Package ‘fmsb’

January 5, 2023

Version 0.7.5
Date 2022-12-25
Title Functions for Medical Statistics Book with some Demographic Data
Author Minato Nakazawa <minatonakazawa@gmail.com>
Maintainer Minato Nakazawa <minatonakazawa@gmail.com>
Depends R (>= 2.2.0)
Suggests Epi, vcd
Description Several utility functions for the book entitled
``Practices of Medical and Health Data Analysis using R''
(Pearson Education Japan, 2007) with Japanese demographic
data and some demographic analysis related functions.
License GPL (>= 2)
URL https://minato.sip21c.org/msb/
NeedsCompilation no
Repository CRAN
Date/Publication 2023-01-05 21:50:40 UTC

R topics documented:

CaretakerRatio .. 2
CM ... 3
CronbachAlpha .. 5
CT ... 6
Denny .. 7
geary.test ... 8
GompertzMakeham ... 9
gstem ... 10
H27MPJ ... 11
Hadwiger ... 11
IndexOfDissimilarity .. 12
IRCI .. 13
Description

Caretaker ratio. Defined as the ratio of the aged population who may need care to caretaking females population.
Usage

CaretakerRatio(PM, PF)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>The integer vector to give age-specific population from age 0 to more than 80 for males.</td>
</tr>
<tr>
<td>PF</td>
<td>The integer vector to give age-specific population from age 0 to more than 80 for females.</td>
</tr>
</tbody>
</table>

Value

CR Caretaker Ratio.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

Caretaker Ratio in Japan in 2015. The value 81.72 is much higher than 46 observed in UK in 1990.
CaretakerRatio(PM=Jpop$M2015, PF=Jpop$F2015)

CM Coale and McNeil's model nupitality and its fitting

Description

Implementing Coale and McNeil’s model (1972) for the age-specific probability of first marriage and fitting the model to actual data.

Usage

CM(scale=0.8, a0=18, k=2)
fitCM(initialpar=c(0.8, 18, 2), data, ages=10:60, mode=1, Method="Nelder-Mead", ...)

Arguments

- **scale**: The parameter C of the Coale-McNeil model, the scale parameter for total nuptiality. Almost same as 1-(probability of never marring for whole life)
- **a0**: The parameter a0 of the Coale-McNeil model, the age of the beginning of first marriage. The beginning means about 1% of the population having ever married.
- **k**: The parameter k of the Coale-McNeil model, how fast the population marry after a0.
- **initialpar**: Initial value for the parameters to be estimated. If not given, c(0.8, 18, 2) is used.
- **data**: Actual vector of the age-specific probability of first marriage when the mode is 1, otherwise the proportion ever married by each age.
- **ages**: The age ranges for the data. It must be within the range from 10 to 60. Default is 10:60. It must have the same lengths as data.
- **mode**: The mode of fitting, 1 means fitting for the probability of first marriage, otherwise fitting for the proportion ever married. Default is 1.
- **Method**: The method to be used in optim() function. Default is "Nelder-Mead".
- **...**: Other options to be passed to optim().

Value

CM() returns model schedule of nuptiality for ages from 10 to 60 as a list, composed of g (the numeric vector for the probability of first marriage happening for each age), G (the numeric vector for the proportion ever married by each age), mu (mean age of first marriage among total population), and sigma (standard deviation of the ages of first marriage). fitCM() returns the numeric vector of fitted parameters C, a0 and k, RMSE for those values, and the flag of convergence.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

See Also

CT

Examples

```r
# The data of Japanese population census 2010 for the whole country
# The proportion of ever married females for ages from 15 to 60.
# https://www.e-stat.go.jp/SG1/estat/List.do?bid=000001034991&yccode=0
Ages <- 15:60
```
CronbachAlpha

EverMarriedFemales <- c(0.003081039, 0.003203058, 0.006502558, 0.014261608, 0.028378604, 0.048903318, 0.07596101, 0.110311095, 0.153365573, 0.2090648, 0.273819118, 0.342672073, 0.41259517, 0.47979489, 0.536291775, 0.589919881, 0.631937609, 0.663719195, 0.691411757, 0.71775138, 0.740807817, 0.760155848, 0.775400475, 0.788445244, 0.799522713, 0.81108241, 0.821591503, 0.830695486, 0.840776283, 0.846773585, 0.85921777, 0.867991763, 0.876908992, 0.886388747, 0.894302114, 0.902385961, 0.909329207, 0.914662575, 0.920327092, 0.925013244, 0.929551158, 0.933150578, 0.935851652, 0.938421122, 0.940089719, 0.943223398)

res <- fitCM(initialpar=c(0.8, 18, 2), data=EverMarriedFemales, ages=Ages, mode=2)

print(res)
plot(Ages, EverMarriedFemales, main="Proportion ever married by each age
for 2010 Japanese females")
fitted <- CM(res[1], res[2], res[3])
lines(Ages, fitted$G[6:51], col="red")

NoteForm <- "C=%3.1f, a0=%3.1f, k=%3.1f
mu=%3.1f, sd=%3.1f"
text(40, 0.2, sprintf(NoteForm, res[1], res[2], res[3], fitted$mu, fitted$sigma))

mean age of first marriage happening
print(sum(Ages*fitted$g[Ages-9]/sum(fitted$g[Ages-9])))

CronbachAlpha

Calculate Cronbach’s alpha coefficient.

Description

Calculate Cronbach’s alpha coefficient from a matrix or data.frame with more than 2 columns.

Usage

CronbachAlpha(X)

Arguments

X A matrix or data.frame with more than 2 columns.

Value

Single numeric value of Cronbach’s alpha.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

```r
QUEST <- data.frame(
  Q1=c(1, 5, 2, 3, 4, 2, 3, 4, 3, 2),
  Q2=c(2, 4, 1, 2, 4, 1, 2, 5, 2, 1),
  Q3=c(2, 5, 1, 3, 3, 2, 2, 4, 2, 2))
CronbachAlpha(QUEST)
```

CT

Coale and Trussell’s model marital fertility and its fitting

Description

Implementing Coale and Trussell’s model of age-specific marital fertility rates and fitting the model to actual ASMFR.

Usage

```r
CT(M=1, m=0)
fitCT(initialpar=c(1.0, 1.0), data, Method="Nelder-Mead", ...)
```

Arguments

- **M** The parameter M of the CT model, the scale (peak height) parameter of fertility
- **m** The parameter m of the CT model, the strength of downward discordance from natural fertility with aging
- **initialpar** Initial value for the parameters to be estimated. If not given, c(1.0, 1.0) is used.
- **data** Actual vector of ASMFR (which must be given for from age 12 to age 49 for each age) to be used to obtain the best-fit parameters of the CT’s model.
- **Method** The method to be used in optim() function. Default is "Nelder-Mead".
- **...** Other options to be passed to optim().

Value

CT() returns model ASMFR for ages from 12 to 49. fitCT() returns the numeric vector of fitted parameters M and m, RMSE for those values, and the flag of convergence.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Denny

See Also

Jfert

Examples

```
ASMFR <- c(0, 0, 0, Jfert$ASMFR2000[1:35]) # Jfert's ASMFR should be rearranged to 12:49
res <- fitCT(,ASMFR)
FLAG <- res[4]
while (FLAG>0) {
  res <- fitCT(res[1:2], ASMFR)
  FLAG <- res[4]
}
print(res)
```

Denny

Denny's model mortality for lx and its fitting

Description

Implementing Denny's model mortality function of lx and fitting the model to actual lx of given lifetable.

Usage

```
Denny(a, b, c, t)
fitDenny(initialpar=rep(0.1, 3), data, mode=3, Method="Nelder-Mead", ...)
```

Arguments

- **a**: The parameter a of the Denny model, \(l(t) = \frac{1}{1 + a \cdot (t \cdot (105-t))^b + b \cdot \sqrt{\exp\left(t/(105-t)\right)-1} + c \cdot (1-\exp(-2\cdot t))} \).
- **b**: The parameter b of the Denny model, \(l(t) = \frac{1}{1 + a \cdot (t \cdot (105-t))^b + b \cdot \sqrt{\exp\left(t/(105-t)\right)-1} + c \cdot (1-\exp(-2\cdot t))} \).
- **c**: The parameter c of the Denny model, \(l(t) = \frac{1}{1 + a \cdot (t \cdot (105-t))^b + b \cdot \sqrt{\exp\left(t/(105-t)\right)-1} + c \cdot (1-\exp(-2\cdot t))} \).
- **t**: Age (vector OK) in years. The t must be less than 105, otherwise the value by Denny() become 0.
- **initialpar**: Initial value for the parameters to be estimated. If not given, rep(0.1, 3) is used.
- **data**: Actual vector of qx in the lifetable to be used to obtain the best-fit parameters of the Denny's model. If the ages for qx are equal or elder than 105 years old, those will be ignored in fitting.
- **mode**: Which of lifetable functions should be used to calculate the RMSE: 1 qx, 2 dx, otherwise lx. Default is 3.
- **Method**: The method to be used in optim() function. Default is "Nelder-Mead".
- **...**: Other options to be passed to optim().
Value
Denny() returns model lx for the same length with t. fitDenny() returns the numeric vector of fitted parameters a, b, and c, RMSE for those values, and the flag of convergence.

Author(s)
Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

See Also
Jlife

Examples
res <- fitDenny(, qxtolx(Jlife$qx2005M))
FLAG <- res[5]
while (FLAG>0) {
 res <- fitDenny(res[1:3], qxtolx(Jlife$qx2005M))
 FLAG <- res[5]
}
print(res)

geary.test

Geary’s test for normality about kurtosis.

Description
Geary’s test for normality. Null hypothesis is that the data obeys to normal distribution.

Usage
geary.test(X)

Arguments
X A numeric vector.

Value

<table>
<thead>
<tr>
<th>statistic</th>
<th>Geary’s test statistic G</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.value</td>
<td>The significant probability of the null-hypothesis testing.</td>
</tr>
</tbody>
</table>
GompertzMakeham

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

Examples

```r
geary.test(rnorm(100))
geary.test(20:50)
```

GompertzMakeham
Gompertz-Makeham’s model mortality for \(u(x) \) and its fitting

Description

Implementing Gompertz-Makeham’s model mortality function of the force of mortality \(u(x) \) with conversion into \(qx \) and fitting the model to actual \(qx \) of given lifetable.

Usage

```r
GompertzMakeham(A, B, C, t)
fitGM(initialpar=c(0.01, 0.0003, 0.07), data, mode=1, Method="Nelder-Mead", ...)
```

Arguments

- `A`
The parameter \(A \) of the Gompertz-Makeham model \(u(t)=A\times\exp B\times t+C \).
- `B`
The parameter \(B \) of the Gompertz-Makeham model \(u(t)=A\times\exp B\times t+C \).
- `C`
The parameter \(C \) of the Gompertz-Makeham model \(u(t)=A\times\exp B\times t+C \).
- `t`
Age (vector OK) in years
- `initialpar`
Initial value for the parameters to be estimated. If not given, \(c(0.01, 0.0003, 0.07) \) is used.
- `data`
Actual vector of \(qx \) in the lifetable to be used to obtain the best-fit parameters of the Gompertz-Makeham model.
- `mode`
Which of lifetable functions should be used to calculate the RMSE, which is to be minimized in optim() function: 1 \(qx \), 2 \(dx \), otherwise \(lx \). Default is 1.
- `Method`
The method to be used in optim() function. Default is "Nelder-Mead".
- `...`
Other options to be passed to optim().

Value

`GompertzMakeham()` returns model \(qx \) for the same length with \(t \), where \(u(x) \) is internally converted into \(qx \). `fitGM()` returns the numeric vector of fitted parameters of \(A, B \) and \(C \), RMSE for those values, and the flag of convergence.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/
See Also

Jlife

Examples

```r
res <- fitGM(Jlife$qx2005M)
FLAG <- res[5]
while (FLAG>0) {
  res <- fitGM(res[1:3], Jlife$qx2005M)
  FLAG <- res[5]
}
print(res)
```

gstem

Draw the stem and leaf plot in a graphic device.

Description

Capture the output of `stem()` function and plot them into graphic devices. However, the result of setting scale parameter as 2 may be controversial.

Usage

```r
gstem(X, scale)
```

Arguments

- `X` A numeric vector.
- `scale` Parameter to control plot length of graph. Default is 1.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

Examples

```r
x <- rnorm(100, 10, 1)
stem(x)
stem(x, 2)
layout(t(1:2))
gstem(x)
gstem(x, 2)
```
H27MPJ

Tentative model population of Japan in Heisei 27 (2015)

Description

The data gives the age-class specific model population of Japan in smoothed Heisei 27 (2015) to calculate directly adjusted mortality rate.

Usage

H27MPJ

Format

A named vector containing 21 observations, where names show age-classes.

Source

https://www.mhlw.go.jp/content/12601000/000638712.pdf

References

Hadwiger

Hadwiger’s model fertility and its fitting

Description

Implementing Hadwiger’s model of age-specific fertility rates and fitting the model to actual ASFR.

Usage

Hadwiger(a=3.4, b=2.5, c=22.2)

fitHad(initialpar=c(3.4, 2.5, 22.2), data, Method="Nelder-Mead", ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>The parameter a of the Hadwiger model, ASFR(x) = ab/c(c/x)^1.5exp(-b^2(c/x+x/c-2)) for age x from 15 to 54.</td>
</tr>
<tr>
<td>b</td>
<td>The parameter b of the Hadwiger model, ASFR(x) = ab/c(c/x)^1.5exp(-b^2(c/x+x/c-2)) for age x from 15 to 54.</td>
</tr>
<tr>
<td>c</td>
<td>The parameter c of the Hadwiger model, ASFR(x) = ab/c(c/x)^1.5exp(-b^2(c/x+x/c-2)) for age x from 15 to 54.</td>
</tr>
</tbody>
</table>
IndexOfDissimilarity

initialpar Initial value for the parameters to be estimated. If not given, c(3.4, 2.5, 22.2) is used.

data Actual vector of ASFR (which must be given for from ages from 15 to 54 for each age) to be used to obtain the best-fit parameters of the Hadwiger’s model.

Method The method to be used in optim() function. Default is "Nelder-Mead".

... Other options to be passed to optim().

Value

Hadwiger() returns model ASFR for ages from 15 to 54. fitHad() returns the numeric vector of fitted parameters a, b and c, RMSE for those values, and the flag of convergence.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

See Also

Jfert

Examples

```r
res <- fitHad(Jfert$ASFR2000)
FLAG <- res[5]
while (FLAG>0) {
  res <- fitHad(res[1:3], Jfert$ASFR2000)
  FLAG <- res[5]
}
print(res)
```

IndexOfDissimilarity

```r
IndexOfDissimilarity(X, Y)
```

Description

Index of dissimilarity between the 2 age-distributions.

Usage

```r
IndexOfDissimilarity(X, Y)
```
Arguments

X A vector of age-specific standard populations (or percentage) for each age.
Y A vector of age-specific target populations (or percentage) for each age.

Value

ID Index of dissimilarity, which is a half of sum of absolute differences of percentages for each age, where NA is automatically treated as 0.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

Dissimilarities of Japanese population structure were increasing
from 1960-1980 (0.132) to 1980-2000 (0.156).

IRCI

Calculate a incidence rate with confidence interval

Description

Calculate a incidence rate with confidence interval.

Usage

IRCI(a, PT, conf.level=0.9)

Arguments

a Number of cases
PT Person-years of observed population at risk
conf.level Probability for confidence intervals. Default is 0.9.
Value

- **IR**: Point estimate of incidence rate.
- **IRL**: Lower limit of confidence interval
- **IRU**: Upper limit of confidence interval

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

- `IRCI(8, 85000)`

IRCIpois

Calculate incidence rate with its confidence intervals by exact method

Description

Calculate incidence rate with its confidence intervals by exact method using Poisson distribution.

Usage

`IRCIpois(a, PT, conf.level=0.9)`

Arguments

- **a**: Number of cases
- **PT**: Person-years of observed population at risk
- **conf.level**: Probability for confidence intervals. Default is 0.9.

Value

- **IR**: Point estimate of incidence rate.
- **IRL**: Lower limit of confidence interval
- **IRU**: Upper limit of confidence interval

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

IRCIPois(8, 85000)

Japanese mortality data

Description

The data gives the sex and age-class (by five) specific numbers of death in Showa 60 (S60 = 1985), Heisei 2 (H02 = 1990), Heisei 7 (H07 = 1995), Heisei 12 (H12 = 2000), Heisei 17 (H17 = 2005), Heisei 22 (H22 = 2010) and Heisei 27 (H27 = 2015), and corresponding populations.

Usage

JASM

Format

A data frame with 18 observations on 30 variables.

[, 1] AGECLASS	Factor w/18 levels	Age class (years old)
[, 2] S60MODEL	numeric	Model population in 1985
[, 3] S60M	numeric	Number of males’ death by age classes in 1985
[, 4] H02M	numeric	Number of males’ death by age classes in 1990
[, 5] H07M	numeric	Number of males’ death by age classes in 1995
[, 6] H12M	numeric	Number of males’ death by age classes in 2000
[, 7] H17M	numeric	Number of males’ death by age classes in 2005
[, 8] H22M	numeric	Number of males’ death by age classes in 2010
[, 9] S60F	numeric	Number of females’ death by age classes in 1985
[,10] H02F	numeric	Number of females’ death by age classes in 1990
[,11] H07F	numeric	Number of females’ death by age classes in 1995
[,12] H12F	numeric	Number of females’ death by age classes in 2000
[,13] H17F	numeric	Number of females’ death by age classes in 2005
[,14] H22F	numeric	Number of females’ death by age classes in 2010
[,15] S60MP	numeric	Number of males’ population by age classes in 1985
[,16] H02MP	numeric	Number of males’ population by age classes in 1990
[,17] H07MP	numeric	Number of males’ population by age classes in 1995
[,18] H12MP	numeric	Number of males’ population by age classes in 2000
[,19] H17MP	numeric	Number of males’ population by age classes in 2005
[,20] H22MP	numeric	Number of males’ population by age classes in 2010
[,20] H27MP	numeric	Number of males’ population by age classes in 2015
[,21] S60FP	numeric	Number of females’ population by age classes in 1985
[,22] H02FP	numeric	Number of females’ population by age classes in 1990
[,23] H07FP	numeric	Number of females’ population by age classes in 1995
[,24] H12FP	numeric	Number of females’ population by age classes in 2000
Details

Japanese mortality data by sex and age-class (by five) given as national official vital statistics from 1985 to 2015, every 5 years.

- AGECLASS: Labels for age classes. [0-4] to [85-].
- S60MODEL: Age class specific model population of Japan in 1985.
- S60M-H27M: Age class specific number of death of males in 1985-2015.
- S60F-H27F: Age class specific number of death of females in 1985-2015.
- S60MP-H27MP: Age class specific number of males’ population in 1985-2015.
- S60FP-H27FP: Age class specific number of females’ population in 1985-2015.

Source

References

Description

Age-specific fertility and marital fertility rates for aged 15-54 Japanese women in Japan, from 1950 to 2020, every five years.

Usage

Jfert

Format

A data frame with 40 observations on 31 variables.

[, 1] Age integer Ages of women
The calculations were the numbers of live births divided by the numbers of women for ASFR (15-54), and the numbers of legitimate live births divided by the numbers of married women for ASMFR (15-54). Data sources are all official publication as vital statistics and national population census, so that the data are given with 5 years intervals.

- **Age**: Ages of women, from 15 to 54.
- **ASFR1950-ASFR2020**: Age-specific fertility rates for all women aged 15-54 for 1950-2020, every 5 years.

Source

https://www.ipss.go.jp/syoushika/tohkei/Popular/P_Detail2022.asp?fname=T04-09.htm
References

Jlife

Completed lifetables in Japan.

Description

The qx column of the completed lifetables in Japan, from "1891-1898" to "2020", mostly every 5 years.

Usage

Jlife

Format

A data frame with 117 observations (NAs are filled for the ages with no survivors) on 45 variables.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Age</th>
<th>integer</th>
<th>Ages of women</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>qx1895M</td>
<td>numeric</td>
<td>qx of completed lifetable functions of Japanese men in 1891-1898.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>qx1901M</td>
<td>numeric</td>
<td>qx of completed lifetable functions of Japanese men in 1899-1903.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>qx1901F</td>
<td>numeric</td>
<td>qx of completed lifetable functions of Japanese women in 1899-1903.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>qx1911M</td>
<td>numeric</td>
<td>qx of completed lifetable functions of Japanese men in 1909-1913.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>qx1923M</td>
<td>numeric</td>
<td>qx of completed lifetable functions of Japanese men in 1921-1925.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>qx1923F</td>
<td>numeric</td>
<td>qx of completed lifetable functions of Japanese women in 1921-1925.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>qx1928M</td>
<td>numeric</td>
<td>qx of completed lifetable functions of Japanese men in 1926-1930.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>qx1928F</td>
<td>numeric</td>
<td>qx of completed lifetable functions of Japanese women in 1926-1930.</td>
</tr>
</tbody>
</table>

Details

- Age: Ages from 0 to 116.

Source

References

Description

The data gives the sex and age specific population for the all census results in Japan.

Usage

Jpop

Format

A data frame with 86 observations on 61 variables.

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Factor w/86 levels</th>
<th>Ages (years old, combined for 85+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M1888</td>
<td>numeric</td>
<td>Age specific population of males in 1888</td>
</tr>
<tr>
<td>2</td>
<td>M1893</td>
<td>numeric</td>
<td>Age specific population of males in 1893</td>
</tr>
<tr>
<td>3</td>
<td>M1898</td>
<td>numeric</td>
<td>Age specific population of males in 1898</td>
</tr>
<tr>
<td>4</td>
<td>M1903</td>
<td>numeric</td>
<td>Age specific population of males in 1903</td>
</tr>
<tr>
<td>5</td>
<td>M1908</td>
<td>numeric</td>
<td>Age specific population of males in 1908</td>
</tr>
<tr>
<td>6</td>
<td>M1913</td>
<td>numeric</td>
<td>Age specific population of males in 1913</td>
</tr>
<tr>
<td>7</td>
<td>M1918</td>
<td>numeric</td>
<td>Age specific population of males in 1918</td>
</tr>
<tr>
<td>8</td>
<td>M1920</td>
<td>numeric</td>
<td>Age specific population of males in 1920</td>
</tr>
<tr>
<td>9</td>
<td>M1925</td>
<td>numeric</td>
<td>Age specific population of males in 1925</td>
</tr>
<tr>
<td>10</td>
<td>M1930</td>
<td>numeric</td>
<td>Age specific population of males in 1930</td>
</tr>
<tr>
<td>11</td>
<td>M1935</td>
<td>numeric</td>
<td>Age specific population of males in 1935</td>
</tr>
<tr>
<td>12</td>
<td>M1940</td>
<td>numeric</td>
<td>Age specific population of males in 1940</td>
</tr>
<tr>
<td>13</td>
<td>M1947</td>
<td>numeric</td>
<td>Age specific population of males in 1947</td>
</tr>
<tr>
<td>14</td>
<td>M1950</td>
<td>numeric</td>
<td>Age specific population of males in 1950</td>
</tr>
<tr>
<td>15</td>
<td>M1955</td>
<td>numeric</td>
<td>Age specific population of males in 1955</td>
</tr>
<tr>
<td>16</td>
<td>M1960</td>
<td>numeric</td>
<td>Age specific population of males in 1960</td>
</tr>
<tr>
<td>17</td>
<td>F1888</td>
<td>numeric</td>
<td>Age specific population of females in 1888</td>
</tr>
<tr>
<td>18</td>
<td>F1893</td>
<td>numeric</td>
<td>Age specific population of females in 1893</td>
</tr>
<tr>
<td>19</td>
<td>F1898</td>
<td>numeric</td>
<td>Age specific population of females in 1898</td>
</tr>
<tr>
<td>20</td>
<td>F1903</td>
<td>numeric</td>
<td>Age specific population of females in 1903</td>
</tr>
<tr>
<td>21</td>
<td>F1908</td>
<td>numeric</td>
<td>Age specific population of females in 1908</td>
</tr>
<tr>
<td>22</td>
<td>F1913</td>
<td>numeric</td>
<td>Age specific population of females in 1913</td>
</tr>
<tr>
<td>23</td>
<td>F1918</td>
<td>numeric</td>
<td>Age specific population of females in 1918</td>
</tr>
<tr>
<td>24</td>
<td>F1920</td>
<td>numeric</td>
<td>Age specific population of females in 1920</td>
</tr>
<tr>
<td>25</td>
<td>F1925</td>
<td>numeric</td>
<td>Age specific population of females in 1925</td>
</tr>
<tr>
<td>26</td>
<td>F1930</td>
<td>numeric</td>
<td>Age specific population of females in 1930</td>
</tr>
<tr>
<td>27</td>
<td>F1935</td>
<td>numeric</td>
<td>Age specific population of females in 1935</td>
</tr>
<tr>
<td></td>
<td></td>
<td>numeric</td>
<td>Age specific population of females in 1960</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F1960</td>
<td>Age specific population of males in 1965</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1965</td>
<td>Age specific population of females in 1965</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F1970</td>
<td>Age specific population of males in 1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1970</td>
<td>Age specific population of females in 1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F1975</td>
<td>Age specific population of males in 1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1975</td>
<td>Age specific population of females in 1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F1980</td>
<td>Age specific population of males in 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1980</td>
<td>Age specific population of females in 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F1985</td>
<td>Age specific population of males in 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1985</td>
<td>Age specific population of females in 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F1990</td>
<td>Age specific population of males in 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1990</td>
<td>Age specific population of females in 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F1995</td>
<td>Age specific population of males in 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1995</td>
<td>Age specific population of females in 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2000</td>
<td>Age specific population of males in 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2000</td>
<td>Age specific population of females in 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2005</td>
<td>Age specific population of males in 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2005</td>
<td>Age specific population of females in 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2010</td>
<td>Age specific population of males in 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2010</td>
<td>Age specific population of females in 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2015</td>
<td>Age specific population of males in 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2015</td>
<td>Age specific population of females in 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2015J</td>
<td>Age specific population of Japanese males in 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2015J</td>
<td>Age specific population of Japanese females in 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2020</td>
<td>Age specific population of males in 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2020</td>
<td>Age specific population of females in 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2020J</td>
<td>Age specific population of Japanese males in 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F2020J</td>
<td>Age specific population of Japanese females in 2020</td>
</tr>
</tbody>
</table>

Details

Japanese population data by sex and age given as national official census record.

- **Age:** Ages, combined for 85+.
- **M1888-M2020**: Age specific number of males' population in 1988-2020.
- **F1888-F2020**: Age specific number of females' population in 1988-2020.

Source

References

Japanese population data (unshrunken version)

Description

The data gives the sex and age specific population for all census results in Japan.

Usage

Format

A data frame with 111 observations on 67 variables.

<table>
<thead>
<tr>
<th>[, 1]</th>
<th>Age</th>
<th>Factor w/111 levels</th>
<th>Ages (years old, combined for 110+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[, 2]</td>
<td>M1888</td>
<td>numeric</td>
<td>Age specific population of males in 1888</td>
</tr>
<tr>
<td>[, 3]</td>
<td>F1888</td>
<td>numeric</td>
<td>Age specific population of females in 1888</td>
</tr>
<tr>
<td>[, 4]</td>
<td>M1893</td>
<td>numeric</td>
<td>Age specific population of males in 1893</td>
</tr>
<tr>
<td>[, 5]</td>
<td>F1893</td>
<td>numeric</td>
<td>Age specific population of females in 1893</td>
</tr>
<tr>
<td>[, 6]</td>
<td>M1898</td>
<td>numeric</td>
<td>Age specific population of males in 1898</td>
</tr>
<tr>
<td>[, 7]</td>
<td>F1898</td>
<td>numeric</td>
<td>Age specific population of females in 1898</td>
</tr>
<tr>
<td>[, 8]</td>
<td>M1903</td>
<td>numeric</td>
<td>Age specific population of males in 1903</td>
</tr>
<tr>
<td>[, 9]</td>
<td>F1903</td>
<td>numeric</td>
<td>Age specific population of females in 1903</td>
</tr>
<tr>
<td>[,10]</td>
<td>M1908</td>
<td>numeric</td>
<td>Age specific population of males in 1908</td>
</tr>
<tr>
<td>[,11]</td>
<td>F1908</td>
<td>numeric</td>
<td>Age specific population of females in 1908</td>
</tr>
<tr>
<td>[,12]</td>
<td>M1913</td>
<td>numeric</td>
<td>Age specific population of males in 1913</td>
</tr>
<tr>
<td>[,13]</td>
<td>F1913</td>
<td>numeric</td>
<td>Age specific population of females in 1913</td>
</tr>
<tr>
<td>[,14]</td>
<td>M1918</td>
<td>numeric</td>
<td>Age specific population of males in 1918</td>
</tr>
<tr>
<td>[,15]</td>
<td>F1918</td>
<td>numeric</td>
<td>Age specific population of females in 1918</td>
</tr>
<tr>
<td>[,16]</td>
<td>M1920</td>
<td>numeric</td>
<td>Age specific population of males in 1920</td>
</tr>
<tr>
<td>[,17]</td>
<td>F1920</td>
<td>numeric</td>
<td>Age specific population of females in 1920</td>
</tr>
<tr>
<td>[,18]</td>
<td>M1925</td>
<td>numeric</td>
<td>Age specific population of males in 1925</td>
</tr>
<tr>
<td>[,19]</td>
<td>F1925</td>
<td>numeric</td>
<td>Age specific population of females in 1925</td>
</tr>
<tr>
<td>[,20]</td>
<td>M1930</td>
<td>numeric</td>
<td>Age specific population of males in 1930</td>
</tr>
<tr>
<td>[,21]</td>
<td>F1930</td>
<td>numeric</td>
<td>Age specific population of females in 1930</td>
</tr>
<tr>
<td>[,22]</td>
<td>M1935</td>
<td>numeric</td>
<td>Age specific population of males in 1935</td>
</tr>
<tr>
<td>[,23]</td>
<td>F1935</td>
<td>numeric</td>
<td>Age specific population of females in 1935</td>
</tr>
<tr>
<td>[,24]</td>
<td>M1940</td>
<td>numeric</td>
<td>Age specific population of males in 1940</td>
</tr>
<tr>
<td>[,25]</td>
<td>F1940</td>
<td>numeric</td>
<td>Age specific population of females in 1940</td>
</tr>
<tr>
<td>[,26]</td>
<td>M1947</td>
<td>numeric</td>
<td>Age specific population of males in 1947</td>
</tr>
<tr>
<td>[,27]</td>
<td>F1947</td>
<td>numeric</td>
<td>Age specific population of females in 1947</td>
</tr>
<tr>
<td>[,28]</td>
<td>M1950</td>
<td>numeric</td>
<td>Age specific population of males in 1950</td>
</tr>
</tbody>
</table>
Japanese population data by sex and age given as national official census record.

- **Age**: Ages, combined for 110+.
- **M1888-M2020**: Age specific number of males’ population in Japan for 1888-2020.
- **F1888-F2020**: Age specific number of females’ population in Japan for 1888-2020.

Source

References

Jvital
Longitudinal data of several vital statistics in Japan

Description
The data gives longitudinal data of several vital statistics in Japan. Included indices are crude birth rates, crude death rates, infant mortality rates, and so on.

Usage
Jvital

Format
A data frame with 119 observations on 19 variables.

[, 1] YEAR numeric Year
[, 2] CBR numeric Crude birth rates of Japan
[, 3] CDR numeric Crude death rates of Japan
[, 4] IMR numeric Infant mortality rates of Japan
[, 5] NMR numeric Neonatal mortality rates of Japan
[, 6] NIR numeric Natural increase rates of Japan
[, 7] SBRPB numeric Stillbirth rates of Japan
[, 8] SARPB numeric Spontaneous abortion rates of Japan
[, 9] ACRPB numeric Artificial contraception rates of Japan
[,10] PNMPB numeric Perinatal mortalities per birth of Japan
[,11] MR numeric Marriage rates of Japan
[,12] DR numeric Divorce rates of Japan
[,13] TFR numeric Total fertility rates of Japan
[,14] ASMRM numeric Age-standardized mortality rates of males in Japan
[,15] ASMRM2 numeric Age-standardized mortality rates of males in Japan using new model population 2015
Details

Longitudinal vital statistics in Japan provided as national official vital statistics every year from 1899 to 2020, except for 1944-1946.

- **YEAR**: Calendar year.
- **CBR**: Crude birth rate. Number of all live birth / mid-year population 1000.
- **CDR**: Crude death rate. Number of death / mid-year population 1000.
- **IMR**: Infant mortality rate. Number of death at age 0 / 1000 live births.
- **NMR**: Neonatal mortality rate. Number of death within 4 weeks after birth / 1000 live births.
- **NIR**: Natural increase rate. CBR-CDR.
- **SBRPB**: Stillbirth rate per birth. Number of stillbirths / 1000 births.
- **SARPB**: Spontaneous abortion rate per birth. Number of spontaneous abortions / 1000 births.
- **ACRPB**: Artificial contraception (= induced abortion) rate per birth. Number of induced abortions / 1000 births.
- **PNMPB**: Perinatal mortality per birth. [(Number of stillbirths after gestational age 22 weeks) + (Number of early neonatal deaths within a week after birth)] per 1000 births. The denominator is the sum of the number of stillbirths after gestational age 22 weeks and the number of live births. This definition was established in 1995, but PNMPB also includes some values before 1995.
- **MR**: Marital rate. The number of marriages / mid-year population 1000.
- **DR**: Divorce rate. The number of divorces / mid-year population 1000.
- **TFR**: Total fertility rate. The sum of age-specific fertility rates, which is the number of births divided by the number of women’s population for each age.
- **ASMRM**: Age-standardized mortality rate of males, per mid-year population 1000, where the standard population is the model population in 1985 (S60MPJ).
- **ASMRM2**: Age-standardized mortality rate of males, per mid-year population 1000, where the standard population is the model population in 2015 (H27MPJ).
- **ASMRF**: Age-standardized mortality rate of females, per mid-year population 1000, where the standard population is the model population in 1985 (S60MPJ).
- **ASMRF2**: Age-standardized mortality rate of females, per mid-year population 1000, where the standard population is the model population in 2015 (H27MPJ).
- **PNMPLB**: Perinatal mortality per live birth. [(Number of stillbirths after gestational age 28 weeks) + (Number of early neonatal deaths within a week after birth)] per 1000 live births (Note: the denominator does not include stillbirths!). This definition stood until 1994, but PNMPLB also includes values after 1995, for comparison.
- **MMR**: Maternal mortality rate (actually ratio) per birth. (Number of maternal deaths during pregnancy or postpartum periods within 42 days [90 days until 1978] after the delivery due to reproduction-related causes) / (Number of total births = live births + stillbirths)* 100,000.

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[, 16]</td>
<td>ASMRF</td>
<td>numeric Age-standardized mortality rates of females in Japan</td>
</tr>
<tr>
<td>[, 17]</td>
<td>ASMRF2</td>
<td>numeric Age-standardized mortality rates of females in Japan using new model population 2015</td>
</tr>
<tr>
<td>[, 18]</td>
<td>PNMPLB</td>
<td>numeric Perinatal mortalities per live births of Japan</td>
</tr>
<tr>
<td>[, 19]</td>
<td>MMR</td>
<td>numeric Maternal mortality rates per 100000 births in Japan</td>
</tr>
</tbody>
</table>
Source

References

Jvital2013byPref

Cross sectional data of several vital statistics in Japan 2013 for each prefecture

Description

The data gives cross sectional data of several vital statistics in Japan 2013 for each prefecture. Included indices are crude birth rates, crude death rates, infant mortality rates, and so on.

Usage

Jvital2013byPref

Format

A data frame with 47 observations on 34 variables.

<table>
<thead>
<tr>
<th>[, 1]</th>
<th>PNAME</th>
<th>factor w/47 levels</th>
<th>The name (in roma-ji) for prefectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>[, 2]</td>
<td>JCODE</td>
<td>numeric</td>
<td>Prefecture number defined by Geographical Information Authority of Japan</td>
</tr>
<tr>
<td>[, 3]</td>
<td>CBR</td>
<td>numeric</td>
<td>Crude birth rates</td>
</tr>
<tr>
<td>[, 4]</td>
<td>CDR</td>
<td>numeric</td>
<td>Crude death rates</td>
</tr>
<tr>
<td>[, 5]</td>
<td>IMR</td>
<td>numeric</td>
<td>Infant mortality rates</td>
</tr>
<tr>
<td>[, 6]</td>
<td>NMR</td>
<td>numeric</td>
<td>Neonatal mortality rates</td>
</tr>
<tr>
<td>[, 7]</td>
<td>NIR</td>
<td>numeric</td>
<td>Natural increase rates</td>
</tr>
<tr>
<td>[, 8]</td>
<td>SBRPB</td>
<td>numeric</td>
<td>Stillbirth rates</td>
</tr>
<tr>
<td>[, 9]</td>
<td>SARPB</td>
<td>numeric</td>
<td>Spontaneous abortion rates</td>
</tr>
</tbody>
</table>
Details

Official vital statistics in Japan in 2013 for each prefecture.

- **PNAME**: The name (in roma-ji) for prefectures.
- **JCODE**: Prefecture number defined by Geographical Information Authority of Japan. From 1 to 47.
- **CBR**: Crude birth rate. Number of all live birth / mid-year population 1000.
- **CDR**: Crude death rate. Number of death / mid-year population 1000.
- **IMR**: Infant mortality rate. Number of death at age 0 / 1000 live births.
- **NMR**: Neonatal mortality rate. Number of death within 4 weeks after birth / 1000 live births.
- **NIR**: Natural increase rate. CBR-CDR.
- **SBRPB**: Stillbirth rate per birth. Number of stillbirths / 1000 births.
- **SARPB**: Spontaneous abortion rate per birth. Number of spontaneous abortions / 1000 births.
- **ACRPB**: Artificial contraception (= induced abortion) rate per birth. Number of induced abortions / 1000 births.
- **PNMPB**: Perinatal mortality per birth. [(Number of stillbirths after gestational age 22 weeks) + (Number of early neonatal deaths within a week after birth)] per 1000 births. The denominator is the sum of the number of stillbirths after gestational age 22 weeks and the number of live births.
births. This definition was established in 1995, but PNMPB also includes some values before 1995.

- **SBRA22W**: Stillbirth rate after gestational age of 22 weeks per 1000 births.
- **ENMR**: Early neonatal mortality rate per 1000 live births.
- **MR**: Marital rate. The number of marriages / mid-year population 1000.
- **DR**: Divorce rate. The number of divorces / mid-year population 1000.
- **TFR**: Total fertility rate. The sum of age-specific fertility rates, which is the number of births divided by the number of women’s population for each age.
- **CSM.ALL**: Cause-specific mortality for all causes. Similar to CDR, but the denominator is mid-year population 100000 instead of 1000.
- **CSM.CANCER**: Cause-specific mortality for cancer. The number of deaths caused by cancer / mid-year population 100000.
- **CSM.HD**: Cause-specific mortality for heart disease except for hypertension / mid-year population 100000.
- **CSM.PNEUM**: Cause-specific mortality for pneumonia / mid-year population 100000.
- **CSM.CEVD**: Cause-specific mortality for cerebrovascular disease / mid-year population 100000.
- **CSM.SEN**: Cause-specific mortality for senescence / mid-year population 100000.
- **CSM.ACC**: Cause-specific mortality for accidents / mid-year population 100000.
- **CSM.SUI**: Cause-specific mortality for suicide / mid-year population 100000.
- **CSM.KF**: Cause-specific mortality for kidney failure / mid-year population 100000.
- **CSM.COPD**: Cause-specific mortality for chronic obstructive pulmonary disease / mid-year population 100000.
- **CSM.AA**: Cause-specific mortality for aneurysm of aorta / mid-year population 100000.
- **CSM.LIVD**: Cause-specific mortality for liver disease / mid-year population 100000.
- **CSM.DIAB**: Cause-specific mortality for diabetes / mid-year population 100000.
- **CSM.SEP**: Cause-specific mortality for sepsis / mid-year population 100000.
- **CSM.MNP**: Cause-specific mortality for miscellaneous neoplasms / mid-year population 100000.
- **CSM.DEM**: Cause-specific mortality for dementia / mid-year population 100000.
- **CSM.TB**: Cause-specific mortality for tuberculosis / mid-year population 100000.
- **CSM.TA**: Cause-specific mortality for traffic accidents / mid-year population 100000.

Source

https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei13/xls/hyo.xls
https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei13/xls/sankou.xls

References

Kappa.test

Calculate Cohen’s kappa statistics for agreement

Description

Calculate Cohen’s kappa statistics for agreement and its confidence intervals followed by testing null-hypothesis that the extent of agreement is same as random, kappa statistic equals zero.

Usage

```
Kappa.test(x, y=NULL, conf.level=0.95)
```

Arguments

- **x**: If y is not given, x must be the square matrix that the rows and columns show the ratings of different rater (or repeated measure) and the values indicate the numbers of data having that combination. If y is given, x must be the result of ratings by the first rater (or first time measurement).
- **y**: If given, y must be the result of ratings by the second rater (or second time measurement). As default, it is not given.
- **conf.level**: Probability for confidence intervals for kappa statistics. Default is 0.95.

Value

- **Result$statistic**: Z score to test null-hypothesis.
- **Result$estimate**: Calculated point estimate of Cohen’s kappa statistic.
- **Result$conf.int**: A numeric vector of length 2 to give upper/lower limit of confidence intervals.
- **Result$p.value**: The significant probability as the result of null-hypothesis testing.
- **Judgement**: The judgement for the estimated kappa about the extent of agreement, given by Landis JR, Koch GG (1977) Biometrics, 33: 159-174: If kappa is less than 0, "No agreement", if 0-0.2, "Slight agreement", if 0.2-0.4, "Fair agreement", if 0.4-0.6, "Moderate agreement", if 0.6-0.8, "Substantial agreement", if 0.8-1.0, "Almost perfect agreement".

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

See Also

Kappa

Examples

```r
res <- Kappa.test(matrix(c(20, 10, 5, 15), 2, 2))
str(res)
print(res)
Kappa.test(c(1, 1, 3, 1, 2, 1, 2, 1, 1), c(2, 1, 3, 1, 3, 2, 1, 3, 3))
```

lifetable

Lifetable functions with mutual conversions

Description

Lifetable related functions.

Usage

```r
lifetable(mx, ns=NULL, class=5, mode=1)
lifetable2(mx, ax=0.5, n=1)
lifetable3(lx, ax=0.5, n=1)
clifetable(qx)
lxtodx(lx)
dxtolx(dx)
qxtodx(qx)
dxtoqx(dx)
qxtomx(qx, ax=0.5, n=1, mmax=NULL)
mxtoqx(mx, ax=0.5, n=1)
qxtolx(qx)
lxtolx(lx)
uxtolx(ux)
hlifetable(mx, ax=0.5, n=5, pix=0, Nx=NULL, conf.level=0.95)
getax(lx, Tx, n=5)
```

Arguments

- `mx` Lifetable function mx, meaning the age (class)-specific death rates.
- `ns` If given as a vector with the same length as mx, the duration for each age (class). Default is NULL: same duration with class is automatically used.
- `n` If given as a vector with the same length as mx or qx, the duration for each age (class). Default is 1, which means the length for all age-classes being 1 year.
- `class` Age-class of lifetable() function. Default is 5.
lifetable

mode
How to set ax and correction method in conversion from mx to qx. 1 and 11: all ax is 0.5 except the open-ended class [where ax is reciprocal of mx], 2, 4, 12, 14: ax is 0.1 for age 0, 0.4 for age 1-4, 0.5 for the other ages except the open-ended class [where ax is reciprocal of mx], 3, 5, 13, 15: ax is 0.3 for age 0, 0.4 for age 1-4, 0.5 for the other ages except the open-ended class [where ax is reciprocal of mx], 6 and 16: Males value given in Preston SH (2001), pp.48 Table 3.3, 7 and 17: Females value given in Preston SH (2001), pp.48 Table 3.3. If less than 10, simply calculating qx as \(n*mx/(1+n*(1-ax)*mx) \) (Note: In the formula of Preston SH (2001) pp.47, the function is given as \(n*mx/(1+(n-ax)*mx) \). The difference is due to the formulation of ax. In this function, ax is given for single age, same as Newell C (1988), pp.71) except for the open-ended class where qx=1, otherwise calculating qx by Greville’s method. Default is 1.

ax
Lifetable function ax, fraction of last year lived. Default is 0.5 (scalar) for all classes. It can be given as scalar or vector. Note: This argument can only be specified in lifetable2() or lifetable3(), not in lifetable().

qx
Lifetable function qx, which means the probability of dying between age x and x+1 (for lifetable(), x+class).

mmax
To calculate mx from qx, mx at the maximum open-ended age-class cannot be calculated from qx. In such situation, mmax gives a value for it. Default is NULL.

lx
Lifetable function lx, which means number of people left alive at age x from 100,000 newborns.

dx
Lifetable function dx, which means number of people dying between age x and x+1 (for lifetable(), x+class) from 100,000 newborns. Differentials of lx.

ux
The force of mortality.

pix
age-(class-)specific proportions of unhealthy people.

Nx
Population of xth age-class, which is needed to calculate confidence intervals.

conf.level
The level of confidence intervals. Default is 0.95.

Tx
Lifetable function Tx, which means sum of person-years lived above age x.

Value

ages
Lifetable’s exact age x, which is the beginning of each interval.

n
Duration of each interval. If ns is not given, the value of the class is repeatedly used.

mx
Lifetable function mx, meaning the age (class)-specific death rates.

qx
Lifetable function qx, which means the probability of dying between age x and x+1 (for lifetable(), x+class).

ax
Lifetable function ax, which means the average number of person-years lived in the interval by those dying in the interval. In lifetable(), it’s automatically specified by mode.

lx
Lifetable function lx, which means number of people left alive at age x from 100,000 newborns.
mhchart

Draw maternity history charts.

Description

To compare the maternity histories among several human populations, this kind of graph is useful, inspired by Wood JW (1994) "Dynamics of Human Reproduction", Aldine de Gruyter, New York.

Usage

```
mhchart(LIST, XLIM=c(15,45), COL="black", FILL="white", BWD=1, ...)
```
NagelkerkeR2

Arguments

LIST The list of groups with their maternity histories from first birth to the last birth. Usually the first childbirth age is estimated as median by Kaplan-Meier method, the second childbirth age was given by adding the median of first birth intervals to the first childbirth age by Kaplan-Meier method, and so on.

XLIM The limit of x axis, which means the range of reproductive ages. Default is 15 and 45.

COL The border color. Default is black.

FILL The painting color. Default is white.

BWD The line width of the boxes. Default is 1.

... Other parameters handed to barplot() to draw axes and background.

Value

No value is returned.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

Examples

Developing <- c(18, 21, 24, 27, 30, 33.5, 37)
Hutterite <- c(23, 25, 27, 29, 31, 33, 35, 37, 39)
Gainj <- c(27, 31, 35, 39)
Japan <- c(29, 34)
x <- list(
 Developing=Developing,
 Hutterite=Hutterite,
 Gainj=Gainj,
 Japan=Japan
)mhchart(rev(x), COL="blue", FILL="pink", BWD=2, XLIM=c(15, 45),
main="Maternity histories for selected populations",
xlab="Maternal age (years)"

NagelkerkeR2

Calculate Nagelkerke’s R squared.

Description

To evaluate the goodness of fit of the logistic regression model, calculating Nagelkerke’s R squared from the result of glm(). The Nagelkerke’s R squared means the power of explanation of the model.

Usage

NagelkerkeR2(rr)
Arguments

\(rr \)
The object with class "glm" and "lm", which would be generated by glm().

Value

\(N \)
The number of observations in which the model were fitted.

\(R^2 \)
Nagelkerke's R squared.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

```r
res <- glm(cbind(ncases,ncontrols) ~ agegp+alcgp+tobgp, data=esoph, family=binomial())
summary(res)
NagelkerkeR2(res)
```

oddsratio
Calculate odds ratio and its confidence intervals

Description

Calculate odds ratio and its confidence intervals based on approximation, followed by null-hypothesis (odds ratio equals to 1) testing.

Usage

```r
oddsratio(a, b, c, d, conf.level=0.95, p.calc.by.independence=TRUE)
```

Arguments

\(a \)
A scalar or a matrix. If matrix, it has to be 2 by 2, which contains the number of individuals who both suffer from exposure and disease as [1, 1], the number of individuals who suffer from disease but not exposed as [2, 1], the number of individuals who suffer from exposure but are healthy as [1, 2] and the number of individuals who neither suffered from exposure nor disease as [2, 2].

\(b \)
If a is a scalar, this has to be given as the number of individuals who suffer from disease but not exposed. Otherwise, ignored.
oddsratio

If a is a scalar, this has to be given as the number of individuals who suffer from exposure but are healthy. Otherwise, ignored.

d If a is a scalar, this has to be given as the number of individuals who neither suffered from exposure nor disease. Otherwise, ignored.

conf.level Probability for confidence intervals. Default is 0.95.

p.calc.by.independence Logical. If TRUE, calculating p-value by testing the null-hypothesis of independence between exposure and disease. Otherwise, calculating p-value by inverse-function of confidence intervals calculation (the result becomes the same as the vcd package). Default TRUE.

Value

estimate Calculated point estimate of odds ratio.

conf.int A numeric vector of length 2 to give upper/lower limit of confidence intervals.

p.value The significant probability as the result of null-hypothesis testing.

Note

This function can also accept a matrix as argument, as suggested by Dr. Toshiaki Ara (<toshiaki.ara@gmail.com>). Thanks for a good suggestion.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

```r
res <- oddsratio(5, 10, 85, 80)
str(res)
print(res)
oddsratio(12, 5, 6, 12)
oddsratio(12, 5, 6, 12, p.calc.by.independence=FALSE)
DH <- sample(c("Disease", "Health"), 100, replace=TRUE)
EN <- sample(c("Exposed", "Nonexposed"), 100, replace=TRUE)
x <- table(EN, DH)
oddsratio(x)
# same as oddsratio(x[1,1], x[2,1], x[1,2], x[2,2])
```
ORMH

Calculate pooled odds ratio and its confidence intervals with Mantel-Haenszel’s method

Description

Calculate pooled odds ratio and its confidence intervals with Mantel-Haenszel’s method.

Usage

```r
ORMH(TBL, conf.level=0.95)
```

Arguments

- **TBL**: A matrix with 4 columns. The first column is the number of exposed cases. The second column is the number of unexposed cases. The third column is the number of exposed controls. The forth column is the number of unexposed controls. Rows should be composed of different strata or studies.
- **conf.level**: Probability for confidence intervals. Default is 0.95.

Value

- **estimate**: Calculated point estimate of pooled odds ratio with Mantel-Haenszel’s method.
- **conf.int**: A numeric vector of length 2 to give upper/lower limit of confidence intervals.
- **conf.level**: Simply return the value of given conf.level.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

```r
# Table 10-6 of Rothman's textbook (Chapter 10).
ORMH(matrix(c(3, 9, 104, 1059, 1, 3, 5, 86), 2, 4, byrow=TRUE), conf.level=0.9)
# Figure 8-4 of Rothman's textbook (Chapter 8)
# https://www.ncbi.nlm.nih.gov/pubmed/7630245
# https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)74403-2/fulltext
TenStudies <- matrix(
c(215, 229, 311-215, 306-229,
  38, 33, 59-38, 51-33,
  161, 174, 293-161, 293-174,
  76, 88, 164-76, 163-88,
  103, 105, 129-103, 133-105,
```
pairwise.fisher.test

81, 75, 113:81, 110:75,
48, 63, 160:48, 159:63,
22, 21, 60:22, 62:21,
56, 51, 137:56, 140:51
), 10, 4, byrow=TRUE)

ORMH(TenStudies)

ElevenStudies <- rbind(TenStudies, c(468, 480, 229, 205))

ORMH(ElevenStudies)

pairwise.fisher.test Exact version of pairwise.prop.test

Description

By conducting repeatedly Fisher's exact tests instead of chi-square tests, this function can test the
null-hypothesis of no difference in any pair of proportions for more than 2 groups, with adjustment
of type I error for multiple comparison.

Usage

pairwise.fisher.test(x, n, p.adjust.method, ...)

Arguments

x A integer vector of event occurences
n A integer vector of trials
p.adjust.method A name in p.adjust.methods to specify the method to adjust type I error for
 multiple comparisons. Default is "holm".
... Miscellaneous arguments to be given for fisher.test().

Value

An object of adjusted p-values for all possible comparisons of pairs with class pairwise.htest.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/. The code of
this function was provided by Dr. Shigenobu AOKI (Gunma Univ.).

See Also

pairwise.prop.test, p.adjust.methods
Examples

```r
pairwise.fisher.test(c(2, 4, 5), c(10, 14, 17), p.adjust.method="bonferroni")
smoker <- c(2, 1, 7)
total <- c(11, 14, 10)
names(total) <- c("A", "B", "C")
pairwise.fisher.test(smoker, total)
```

PEI

Population Expansion Index

Description

Population Expansion Index (Bulge Index) for movement.

Usage

```r
PEI(X, CLS, MODE)
```

Arguments

- **X**: The vector to give age-specific population from age 0.
- **CLS**: The width of age-class in X. default is 1.
- **MODE**: If the MODE is 1, the ages of 20 to 39 years old are assumed as "easily movable ages" comparing with "relatively unmovable" 10 to 19 and 40 to 49, otherwise the ages of 15 to 34 years old are assumed as the former and 5 to 14 and 35 to 44 are assumed as the latter, as Dr. Toshio Kuroda suggested in his book. Then PEI (originally named as bulge index, but I prefer to use PEI instead) is calculated as the ratio of the population of "easily movable ages" to the population of "relatively unmovavle ages" times 100. If PEI is larger than 100, net migration may be positive and vise versa. Default 1.

Value

The value of PEI is returned.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

Prefectural population estimates in 2018 (unit=1000 persons)
total of males and females, by 5 year age-class
(Data source) Download Excel file and extracted
[url](https://www.e-stat.go.jp/stat-search/file-download?statInfId=000031807147&fileKind=0)

PPT2018 <- data.frame(
 Hokkaido = c(175, 195, 207, 229, 235, 232, 266, 304, 367, 381, 344, 341, 354, 452, 368, 310, 252, 74),
 Aomori = c(41, 45, 51, 58, 48, 48, 50, 59, 69, 82, 86, 83, 88, 94, 112, 89, 75, 67, 69),
 Iwate = c(41, 47, 52, 57, 50, 49, 59, 81, 82, 78, 84, 91, 106, 82, 74, 67, 75),
 Miyagi = c(85, 93, 98, 109, 123, 119, 130, 144, 164, 163, 144, 146, 155, 182, 139, 116, 98, 108),
 Akita = c(28, 33, 37, 40, 40, 42, 51, 61, 62, 59, 69, 78, 93, 72, 63, 61, 69),
 Yamagata = c(38, 42, 47, 51, 40, 43, 53, 61, 70, 69, 66, 73, 80, 95, 71, 62, 58, 73),
 Fukushima = c(67, 70, 79, 89, 73, 80, 94, 105, 122, 124, 117, 129, 139, 160, 119, 102, 89, 106),
 Ibaraki = c(106, 117, 127, 140, 132, 130, 152, 172, 204, 216, 185, 176, 190, 233, 196, 162, 116, 125),
 Tochigi = c(73, 80, 87, 92, 83, 90, 107, 122, 142, 146, 125, 121, 131, 157, 127, 101, 76, 84),
 Gunma = c(70, 79, 87, 97, 90, 88, 99, 113, 139, 148, 127, 117, 124, 153, 135, 110, 82, 94),
 Saitama = c(279, 299, 312, 343, 405, 381, 407, 458, 552, 608, 508, 428, 415, 524, 488, 411, 275, 235),
 Chiba = c(233, 251, 264, 289, 323, 310, 344, 387, 465, 513, 428, 367, 361, 460, 438, 358, 248, 225),
 Tokyo = c(539, 516, 495, 554, 867, 911, 961, 1013, 1109, 1167, 1005, 810, 687, 797, 750, 647, 500, 494),
 Kanagawa = c(351, 374, 385, 423, 518, 490, 529, 702, 786, 679, 551, 486, 599, 558, 479, 343, 326),
 Niigata = c(78, 88, 94, 103, 92, 94, 111, 127, 152, 154, 141, 141, 155, 190, 151, 129, 111, 135),
 Toyama = c(37, 40, 45, 50, 44, 44, 50, 58, 75, 79, 65, 62, 65, 84, 80, 63, 49, 69),
 Ishikawa = c(44, 48, 51, 57, 57, 53, 58, 65, 82, 86, 71, 68, 70, 86, 80, 63, 47, 58),
 Fukui = c(30, 33, 36, 39, 33, 34, 39, 43, 52, 54, 48, 49, 50, 62, 50, 43, 36, 44),
 Yamanashi = c(29, 32, 36, 41, 38, 35, 39, 44, 53, 60, 56, 53, 54, 64, 54, 47, 37, 46),
 Nagano = c(76, 85, 94, 101, 79, 83, 98, 114, 143, 150, 133, 127, 130, 159, 142, 122, 98, 129),
 Gifu = c(75, 86, 92, 101, 92, 86, 98, 112, 139, 148, 128, 122, 123, 155, 139, 116, 90, 96),
 Shizuoka = c(137, 155, 164, 175, 150, 162, 193, 214, 256, 276, 241, 225, 230, 284, 251, 212, 161, 173),
 Aichi = c(319, 339, 344, 374, 420, 414, 451, 484, 567, 610, 507, 434, 397, 492, 461, 387, 276, 259),
)
Calculate PEI for all prefectures
for (i in 1:47) {
print(PEI(PPT2018[, i], CLS=5))
}
percentile

print(apply(PPT2018, 2, PEI, CLS=5))

percentile
Convert numeric vector into its percentile

Description

Convert numeric vector into its percentile. For example, `1:5` will become `c(0,25,50,75,100)`.

Usage

```r
percentile(dat)
```

Arguments

- `dat`
 A numeric vector, which will be converted into percentile value.

Value

A integer vector in `[0,100]`. Minimum value always becomes 0 and maximum always becomes 100.

Author(s)

Minato Nakazawa `<minatonakazawa@gmail.com>` https://minato.sip21c.org/

Examples

```r
percentile(1:5)
X <- runif(1000, 10, 20)
percentile(X)
```

Prefe0
Changes of life expectancy at birth for each prefecture in Japan since 1965

Description

The data gives the estimates of life expectancy at birth (e0) for each prefecture in Japan since 1965.

Usage

```r
Prefe0
```

Format

A data frame with 47 observations on 26 variables.
Details

Life expectancy at birth for each prefecture in Japan since 1965.

- **PNAME**: The name (in roma-ji) for prefectures.
- **JCODE**: Prefecture number defined by Geographical Information Authority of Japan. From 1 to 47.
- **E0[M|F].**: Life expectancy at birth (e0) of each prefecture for males ([M]) or for females ([F]) in year (*).

Source

https://www.mhlw.go.jp/toukei/saikin/hw/life/tdfk20/dl/tdfk20-08.xls

References

Examples

```r
require(fmsb)
x <- Prefe0
males <- t(x[, 3:14])
colnames(males) <- x$PNAME
females <- t(x[, 15:26])
colnames(females) <- x$PNAME
COL <- ifelse(x$PNAME=="Nagano", "blue", ifelse(x$PNAME=="Okinawa", "red", "lightgrey"))
LWD <- ifelse(x$PNAME=="Nagano", 2, ifelse(x$PNAME=="Okinawa", 2, 1))
LTY <- ifelse(x$PNAME=="Nagano", 1, ifelse(x$PNAME=="Okinawa", 1, 3))
years <- 1965+0:11*5
layout(t(1:2))
matplot(years, males, type="l", col=COL, lwd=LWD, lty=LTY,
main="Changes of e0 for males in each prefecture of Japan
(Blue: Nagano, Red: Okinawa, Grey: Other)"
matplot(years, females, type="l", col=COL, lwd=LWD, lty=LTY,
main="Changes of e0 for females in each prefecture of Japan
(Blue: Nagano, Red: Okinawa, Grey: Other)"
```

Description

The data gives years of life lost by several causes in Japan 2010 for each prefecture. There are several definitions of YLL. For example, WHO’s Global Burden of Disease defines the YLL as the number of deaths multiplied by the standard life expectancy at the age at which death occurs, for a given cause, age and sex (WHO). However, Japanese Ministry of Health, Labor and Welfare gives the expected increase of the life expectancy at birth if the mortality due to each cause of death is removed from the age-specific mortality as the measure of YLL, and thus this dataset implements such data derived from the report of regional life tables in Japan (Ministry of Health, Labor and Welfare, 2010).

Usage

PrefYLL2010

Format

A data frame with 47 observations on 28 variables.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[, 1]</td>
<td>PNAME</td>
<td>factor w/47 levels</td>
<td>The name (in roma-ji) for prefectures</td>
</tr>
<tr>
<td>[, 2]</td>
<td>JCODE</td>
<td>numeric</td>
<td>Prefecture number defined by Geographical Information Authority of Japan</td>
</tr>
<tr>
<td>[, 3]</td>
<td>CancerM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by cancer</td>
</tr>
<tr>
<td>[, 4]</td>
<td>CardioM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by heart diseases except for hypertension</td>
</tr>
<tr>
<td>[, 5]</td>
<td>CerebroM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by cerebrovascular disease</td>
</tr>
<tr>
<td>[, 6]</td>
<td>Top3M</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by cancer, heart disease or cerebrovascular disease</td>
</tr>
<tr>
<td>[, 7]</td>
<td>PneumoniaM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by pneumonia</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Category</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>[8]</td>
<td>AccidentM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by accident</td>
</tr>
<tr>
<td>[9]</td>
<td>TrafficM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by traffic accidents</td>
</tr>
<tr>
<td>[10]</td>
<td>SuicideM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by suicide</td>
</tr>
<tr>
<td>[11]</td>
<td>KidneyM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by kidney failure</td>
</tr>
<tr>
<td>[12]</td>
<td>LiverM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by liver disease</td>
</tr>
<tr>
<td>[13]</td>
<td>DiabetesM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by diabetes</td>
</tr>
<tr>
<td>[14]</td>
<td>HypertensM</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by hypertension</td>
</tr>
<tr>
<td>[15]</td>
<td>Covid19M</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of males by tuberculosis</td>
</tr>
<tr>
<td>[16]</td>
<td>CancerF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by cancer</td>
</tr>
<tr>
<td>[17]</td>
<td>CardioF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by heart diseases except for hypertention</td>
</tr>
<tr>
<td>[18]</td>
<td>CerebroF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by cerebrovascular disease</td>
</tr>
<tr>
<td>[19]</td>
<td>Top3F</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by cancer, heart disease or cerebrovascular disease</td>
</tr>
<tr>
<td>[20]</td>
<td>PneumoniaF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by pneumonia</td>
</tr>
<tr>
<td>[21]</td>
<td>AccidentF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by accident</td>
</tr>
<tr>
<td>[22]</td>
<td>TrafficF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by traffic accidents</td>
</tr>
<tr>
<td>[23]</td>
<td>SuicideF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by suicide</td>
</tr>
<tr>
<td>[24]</td>
<td>KidneyF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by kidney failure</td>
</tr>
<tr>
<td>[25]</td>
<td>LiverF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by liver disease</td>
</tr>
<tr>
<td>[26]</td>
<td>DiabetesF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by diabetes</td>
</tr>
<tr>
<td>[27]</td>
<td>HypertensF</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by hypertension</td>
</tr>
<tr>
<td>[28]</td>
<td>Covid19F</td>
<td>numeric</td>
<td>Years of Life Lost (YLL) of females by tuberculosis</td>
</tr>
</tbody>
</table>

Details

Years of Life Lost by several causes in Japan 2010 for each prefecture.

- **PNAME**: The name (in roma-ji) for prefectures.
- **JCODE**: Prefecture number defined by Geographical Information Authority of Japan. From 1 to 47.
- **Cancer[M|F]**: YLL by cancer for males ([M]) or for females ([F]).
- **Cardio[M|F]**: YLL by heart disease for males ([M]) or for females ([F]).
- **Cerebro[M|F]**: YLL by cerebrovascular disease for males ([M]) or for females ([F]).
- **Top3[M|F]**: YLL by above 3 major diseases for males ([M]) or for females ([F]).
- **Pneumonia[M|F]**: YLL by pneumonia for males ([M]) or for females ([F]).
- **Accident[M|F]**: YLL by accidents for males ([M]) or for females ([F]).
- **Traffic[M|F]**: YLL by traffic accidents (it's also included in Accident[M|F] for males ([M]) or for females ([F]).
- **Suicide[M|F]**: YLL by suicide for males ([M]) or for females ([F]).
- **Kidney[M|F]**: YLL by kidney failure for males ([M]) or for females ([F]).
- **Liver[M|F]**: YLL by liver disease for males ([M]) or for females ([F]).
- **Diabetes[M|F]**: YLL by diabetes for males ([M]) or for females ([F]).
- **Hypertension[M|F]**: YLL by hypertension for males ([M]) or for females ([F]).
- **TB[M|F]**: YLL by tuberculosis for males ([M]) or for females ([F]).
PrefYLL2015

Source
https://www.mhlw.go.jp/toukei/saikin/hw/life/tdfk10/dl/zuhyou.xls

References

Examples
```r
require(fmsb)
x <- PrefYLL2015
COL <- ifelse(x$PNAME=="Nagano", "blue", ifelse(x$PNAME=="Okinawa", "red", ifelse(x$PNAME=="Shiga", "green", "lightgrey")))
LWD <- ifelse(x$PNAME=="Nagano", 2, ifelse(x$PNAME=="Okinawa", 2, ifelse(x$PNAME=="Shiga", 2, 1))))
LTY <- ifelse(x$PNAME=="Nagano", 1, ifelse(x$PNAME=="Okinawa", 1, ifelse(x$PNAME=="Shiga", 1, 3))))
VX <- c("Cancer","Heart\ Disease","Cerebrovascular\ Disease","Top3","Pneumonia","Accident","(Traffic\ Accident)","Suicide","Kidney\ Failure","Liver\ Disease","Diabetes","Hypertension","Tuberculosis")
males <- x[,3:15]
females <- x[,16:28]
layout(t(1:2))
radarchart(males, maxmin=FALSE, pcol=COL, axistype=2, pty=32, plty=LTY, plwd=LWD, vlabels=VX, title="YLLs in males (2010)\n(Blue: Nagano, Green: Shiga,\nRed: Okinawa, Gray: Others)"
) radarchart(females, maxmin=FALSE, pcol=COL, axistype=2, pty=32, plty=LTY, plwd=LWD, vlabels=VX, title="YLL in females (2010)\n(Blue: Nagano, Green: Shiga,\nRed: Okinawa, Gray: Others)"
)
```

PrefYLL2015

Years of Life Lost by several causes in Japan 2015 for each prefecture

Description
The data gives years of life lost by several causes in Japan 2015 for each prefecture. There are several definitions of YLL. For example, WHO’s Global Burden of Disease defines the YLL as the number of deaths multiplied by the standard life expectancy at the age at which death occurs, for a given cause, age and sex (WHO). However, Japanese Ministry of Health, Labor and Welfare gives the expected increase of the life expectancy at birth if the mortality due to each cause of death is removed from the age-specific mortality as the measure of YLL, and thus this dataset implements such data derived from the report of regional life tables in Japan (Ministry of Health, Labor and Welfare, 2015).

Usage
PrefYLL2015

Format
A data frame with 47 observations on 26 variables.
Details

Years of Life Lost by several causes in Japan 2015 for each prefecture.

- **PNAME**: The name (in roma-ji) for prefectures.
- **JCODE**: Prefecture number defined by Geographical Information Authority of Japan. From 1 to 47.
- **CancerM|F**: YLL by cancer for males ([M]) or for females ([F]).
- **CardioM|F**: YLL by heart disease for males ([M]) or for females ([F]).
- **CerebroM|F**: YLL by cerebrovascular disease for males ([M]) or for females ([F]).
- **PneumoniaM|F**: YLL by pneumonia for males ([M]) or for females ([F]).
- **AccidentM|F**: YLL by accidents for males ([M]) or for females ([F]).
- **TrafficM|F**: YLL by traffic accidents (it’s also included in AccidentM|F for males ([M]) or for females ([F]).
- **SuicideM|F**: YLL by suicide for males ([M]) or for females ([F]).
- **KidneyM|F**: YLL by kidney failure for males ([M]) or for females ([F]).
- **LiverM|F**: YLL by liver disease for males ([M]) or for females ([F]).
- **DiabetesM|F**: YLL by diabetes for males ([M]) or for females ([F]).
- **HypertensM|F**: YLL by hypertension for males ([M]) or for females ([F]).
- **TBM** numeric Years of Life Lost (YLL) of males by tuberculosis
- **CancerF**: YLL by cancer for females.
- **CardioF**: YLL by heart diseases except for hypertention for females.
- **CerebroF**: YLL by cerebrovascular disease for females.
- **PneumoniaF**: YLL by pneumonia for females.
- **AccidentF**: YLL by accidents for females.
- **TrafficF**: YLL by traffic accidents for females.
- **SuicideF**: YLL by suicide for females.
- **KidneyF**: YLL by kidney failure for females.
- **LiverF**: YLL by liver disease for females.
- **DiabetesF**: YLL by diabetes for females.
- **HypertensF**: YLL by hypertension for females.
- **TBF** numeric Years of Life Lost (YLL) of females by tuberculosis
PrefYLL2020

- Diabetes[M|F]: YLL by diabetes for males ([M]) or for females ([F]).
- Hypertension[M|F]: YLL by hypertension for males ([M]) or for females ([F]).
- TB[M|F]: YLL by tuberculosis for males ([M]) or for females ([F]).

Source

https://www.mhlw.go.jp/toukei/saikin/hw/life/tdfk15/dl/tdfk15-09.xls

References

Examples

```r
require(fmsb)
x <- PrefYLL2015
COL <- ifelse(x$PNAME=="Nagano", "blue", ifelse(x$PNAME=="Okinawa", "pink",
            ifelse(x$PNAME=="Shiga", "green", "lightgrey")))
LWD <- ifelse(x$PNAME=="Nagano", 2, ifelse(x$PNAME=="Okinawa", 2, ifelse(x$PNAME=="Shiga", 2, 1))))
LTY <- ifelse(x$PNAME=="Nagano", 1, ifelse(x$PNAME=="Okinawa", 1, ifelse(x$PNAME=="Shiga", 1, 3)))
VX <- c("Cancer","Heart\n Disease","Cerebrovascular\n Disease","Pneumonia","Accident","(Traffic\n Accident)","Suicide","Kidney\n Failure","Liver\n Disease","Diabetes","Hypertension","Tuberculosis")
males <- x[,3:14]
females <- x[,15:26]
layout(t(1:2))
radarchart(males, maxmin=FALSE, pcol=COL, axistype=2, pty=32, plty=LTY, plwd=LWD, vlabels=VX,
title="YLLs in males (2015)\n (Blue: Nagano, Green: Shiga,\n Pink: Okinawa, Gray: Others)")
radarchart(females, maxmin=FALSE, pcol=COL, axistype=2, pty=32, plty=LTY, plwd=LWD, vlabels=VX,
title="YLL in females (2015)\n (Blue: Nagano, Green: Shiga,\n Pink: Okinawa, Gray: Others)"
```

PrefYLL2020

Years of Life Lost by several causes in Japan 2020 for each prefecture

Description

The data gives years of life lost by several causes in Japan 2020 for each prefecture. There are several definitions of YLL. For example, WHO’s Global Burden of Disease defines the YLL as the number of deaths multiplied by the standard life expectancy at the age at which death occurs, for a given cause, age and sex (WHO). However, Japanese Ministry of Health, Labor and Welfare gives the expected increase of the life expectancy at birth if the mortality due to each cause of death is removed from the age-specific mortality as the measure of YLL, and thus this dataset implements such data derived from the report of regional life tables in Japan (Ministry of Health, Labor and Welfare, 2020). Until 2015, deaths caused by tuberculosis were analyzed, but in 2020, deaths caused by COVID-19 are calculated instead.
Usage

PrefYLL2020

Format

A data frame with 47 observations on 28 variables.

[, 1] PNAME	factor w/47 levels	The name (in roma-ji) for prefectures
[, 2] JCODE	numeric	Prefecture number defined by Geographical Information Authority of Japan
[, 3] CancerM	numeric	Years of Life Lost (YLL) of males by cancer
[, 4] CardioM	numeric	Years of Life Lost (YLL) of males by heart diseases except for hypertension
[, 5] CerebroM	numeric	Years of Life Lost (YLL) of males by cerebrovascular disease
[, 6] Top3M	numeric	Years of Life Lost (YLL) of males by cancer, heart disease or cerebrovascular disease
[, 7] PneumoniaM	numeric	Years of Life Lost (YLL) of males by pneumonia
[, 8] AccidentM	numeric	Years of Life Lost (YLL) of males by accident
[, 9] TrafficM	numeric	Years of Life Lost (YLL) of males by traffic accidents
[,10] SuicideM	numeric	Years of Life Lost (YLL) of males by suicide
[,11] KidneyM	numeric	Years of Life Lost (YLL) of males by kidney failure
[,12] LiverM	numeric	Years of Life Lost (YLL) of males by liver disease
[,13] DiabetesM	numeric	Years of Life Lost (YLL) of males by diabetes
[,14] HypertensM	numeric	Years of Life Lost (YLL) of males by hypertension
[,15] Covid19M	numeric	Years of Life Lost (YLL) of males by tuberculosis
[,16] CancerF	numeric	Years of Life Lost (YLL) of females by cancer
[,17] CardioF	numeric	Years of Life Lost (YLL) of females by heart diseases except for hypertension
[,18] CerebroF	numeric	Years of Life Lost (YLL) of females by cerebrovascular disease
[,19] Top3F	numeric	Years of Life Lost (YLL) of females by cancer, heart disease or cerebrovascular disease
[,20] PneumoniaF	numeric	Years of Life Lost (YLL) of females by pneumonia
[,21] AccidentF	numeric	Years of Life Lost (YLL) of females by accident
[,22] TrafficF	numeric	Years of Life Lost (YLL) of females by traffic accidents
[,23] SuicideF	numeric	Years of Life Lost (YLL) of females by suicide
[,24] KidneyF	numeric	Years of Life Lost (YLL) of females by kidney failure
[,25] LiverF	numeric	Years of Life Lost (YLL) of females by liver disease
[,26] DiabetesF	numeric	Years of Life Lost (YLL) of females by diabetes
[,27] HypertensF	numeric	Years of Life Lost (YLL) of females by hypertension
[,28] Covid19F	numeric	Years of Life Lost (YLL) of females by tuberculosis

Details

Years of Life Lost by several causes in Japan 2020 for each prefecture.

- **PNAME**: The name (in roma-ji) for prefectures.
- **JCODE**: Prefecture number defined by Geographical Information Authority of Japan. From 1 to 47.
- **Cancer[M|F]**: YLL by cancer for males ([M]) or for females ([F]).
- **Cardio[M|F]**: YLL by heart disease for males ([M]) or for females ([F]).
- **Cerebro[M|F]**: YLL by cerebrovascular disease for males ([M]) or for females ([F]).
• Top3[M|F]: YLL by above 3 major diseases for males ([M]) or for females ([F]).
• Pneumonia[M|F]: YLL by pneumonia for males ([M]) or for females ([F]).
• Accident[M|F]: YLL by accidents for males ([M]) or for females ([F]).
• Traffic[M|F]: YLL by traffic accidents (it’s also included in Accident[M|F] for males ([M]) or for females ([F]).
• Suicide[M|F]: YLL by suicide for males ([M]) or for females ([F]).
• Kidney[M|F]: YLL by kidney failure for males ([M]) or for females ([F]).
• Liver[M|F]: YLL by liver disease for males ([M]) or for females ([F]).
• Diabetes[M|F]: YLL by diabetes for males ([M]) or for females ([F]).
• Hypertension[M|F]: YLL by hypertension for males ([M]) or for females ([F]).
• Covid19[M|F]: YLL by COVID-19 for males ([M]) or for females ([F]).

Source
https://www.mhlw.go.jp/toukei/saikin/hw/life/tdfk20/dl/tdfk20-08.xls

References

Examples
require(fmsb)
x <- PrefYLL2020
COL <- ifelse(x$PNAME=="Nagano", "blue", ifelse(x$PNAME=="Okinawa", "red", ifelse(x$PNAME=="Shiga", "green", "lightgrey")))
LWD <- ifelse(x$PNAME=="Nagano", 2, ifelse(x$PNAME=="Okinawa", 2, ifelse(x$PNAME=="Shiga", 2, 1))))
LTY <- ifelse(x$PNAME=="Nagano", 1, ifelse(x$PNAME=="Okinawa", 1, ifelse(x$PNAME=="Shiga", 1, 3))))
VX <- c("Cancer","Heart\n Disease","Cerebrovascular\n Disease","Top 3 causes","Pneumonia","Accident","(Traffic\n Accident)","Suicide","Kidney\n Failure","Liver\n Disease","Diabetes","Hypertension","Tuberculosis")
males <- x[,3:15]
females <- x[,16:28]
layout(t(1:2))
radarchart(males, maxmin=FALSE, pcol=COL, axistype=2, pty=32, plty=LTY, plwd=LWD, vlabels=VX,
title="YLLs in males (2020)\n (Blue: Nagano, Green: Shiga,\n Red: Okinawa, Gray: Others)")
radarchart(females, maxmin=FALSE, pcol=COL, axistype=2, pty=32, plty=LTY, plwd=LWD, vlabels=VX,
title="YLL in females (2020)\n (Blue: Nagano, Green: Shiga,\n Red: Okinawa, Gray: Others)")
pvalueplot

Drawing p-value function plot by a cross table

Description

Drawing the p-value function (a.k.a. nested confidence intervals) plot of risk ratio (RR) or odds ratio (OR) for a given 2 by 2 cross table, which is strongly recommended by Rothman KJ "Epidemiology: An introduction. 2nd Ed." Oxford Univ. Press.

Until fmsb-0.4.2, the formula to calculate p-values was not appropriate, so that the curve was not correct. Through discussion with Professor Rothman, I realized my mistake, then fixed it in fmsb-0.4.3. The feasible calculation is only possible in the manner of back-calculation from p-values to RR or OR, so that the calculation of p-values is restricted to the given range from 0.0005 to 1.

Usage

pvalueplot(XTAB, plot.OR, plot.log, xrange, add, ...)

Arguments

XTAB A 2 by 2 matrix to draw p-value function (in another term, nested confidence intervals). The table should be given as the cross table for the exposure status being column and the health outcome status being row, opposite from usual manner for cross tabulation. To note, usually the numbers of incidence and the total observed numbers for exposed and nonexposed population as risk data, but in this function, the numbers of incidence and the remaining numbers without disease should be given as rows.

plot.OR Logical. If you want to draw the p-value function for the odds ratio, it should be set at TRUE, otherwise the p-value function for the risk ratio is drawn. Default FALSE.

xrange A numeric vector includes 2 elements for minimum and maximum of x axis. Default is c(0.01, 5).

plot.log Logical. If TRUE, the horizontal axis becomes logarythmic scale. Default FALSE.

add Logical. If TRUE, the line is overlayed on the existing pvalueplot, otherwise the graph is newly plotted. Default FALSE.

... Other options handed down to plot() or lines(). pch, lty or col may be useful.

Value

The data.frame containing the set of p-values (ranging from 0.0005 to 1) and corresponding RR or OR is returned.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/
References

Examples
```
pvalueplot(matrix(c(321, 411, 686-321, 689-411), 2, 2), xrange=c(0.7, 0.9))
pvalueplot(matrix(c(4, 386, 4, 1250), 2, 2), xrange=c(0.1, 20), plot.log=TRUE)
pvalueplot(matrix(c(468, 480, 229, 205), 2, 2), plot.OR=TRUE, xrange=c(0.7, 1.0))
```

Description
Drawing the p-value function (a.k.a. nested confidence intervals) plot of pooled odds ratios (pORs) for several 2 by 2 crosstables, which are stratified by a confounding variable or pooled for several studies, with Mantel-Haenszel’s method.

Usage
```
pvpORMH(XTAB, xrange, add, ...)
```

Arguments
```
XTAB   A matrix with 4 columns. The first column is the number of exposed cases. The second column is the number of unexposed cases. The third column is the number of exposed controls. The forth column is the number of unexposed controls. Rows should be composed of different strata or studies.
xrange A numeric vector includes 2 elements for minimum and maximum of x axis. Default is c(0.6, 1.2).
add    Logical. If TRUE, the line is overlayed on the existing pvalueplot, otherwise the graph is newly plotted. Default FALSE.
...    Other options handed down to plot() or lines(). pch, lty or col may be useful.
```

Value
A data.frame containing the set of p-values (ranging from 0.0005 to 1) and corresponding pORs are returned.

Author(s)
Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References
Examples

TenStudies <- matrix(
 c(215, 229, 311-215, 306-229,
 38, 33, 59-38, 51-33,
 161, 174, 293-161, 293-174,
 76, 88, 164-76, 163-88,
 103, 105, 129-103, 133-105,
 65, 67, 120-65, 125-67,
 81, 75, 113-81, 110-75,
 48, 63, 160-48, 159-63,
 22, 21, 60-22, 62-21,
 56, 51, 137-56, 140-51
), 10, 4, byrow=TRUE)
ElevenStudies <- rbind(TenStudies, c(468, 480, 229, 205))
Figure 8-4 in Chapter 8 of Rothman’s textbook.
pvpORMH(TenStudies)
pvpORMH(ElevenStudies, add=TRUE, lty=2)
segments(1, 0, 1, 1, lwd=2)

radarchart Drawing radar chart (a.k.a. spider plot)

Description

Drawing the radar chart with several lines from a data frame, which must be composed of more than 3 variables as axes and the rows indicate cases as series.

Usage

radarchart(df, axistype, seg, pty, pcol, plty, plwd, pdensity, pangle, pfcol,
cglty, cglwd, cglcol, axislabcol, title, maxmin, na.itp, centerzero,
vlabels, vlcex, caxislabels, calcex, paxislabels, palcex, ...)

Arguments

df The data frame to be used to draw radarchart. If maxmin is TRUE, this must include maximum values as row 1 and minimum values as row 2 for each variables, and actual data should be given as row 3 and lower rows. The number of columns (variables) must be more than 2.

axistype The type of axes, specified by any of 0:5. 0 means no axis label. 1 means center axis label only. 2 means around-the-chart label only. 3 means both center and around-the-chart (peripheral) labels. 4 is *.* format of 1, 5 is *.*.* format of 3. Default is 0.

seg The number of segments for each axis (default 4).

pty A vector to specify point symbol: Default 16 (closed circle), if you don’t plot data points, it should be 32. This is repeatedly used for data series.

pcol A vector of color codes for plot data: Default 1:8, which are repeatedly used.
`plty` A vector of line types for plot data: Default 1:6, which are repeatedly used.
`plwd` A vector of line widths for plot data: Default 1, which is repeatedly used.
`pdensity` A vector of filling density of polygons: Default NULL, which is repeatedly used.
`pangle` A vector of the angles of lines used as filling polygons: Default 45, which is repeatedly used.
`pfcol` A vector of color codes for filling polygons: Default NA, which is repeatedly used.
`cglty` Line type for radar grids: Default 3, which means dotted line.
`cglwd` Line width for radar grids: Default 1, which means thinnest line.
`cglcol` Line color for radar grids: Default "navy".
`axislabcol` Color of axis label and numbers: Default "blue".
`title` if any, title should be typed.
`maxmin` Logical. If true, data frame includes possible maximum values as row 1 and possible minimum values as row 2. If false, the maximum and minimum values for each axis will be calculated as actual maximum and minimum of the data. Default TRUE.
`na.itp` Logical. If true, items with NA values are interpolated from nearest neighbor items and connect them. If false, items with NA are treated as the origin (but not pointed, only connected with lines). Default FALSE.
`centerzero` Logical. If true, this function draws charts with scaling originated from (0,0). If false, charts originated from (1/segments). Default FALSE.
`vlabels` Character vector for the names for variables. If NULL, the names of the variables as colnames(df) are used. Default NULL.
`vlcex` Font size magnification for vlabels. If NULL, the font size is fixed at text()’s default. Default NULL.
`caxislabels` Character vector for center axis labels, overwriting values specified in axistype option. If NULL, the values specified by axistype option are used. Default is NULL.
`calcex` Font size magnification for caxislabels. If NULL, the font size is fixed at text()’s default. Default NULL.
`paxislabels` Character vector for around-the-chart (peripheral) labels, overwriting values specified in axistype option. If NULL, the values specified by axistype option are used. Default is NULL.
`palcex` Font size magnification for paxislabels. If NULL, the font size is fixed at text()’s default. Default NULL.
`...` Miscellaneous arguments to be given for plot.default().

Value

No value is returned.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/
Examples

Data must be given as the data frame, where the first cases show maximum.
maxmin <- data.frame(
 total=c(5, 1),
 phys=c(15, 3),
 psycho=c(3, 0),
 social=c(5, 1),
 env=c(5, 1))

data for radarchart function version 1 series, minimum value must be omitted from above.
RNGkind("Mersenne-Twister")
set.seed(123)
dat <- data.frame(
 total=runif(3, 1, 5),
 phys=rnorm(3, 10, 2),
 psycho=c(0.5, NA, 3),
 social=runif(3, 1, 5),
 env=c(5, 2.5, 4))
dat <- rbind(maxmin,dat)

op <- par(mar=c(1, 2, 2, 1),mfrow=c(2, 2))
radarchart(dat, axistype=1, seg=5, plty=1, vlabels=c("Total
QOL", "Physical
aspects","Phychological
aspects", "Social
aspects", "Environmental
aspects"),
title="(axis=1, 5 segments, with specified vlables)",vlcex=0.5)
radarchart(dat, axistype=2, pcol=topo.colors(3), plty=1, pdensity=c(5, 10, 30),
pangle=c(10, 45, 120), pfcol=topo.colors(3),
title="(topo.colors, fill, axis=2)"
)
radarchart(dat, axistype=3, pty=32, plty=1, axislabcol="grey", na.itp=FALSE,
title="(no points, axis=3, na.itp=FALSE)"
)
radarchart(dat, axistype=1, plwd=1:5, pcol=1, centerzero=TRUE,
seg=4, caxislabels=c("worst", "", ",", "best"),
title="(use lty and lwd but b/w, axis=1,\ncenterzero=TRUE, with centerlabels)"
)par(op)

ratedifference
Calculate incidence rate difference and its confidence intervals

Description

Calculate incidence rate difference (a kind of attributable risk / excess risk) and its confidence
intervals based on approximation, followed by null hypothesis (incidence rate difference equals to
0) testing.

Usage

ratedifference(a, b, PT1, PT0, CRC=FALSE, conf.level=0.95)

Arguments

a The number of disease occurrence among exposed cohort.
b The number of disease occurrence among non-exposed cohort.
Calculate incidence rate ratio and its confidence intervals

Description

Calculate incidence rate ratio (a kind of relative risk) and its confidence intervals based on approximation, followed by null hypothesis (incidence rate ratio equals to 1) testing.

Usage

```
rateratio(a, b, PT1, PT0, conf.level=0.95)
```

Arguments

- `a`: The number of disease occurrence among exposed cohort.
- `b`: The number of disease occurrence among non-exposed cohort.
- `PT1`: The observed person-time of the exposed cohort.
- `PT0`: The observed person-time of the unexposed cohort.
- `conf.level`: Probability for confidence intervals. Default is 0.95.
Value

estimate
Calculated point estimate of incidence rate ratio.

conf.int
A numeric vector of length 2 to give upper/lower limit of confidence intervals.

p.value
The significant probability of the result of null-hypothesis testing.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

res <- rateratio(136, 1709, 22050, 127650)
str(res)
print(res)

RCI
Calculate risk and its confidence interval

Description

Calculate risk and its confidence interval by the simple asymptotic method.

Usage

RCI(a, N, conf.level=0.9)

Arguments

a
Number of cases

N
Number of population at risk

conf.level
Probability for confidence intervals. Default is 0.9.

Value

R
Point estimate of risk.

RL
Lower limit of confidence interval

RU
Upper limit of confidence interval

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/
riskdifference

References

Examples
By simple asymptotic method
RCI(20, 100)
By Wilson Score (without continuity correction)
prop.test(20, 100, conf.level=0.9, correct=FALSE)
By Exact method
binom.test(20, 100, conf.level=0.9)

Description
Calculate risk difference (a kind of attributable risk / excess risk) and its confidence intervals based on approximation, followed by null hypothesis (risk difference equals to 0) testing.

Usage
riskdifference(a, b, N1, N0, CRC=FALSE, conf.level=0.95)

Arguments
a The number of disease occurrence among exposed cohort.
b The number of disease occurrence among non-exposed cohort.
N1 The population at risk of the exposed cohort.
N0 The population at risk of the unexposed cohort.
CRC Logical. If TRUE, calculate confidence intervals for each risk. Default is FALSE.
conf.level Probability for confidence intervals. Default is 0.95.

Value
estimate Calculated point estimate of risk difference.
conf.int A numeric vector of length 2 to give upper/lower limit of confidence intervals.
p.value The significant probability of the result of null-hypothesis testing.

Author(s)
Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References
Examples

```r
res <- riskdifference(321, 411, 686, 689, CRC=TRUE)
str(res)
print(res)
```

riskratio

Calculate risk ratio and its confidence intervals

Description

Calculate risk ratio (a kind of relative risk) and its confidence intervals based on approximation, followed by null hypothesis (risk ratio equals to 1) testing.

Usage

```r
riskratio(X, Y, m1, m2, conf.level=0.95, p.calc.by.independence=TRUE)
```

Arguments

- `X` The number of disease occurrence among exposed cohort.
- `Y` The number of disease occurrence among non-exposed cohort.
- `m1` The number of individuals in exposed cohort group.
- `m2` The number of individuals in non-exposed cohort group.
- `conf.level` Probability for confidence intervals. Default is 0.95.
- `p.calc.by.independence` Logical. If TRUE, calculating p-value by testing the null-hypothesis of independence between exposure and disease. Otherwise, calculating p-value by inverse-function of confidence intervals calculation (the result becomes the same as the vcd package). Default TRUE.

Value

- `estimate` Calculated point estimate of risk ratio.
- `conf.int` A numeric vector of length 2 to give upper/lower limit of confidence intervals.
- `p.value` The significant probability of the result of null-hypothesis testing.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

roc

Examples

```r
res <- riskratio(5, 10, 90, 90)
str(res)
print(res)
riskratio(12, 5, 18, 17)
riskratio(12, 5, 18, 17, p.calc.by.independence=FALSE)
```

Description

Calculate Receiver Operating Characteristic (ROC) curve's each performance set of [sensitivity, 1-specificity], each distance of the performance from the worst performance [0, 1], and each piece of area under the curve, for each cutoff point, as list. Fittest cut off is suggested as the set of [sensitivity, 1-specificity] which gives the longest distance from [0, 1] (though it’s not common). If option maxdist=FALSE is given, the distances are calculated from the best performance [1, 0] and fittest cut off is the set of [sensitivity, 1-specificity] which gives minimum distance from best performance.

Usage

```r
roc(values, iscase, maxdist=TRUE)
```

Arguments

- `values` A numeric vector of measured values.
- `iscase` A logical (or 0/1) vector of diagnostics. Negative result must be given by FALSE or 0.
- `maxdist` A logical value to specify the method of distance calculation to seek the best cutoff. Default TRUE.

Value

- `cutoff` The numeric vector of cutoff points, which are composed of the all unique values among the given measurements and the maximum cutoff is maximum measurement plus 1. Therefore, the minimum cutoff gives [1, 1] and the maximum cutoff gives [0, 0] as the performance set of [sensitivity, 1-specificity], respectively.
- `sens` The numeric vector of sensitivities for all cutoff points.
- `falsepos` The numeric vector of 1-specificities (false positiveness) for all cutoff points.
- `distance` The numeric vector of distance between actual performance set and the worst performance.
- `aucpiece` The numeric vector of the pieces of areas under the curve.
- `maxdist` Same as the given argument maxdist.
Description

The data gives the age-class (by five) specific model population of Japan in Showa 60 (1985) to calculate directly adjusted mortality rate.

Usage

S60MPJ

Format

A vector containing 18 observations.

Source

References

Siler’s model mortality for qx and its fitting

Description
Implementing Siler’s model mortality function of qx and fitting the model to actual qx of given lifetable.

Usage
Siler(a1, b1, a2, a3, b3, t)
fisSiler(initialpar=c(0.01,3,1e-4,1e-5,0.1), data, mode=1, Method="Nelder-Mead", ...)

Arguments
- a1: The parameter a1 of the Siler model, q(t)=a1*exp(-b1*t)+a2+a3*exp(b3*t).
- b1: The parameter b1 of the Siler model, q(t)=a1*exp(-b1*t)+a2+a3*exp(b3*t).
- a2: The parameter a2 of the Siler model, q(t)=a1*exp(-b1*t)+a2+a3*exp(b3*t).
- a3: The parameter a3 of the Siler model, q(t)=a1*exp(-b1*t)+a2+a3*exp(b3*t).
- b3: The parameter b3 of the Siler model, q(t)=a1*exp(-b1*t)+a2+a3*exp(b3*t).
- t: Age (vector OK) in years
- initialpar: Initial value for the parameters to be estimated. If not given, c(0.01, 0.0003, 0.07) is used.
- data: Actual vector of qx in the lifetable to be used to obtain the best-fit parameters of the Gompertz-Makeham model.
- mode: Which of lifetable functions should be used to calculate the RMSE: 1 qx, 2 dx, otherwise lx. Default is 1.
- Method: The method to be used in optim() function. Default is "Nelder-Mead".
- ...: Other options to be passed to optim().

Value
Siler() returns model qx for the same length with t. fitSiler() returns the numeric vector of fitted parameters a1, b1, a2, a3 and b3, RMSE for those values, and the flag of convergence.

Author(s)
Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

See Also
Jlife
Examples

```r
res <- fitSiler(Jlife$qx2005M)
FLAG <- res[7]
while (FLAG>0) {
  res <- fitSiler(res[1:5], Jlife$qx2005M)
  FLAG <- res[7]
}
print(res)
```

SIQR
Calculate semi-interquartile range

Description

Calculate semi-interquartile range, using IQR or fivenum.

Usage

```r
SIQR(X, mode)
```

Arguments

- **X**: a numeric vector.
- **mode**: If 1, using fivenum, otherwise using IQR function. Default is 1.

Value

A numeric vector of length 1, giving the semi-interquartile range.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

Examples

```r
data <- rnorm(100, 10, 1)
SIQR(data)
SIQR(data, 2)
sd(data)
idata <- sample(50:80, 100, replace=TRUE)
SIQR(idata)
SIQR(idata, 2)
sd(idata)
```
spearman.ci.sas

Calculate Spearman’s rank correlation with its confidence intervals by SAS method

Description

Calculate Spearman’s rank correlation with its confidence intervals by the same method as SAS. Since fmsb-0.7.3, missing values are excluded pairwisely before calculation.

Usage

spearman.ci.sas(x, y, adj.bias=TRUE, conf.level=0.95)

Arguments

x
A numeric vector.

y
A numeric vector.

adj.bias
Logical. If TRUE, adjustment for bias is taken. Default TRUE.

conf.level
Probability for confidence intervals. Default is 0.95.

Value

rho
Calculated point estimate of Spearman’s rank correlation coefficient.

rho.ll
The lower limit of given confidence intervals.

rho.ul
The upper limit of given confidence intervals.

adj.bias
The option for bias adjustment taken.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

data(airquality)
spearman.ci.sas(airquality$Ozone, airquality$Wind)
Calculate true median for data with ties.

Description

Usually median for data with ties, tied values are treated as exactly same. For example, median of 3, 3, 4, 4, 4 will be 4. However, the measured values are usually rounded, so that we can assume evenly distributed true values for tied values. For example, the previous data can be treated as rounded values of 2.75, 3.25, 11/3, 4, 13/3. From this viewpoint, true median of 3, 3, 4, 4, 4 could be 11/3 (=3.66...). This function calculates this.

Usage

truemedian(X, h)

Arguments

X A numeric vector. Usually integer.

h Width of measurement unit. Default is 1.

Value

A numeric vector of length 1, giving "true" median estimate.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

median(c(3, 3, 4, 4, 4))
truemedian(c(3, 3, 4, 4, 4))
VIF

`Calculate variance inflation factor (VIF) from the result of lm.`

Description

To evaluate multicollinearity of multiple regression model, calculating the variance inflation factor (VIF) from the result of `lm()`. If VIF is more than 10, multicollinearity is strongly suggested.

Usage

```
VIF(X)
```

Arguments

- `X` The object with class "lm", which would be generated by `lm()`.

Value

A variance inflation factor is returned.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

Examples

```
# the target multiple regression model
res <- lm(Ozone ~ Wind+Temp+Solar.R, data=airquality)
summary(res)
# checking multicollinearity for independent variables.
VIF(lm(Wind ~ Temp+Solar.R, data=airquality))
VIF(lm(Temp ~ Wind+Solar.R, data=airquality))
VIF(lm(Solar.R ~ Wind+Temp, data=airquality))
```

WhipplesIndex

`Whipple's Index`

Description

Whipple’s Index for age-heaping

Usage

```
WhipplesIndex(X)
```
WhipplesIndex

Arguments

X The integer vector to give age-specific population from age 0 to more than 63 for each age.

Value

WI The Whipple’s Index.
JUDGE Based on Whipple’s Index, accuracy of age-reporting is judged.

Author(s)

Minato Nakazawa <minatonakazawa@gmail.com> https://minato.sip21c.org/

References

Examples

WhipplesIndex(Jpop$M2000)
India <- read.delim("https://minato.sip21c.org/ldaR/India2011census.txt")
WhipplesIndex(India$Males)
Index

* datasets
 H27MPJ, 11
 JASM, 15
 Jfert, 16
 Jlife, 18
 Jpop, 20
 JpopL, 22
 Jvital, 24
 Jvital2013byPref, 26
 Prefe0, 41
 PrefYLL2010, 43
 PrefYLL2015, 45
 PrefYLL2020, 47
 S60MPJ, 60

 CaretakerRatio, 2
 clifetable (lifetable), 30
 CM, 3
 CronbachAlpha, 5
 CT, 4, 6

 Denny, 7
 dxtolx (lifetable), 30
 dxtoqx (lifetable), 30

 fitCM (CM), 3
 fitCT (CT), 6
 fitDenny (Denny), 7
 fitGM (GompertzMakeham), 9
 fitHad (Hadwiger), 11
 fitSiler (Siler), 61

 geary.test, 8
 getax (lifetable), 30
 GompertzMakeham, 9
 gstem, 10

 H27MPJ, 11
 Hadwiger, 11
 hlifetable (lifetable), 30

 IndexOfDissimilarity, 12
 IRCI, 13
 IRCIPois, 14

 JASM, 15
 Jfert, 7, 12, 16
 Jlife, 8, 10, 18, 32, 61
 Jp2010s (lifetable), 30
 Jpop, 20
 JpopL, 22
 Jvital, 24
 Jvital2013byPref, 26

 Kappa, 30
 Kappa.test, 29

 lifetable, 30
 lifetable2 (lifetable), 30
 lifetable3 (lifetable), 30
 lxtodx (lifetable), 30
 lxtoqx (lifetable), 30

 mhchart, 32
 mxtoqx (lifetable), 30

 NagelkerkeR2, 33

 oddsratio, 34
 ORMH, 36

 pairwise.fisher.test, 37
 PEI, 38
 percentile, 41
 plot.roc (roc), 59
 Prefe0, 41
 PrefYLL2010, 43
 PrefYLL2015, 45
 PrefYLL2020, 47
 print.roc (roc), 59
 pvalueplot, 50
 pvpORMH, 51
qxtodx (lifetable), 30
qxtolx (lifetable), 30
qxtomx (lifetable), 30
radarchart, 52
ratedifference, 54
rateratio, 55
RCI, 56
riskdifference, 57
riskratio, 58
ROC, 60
roc, 59
S60MPJ, 60
Siler, 61
SIQR, 62
spearman.ci.sas, 63
truemedian, 64
uxtoqx (lifetable), 30
VIF, 65
WhipplesIndex, 65