Package ‘forestinventory’

October 16, 2017

Type Package

Title Design-Based Global and Small-Area Estimations for Multiphase Forest Inventories

Version 0.3.1

Date 2017-10-16

Maintainer Andreas Hill <andreas.hil11@usys.ethz.ch>

Description Extensive global and small-area estimation procedures for multiphase forest inventories under the design-based Monte-Carlo approach are provided. The implementation includes estimators for simple and cluster sampling published by Daniel Mandallaz in 2007 (DOI:10.1201/9781584889779), 2013 (DOI:10.1139/cjfr-2012-0381, DOI:10.1139/cjfr-2013-0181, DOI:10.1139/cjfr-2013-0449, DOI:10.3929/ethz-a-009990020) and 2016 (DOI:10.3929/ethz-a-010579388). It provides point estimates, their external- and design-based variances as well as confidence intervals. The procedures have also been optimized for the use of remote sensing data as auxiliary information.

License GPL (>= 2)

LazyData TRUE

Imports plyr (>= 1.8.3), stats, utils, tidyr, ggplot2

Suggests R.rsp

VignetteBuilder R.rsp

RoxygenNote 6.0.1

NeedsCompilation no

Author Andreas Hill [aut, cre],
Alexander Massey [aut],
Daniel Mandallaz [ctb]

Repository CRAN

Date/Publication 2017-10-16 13:55:38 UTC
R topics documented:

- confint
- estTable
- forestinventory
- grisons
- mphase.gain
- onephase
- plot.esttable
- summary
- threephase
- twophase
- zberg

Index

confint

Calculates Confidence Intervals for Global and Small-Area Estimations

Description

Calculates Confidence Intervals for Global and Small-Area Estimations

Usage

```
## S3 method for class 'onephase'
confint(object, parm, level = 0.95,
         adjust.method = "none", ...)

## S3 method for class 'twophase'
confint(object, parm, level = 0.95,
         adjust.method = "none", ...)

## S3 method for class 'threephase'
confint(object, parm, level = 0.95,
         adjust.method = "none", ...)
```

Arguments

- **object**
 - object of class onephase, twophase or threephase, containing estimation results of the respective estimation method.

- **parm**
 - ignored.

- **level**
 - the confidence level required.

- **adjust.method**
 - correction method to obtain simultaneous confidence intervals for a set of estimates (thus restricted to objects of class "onephase", c("smallarea", "twophase") and c("smallarea", "threephase"). Available correction methods are c("none", "bonferroni"). Defaults to "none".
depending arguments, so far ignored.

Details

Depending on the estimation method specified, \texttt{confint()} computes confidence intervals as follows:

\textbf{onephase:}

Two-sided confidence intervals are computed based on the t-distribution with $n_2 - 1$ degrees of freedom, where n_2 is the number of terrestrial data in the respective inventory domain.

\textbf{twophase:}

The calculation of the two-sided confidence intervals for \textit{global} twophase estimates (objects of class \texttt{global}) are calculated based on the quantiles of the t-distribution with $n_2 - p$ degrees of freedom, where p is the number of parameters used in the regression model, and n_2 is the number of terrestrial observations (i.e. \textit{local densities}) in the inventory domain.

The calculation of the two-sided confidence intervals for \textit{smallarea} twophase estimates (objects of class \texttt{smallarea}) are calculated based on the quantiles of the t-distribution with $n_{2G} - 1$ degrees of freedom, where n_{2G} is the number of terrestrial observations (i.e. \textit{local densities}) in the smallarea.

\textbf{threephase:}

The calculation of the two-sided confidence intervals for \textit{global} threephase estimates (objects of class \texttt{global}) are calculated based on the quantiles of the t-distribution with $n_2 - p$ degrees of freedom, where p is the number of parameters used in the \textbf{full} regression model, and n_2 is the number of terrestrial observations (i.e. \textit{local densities}) in the inventory domain (note: in notation used here n_0, n_1 and n_2 correspond to the zero, first and second phase sample sizes respectively).

The calculation of the two-sided confidence intervals for \textit{smallarea} threephase estimates (objects of class \texttt{smallarea}) are calculated based on the quantiles of the t-distribution with $n_{2G} - 1$ degrees of freedom, where n_{2G} is the number of terrestrial observations (i.e. \textit{local densities}) in the smallarea.

Value

\texttt{confint} returns a list of the following 3 components:

\begin{itemize}
 \item \texttt{ci} a \texttt{data.frame} containing the columns:
 \begin{itemize}
 \item \texttt{area} the domain, i.e. small area
 \item \texttt{ci_lower_ext} the lower confidence limit based on the external variance
 \item \texttt{ci_upper_ext} the upper confidence limit based on the external variance
 \item \texttt{ci_lower_g} the lower confidence limit based on the g-weight variance
 \item \texttt{ci_upper_g} the upper confidence limit based on the g-weight variance
 \end{itemize}
 \item \texttt{level} the applied confidence level
 \item \texttt{adjust.method} the adjustment method applied to retrieve simultaneous confidence intervals
\end{itemize}

Note

In the special case of \textit{synthetic} smallarea estimations, the two-sided confidence intervals are calculated based on the quantiles of the t-distribution with $n_2 - p$ degrees of freedom, i.e. based on the global sample size.
The confidence intervals for synthetic smallarea estimations do not account for the potential bias of a linear model that was fit in a large forest area and applied to a small area. Thus, the coverage rates for confidence intervals produced by synthetic estimators may be less than the nominal level of confidence.

In case of cluster-sampling, n2G is the number of terrestrial clusters (a cluster constitutes the sample unit). This is automatically considered by confint.

The adjustment methods passed to adjust.method are designed to achieve simultaneous confidence intervals by correcting the confidence level given by level. The use of this option is recommended if a set of estimates contained in a one-phase- or smallarea-object should be compared by their confidence intervals. It ensures that the percentage of confidence intervals containing the true value will correspond to the nominal confidence level.

References

Examples

```r
## Calculate twophase estimations by extended pseudosynthetic estimator
# for 4 small areas ("A", "B", "C", "D") using the grisons-dataset:
sae.est <- twophase(formula = tvol ~ mean + stddev + max + q7UL,
data = grisons,
phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
small_area = list(sa.col = "smallarea",
areas = c("A", "B","C", "D"),
unbiased = TRUE))

## calculate 95%-confidence intervals for each small area:
confint(sae.est)

## calculate simultaneous 95%-confidence intervals using 'bonferroni'-method:
confint(sae.est, adjust.method = "bonferroni")
```
Description

estTable can be used to compare the results of onephase to multiphase estimations (twophase, threephase). It restructures the estimation results into a table that can be used to plot the estimation results and provides the basis for further analysis.

Usage

estTable(est.list, sae = FALSE, add.ci = TRUE, vartypes = c("variance", "ext_variance", "g_variance"))

Arguments

est.list a list object containing at least one multiphase estimation object created by the twophase or threephase function and the respective onephase estimation object.
sae an object of type logical. Has to be set to TRUE if results of small area estimations are passed to estTable. Defaults to FALSE.
add.ci logical: Should confidence intervals be added? Defaults to TRUE.
vartypes Specifying the variances that should be included in the estimation table. Has to be specified as a character vector. The full set contains "variance", "ext_variance", and "g_variance".

Value

estTable returns a list of the following components:

- area: in case of small area estimations: the name of the small area
- estimate: the point estimates
- vartype: the type of variance
- variance: the variance values
- std: the standard errors (square root of variance values)
- error: the estimation errors defined as the ratio between standard error and point estimate
- domain: indicating if current row belongs to a smallarea or global estimation
- estimator: the estimator that that was applied
- method: the estimation method that was applied
- n2: terrestrial sample size in entire inventory area
- n1: first phase sample size in entire inventory area
- n0: in case of threephase estimations: zero phase sample size in entire inventory area
- n2G: terrestrial sample size in small area
• n1G: first phase sample size in small area
• n0G: in case of three-phase estimations: zero phase sample size in small area
• r.squared: coefficient of determination of regression model
• r.squared_reduced: in case of three-phase estimations: coefficient of determination of reduced regression model
• r.squared_full: in case of three-phase estimations: coefficient of determination of full regression model
• ci_lower: if add.ci=TRUE: lower confidence limit
• ci_upper: if add.ci=TRUE: upper confidence limit

Note
An estimation object of class one-phase as input is mandatory

Examples

```r
# run one-phase estimation:
op.a <- onePhase(formula = tvol ~ 1,
data = grisons,
phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D")))

# run small area two-phase estimation:
sae.2p.est <- twoPhase(formula = tvol ~ mean + stddev + max + q75,
data = grisons,
phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
small_area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D"),
unbiased = TRUE))

# run small area three-phase estimation:
sae.3p.est <- threePhase(formula.s0 = tvol ~ mean,
formula.s1 = tvol ~ mean + stddev + max + q75,
data = grisons,
phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
small_area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D"),
unbiased = TRUE))

# create estimation table with confidence intervals:
sae.table <- estTable(est.list = list(op.a, sae.2p.est, sae.3p.est), add.ci=TRUE,
sae = TRUE, vartypes = c("variance", "g_variance", "ext_variance"))
sae.table.df <- as.data.frame(sae.table)
```
Description

The package provides global- and smallarea estimators for twophase and threephase forest inventories under simple and cluster sampling, which have been developed by Daniel Mandallaz at ETH Zurich. The implemented methods have been published and applied in various studies (see References) and can be used for double- and triple sampling for stratification, double- and triple sampling for regression and double- and triple sampling for regression within strata.

Functions

The package provides three main functions to apply the various estimators for twophase and threephase forest inventories:

- **twophase** Function to apply global- and various smallarea estimation techniques for twophase inventories
- **threephase** Function to apply global- and various smallarea estimation techniques for threephase inventories
- **onephase** Function to apply estimations for onephase inventories, mainly for comparison with two-and threephase

Motivation

The Motivation of writing this package was to provide an extensive and consistent collection of state-of-the-art design-based estimation techniques for forest inventories. It was especially designed to facilitate the application of the available estimators in forest practice as well as in scientifically related studies. The work on this package was also the trigger to complete the range of the already published estimators, especially in the framework of three-phase smallarea estimators.

Selected references

grisons

Data from a multiphase forest inventory in the canton of Grisons, Switzerland

Description

A dataset containing observations of 306 systematically arranged sample plots. Auxiliary information for all 306 plots is provided in the form of LiDAR canopy height metrics. For a systematic subsample of 67 out of the 306 plots, terrestrial information of the timber volume is provided from a terrestrial survey in the year 2007. Originally the inventory was carried out as a twophase inventory and has been artificially extended to a threephase inventory for demonstration purposes.

Usage

grisons

Format

data frame with 306 rows and 14 columns

Details

- **phase_id_Rp** phase-membership of each observation for the twophase inventory. The large phase is indicated by 1, the terrestrial phase by 2.
- **phase_id_Sp** phase-membership of each observation for the threephase inventory, i.e. the largest phase (0), the large phase (1) and terrestrial phase (2). *Note:* The threephase sample scheme was artificially created for demonstration purposes of the threephase-functions.
- **boundary_weights** proportion of analysis-window for auxiliary information lying within the forest.
- **mean** mean canopy height at the sample location based on the LiDAR canopy height model.
- **stddev** standard deviation of the LiDAR canopy height model at the sample location.
- **max** maximum value of the LiDAR canopy height model at the sample location.
- **q75** 75%-Quantile of the LiDAR canopy height model at the sample location.
- **smallarea** smallarea-indicator for each observation.
- **tvol** terrestrial timber volume from field survey. Use for twophase-inventory.
- **tvolNSp** terrestrial timber volume from field survey. Use for threephase-inventory.

Note

There are additional columns in grisons to demonstrate the function-behaviours for special cases which might occur in a forest inventory

- **phase_id_Sp_ng0** one of the smallareas does not contain any terrestrial observation.
- **phase_id_Sp_ng1** one of the smallareas does contain only a single terrestrial observation.
- tvol.3p.nG0 Use as response variable to test phase_id.3p.nG0 for threephase-inventory.
- tvol.3p.nG1 Use as response variable to test phase_id.3p.nG1 for threephase-inventory.

We leave testing these special cases to the user.

Source

The terrestrial data are kindly provided by the forest service of the canton Grisons.

The dataset was created and used within the framework of the publications listed under References.

References

mphase.gain

mphase.gain

Description

mphase.gain takes as input an object created by the *estTable* function and returns a validation of which multiphase method and estimator performed best in comparison to the onephase estimation (baseline) in terms of estimation precision.

Usage

```r
mphase.gain(esttable.obj, pref.vartype = "g.variance", exclude.synth = TRUE)
```

Arguments

- `esttable.obj`: an object of class *esttable* created by the *estTable* function
- `pref.vartype`: preferred type of multiphase variance that should be compared to the onephase variance, if more then one variance type has been calculated in the multiphase estimation object(s) stored in *esttable*. Valid input values are "g.variance" (default) and "ext.variance".
- `exclude.synth`: logical. If set to TRUE (default), synthetic estimations are not considered in the validation.
Value

mphase.gain returns a data.frame containing the following components:

- area: in case of small area estimation: the name of the small area
- var_onephase: standard error of the onephase estimation
- var_multiphase: smallest variance among the (set of) multiphase estimations stored in esttable.obj
- estimator: multiphase estimator with the smallest variance
- method: estimation Method of the multiphase estimator with the smallest variance
- gain: the gain is the reduction (if value is positive) or possibly also the increase (if value is negative) in variance when applying the multiphase as alternative to the onephase estimation
- rel_eff: the relative efficiency defined as the ratio between the onephase variance and the multiphase variance

Note

The gain can be interpreted as: "The multiphase estimation procedure leads to a gain % reduction in variance compared to the onephase procedure".

The relative efficiency can be interpreted as: "Using the onephase estimation procedure, the terrestrial sample size would have to be rel_eff times larger in order to achieve the same precision (in terms of variance) as the multiphase estimation procedure".

Description

onephase is used to calculate estimations exclusively based on terrestrial observations of a forest inventory (i.e. the local densities). The estimation method is available for simple and cluster-sampling and provides point estimates of the sample mean and their variances.

Usage

onephase(formula, data, phase_id = list(phase.col = NA, terrgrid.id = NA),
cluster = NA, area = list(sa.col = NA, areas = NA))

Arguments

formula an object of class "formula" that must be of the form Y ~ 1, where Y is the terrestrial response value of interest provided in data.
data a data frame or vector containing the response value Y. Specifications are given under 'Details'.
phase_id an object of class "list" containing two elements:
• phase.col: the column name in data that specifies the phase membership of each observation
• terrgrid.id: the indicator identifying the terrestrial (a.k.a. "ground truth") phase for that column (must be of type "numeric")

Note: Only has to be specified if data is of class `data.frame`.

`cluster`
Specifies the column name in data containing the cluster identification. Only used in case of cluster sampling.

`area`
(Optional) an object of class "list" containing two elements:
• sa.col: the column name in data containing domain identification
• areas: vector of desired domains for which the estimation should be computed. If estimations for multiple domains should be computed, the domains have to be defined within a character vector using `c()`

Further details of the parameter-specifications are given under 'Details'.

Details

data can either be a vector only containing the observations of the response variable Y, or a data frame containing a column for the response variable and a column for the sample-grid indication that has to be further specified by argument `phase_id`. Additional optional columns include a cluster identification in case of cluster sampling, as well as a column that specifies a domain (e.g. a forest district) the respective terrestrial observation falls into. The latter allows to compute onephase-estimations for multiple domains at a time (see 'Examples').

Value

`onephase` returns an object of class "onephase".

The functions `summary` and `confint` can be used to obtain a summary of the estimation results (point estimations, variances and sample sizes) and the confidence intervals for the respective point estimates.

An object of class "onephase" returns a list of the following components:

- **input**
a list containing the function inputs

- **estimation**
a data frame containing the following components:
 • area: the domain (only present if argument `area` has been used)
 • estimate: the point estimate
 • variance: the variance of the point estimate
 • n2: the terrestrial sample size

- **samplesizes**
a named numeric vector giving the terrestrial sample size

References

Examples

------------ non-cluster sampling-------------------#

load grisons dataset:
data(grisons)

1) calculate one-phase-estimation for entire dataset:
op <- onephase(formula = tvol~1, data = grisons,
 phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2))
summary(op)
confint(op)

2) calculate one-phase-estimation for given domains (areas) in dataset:
op.a <- onephase(formula = tvol~1,
 data = grisons,
 phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
 area = list(sa.col = "smallarea", areas = c("A", "B")))
summary(op.a)
confint(op.a)

------------ cluster sampling ---------------------#

load zurichberg dataset:
data(zberg)

1) calculate one-phase-estimation for entire dataset:
op.clust <- onephase(formula = basal~1, data = zberg,
 phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
 cluster = "cluster")
summary(op.clust)
confint(op.clust)

2) calculate one-phase-estimation for given areas in dataset:
op.clust.a <- onephase(formula = basal~1,
 data = zberg,
 phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
 cluster = "cluster",
 area = list(sa.col = "ismallg23", areas = c("2", "3")))
summary(op.clust.a)
confint(op.clust.a)

plot.esttable
Plotting Estimation Results

Description

Function plots the estimation results of an object created by the estTable function. Provides the possibility to visualize and compare the point estimates and their estimation errors differentiated by the applied estimation method and estimator.
plot.esttable

Usage

S3 method for class 'esttable'
plot(x, yvar = "error", ncol = 5, yscale.free = TRUE,
 ...)

Arguments

x
 object of class "list" "esttable" created by the estTable function.

yvar
 if set to "error" (default), the estimation error is plotted on the y-axis. If set to
 "estimate", point estimates with their confidence intervals are plotted.

ncol
 number of columns to plot small area estimations.

yscale.free
 logical: should y-axis scales be free (default) or fixed.

...
 ignored.

Examples

run one-phase estimation:
op.a <- onephase(formula = tvol ~ 1,
 data = grisons,
 phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
 area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D")))

run small area two-phase estimation:
sae.2p.est <- twophase(formula = tvol ~ mean + stddev + max + q75,
 data = grisons,
 phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
 small_area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D")),
 unbiased = TRUE))

run small area three-phase estimation:
sae.3p.est <- threephase(formula.s0 = tvol ~ mean,
 formula.s1 = tvol ~ mean + stddev + max + q75,
 data = grisons,
 phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
 small_area= list(sa.col = "smallarea", areas = c("A", "B", "C", "D")),
 unbiased = TRUE))

create estimation table:
sae.table <- estTable(est.list = list(op.a, sae.2p.est, sae.3p.est), add.ci=TRUE,
 sae = TRUE, vartypes = c("variance", "g_variance", "ext_variance"))

plot estimation errors:
plot(sae.table)

plot point estimates and confidence intervals:
Hint: --> use ggplot2 functions to modify graphic:
library(ggplot2)
plot(sae.table, yvar = "estimate") +
ylab("Timber Volume [m3/ha]")
Description

Summarizing Global and Small-Area Estimation Results

Usage

```r
## S3 method for class 'onephase'
summary(object, coefs = FALSE, ...)
```

```r
## S3 method for class 'twophase'
summary(object, coefs = FALSE, ...)
```

```r
## S3 method for class 'threephase'
summary(object, coefs = FALSE, ...)
```

Arguments

- `object` object of class `onephase`, `twophase` or `threephase`, containing estimation results of the respective estimation method.
- `coefs` of type "logical". If set to TRUE, also gives the regression coefficients of `twophase` and `threephase` estimations. Defaults to FALSE.
- `...` additional arguments, so far ignored.

Description

threephase is used to calculate estimations based on triple sampling under the model-assisted Monte Carlo approach. A zero phase of auxiliary information (e.g. taken from remote sensing data) is used to generate model predictions based on multiple linear regression using the method of ordinary least squares. A subsample of the zero phase comprises further auxiliary information that produces another set of model predictions. A further subsample produces a second phase based on terrestrial observations (i.e. the local densities of the ground truth) and is used to correct for bias in the design-based sense. The estimation method is available for simple and cluster sampling and includes the special case where the first phase is based on an exhaustive sample (i.e. a census). Small-area applications are supported for synthetic estimation as well as two varieties of bias-corrected estimators: the traditional small-area estimator and an asymptotically equivalent version derived under Mandallaz’s extended model approach.
Usage

```r
threephase(formula.s0, formula.s1, data, phase_id, cluster = NA,
small_area = list(sa.col = NA, areas = NA, unbiased = TRUE),
boundary_weights = NA, exhaustive = NA, progressbar = FALSE,
psmall = FALSE)
```

Arguments

- `formula.s0`: an object of class "formula" as would be used in the function `lm` that contains a reduced set of auxiliary variables available for all zero phase plots.
- `formula.s1`: an object of class "formula" as would be used in the function `lm` that contains the predictors from `formula.s0` as well as further ancilliary predictors available for all first phase plots (i.e. `formula.s0` is nested in `formula.s1`).
- `data`: a data frame containing all variables contained in `formula` and a column indexing phase membership. Additional columns designating small-area membership, cluster ID and boundary weights should also be contained in the data frame if they are requested in the function.
- `phase_id`: an object of class "list" containing three elements:
 - `phase.col`: the column name in `data` that specifies the phase membership of each observation.
 - `s1.id`: the indicator identifying the "second phase only" plots for that column (must be of type "numeric").
 - `terrgrid.id`: the indicator identifying the terrestrial (a.k.a. "ground truth") phase for that column (must be of type "numeric").
- `cluster`: (Optional) Specifies the column name in `data` containing the cluster ID. Only used in case of cluster sampling.
- `small_area`: (Optional) a list that if containing three elements:
 - `sa.col`: the column name in `data` containing domain identification.
 - `areas`: vector of desired small-area domain identifiers.
 - `unbiased`: an object of type "logical" that when FALSE designates that the estimator is allowed to be biased (i.e. the synthetic estimator) and when TRUE forces it to be design-unbiased. See 'Details'.
- `boundary_weights`: (Optional) Specifies the column name in `data` containing the weights for boundary adjustment. See 'Details'.
- `exhaustive`: (Optional) For global estimation, a vector of true auxiliary means corresponding to an exhaustive first phase. The vector must be input in the same order that `lm` processes a `formula` object and include the intercept term. For small area estimation, `exhaustive` is a data.frame containing column names (`colnames`) for every variable appearing in the parameter `formula` including the variable "Intercept". Rownames (`row.names`) have to be used and must correspond to the names of the small areas. See 'Details'.

Note: If `small_area` is left unchanged then `twophase` defaults to global estimation.
progressbar (Optional) an object a type "logical" that when TRUE prints the progress of the calculation in the console (recommended for large amount of small areas). Defaults to FALSE.

psmall (Optional) an object a type "logical" used for small area estimations that only works when unbiased in the parameter small_area is set to TRUE. See 'Details'.

Details

s1.id identifies "second phase only" plots because the terrestrial phase is known to be part of the second phase by the construction of the subsampling.

If estimations for multiple small-area domains should be computed, the domains have to be defined within a character vector using c(). Using small_area(..., unbiased=FALSE) calculates design-based estimates with the synthetic estimator and may be design-biased if the model is biased in that small area. The default, small_area(..., unbiased=TRUE), allows for a residual correction by one of two asymptotically equivalent methods to create design-unbiased estimates:

- Mandallaz's extended model approach calculates the residual correction by extending the model formula with an indicator variable in the small area. It is the default method psmall=FALSE.
- the traditional small area estimator calculates the residual correction by taking the synthetic estimator and adding the mean residual observed in the small area. It is activated when psmall=TRUE.

Missing values (NA) in the auxiliary variables (i.e. at least one auxiliary variable cannot be observed at an inventory location) are automatically removed from the dataset before the estimations are computed. Note that missingness in the auxiliary variables is only allowed if we assume that they are missing at random, since the unbiasedness of the estimates is based on the sampling design.

The boundary weight adjustment is pertinent for auxiliary information derived from remote sensing and is equal to the percentage of forested area (e.g. as defined by a forest mask) in the interpretation area.

Exhaustive estimation refers to when the true means of certain auxiliary variables are known at an exhaustive zero phase (i.e. a census). For global estimation, the vector must be input in the same order that lm processes a formula object including the intercept term whose true mean will always be one. For small area estimation, exhaustive is a data.frame containing column names for every variable appearing in the parameter formula including the variable "Intercept". The observations of the data.frame must represent the true auxiliary means in the same order as was presented in areas from the parameter small_area. See 'Examples'.

Value

threephase returns an object of class "threephase".

An object of class "threephase" returns a list of the following components:

- **input** a list containing the function's inputs
- **estimation** a data frame containing the following components:

 - **area**: the domain (only present if argument areas has been used)
 - **estimate**: the point estimate
- **ext_variance**: the external variance of the point estimate that doesn’t account for fitting the model from the current inventory
- **g_variance**: the internal (g-weight) variance that accounts for fitting the model from the current inventory
- **n0** the zero phase sample size of plots
- **n1** the first phase sample size of plots
- **n2** the second phase (i.e. terrestrial) sample size of plots
- **n0G** the zero phase sample size in the small area
- **n1G** the first phase sample size in the small area
- **n2G** the second phase (i.e. terrestrial) sample size in the small area
- **r.squared_reduced** the R-squared of the linear model based on formula.s0 (i.e. the reduced model)
- **r.squared_full** the R-squared of the linear model based on formula.s1 (i.e. the full model)

samplesizes a data.frame summarizing all samplesizes: in case of cluster sampling both, the number of individual plots and the number of clusters is reported.

coefficients the coefficients of the two linear models:
 - **alpha**: the reduced model coefficients
 - **beta**: the full model coefficients

cov_alpha_s2 the design-based covariance matrix of the reduced model coefficients

cov_beta_s2 the design-based covariance matrix of the full model coefficients

Z_bar_1_s0 the estimated auxiliary means of formula.s0 based on the zero phase. If the zero phase is exhaustive, these are the true auxiliary means specified in the input-argument exhaustive.

Z1_bar_s1 the estimated auxiliary means of formula.s0 based on the first phase

Z_bar_s1 the estimated auxiliary means of formula.s1 based on the first phase

cov_Z_bar_1_s0 the covariance matrix for Z_bar_1_s0

resid_reduced the reduced model residuals at either the plot level or cluster level depending on the call

resid_full the full model residuals at either the plot level or cluster level depending on the call

warn.messages logical indicating if warning messages were issued

Note

In the special case of cluster sampling, the reported sample sizes in estimation are the number of clusters. The samplesize-object also provides the respective number of single plot units for cluster sampling. The reported r.squared_reduced and r.squared_full describe the model fit of the applied linear regression models (i.e. on plot-level, not on cluster level).
References

Examples

```r
# load datasets:
data(grisons)
data(zberg)

# define regression models for simple and cluster sampling:
formula.s0 <- tvol ~ mean # reduced model:
formula.s1 <- tvol ~ mean + stddev + max + q75 # full model
formula.clust.s0 <- basal ~ stade
formula.clust.s1 <- basal ~ stade + couver + melange

# -----------------------------------------------#
# ----------- GLOBAL ESTIMATION ------------------#
#----
# 1) -- Design-based estimation with non-exhaustive auxiliary information
#----

# 1.1) non-cluster-sampling (see eqns. [11], [14] and [16] in Mandallaz 2014):
summary(threephase(formula.s0, formula.s1, data = grisons,
                   phase_id = list(phase.col = "phase_id_3p", s1.id=1, terrgrid.id = 2))

# 1.2) cluster-sampling (see eqns. [49] and [50] in Mandallaz 2013):
summary(threephase(formula.clust.s0, formula.clust.s1, data = zberg,
                   phase_id = list(phase.col="phase_id_3p", s1.id = 1, terrgrid.id = 2),
                   cluster = "cluster")

# 1.3) example for boundary weight adjustment (non-cluster example):
summary(threephase(formula.s0, formula.s1, data = grizons,
                   phase_id = list(phase.col="phase_id_3p", s1.id = 1, terrgrid.id = 2),
```

boundary_weights = "boundary_weights")

#----
2) -- Design-based estimation with exhaustive auxiliary information
#----

2.1) non-cluster-sampling (see eqns. [7], [9] and [10] in Mandallaz 2014):
summary(threephase(formula.s0, formula.s1, data = grisons,
 phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
 exhaustive = c(1,11.39)))

2.2) cluster-sampling:
summary(threephase(formula.clust.s0, formula.clust.s1, data = zberg,
 phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
 cluster = "cluster", exhaustive = c(1, 0.10, 0.7, 0.10)))

-------- SMALL AREA ESTIMATION -----------
#----
1) -- Design-based estimation with non-exhaustive auxiliary information
#----

1.1) Mandallaz's extended pseudo small area estimator:
summary(threephase(formula.s0, formula.s1, data = grisons,
 phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
 small_area=list(sa.col = "smallarea", areas = c("A", "B", "C", "D"),
 unbiased = TRUE)))

summary(threephase(formula.clust.s0, formula.clust.s1, data = zberg,
 phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
 cluster = "cluster",
 small_area = list(sa.col = "ismall0ld", areas = c("1"), unbiased = TRUE)))

1.2) pseudo small area estimator:
summary(threephase(formula.s0, formula.s1, data = grisons,
 phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
 small_area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D"),
 unbiased = TRUE),
 psmall = TRUE))

summary(threephase(formula.clust.s0, formula.clust.s1, data=zberg,
phase_id=list(phase.col="phase_id_3p", s1.id=1, terrgrid.id=2),
cluster="cluster",
small_area=list(sa.col="ismallold", areas=c("1"), unbiased=TRUE),
psmall = TRUE))

1.3) pseudosynthetic small area estimator:
summary(threephase(formula.s0 = tvol ~ mean,
formula.s1 = tvol ~ mean + stddev + max + q75,
data = grisons,
phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
small_area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D"),
unbiased = FALSE)))

summary(threephase(formula.clust.s0,
formula.clust.s1,
data = zberg,
phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
cluster = "cluster",
small_area = list(sa.col = "ismallold", areas = c("1"), unbiased = FALSE)))

#----
2) -- Design-based estimation with exhaustive auxiliary information
#----

true auxiliary mean for variable "mean" taken from Mandallaz et al. (2013):
truemeans.G <- data.frame(Intercept = rep(1, 4),
mean = c(12.85, 12.21, 9.33, 10.45))
rownames(truemeans.G) <- c("A", "B", "C", "D")

true auxiliary means taken from Mandallaz (1991):
truemeans.G.clust <- data.frame(Intercept = 1, stade400 = 0.175, stade500 = 0.429,
stade600 = 0.321)
rownames(truemeans.G.clust) <- c("1")

2.1) Mandallaz's extended small area estimator:
summary(threephase(formula.s0,
formula.s1,
data = grisons,
phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
small_area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D"),
unbiased = TRUE),
exhaustive = truemeans.G))

summary(threephase(formula.clust.s0,
formula.clust.s1,
data = zberg,
phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),
cluster = "cluster",
small_area = list(sa.col = "ismallold", areas = c("1"), unbiased = TRUE),
exhaustive = truemeans.G.clust))
Description

twophase is used to calculate estimations based on double sampling under the model-assisted Monte Carlo approach. A first phase of auxiliary information (e.g. taken from remote sensing data) is used to generate model predictions based on multiple linear regression using the method of ordinary least squares. A subsample of the first phase comprises the second phase which contains terrestrial...
observations (i.e. the local densities of the ground truth) that is used to correct for bias in the design-based sense. The estimation method is available for simple and cluster sampling and includes the special case where the first phase is based on an exhaustive sample (i.e. a census). Small-area applications are supported for synthetic estimation as well as two varieties of bias-corrected estimators: the traditional small-area estimator and an asymptotically equivalent version derived under Mandallaz’s extended model approach.

Usage

twophase(formula, data, phase_id, cluster = NA, small_area = list(sa.col = NA, areas = NA, unbiased = TRUE), boundary_weights = NA, exhaustive = NA, progressbar = FALSE, psmall = FALSE)

Arguments

formula an object of class "formula" as would be used in the function lm
data a data frame containing all variables contained in formula and a column indexing phase membership. Additional columns designating small-area membership, cluster ID and boundary weights should also be contained in the data frame if they are requested in the function.
phase_id an object of class "list" containing two elements:
 • phase.col: the column name in data that specifies the phase membership of each observation
 • terrgrid.id: the indicator identifying the terrestrial (a.k.a. "ground truth") phase for that column (must be of type "numeric")
cluster (Optional) Specifies the column name in data containing the cluster ID. Only used in case of cluster sampling.
small_area (Optional) a list that if containing three elements:
 • sa.col: the column name in data containing domain identification
 • areas: vector of desired small-area domain identifiers
 • unbiased: an object of type "logical" that when FALSE designates that the estimator is allowed to be biased (i.e. the synthetic estimator) and when TRUE forces it to be design-unbiased. See 'Details'.

Note: If small_area is left unchanged then twophase defaults to global estimation.
boundary_weights (Optional) Specifies the column name in data containing the weights for boundary adjustment. See 'Details'

exhaustive (Optional) For global estimation, a vector of true auxiliary means corresponding to an exhaustive first phase. The vector must be input in the same order that lm processes a formula object and include the intercept term. For small area estimation, exhaustive is a data.frame containing column names (colnames) for every variable appearing in the parameter formula including the variable "Intercept". Rownames (row.names) have to be used and must correspond to the names of the small areas. See 'Details'.
progressbar
(Optional) an object a type "logical" that when TRUE prints the progress of the calculation in the console (recommended for large amount of small areas). Defaults to FALSE.

psmall
(Optional) an object a type "logical" used for small area estimations that only works when unbiased in the parameter small_area is set to TRUE. See 'Details'.

Details

If estimations for multiple small-area domains should be computed, the domains have to be defined within a character vector using c(). Using small_area(..., unbiased=FALSE) calculates design-based estimates with the synthetic estimator and may be design-biased if the model is biased in that small area. The default, small_area(..., unbiased=TRUE), allows for a residual correction by one of two asymptotically equivalent methods to create design-unbiased estimates:

- Mandallaz’s extended model approach calculates the residual correction by extending the model formula with an indicator variable in the small area. It is the default method psmall=FALSE.
- the traditional small area estimator calculates the residual correction by taking the synthetic estimator and adding the mean residual observed in the small area. It is activated when psmall=TRUE.

Missing values (NA) in the auxiliary variables (i.e. at least one auxiliary variable cannot be observed at an inventory location) are automatically removed from the dataset before the estimations are computed. Note that missingness in the auxiliary variables is only allowed if we assume that they are missing at random, since the unbiasedness of the estimates is based on the sampling design.

The boundary weight adjustment is pertinent for auxiliary information derived from remote sensing and is equal to the percentage of forested area (e.g. as defined by a forest mask) in the interpretation area.

Exhaustive estimation refers to when the true means of certain auxiliary variables are known and an exhaustive first phase (i.e. a census). For global estimation, the vector must be input in the same order that lm processes a formula object including the intercept term whose true mean will always be one. For small area estimation, exhaustive is a data frame containing column names for every variable appearing in the parameter formula including the variable "Intercept". The observations of the data.frame must represent the true auxiliary means in the same order as was presented in areas from the parameter small_area. See 'Examples'.

Value

twophase returns an object of class "twophase".
An object of class "twophase" returns a list of the following components:

input a list containing the function’s inputs
estimation a data frame containing the following components:
 • area: the domain (only present if argument areas has been used)
 • estimate: the point estimate
 • ext_variance: the external variance of the point estimate that doesn’t account for fitting the model from the current inventory
• `g.variance`: the internal (g-weight) variance that accounts for fitting the model from the current inventory
• `n1` the first phase sample size of plots
• `n2` the second phase (i.e. terrestrial) sample size of plots
• `n1G` the first phase sample size in the small area
• `n2G` the second phase (i.e. terrestrial) sample size in the small area
• `r.squared` the R squared of the linear model

`samplesizes` a `data.frame` summarizing all samplesizes: in case of cluster sampling both, the number of individual plots and the number of clusters is reported.

`coefficients` the linear model coefficients

`cov_coef` the design-based covariance matrix of the model coefficients

`Z_bar_1G` the estimated auxiliary means of formula based on the first phase. If the first phase is exhaustive, these are the true auxiliary means specified in the input-argument `exhaustive`.

`cov_Z_bar_1G` the covariance matrix of `Z_bar_1G`

`Rc_x_hat_G` the small-area residuals at either the plot level or cluster level depending on the call

`Rc_x_hat` the residuals at either the plot level or cluster level depending on the call

`Yx_s2G` the local densities in the small area

`Mx_s2G` the cluster weights in the small area

`mean_Rc_x_hat_G` the mean residual (weighted mean in the case of cluster sampling) in the small area

`mean_Rc_x_hat` the mean residual (weighted mean in the case of cluster sampling)

`warn.messages` logical indicating if warning messages were issued

Note

In the special case of cluster sampling, the reported sample sizes in estimation are the number of clusters. The `samplesize`-object also provides the respective number of single plot units for cluster sampling. The reported `r.squared` describe the model fit of the applied linear regression model (i.e. on *plot-level*, not on *cluster level*).

References

Examples

```r
## load datasets:
data(grisons)
data(zberg)

# -------------------------------------------
# --------------- GLOBAL ESTIMATION -----------
#
# 1) -- Design-based estimation with non-exhaustive auxiliary information
#
# 1.1) non-cluster-sampling:
summary(twophase(formula = tvol ~ mean + stddev + max + q75,
data = grisons,
    phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2)))

# 1.2) cluster-sampling (see eqns. [57] and [58] in Mandallaz, Hill, Massey 2016):
summary(twophase(formula = basal ~ stade + couver + melange,
data = zberg,
    phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
    cluster = "cluster"))

# 1.3) example for boundary weight adjustment (non-cluster example):
summary(twophase(formula = tvol ~ mean + stddev + max + q75,
data = grisons,
    phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
    boundary_weights = "boundary_weights"))

# 2) -- Design-based estimation with exhaustive auxiliary information
#
# establish order for vector of true auxiliary means:
colnames(lm(formula = tvol ~ mean + stddev + max + q75, data = grisons, x = TRUE)$x)
true.means <- c(1, 11.39, 8.84, 32.68, 10.03)

# 2.1) non-cluster-sampling:
summary(twophase(formula = tvol ~ mean + stddev + max + q75,
data = grisons,
    phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
    exhaustive = true.means))

# 2.2) cluster-sampling:
summary(twophase(formula = stem ~ stade + couver + melange,
data = zberg,
    phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
    cluster = "cluster",
exhaustive = c(1, 0.10, 0.7, 0.10, 0.6, 0.8)))
```
#...#
--- SMALL AREA ESTIMATION ---#
#---

1) -- Design-based estimation with non-exhaustive auxiliary information

1.1) Mandallaz's extended pseudo small area estimator (see eqns. [35] and [36] in Mandallaz 2013):

```r
summary(twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons, 
  phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2), 
  small_area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D"), 
                   unbiased = TRUE)))
```

```r
summary(twophase(formula = basal ~ stade + couver + melange, data = zberg, 
  phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2), 
  cluster = "cluster", 
  small_area = list(sa.col = "ismallg23", areas = c("2", "3"), 
                   unbiased = TRUE)))
```

1.2) Pseudo small area estimator (see eqns. [25] and [26] in Mandallaz 2013):

```r
summary(twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons, 
  phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2), 
  small_area = list(sa.col = "smallarea", areas = c("A", "B"), 
                   unbiased = TRUE), 
  psmall = TRUE))
```

```r
summary(twophase(formula = basal ~ stade + couver + melange, data = zberg, 
  phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2), 
  cluster = "cluster", 
  small_area = list(sa.col = "ismallg23", areas = c("2", "3"), 
                   unbiased = TRUE), 
  psmall = TRUE))
```

1.3) Pseudosynthetic small area estimator (see eqns. [35] and [36] in Mandallaz 2013):

```r
summary(twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons, 
  phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2), 
  small_area = list(sa.col = "smallarea", areas = c("B", "A"), 
                   unbiased = FALSE)))
```

```r
summary(twophase(formula = basal ~ stade + couver + melange, data = zberg, 
  phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2), 
  cluster = "cluster", 
  small_area = list(sa.col = "ismallg23", areas = c("2", "3"), 
                   unbiased = FALSE)))
```

2) -- Design-based estimation with exhaustive auxiliary information

Establish order for vector of true auxiliary means:
colnames(lm(formula = tvol ~ mean + stddev + max + q75, data = grisons, x = TRUE))
colnames(lm(formula = basal ~ stade + couver + melange, data = zberg, x = TRUE))

true auxiliary means taken from Mandallaz et al. (2013):
truemeans.G <- data.frame(Intercept = rep(1, 4),
mean = c(12.85, 12.21, 9.33, 10.45),
stddev = c(9.31, 9.47, 7.90, 8.36),
max = c(34.92, 35.36, 28.81, 30.22),
q75 = c(19.77, 19.16, 15.40, 16.91))
rownames(truemeans.G) <- c("A", "B", "C", "D")

true auxiliary means taken from Mandallaz (1991):
truemeans.G.clust <- data.frame(Intercept = rep(1, 4),
stade00 = rep(0.175, 4),
stade05 = rep(0.429, 4),
stade10 = rep(0.321, 4),
couver7 = rep(0.791, 4),
melange1 = rep(0.809, 4))
rownames(truemeans.G.clust) <- c("1")

2.1) Mandallaz's extended small area estimator (see eqns. [31] and [33] in Mandallaz 2013):
summary(twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,
phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
small_area = list(sa.col = "smallarea", areas = c("A", "B"),
unbiased = TRUE),
exhaustive = truemeans.G))

summary(twophase(formula = basal ~ stade + couver + melange, data = zberg,
phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
cluster = "cluster",
small_area = list(sa.col = "ismallold", areas = c("1"),
unbiased = TRUE),
exhaustive = truemeans.G.clust))

2.2) small area estimator (see eqns. [20] and [21] in Mandallaz 2013):
summary(twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,
phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
small_area = list(sa.col = "smallarea", areas = c("A"),
unbiased = TRUE),
exhaustive = truemeans.G, psmall = TRUE))

summary(twophase(formula = basal ~ stade + couver + melange, data = zberg,
phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),
cluster = "cluster",
small_area = list(sa.col = "ismallold", areas = c("1"),
unbiased = TRUE),
psmall = TRUE,
exhaustive = truemeans.G.clust))

2.3) synthetic small area estimator (see eqns. [18] and [19] in Mandallaz 2013):
Data from a multiphase forest inventory at the zurichberg (zurich), switzerland

Description
A dataset from 1991 containing 1203 sample plots observations from a forest inventory using cluster-sampling. The large phase comprises 298 clusters. Terrestrial information of the stem number as well as the basal area is available for a systematic subsample of 73 clusters. Auxiliary information at all 2103 sample plots were derived by stand maps. Originally the inventory was carried out as a twophase inventory and has been artificially extended to a threephase inventory for demonstration purposes.

Usage
zberg

Format
data frame with 1203 rows and 12 columns

Details
- `cluster` cluster identification. Maximum number of sample plots per cluster is 5.
- `phase_id_2p` phase-membership of each observation for the twophase inventory. The first phase is indicated by 1, the second (i.e. terrestrial) phase by 2.
- `phase_id_3p` the phase-membership of each observation for the threephase inventory, i.e. the first phase (0), the second phase (1) and third (terrestrial) phase (2). Note: The threephase sample scheme was artificially created for demonstration purposes of the `threephase`-functions.
- `stade` development stage at sample plot location based on the stand map. Categorical variable of class factor with 4 levels.
- `melange` degree of mixture at sample plot location based on the stand map. Categorical variable of class factor with 2 levels.
zberg

- crown-coverage at sample plot location based on the stand map. Categorical variable of class factor with 2 levels.
- stem number derived at field survey.
- basal area derived at field survey.
- smallg23 indicator for small area 2 and 3 for each observation.
- smallold indicator for small area 1 for each observation.

Source

Data provided by D. Mandallaz

References

Index

*Topic datasets
 grisons, 8
 zberg, 28

 colnames, 15, 22
 confint, 2

 data.frame, 17, 24
 estTable, 5, 9, 12, 13

 forestinventory, 7
 forestinventory-package
 (forestinventory), 7
 formula, 10, 15, 22

 grisons, 8
 list, 5, 10, 11, 15, 22
 lm, 15, 22
 logical, 5, 14–16, 22, 23

 mphase.gain, 9
 numeric, 11, 15, 22

 onephase, 3, 5, 7, 10, 10
 plot.esttable, 12
 row.names, 15, 22

 summary, 14

 threephase, 3, 5, 7–9, 14, 14, 28
 twophase, 3, 5, 7, 8, 14, 21

 zberg, 28