Package ‘forecTheta’

May 26, 2016

Type Package
Title Forecasting Time Series by Theta Models
Version 2.2
Date 2016-05-25
Author Jose Augusto Fiorucci, Francisco Louzada and Bao Yiqi
Maintainer Jose Augusto Fiorucci <jafiorucci@gmail.com>
BugReports Send an email for <jafiorucci@gmail.com> with title ‘forecTheta Bug’
Depends R (>= 2.0), parallel, forecast, tseries
Description Routines for forecasting univariate time series using Theta Models. Contains several cross-validation routines.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2016-05-26 09:21:12

R topics documented:

 Cross Validation .. 2
 Error Metric .. 3
 expSmoot ... 5
 forecTheta-Package .. 6
 otm.arxiv ... 8
 Plot .. 10
 Theta Models .. 11

Index 15
Cross Validation

Generalised Rolling Origin Evaluation

Description

Usage

groe(y, forecfunction, g="sAPE", n1=length(y)-10, m=5, H=length(y)-n1, p=1+floor((length(y)-n1)/m), ...)

rolOrig(y, forecfunction, g="sAPE", n1=length(y)-10, ...)

fixOrig(y, forecfunction, g="sAPE", n1=length(y)-10, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Object of time series class or a vector</td>
</tr>
<tr>
<td>forecFunction</td>
<td>A forecasting method as one object of the forecast class of forecast package.</td>
</tr>
<tr>
<td>g</td>
<td>The prediction error type of errorMetric function. The possible values are "sAPE", "APE", "AE" and "SE".</td>
</tr>
<tr>
<td>n1</td>
<td>The index of the first origin element.</td>
</tr>
<tr>
<td>m</td>
<td>The number of movements of the origin in each update.</td>
</tr>
<tr>
<td>H</td>
<td>The number of predictions forward of each origin.</td>
</tr>
<tr>
<td>p</td>
<td>The number of origin updates. Default is the maximum.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments for forecfunction.</td>
</tr>
</tbody>
</table>

Details

If \(m=1 \) is computed the Rolling Origin Evaluation. If \(m>=\text{length}(y)-n1 \) is computed the Fixed Origin Evaluation.

Value

The sum of the prediction errors.

Note

The otm.arxiv function use this function for estimate the theta parameter when the theta argument is NULL. Your computer may go into an infinite looping if you use forecfunction = otm.arxiv without specific a numeric value for the theta argument.
Error Metric

Author(s)

Jose Augusto Fiorucci and Francisco Louzada

References

See Also

forecTheta-package, dotm, otm.arxiv

Examples

```r
y1 = 2 + 0.15*(1:20) + rnorm(20,2)
y2 = y1[20]+ 0.3*(1:30) + rnorm(30,2)
y = as.ts(c(y1,y2))

## Rolling Origin Evaluation
rolOrig( y=y, forecFunction = dotm, n1=40)
rolOrig( y=y, forecFunction = expSmoot, n1=40)
rolOrig( y=y, forecFunction = stheta, n1=40)
rolOrig( y=y, forecFunction = otm.arxiv, n1=40, theta=3)

## Fixed Origin Evaluation
fixOrig( y=y, forecFunction = dotm, n1=40)
fixOrig( y=y, forecFunction = expSmoot, n1=40)
fixOrig( y=y, forecFunction = stheta, n1=40)
fixOrig( y=y, forecFunction = otm.arxiv, n1=40, theta=3)

## Generalised Rolling Origin Evaluation with two origin updates.
## Where the first is the 40th element and second is the 45th element
groe( y=y, forecFunction = dotm, m=5, n1=40)
groe( y=y, forecFunction = expSmoot, m=5, n1=40)
groe( y=y, forecFunction = stheta, m=5, n1=40)
groe( y=y, forecFunction = otm.arxiv, m=5, n1=40, theta=3)
```

<table>
<thead>
<tr>
<th>Error Metric</th>
<th>Error Metric Function</th>
</tr>
</thead>
</table>

Description

This function implements some of the more used error metrics. These metrics are "sMAPE", "MAPE", "MAE", "MSE" and they respectively versions with median "sMdAPE", "MdAPE", "MdAE", "MdSE".
Usage

```
errorMetric(obs, forec, type="sAPE", statistic="M")
```

Arguments

- `obs`: A vector or a matrix with the real values.
- `forec`: A vector or a matrix with the estimated values.
- `type`: The error type of "sAPE", "APE", "AE" and "SE".
- `statistic`: The statistic to be returned. Use "M" or "Md" for return the mean or median of the errors. If "N" so a vector with all errors will be returned.

Details

The metric sMAPE is obtained using `type = "sAPE"` and `statistic = "M"`
The metric sMdAPE is obtained using `type = "sAPE"` and `statistic = "Md"`
The metric MAPE is obtained using `type = "APE"` and `statistic = "M"`
The metric MdAPE is obtained using `type = "APE"` and `statistic = "Md"`
The metric MAE is obtained using `type = "AE"` and `statistic = "M"`
The metric MdAE is obtained using `type = "AE"` and `statistic = "Md"`
The metric MSE is obtained using `type = "SE"` and `statistic = "M"`
The metric MdSE is obtained using `type = "SE"` and `statistic = "Md"`

Value

If `statistic="M"` or `statistic="Md"` it is returned the respectively error metric result. If `statistic="N"` so is returned a vector with all errors points according to the chosen error type.

Author(s)

Jose Augusto Fiorucci and Francisco Louzada

See Also

`forecTheta-package`, `groe`

Examples

```
# Example usage

y1 = 2 + 0.15*(1:20) + rnorm(20,2)
y2 = y1[20]+ 0.3*(1:30) + rnorm(30,2)
y = as.ts(c(y1,y2))

out <- dotm(y=as.ts(y[1:40]), h=10)

## sMAPE metric
errorMetric(obs=as.ts(y[41:50]), forec=out$mean)
```
expSmoot

Simple Exponential Smoothing Method

Description

Estimation of Simple Exponential Smoothing Method

Usage

```r
expSmoot(y, h=5, ell0=NULL, alpha=NULL, lower = c(-1e+10, 0.1), upper = c(1e+10, 0.99))
```

Arguments

- **y**: Object of time series class.
- **h**: Number of required forecasting periods.
- **ell0**: The value of \(\ell_0^* \) parameter.
- **alpha**: The value of \(\alpha \) parameter.
- **lower**: The lower limit of parametric space.
- **upper**: The upper limit of parametric space.

Value

A list containing the elements:

- **$y**: The original time series.
- **$par**: The estimated values for \((\ell_1^*, \alpha) \) parameters.
- **$mean**: The forecasting values.
- **$fitted**: A time series element with the fitted points.
- **$residuals**: A time series element with the residual points.

Author(s)

Jose Augusto Fiorucci, Francisco Louzada and Bao Yiqi

See Also

`forecTheta-package`, `stheta`, `dotm`
Examples

```r
y1 = 2 + 0.15*(1:20) + rnorm(20, 2)
y2 = y1[20] + 0.3*(1:30) + rnorm(30, 2)
y = as.ts(c(y1, y2))
expSmoot(y, h=10)
```

Description

In this package we implement functions for forecast univariate time series using the several Theta Models (Fiorucci et al, 2015 and 2016) and the Standard Theta Method of Assimakopoulos \\& Nikolopoulos (2000). Moreover, it is including a function for compute the main errors metrics used in time series forecasting and a function for compute the Generalised Rolling Origin Evaluation, which contain as particular cases the Rolling Origin Evaluation and the Fixed Origin Evaluation of Tashman (2000).

Details

```
Package: forecTheta
Type: Package
Version: 2.2
Date: 2016-05-25
License: GPL (>=2.0)
```

dotm(y, h)
stheta(y, h)
errorMetric(obs, forec, type = "sAPE", statistic = "M")
groe(y, forecFunction = ses, g = "sAPE", n1 = length(y)-10)

Author(s)

Jose Augusto Fiorucci, Francisco Louzada and Bao Yiqi
Maintainer: Jose Augusto Fiorucci <jafiorucci@gmail.com>

References

See Also
dotm, stheta, otm.arxiv, groe, rolOrig, fixOrig, errorMetric

Examples

```r
# Forecasts
y1 = 2 + 0.15*(1:20) + rnorm(20)
y2 = y1[20]+ 0.3*(1:30) + rnorm(30)
y = as.ts(c(y1,y2))
out <- dotm(y, h=10)
summary(out)
plot(out)

out <- dotm(y=as.ts(y[1:40]), h=10)
summary(out)
plot(out)

out2 <- stheta(y=as.ts(y[1:40]), h=10)
summary(out2)
plot(out2)

### sMAPE metric
errorMetric(obs=as.ts(y[41:50]), forec=out$mean, type = "sAPE", statistic = "M")
errorMetric(obs=as.ts(y[41:50]), forec=out2$mean, type = "sAPE", statistic = "M")

### smdAPE metric
errorMetric(obs=as.ts(y[41:50]), forec=out$mean, type = "sAPE", statistic = "Md")
errorMetric(obs=as.ts(y[41:50]), forec=out2$mean, type = "sAPE", statistic = "Md")

### MASE metric
meanDiff1 = mean(abs(diff(as.ts(y[1:40]), lag = 1)))
errorMetric(obs=as.ts(y[41:50]), forec=out$mean, type = "AE", statistic = "M") / meanDiff1
errorMetric(obs=as.ts(y[41:50]), forec=out2$mean, type = "AE", statistic = "M") / meanDiff1

### cross validation (2 origins)
groe(y=y, forecFunction = otm.arxiv, m=5, n1=40, p=2, theta=5)
groe(y=y, forecFunction = stheta, m=5, n1=40, p=2)

### cross validation (rolling origin evaluation)
rolOrig(y=y, forecFunction = otm.arxiv, n1=40, theta=5)
rolOrig(y=y, forecFunction = stheta, n1=40)
```
Optimised Theta Method

Description

Functions for forecast univariate time series using the Optimised Theta Method presented in the arxiv paper (Fioruci et al, 2015). If the theta parameter is not specified so the Generalised Rolling Origin Evaluation is used for select the theta value over the thetaList argument.

Usage

```r
otm.arxiv( y, h=5, s=NULL, theta=NULL, tLineExtrap=expSmoot, g="sAPE", approach="c", n1=NULL, m=NULL, H=NULL, p=NULL, thetaList=seq(from=1,to=5,by=0.5), mc.cores=1, ...)
```

Arguments

- `y`: Object of time series class
- `h`: Number of required forecasting periods
- `s`: If TRUE, the multiplicative seasonal decomposition is used. If NULL, quarterly and monthly time series are tested for statistically seasonal behaviour, with 95% of significance. Default is NULL.
- `theta`: The value of theta parameter. If theta = NULL the theta parameter is estimated using the Generalised Rolling Origin Evaluation.
- `tLineExtrap`: A forecasting function for extrapolation the second theta-line. Default is expSmoot.
- `g`: The error type that will be used by groe function for select the theta value in the estimation process. The possibility values for g is "sAPE", "APE", "AE" and "SE". If theta is not NULL the g argument is not used. Default is "sAPE".
- `approach`: The approach set-up for groe parameters (n1, m, H, p). One letter between 'a' to 'h' according to Fioruci et al (2015).
- `n1`: The first origin for Generalised Rolling Origin Evaluation. This argument is not used if theta!=NULL or approach!=NULL.
- `m`: The number of movements of the origin in each step. This argument is not used if theta!=NULL or approach!=NULL.
- `H`: The number of predictions in each step. This argument is not used if theta!=NULL or approach!=NULL.
- `p`: The number of origin updates. This argument is not used if theta!=NULL or approach!=NULL.
- `thetaList`: A vector with the possible values for theta. This argument is not used if theta argument is not NULL.
- `mc.cores`: Number of cores that will be used for estimate the theta parameter. It is not accepted mc.cores>1 on Windows SO.
- `...`: Additional arguments for tLineExtrap.
Details

These functions are fully automatic, you just need to pass your time series. Particular cases are obtained by: If \(\theta = 1 \) the `tLineExtrapModel` method is computed; If \(\theta = 2 \) so the Standard Theta Method of Assimakopoulos and Nikolopoulos (2000) is computed.

By default (\(s=NULL \)), the 90% significance seasonal Z-test, used by Assimakopoulos and Nikolopoulos (2000), is applied for quarterly and monthly time series.

Value

An list containing the elements:

- \$y \quad \text{The original time series.}
- \$mean \quad \text{A time series element with the forecasting points.}
- \$fitted \quad \text{A time series element with the fitted points.}
- \$residuals \quad \text{A time series element with the residual points.}
- \$theta \quad \text{The estimated theta value.}
- \$tLineExtrap_par \quad \text{The estimated parameters of tLineExtrap method.}
- \$weights \quad \text{The estimated weights values.}

Note

The \(\text{thetam} \) function is just a particular case of \(\text{otm} \) with \(\theta=2 \).

Author(s)

Jose Augusto Fiorucci, Francisco Louzada and Bao Yiqi

References

See Also

`forecTheta-package, dotm, groe`

Examples

```r
y1 = 2 + 0.15*(1:20) + rnorm(20,2)
y2 = y1[20] + 0.3*(1:30) + rnorm(30,2)
y = as.ts(c(y1,y2))

otm.arxiv(y, h=10)
```
running the M3-competition data base by OTM approach (a)

```r
#require(Mcomp)
data(M3)

#forec = matrix(NA, nrow=3003, ncol=18)
#obs = matrix(NA, nrow=3003, ncol=18) #matrix of the out-sample values

#for(i in 1:3003){
#  if(i %% 100 == 0){print(i)}
#  x = M3[[i]]$x
#  h = M3[[i]]$h
#  out = otm.arxiv(x, h, approach='a', tLineExtrap=ses)
#  forec[i, 1:h] = out$mean
#  obs[i, 1:h] = M3[[i]]$xx
#}

#sAPE = errorMetric(obs, forec, type="sAPE", statistic="N") ## sAPE matrix

# sMAPE results ##

### Yearly
#mean( sAPE[1:645, 1:6] )

### QUARTERLY
#mean( sAPE[646:1401, 1:8] )

### MONTHLY
#mean( sAPE[1402:2829, 1:18] )

### Other
#mean( sAPE[2830:3003, 1:8] )

### ALL
#mean( sAPE, na.rm=TRUE )
```

Plot

Plot forecasts points and prediction intervals for thetaModel objects

Description

Produces a figure of the time series and the forecasts points from Optimised Theta Method.

Usage

```r
## S3 method for class 'thetaModel'
plot(x, ylim=NULL, xlim=NULL, ylab=NULL, xlab=NULL, ...)```

**Arguments**

- `x`: Object of class “thetaModel”.
- `ylim`: the y limits of the plot.
- `xlim`: the x limits of the plot.
- `ylab`: a label for the y axis.
xlab  

a label for the x axis.

...  

Other plotting parameters passed to par.

Value

None. Function produces a plot

Author(s)

Jose A Fiorucci

See Also

dotm, forecTheta-package

Examples

```r
y1 = 2 + 0.15*(1:20) + rnorm(20, 2)
y2 = y1[20] + 0.3*(1:30) + rnorm(30, 2)
y = as.ts(c(y1,y2))
out <- dotm(y, h=10)
plot(out)
```

Description

Functions for forecast univariate time series using the Dynamic Optimised Theta Model, Dynamic Standard Theta Model, Optimised Theta Model and Standard Theta Model (Fiorucci et al, 2016). We also provide an implementation for the Standard Theta Method (STheta) of Assimakopoulos and Nikolopoulos (2000).

Usage

```r
dotm(y, h=5, level=c(80, 90, 95), s=NULL, par_ini=c(y[1]/2, 0.5, 2), estimation=TRUE, lower=c(-1e+10, 0.1, 1.0), upper=c(1e+10, 0.99, 1e+10), opt.method="Nelder-Mead")
dstm(y, h=5, level=c(80, 90, 95), s=NULL, par_ini=c(y[1]/2, 0.5), estimation=TRUE, lower=c(-1e+10, 0.1), upper=c(1e+10, 0.99), opt.method="Nelder-Mead")
```

Examples

```r
y1 = 2 + 0.15*(1:20) + rnorm(20, 2)
y2 = y1[20] + 0.3*(1:30) + rnorm(30, 2)
y = as.ts(c(y1,y2))
out <- dotm(y, h=10)
plot(out)
```
**Arguments**

- **y**: Object of time series class.
- **h**: Number of required forecasting periods.
- **level**: Levels for prediction intervals.
- **s**: If TRUE, the multiplicative seasonal decomposition is used. If NULL and frequency(y) >= 4 the time series is tested for statistically seasonal behaviour, with 90% of significance. If s = ‘additive’ or close zero values been find in the multiplicative decomposition, the additive decomposition is performed hatter than multiplicative. Default is NULL.
- **par_ini**: Vector of initialization for (ell, alpha, theta) parameters.
- **estimation**: If TRUE, the optim() function is consider for compute the minimum square estimator of parameters. If FALSE, the models/methods are computed for par_ini values.
- **lower**: The lower limit of parametric space.
- **upper**: The upper limit of parametric space.
- **opt.method**: The numeric optimisation method for optim() function. Choose one among 'Nelder-Mead', 'L-BFGS-B', 'SANN'.

**Details**

By default (s=NULL), the 90% significance seasonal Z-test, used by Assimakopoulos and Nikolopoulos (2000), is applied for quarterly and monthly time series.

For details of each model see Fiorucci et al, 2016. If you are looking for the methods presented in the arXiv paper (Fiorucci et al, 2015), see otm.arxiv() function.

**Value**

An object of thetaModel class with one list containing the elements:

- **$method**: The name of the model/method
- **$y**: The original time series.
- **$s**: A binary indication for seasonal decomposition.
- **type**: Classical seasonal decomposition type.
- **opt.method**: The optimisation method used in the optim() function.
- **$par**: The estimated values for (ell, alpha, theta) parameters
- **$weights**: The estimated weights values.
- **$fitted**: A time series element with the fitted points.
- **$residuals**: A time series element with the residual points.
- **$mean**: The forecasting values.
- **$level**: The levels for prediction intervals.
- **$lower**: Lower limits for prediction intervals.
- **$upper**: Upper limits for prediction intervals.
- **$tests**: The p.value of Teraesvirta Neural Network test applied on unseasoned time series and the p.value of Shapiro-Wilk test applied on unseasoned residuals.
**Theta Models**

**Author(s)**

Jose Augusto Fiorucci, Francisco Louzada and Bao Yiqi

**References**


**See Also**

forecTheta-package, otm.arxiv

**Examples**

```r
y1 = 2 + 0.15*(1:20) + rnorm(20)
y2 = y1[20] + 0.3*(1:30) + rnorm(30)
y = as.ts(c(y1,y2))
out <- dotm(y, h=10)
summary(out)
plot(out)

additive seasonal decomposition
x = sin(2*pi*seq(0.9,len=300)) + exp((1:300)/150) + rnorm(mean=0, sd=0.5, n=300)
y = ts(x, frequency=33)
out <- dotm(y, h=50, s='additive')
summary(out)
plot(out)

######### Reproducing the M3 results by DOTM ###########
library(Mcomp)
data(M3)
forec = matrix(NA, nrow=3003, ncol=18)
obs = matrix(NA, nrow=3003, ncol=18) #matrix of the out-sample values
meanDiff <- rep(1, 3003)
for(i in 1:3003){
if(i %% 100 == 0) print(i);
x=M3[[i]]$x
h=M3[[i]]$h
out = dotm(x,h,level=NULL)
forec[i,1:h] = out$mean
obs[i,1:h] = M3[[i]]$xx
```
```r
meanDiff[i] = mean(abs(diff(x, lag = frequency(x))))
#

sMAPE ################
sAPE_matrix = errorMetric(obs=obs, forec=forec, type="sAPE", statistic="N")
Yearly
mean(sAPE_matrix[1:645, 1:6])
QUARTERLY
mean(sAPE_matrix[646:1401, 1:8])
MONTHLY
mean(sAPE_matrix[1402:2829, 1:18])
Other
mean(sAPE_matrix[2830:3003, 1:8])
ALL
mean(sAPE_matrix, na.rm=TRUE)
#

MASE ##########################
AE_matrix = errorMetric(obs=obs, forec=forec, type="AE", statistic="N")
ASE_matrix = AE_matrix/meanDiff
Yearly
QUARTERLY
mean(ASE_matrix[646:1401, 1:8])
MONTHLY
mean(ASE_matrix[1402:2829, 1:18])
Other
mean(ASE_matrix[2830:3003, 1:8])
ALL
mean(ASE_matrix, na.rm=TRUE)
```

Index

*Topic Cross Validation
  Cross Validation, 2
*Topic DOTM
  Theta Models, 11
*Topic DSTM
  Theta Models, 11
  forecTheta-Package, 6
*Topic Fixed Origin Evaluation
  Cross Validation, 2
*Topic Generalised Rolling Origin Evaluation
  Cross Validation, 2
*Topic MAE
  Error Metric, 3
*Topic MSE
  Error Metric, 3
*Topic MdAE
  Error Metric, 3
*Topic MdSE
  Error Metric, 3
*Topic OTM
  Theta Models, 11
*Topic Rolling Origin Evaluation
  Cross Validation, 2
*Topic STM
  Theta Models, 11
*Topic STheta
  Theta Models, 11
*Topic error metric
  Error Metric, 3
*Topic otm
  otm.arxiv, 8
*Topic plot
  Plot, 10
*Topic sMAPE
  Error Metric, 3
*Topic sMdAPE
  Error Metric, 3
*Topic simple exponential smoothing
  expSmoot, 5
*Topic theta-method
  otm.arxiv, 8
*Topic thetaM
  otm.arxiv, 8
*Topic time series forecasting
  otm.arxiv, 8
  Theta Models, 11

Cross Validation, 2
dotm, 3, 5, 7, 9, 11
dotm(Theta Models), 11
dstm(Theta Models), 11

Error Metric, 3
errorMetric, 7
errorMetric (Error Metric), 3
expSmoot, 5

fixOrig, 7
fixOrig (Cross Validation), 2
forecTheta (forecTheta-Package), 6
forecTheta-Package, 6
forecTheta-package (forecTheta-Package), 6
groe, 4, 7, 9
groe (Cross Validation), 2

otm(Theta Models), 11
otm.arxiv, 3, 7, 8, 13
par, 11
Plot, 10
plot.thetaModel (Plot), 10

rolloOriginal, 7
rolloOriginal (Cross Validation), 2

stheta, 5, 7
stheta (Theta Models), 11
stm (Theta Models), 11

Theta Models, 11