Package ‘forestError’

April 2, 2020

Type Package
Title A Unified Framework for Random Forest Prediction Error Estimation
Version 0.2.0
Author Benjamin Lu and Johanna Hardin
Maintainer Benjamin Lu <b.lu@berkeley.edu>
Description Estimates the conditional error distributions of random forest predictions and common parameters of those distributions, including conditional mean squared prediction errors, conditional biases, and conditional quantiles, by out-of-bag weighting of out-of-bag prediction errors as proposed by Lu and Hardin (2019+) <arXiv:1912.07435>. This package is compatible with several existing packages that implement random forests in R.
Imports data.table, purrr
Suggests randomForest
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2020-04-02 05:50:06 UTC

R topics documented:

 perror ... 2
 qerror ... 3
 quantForestError .. 5

Index 8

1
perror

Estimated conditional prediction error CDFs

Description

Returns probabilities from the estimated conditional cumulative distribution function of the prediction error associated with each test observation.

Usage

```r
perror(q, xs)
```

Arguments

- `q`: A vector of quantiles.
- `xs`: A vector of the indices of the test observations for which the conditional error CDFs are desired. Defaults to all test observations given in the call of `quantForestError`.

Details

This function is only defined as output of the `quantForestError` function. It is not exported as a standalone function. See the example.

Value

If either `q` or `xs` has length one, then a vector is returned with the desired probabilities. If both have length greater than one, then a data.frame of probabilities is returned, with rows corresponding to the inputted `xs` and columns corresponding to the inputted `q`.

Author(s)

Benjamin Lu <b.lu@berkeley.edu>; Johanna Hardin <jo.hardin@pomona.edu>

See Also

`quantForestError`

Examples

```r
# load data
data(airquality)

# remove observations with missing predictor variable values
airquality <- airquality[complete.cases(airquality), ]

# get number of observations and the response column index
n <- nrow(airquality)
```
response.col <- 1

split data into training and test sets
train.ind <- sample(1:n, n * 0.9, replace = FALSE)
Xtrain <- airquality[train.ind, -response.col]
Ytrain <- airquality[train.ind, response.col]
Xtest <- airquality[-train.ind, -response.col]
Ytest <- airquality[-train.ind, response.col]

fit random forest to the training data
rf <- randomForest::randomForest(Xtrain, Ytrain, nodesize = 5,
 ntree = 500,
 keep.inbag = TRUE)

estimate conditional error distribution functions
output <- quantForestError(rf, Xtrain, Xtest,
 what = c("p.error", "q.error"))

get the probability that the error associated with each test
prediction is less than -4 and the probability that the error
associated with each test prediction is less than 7
output$perror(c(-4, 7))

same as above but only for the first three test observations
output$perror(c(-4, 7), 1:3)

qerror

Estimated conditional prediction error quantile functions

Description

Returns quantiles of the estimated conditional error distribution associated with each test prediction.

Usage

qerror(p, xs)

Arguments

- **p**
 - A vector of probabilities.
- **xs**
 - A vector of the indices of the test observations for which the conditional error quantiles are desired. Defaults to all test observations given in the call of quantForestError.

Details

This function is only defined as output of the quantForestError function. It is not exported as a standalone function. See the example.
Value

If either \(p \) or \(xs \) has length one, then a vector is returned with the desired quantiles. If both have length greater than one, then a data.frame of quantiles is returned, with rows corresponding to the inputted \(xs \) and columns corresponding to the inputted \(p \).

Author(s)

Benjamin Lu <b.lu@berkeley.edu>; Johanna Hardin <jo.hardin@pomona.edu>

See Also

quantForestError

Examples

```r
# load data
data(airquality)

# remove observations with missing predictor variable values
airquality <- airquality[complete.cases(airquality),]

# get number of observations and the response column index
n <- nrow(airquality)
response.col <- 1

# split data into training and test sets
train.ind <- sample(1:n, n * 0.9, replace = FALSE)
Xtrain <- airquality[train.ind, -response.col]
Ytrain <- airquality[train.ind, response.col]
Xtest <- airquality[-train.ind, -response.col]
Ytest <- airquality[-train.ind, response.col]

# fit random forest to the training data
rf <- randomForest::randomForest(Xtrain, Ytrain, nodesize = 5,
                                 ntree = 500,
                                 keep.inbag = TRUE)

# estimate conditional error distribution functions
output <- quantForestError(rf, Xtrain, Xtest,
                            what = c("p.error", "q.error"))

# get the 0.25 and 0.8 quantiles of the error distribution
# associated with each test prediction
output$qerror(c(0.25, 0.8))

# same as above but only for the first three test observations
output$qerror(c(0.25, 0.8), 1:3)
```
quantForestError

Quantify random forest prediction error

Description

Estimates the conditional mean squared prediction errors, conditional biases, conditional prediction intervals, and conditional error distributions of random forest predictions.

Usage

```r
cleanForestError(
  forest,
  X.train,
  X.test,
  Y.train = NULL,
  what = c("mspe", "bias", "interval", "p.error", "q.error"),
  alpha = 0.05,
  n.cores = 1
)
```

Arguments

- **forest**
 The random forest object being used for prediction.
- **X.train**
 A matrix or data.frame with the observations that were used to train forest; each row should be an observation, and each column should be a predictor variable.
- **X.test**
 A matrix or data.frame with the observations to be predicted; each row should be an observation, and each column should be a predictor variable.
- **Y.train**
 A vector of the responses of the observations that were used to train forest. Required if forest was created using ranger, but not if forest was created using randomForest, randomForestSRC, or quantregForest.
- **what**
 A vector of characters indicating what estimates are desired. Possible options are conditional mean squared prediction errors ("mspe"), conditional biases ("bias"), conditional prediction intervals ("interval"), conditional error distribution functions ("p.error"), and conditional error quantile functions ("q.error").
- **alpha**
 A vector of type-I error rates desired for the conditional prediction intervals; required if "interval" is included in what.
- **n.cores**
 Number of cores to use (for parallel computation in ranger).

Details

This function accepts regression random forests built using the randomForest, ranger, randomForestSRC, and quantregForest packages. When training the random forest using randomForest, ranger, or quantregForest, keep.inbag must be set to TRUE. When training the random forest using randomForestSRC, membership must be set to TRUE.
The predictions computed by \texttt{ranger} can be parallelized by setting the value of \texttt{n.cores} to be greater than 1.

The random forest predictions are always returned as a \texttt{data.frame}. Additional columns are included in the \texttt{data.frame} depending on the user's selections in the argument \texttt{what}. In particular, including "mspe" in \texttt{what} will add an additional column with the conditional mean squared prediction error of each test prediction to the \texttt{data.frame}; including "bias" in \texttt{what} will add an additional column with the conditional bias of each test prediction to the \texttt{data.frame}; and including "interval" in \texttt{what} will add to the \texttt{data.frame} additional columns with the lower and upper bounds of conditional prediction intervals for each test prediction.

If "p.error" or "q.error" is included in \texttt{what}, then a list will be returned as output. The first element of the list, named "estimates", is the \texttt{data.frame} described in the above paragraph. The other one or two elements of the list are the estimated cumulative distribution functions (\texttt{perror}) and/or the estimated quantile functions (\texttt{qerror}) of the conditional error distributions associated with the test predictions.

Value

A \texttt{data.frame} with one or more of the following columns, as described in the details section:

- \texttt{pred}: The random forest predictions of the test observations
- \texttt{mspe}: The estimated conditional mean squared prediction errors of the random forest predictions
- \texttt{bias}: The estimated conditional biases of the random forest predictions
- \texttt{lower_alpha}: The estimated lower bounds of the conditional alpha-level prediction intervals for the test observations
- \texttt{upper_alpha}: The estimated upper bounds of the conditional alpha-level prediction intervals for the test observations

In addition, one or both of the following functions, as described in the details section:

- \texttt{perror}: The estimated cumulative distribution functions of the conditional error distributions associated with the test predictions
- \texttt{qerror}: The estimated quantile functions of the conditional error distributions associated with the test predictions

Author(s)

Benjamin Lu <b.lu@berkeley.edu>; Johanna Hardin <jo.hardin@pomona.edu>

See Also

\texttt{perror, qerror}
Examples

load data
data(airquality)

remove observations with missing predictor variable values
airquality <- airquality[complete.cases(airquality),]

get number of observations and the response column index
n <- nrow(airquality)
response.col <- 1

split data into training and test sets
train.ind <- sample(1:n, n * 0.9, replace = FALSE)
Xtrain <- airquality[train.ind, -response.col]
Ytrain <- airquality[train.ind, response.col]
Xtest <- airquality[-train.ind, -response.col]
Ytest <- airquality[-train.ind, response.col]

fit random forest to the training data
rf <- randomForest::randomForest(Xtrain, Ytrain, nodesize = 5,
 ntree = 500,
 keep.inbag = TRUE)

estimate conditional mean squared prediction errors, biases, prediction intervals, and error distribution
functions for the test observations
output <- quantForestError(rf, Xtrain, Xtest,
 alpha = 0.05)

estimate just the conditional mean squared prediction errors and prediction intervals for the test observations
output <- quantForestError(rf, Xtrain, Xtest,
 what = c("mspe", "interval"),
 alpha = 0.05)

estimate just the conditional error distribution
functions for the test observations
output <- quantForestError(rf, Xtrain, Xtest,
 what = c("p.error", "q.error"))
Index

forestError (quantForestError), 5
perror, 2, 6
qerror, 3, 6
quantForestError, 2, 4, 5