR. Return value may change in future version!

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
read.NIFTI

References

http://medical.nema.org

See Also

read.AFNI, read.ANALYZE

Examples

```r
## Not run: dicom <- read.DICOM("dicomfile")
```

Description

Read fMRI data from NIFTI file(s).

Usage

`read.NIFTI(filename, level = 0.75, mask=NULL, setmask=TRUE)`

Arguments

- `filename`: name of the NIFTI file
- `level`: Quantile level defining the mask
- `mask`: array or nifti-object containing the mask. If set this replaces the mask defined by argument level.
- `setmask`: Logical (default TRUE), whether to define a suitable mask based on level

Details

This function reads fMRI data files in NIFTI format.

The filename can be given with or without extension. If extension is not included, the function searches for the ".nii" file and then for the "hdr/img" pair.

Value

Object of class "fmridata" with the following list entries:

- `ttt`: raw vector (numeric size 4) containing the four dimensional data cube (the first three dimensions are voxel dimensions, the fourth dimension denotes the time).
- `header`: header information of the data
- `format`: data source. string "NIFTI"
- `delta`: voxel size in mm
setmask

origin position of the datacube origin
orient data orientation code
dim dimension of the datacube
weights weights vector coding the relative voxel sizes in x, y, z-direction
mask head mask

Author(s)
Karsten Tabelow <tabelow@wias-berlin.de>

References

See Also
read.ANALYZE, read.AFNI

Examples
Not run: analyze <- read.NIFIT("niftifile.nii")

setmask Add or replace mask in an fmridata object

Description
The function replaces the information in the mask component of an fmridata object.

Usage
setmask(fmriobj, mask)

Arguments

- fmriobj object of class 'fmridata'
- mask object of class 'array' or 'nifti'

Details
The dimensions of both objects supplied as arguments need to be compatible.

Value
on object of class 'fmridata'.
sincfilter

Author(s)
Joerg Polzehl <polzehl@wias-berlin.de>

See Also
oro2fmri, niftiImage2fmri, read.NIFTI, read.AFNI, read.ANALYZE

sincfilter A function for sinc-interpolation

Description
Performs sinc interpolation for a equidistant time series x to times t.

Usage
sincfilter(t, x, wr=8)

Arguments
t vector of new time points
x observed time series at times 1:length(x).
wr determines truncation of series expansion

Value
a vector of interpolated values of the time series at time points given in t.

Author(s)
Joerg Polzehl <polzehl@wias-berlin.de>

See Also
slicetiming

Examples
x <- 1:107
y <- rnorm(x)
z <- sincfilter(seq(1,107,.01),y)
plot(x, y, ylim=range(y,z))
lines(seq(1,107,.01),z,col=2)
slicetiming

slicetiming for fmridata-objects

Description

Perform slicetiming for fMRI data, ideally before preprocessing (registration). Recording times for slices are assumed to be equispaced between scans with argument `sliceorder` providing the order of slice acquisitions. Interpolation between slices is performed using a sinc filter.

Usage

slicetiming(fmridataobj, sliceorder = NULL)

Arguments

- `fmridataobj`: object of class fmridata
- `sliceorder`: order of slice acquisitions

Value

an object of class fmridata

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

See Also

- `fmri.stimulus`
- `fmri.design`
- `fmri.lm`

Examples

```r
## Not run:
# Example 1
data <- list(ttt=writeBin(rnorm(32*32*32*107), raw(), 4),
             mask=TRUE, c(32, 32, 32)), dim=c(32, 32, 32, 107))
class(data) <- "fmridata"
data <- slicetiming(data, sliceorder=1:32)
## provides data corrected for sequential slice acquisition in linear order

## End(Not run)
```
Description

'summary' method for class 'fmridata'.

Usage

S3 method for class 'fmridata'
summary(object, ...)

Arguments

object
an object of class fmridata, usually, a result of a call to fmri.lm, fmri.smooth, fmri.pvalue, read.AFNI, or read.ANALYZE.

...
further arguments passed to or from other methods.

Details

The method tries to print information on data, like data dimension, voxel size, value range.

Value

A list with the following elements:

dim
data dimension

delta
voxel dimension, if available

values
value range

z
design matrix

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

See Also

print.fmridata

Examples

Not run: summary(data)
write.AFNI

I/O functions

Description
Write BRIK/HEAD files.

Usage
```r
ttt, label = NULL, note = NULL, origin = NULL,
delta = NULL, idcode = NULL, header = NULL, taxis = FALSE)
```

Arguments
- `filename`: name of the file
- `ttt`: datacube
- `label`: labels (BRICK_LABS), depreciated - see header
- `note`: notes on data (HISTORY_NOTE), depreciated - see header
- `origin`: origin of datacube (ORIGIN), depreciated - see header
- `delta`: voxel dimensions (DELTA), depreciated - see header
- `idcode`: idcode of data (IDCODE_STRING), depreciated - see header
- `header`: This is a list of header information such as DATASET_RANK to be written to the .HEAD file. Arguments label, ... are depreciated and to be substituted by a corresponding list entry. For backward compatibility the use of the old arguments is still supported and should give the same results. This will be removed in some future release! Since AFNI does not read any dataset with a header choose carefully what is written. There are some basic tests in this function, but this may not be sufficient.
- `taxis`: logical (defaults to FALSE. Are the sub-bricks time series? This results in writing TAXIS attributes to the header file.

Details
Write out BRIK/HEAD files as required by AFNI. Most arguments correspond to entries in the HEAD file, but use is depreciated. Use header and taxis instead!

Value
Nothing is returned.

Author(s)
Karsten Tabelow <tabelow@wias-berlin.de>
write.ANALYZE

References

See Also
read.AFNI, write.ANALYZE

Examples

```
## Not run: write.AFNI(tempfile(), array(as.integer(65526*runif(10*10*10*20)),
c(10,10,10,20)), c("signal"), note="random data",
origin=c(0,0,0), delta=c(4,4,5), idcode="unique ID")
## End(Not run)
write.AFNI(tempfile(), array(as.integer(65526*runif(10*10*10*20)),
c(10,10,10,20)), header=list(HISTORY_NOTE="random data",
ORIGIN=c(0,0,0), DELTA=c(4,4,5), IDCODE_STRING="unique ID"),taxis=FALSE)
```

Description
Write a 4 dimensional datacube in ANALYZE file format.

Usage

```
write.ANALYZE(ttt, header=NULL, filename)
```

Arguments

- `ttt`: 4 dimensional datacube
- `header`: header information
- `filename`: file name

Details
Writes the datacube `ttt` to a file named `filename` in ANALYZE file format. `header` is a list that contains the header information as documented by the Mayo Foundation. We give here a short summary. If a value is not provided, it will be tried to fill it with reasonable defaults, but do not expect fine results, if the entry has a special important meaning (h.i. pixdim).

```
[1]  datatype1 – 10 byte character
[2]  dbname – 18 byte character
[5]  regular – character
[6]  hkey – character
[7]  dimension – 8 integers, dimensions ...
[8]  unused – 7 integers
[9]  datatype – integer, datatype usually "4"
[10]  bitpix – integer
[12]  pixdim – 8 floats, voxel dimensions ...
[14]  funused – 3 floats
```
write.NIFTI

15	calmax – float	16	calmin – float
17	compressed – float	18	verified – float
19	glmax – integer	20	glmin – integer
21	descrb – 80 byte character	22	auxfile – 24 byte character
23	orient – character	24	originator – 5 integers
25	generated – 10 byte character	26	scannum – 10 byte character
27	patientid – 10 byte character	28	expdate – 10 byte character
29	exptime – 10 byte character	30	histun0 – 3 byte character
31	views – integer	32	voladded – integer
33	startfield – integer	34	fieldskip – integer
35	omax – integer	36	omin – integer
37	smax – integer	38	smin – integer

See ANALYZE documentation for details.

Value

Nothing is returned.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

References

See Also

read.ANALYZE, write.AFNI

Examples

```r
## Example 1
write.ANALYZE(array(as.integer(65526*runif(10*10*10*20)),c(10,10,10,20)),
               file=file.path(tempdir(),"analyzefile"))
```

Description

Write a 4 dimensional datacube in NIFTI file format.

Usage

`write.NIFTI(ttt, header=NULL, filename)`
write.NIFTI

Arguments
- **ttt**: 4 dimensional datacube
- **header**: header information
- **filename**: file name

Details
Writes the datacube **ttt** to a file named **file** in NIFTI file format. **header** is a list that contains the header information.
See NIFTI documentation for details.

Value
Nothing is returned.

Author(s)
Karsten Tabelow <tabelow@wias-berlin.de>

References

See Also
- `read.ANALYZE`, `write.AFNI`

Examples
```r
## Example 1
write.NIFTI(array(as.integer(65526*runif(10*10*10*20)),c(10,10,10,20)),
            file=file.path(tempdir(),"niftifile"))
```
Index

*Topic **IO**
 cutroi, 4
 niftiImage2fmri, 35
 read.AFNI, 41
 read.ANALYZE, 42
 read.DICOM, 44
 read.NIFTI, 45
 write.AFNI, 50
 write.ANALYZE, 51
 write.NIFTI, 52

*Topic **datasets**
 hvred, 33

*Topic **design**
 fmri.design, 7
 fmri.designG, 8
 fmri.stimulus, 30

*Topic **hplot**
 plot.fmridata, 36
 plot.fmriICA, 38
 plot.fmripvalue, 39

*Topic **htest**
 fmri.cluster, 5
 fmri.pvalue, 22
 fmri.searchlight, 24

*Topic **iplot**
 plot.fmridata, 36

*Topic **manip**
 sincfilter, 47
 slicetiming, 48

*Topic **misc**
 Convert Between fmridata and oro.nifti, 3
 getSearchlightPattern, 33
 setmask, 46

*Topic **multivariate**
 fmri.sgroupICA, 25
 ICAfingerprint, 34

*Topic **print**
 print.fmridata, 40

 summary.fmridata, 49

*Topic **regression**
 fmri.design, 7
 fmri.designG, 8
 fmri.detrend, 10
 fmri.lm, 11
 fmri.lmePar, 13
 fmri.metaPar, 18
 fmri.stimulus, 30

*Topic **smooth**
 fmri.smooth, 28

*Topic **utilities**
 cutroi, 4
 extractData, 5
 getSearchlightPattern, 33
 ICAfingerprint, 34
 niftiImage2fmri, 35
 plot.fmriICA, 38
 read.AFNI, 41
 read.ANALYZE, 42
 read.DICOM, 44
 read.NIFTI, 45
 setmask, 46
 sincfilter, 47
 slicetiming, 48
 write.AFNI, 50
 write.ANALYZE, 51
 write.NIFTI, 52

apply, 14, 19

Convert Between fmridata and oro.nifti, 3

cutroi, 4

extractData, 5

fastICA, 28, 35, 39

fmri.cluster, 5, 24, 25

fmri.design, 7, 8, 9, 13, 16, 32, 48
INDEX

fmri.designG, 8, 13, 16
fmri.detrend, 10
fmri.lm, 5–7, 10, 11, 14, 18, 21, 24, 25, 32, 33, 48
fmri.lmePar, 9, 13, 19–21
fmri.metaPar, 16, 18
fmri.pvalue, 6, 22, 25, 37, 39
fmri.searchlight, 6, 24, 24, 33
fmri.sgroupICA, 25
fmri.sICA, 26, 27, 35, 39
fmri.smooth, 24, 28
fmri.stimulus, 7–9, 13, 16, 30, 48
fmri2oro (Convert Between fmridata and oro.nifti), 3
gen_fmridata, 32
getSearchlightPattern, 33

hclust, 26
hvred, 33

ICAfingerprint, 28, 34, 39

lme, 13, 16

niftiImage2fmri, 35, 47

oro2fmri, 47
oro2fmri (Convert Between fmridata and oro.nifti), 3

parApply, 14, 19
plot, 23
plot.fmridata, 24, 36
plot.fmrigroupICA, 26
plot.fmrigroupICA (plot.fmriICA), 38
plot.fmriICA, 28, 35, 38
plot.fmripvalue, 39
plot.fmrisegment (plot.fmridata), 36
print.fmridata, 40, 49

read.AFNI, 4, 36, 41, 43, 45–47, 51
read.ANALYZE, 4, 36, 42, 42, 45–47, 52, 53
read.DICOM, 36, 44
read.NIFTI, 3, 4, 36, 45, 47
rma.uni, 18, 21

setmask, 46
sincfilter, 47
slicetiming, 12, 47, 48

summary.fmridata, 40, 49
write.AFNI, 42, 50, 52, 53
write.ANALYZE, 43, 51, 51
write.NIFTI, 52