Package ‘foretell’

April 8, 2019

Type Package
Title Projecting Customer Retention Based on Fader and Hardie Probability Models
Version 0.2.0
Author Srihari Jaganathan
Maintainer Srihari Jaganathan <sriharitn@gmail.com>
Depends R (>= 3.0.1)
License GPL-3
Encoding UTF-8
LazyData true
Imports stats,nloptr
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-04-08 05:02:53 UTC

R topics documented:

BdW ... 2
BG .. 3
customer_retention .. 4
exttrend ... 4
LCW .. 5
persistency_data .. 6

Index 8
BdW

Beta discrete Weibull (BdW) Model for Projecting Customer Retention.

Description

BdW is a beta discrete weibull model implemented based on Fader and Hardie probability based projection methodology. The survivor function for BdW is

\[
\frac{\text{Beta}(a, b + t^c)}{\text{Beta}(a, b)}
\]

Usage

\[
\text{BdW(surv_value, h, lower = c(0.001, 0.001, 0.001), upper = c(10000, 10000, 10000))}
\]

Arguments

- `surv_value`: a numeric vector of historical customer retention percentage should start at 100 and non-starting values should be between 0 and less than 100
- `h`: forecasting horizon
- `lower`: lower limit used in `optim` routine. Default is `c(1e-3, 1e-3)`.
- `upper`: upper limit used in `optim` routine. Default is `c(10000, 10000, 10000)`.

Value

- `fitted`: Fitted values based on historical data
- `projected`: Projected `h` values based on historical data
- `max.likelihood`: Maximum Likelihood of Beta discrete Weibull
- `params - a, b and c`: Returns a and b parameters from maximum likelihood estimation for beta distribution and c

References

Examples

```r
surv_value <- c(100, 86.9, 74.3, 65.3, 59.3) 
 h <- 6
BdW(surv_value, h)
```
BG

Beta Geometric (BG) Model for Projecting Customer Retention.

Description

BG is a beta geometric model implemented based on Fader and Hardie probability based projection methodology. The survivor function for BG is

\[\frac{\text{Beta}(a, b + t)}{\text{Beta}(a, b)} \]

Usage

\[\text{BG(surv_value, h, lower = c(0.001, 0.001))} \]

Arguments

- **surv_value**: a numeric vector of historical customer retention percentage should start at 100 and non-starting values should be between 0 and less than 100
- **h**: forecasting horizon
- **lower**: lower limit used in R `optim` routine. Default is \(1 \times 10^{-3} \).

Value

- **fitted**: Fitted values based on historical data
- **projected**: Projected \(h \) values based on historical data
- **max.likelihood**: Maximum Likelihood of Beta Geometric
- **params - a, b**: Returns \(a \) and \(b \) parameters from maximum likelihood estimation for beta distribution

References

Examples

\[\text{surv_value} \leftarrow \text{c(100, 86.9, 74.3, 65.3, 59.3)} \]
\[h \leftarrow 6 \]
\[\text{BG(surv_value, h)} \]
customer_retention

Observed % Customers Surviving at Least 0-12 Years

Description

A dataset containing customer retention.

Usage

`data(customer_retention)`

Format

A data frame with 13 observations and 3 variables.

Details

- **year** Time in years
- **regular** % of regular customers surviving
- **high_end** % of high_end customers surviving

References

exltrend

Excel based trendlines for projecting customer retention.

Description

exltrend generates Microsoft(r) Excel(r) based linear, logarithmic, exponential, polynomial of order 2, power trends.

Usage

`exltrend(surv_value, h)`

Arguments

- **surv_value** a numeric vector of historical customer retention percentage should start at 100 and non-starting values should be between 0 and less than 100
- **h** forecasting horizon
Value

fitted: A data frame of fitted Values based on historical data for linear (lin.p), exponential (exp.p), logarithmic (log.p), polynomial (poly.p) of order 2 and power (pow.p) trends.

projected: A data frame of projected h values based on historical data for linear (lin.p), exponential (exp.p), logarithmic (log.p), polynomial (poly.p) of order 2 and power (pow.p) trends.

Examples

surv_value <- c(100, 86.9, 74.3, 65.3, 59.3)
h <- 6
extrend(surv_value, h)

Latent Class Weibull (LCW) Model for Projecting Customer Retention

Description

LCW is a latent class weibull model implementation based on Fader and Hardie probability based projection methodology. The survivor function for LCW is

\[w S(t|t1, c1) + (1 - w) S(t|t2, c2), 0 < w < 1 \]

Usage

LCW(surv_value, h, lower = c(0.001, 0.001, 0.001, 0.001, 0.001), upper = c(0.99999, 10000, 0.999999, 10000, 0.99999))

Arguments

surv_value a numeric vector of historical customer retention percentage should start at 100 and non-starting values should be between 0 and less than 100
h forecasting horizon
lower lower limit used in R optim routine. Default is c(0.001, 0.001, 0.001, 0.001, 0.001).
upper upper limit used in R optim routine. Default is c(0.99999, 10000, 0.999999, 10000, 0.99999).

Value

fitted: Fitted Values based on historical data
projected: Projected h values based on historical data
max.likelihood: Maximum Likelihood of LCW

params - t1, t2, c1, c2, w:
Returns t1, c1, t2, c2, w paramters from maximum likelihood estimation
References

Examples

```r
surv_value <- c(100, 86.9, 74.3, 65.3, 59.3, 55.1, 51.7, 49.1, 46.8, 44.5, 42.7, 40.9, 39.4)
h <- 6
LCW(surv_value, h)
```

persitency_data

Drug persistency (retention) rates by different therapeutic class.

Description

A dataset containing drug persistency of patients in different therapeutic classes.

Usage

data(persistency_data)

Format

A data frame 334 observations and 3 variables:

- **therapy** Type of therapy. Unique values include: "Hypertension" "Occular Hypertension" "Statin" "Insulin" "Epilepsy" "RA" "Osteoporosis" "Alzheimer" "ADHD" "Atrial Fibrillation". See references below. Data was extracted using https://automeris.io/WebPlotDigitizer/ and discretized using akima package.
- **time_period** Time Period
- **value** % Patients retained

References

Occular Hypertension: Campbell J, Schwartz G, LaBounty B, Kowalski J, Patel. Patient adherence and persistence with topical ocular hypotensive therapy in real-world practice: a comparison of bimatoprost 0.01% and travoprost Z 0.004% ophthalmic solutions. Clinical Ophthalmology. 2014;8:927-935.

Index

*Topic datasets
 customer_retention, 4
 persistency_data, 6

BdW, 2
BG, 3
 customer_retention, 4
 exltrend, 4
LCW, 5
 persistency_data, 6