Package ‘fourierin’

October 13, 2022

Type Package
Title Computes Numeric Fourier Integrals
Version 0.2.4
Date 2019-04-01
Author Guillermo Basulto-Elias
Maintainer Guillermo Basulto-Elias <guillermobasulto@gmail.com>
Description Computes Fourier integrals of functions of one and two variables using the Fast Fourier transform. The Fourier transforms must be evaluated on a regular grid for fast evaluation.
License MIT + file LICENSE
LazyData TRUE
LinkingTo RcppArmadillo, Rcpp
Imports Rcpp (>= 1.0.1), stats
Suggests MASS, knitr, markdown, dplyr, tidyr, purrr, ggplot2,
lattice, rbenchmark
RoxygenNote 6.1.1
URL http://github.com/gbasulto/fourierin
BugReports https://github.com/gbasulto/fourierin/issues
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-04-07 12:22:43 UTC

R topics documented:

 fourierin ... 2
 fourierin_1d .. 5
 fourierin_2d .. 7

Index 10
Compute Fourier integrals

Description

It computes Fourier integrals for functions of one and two variables.

Usage

fourierin(f, lower_int, upper_int, lower_eval = NULL, upper_eval = NULL, const_adj, freq_adj, resolution = NULL, eval_grid = NULL, use_fft = TRUE)

Arguments

- **f**: function or a vector of size m. If a function is provided, it must be able to be evaluated at vectors. If a vector of values is provided, such evaluations must have been obtained on a regular grid and the Fourier integral is faster if m is a power of 2.
- **lower_int**: Lower integration limit(s).
- **upper_int**: Upper integration limit(s).
- **lower_eval**: Lower evaluation limit(s). It can be NULL if an evaluation grid is provided.
- **upper_eval**: Upper evaluation limit(s). It can be NULL if an evaluation grid is provided.
- **const_adj**: Factor related to adjust definition of Fourier transform. It is usually equal to 0, -1 or 1.
- **freq_adj**: Constant to adjust the exponent on the definition of the Fourier transform. It is usually equal to 1, -1, 2pi or -2pi.
- **resolution**: A vector of integers (faster if powers of two) determining the resolution of the evaluation grid. Not required if f is a vector.
- **eval_grid**: Optional matrix with d columns with the points where the Fourier integral will be evaluated. If it is provided, the FFT will not be used.
- **use_fft**: Logical value specifying whether the FFT will be used.

Details

See plenty of detailed examples in the vignette.

Value

A list with the elements n-dimensional array and n vectors with their corresponding resolution. Specifically,

- **values**: A n-dimensional (resol_1 x resol_2 x ... x resol_n) complex array with the values.
- **w1**: A vector of size resol_1
- **...**
- **wn**: A vector of size resol_n
Examples

--- Example 1 ---
--- Recovering std. normal from its characteristic function ----
library(fourierin)

Function to be used in the integrand
myfnc <- function(t) exp(-t^2/2)

Compute integral
out <- fourierin(f = myfnc, lower_int = -5, upper_int = 5,
 lower_eval = -3, upper_eval = 3, const_adj = -1,
 freq_adj = -1, resolution = 64)

Extract grid and values
grid <- out$w
values <- Re(out$values)

Compare with true values of Fourier transform
plot(grid, values, type = "l", col = 3)
lines(grid, dnorm(grid), col = 4)

--- Example 2 ---
--- Computing characteristic function of a gamma r. v. ---------
library(fourierin)

Function to be used in integrand
myfnc <- function(t) dgamma(t, shape, rate)

Compute integral
shape <- 5
rate <- 3
out <- fourierin(f = myfnc, lower_int = 0, upper_int = 6,
 lower_eval = -4, upper_eval = 4,
 const_adj = 1, freq_adj = 1, resolution = 64)

Extract values
grid <- out$w # Extract grid
re_values <- Re(out$values) # Real values
im_values <- Im(out$values) # Imag values

Now compute the real and imaginary true values of the
characteristic function.
true_cf <- function(t, shape, rate) (1 - 1i*t/rate)^-shape
true_re <- Re(true_cf(grid, shape, rate))
true_im <- Im(true_cf(grid, shape, rate))

Compare them. We can see a slight discrepancy on the tails,
but that is fixed when resolution is increased.
plot(grid, re_values, type = "l", col = 3)
lines(grid, true_re, col = 4)
Same here
plot(grid, im_values, type = "l", col = 3)
lines(grid, true_im, col = 4)

###--- Example 3 ---
###--- Recovering std. normal from its characteristic function ---
library(fourierin)

##-Parameters of bivariate normal distribution
mu <- c(-1, 1)
sig <- matrix(c(3, -1, -1, 2), 2, 2)

##-Multivariate normal density
##-x is n x d
f <- function(x) {
 ##-Auxiliar values
d <- ncol(x)
z <- sweep(x, 2, mu, "-"
 ##-Get numerator and denominator of normal density
 num <- exp(-0.5*rowSums(z * (z %*% solve(sig))))
denom <- sqrt((2*pi)^d*det(sig))
 return(num/denom)
}

Characteristic function
s is n x d
phi <- function(s) {
 complex(modulus = exp(- 0.5*rowSums(s*(s %*% sig))),
 argument = s %*% mu)
}

##-Approximate cf using Fourier integrals
eval <- fourierin(f, lower_int = c(-8, -6), upper_int = c(6, 8),
 lower_eval = c(-4, -4), upper_eval = c(4, 4),
 const_adj = 1, freq_adj = 1,
 resolution = c(128, 128))

Extract values
t1 <- eval$w1
t2 <- eval$w2
t <- as.matrix(expand.grid(t1 = t1, t2 = t2))
approx <- eval$values
true <- matrix(phi(t), 128, 128) # Compute true values

This is a section of the characteristic function
i <- 65
plot(t2, Re(approx[i,]), type = "l", col = 2,
ylab = "",
xlab = expression(t[2]),
main = expression(paste("Real part section at ",
 t[1], " = 0")))
fourierin_1d

Description

It computes Fourier integrals of functions of one and two variables on a regular grid.

Usage

fourierin_1d(f, lower_int, upper_int, lower_eval = NULL, upper_eval = NULL, const_adj, freq_adj, resolution = NULL, eval_grid = NULL, use_fft = TRUE)

Arguments

f function or a vector of size m. If a function is provided, it must be able to be evaluated at vectors. If a vector of values is provided, such evaluations must have been obtained on a regular grid and the Fourier integral is faster if m is a power of 2.

lower_int Lower integration limit(s).

upper_int Upper integration limit(s).

lower_eval Lower evaluation limit(s). It can be NULL if an evaluation grid is provided.

upper_eval Upper evaluation limit(s). It can be NULL if an evaluation grid is provided.

const_adj Factor related to adjust definition of Fourier transform. It is usually equal to 0, -1 or 1.

freq_adj Constant to adjust the exponent on the definition of the Fourier Transform. It is usually equal to 1, -1, 2pi or -2pi.

resolution A vector of integers (faster if powers of two) determining the resolution of the evaluation grid. Not required if f is a vector.

eval_grid Optional matrix with d columns with the points where the Fourier integral will be evaluated. If it is provided, the FFT will not be used.

use_fft Logical value specifying whether the FFT will be used.
Details

See vignette for more detailed examples.

Value

If \(w \) is given, only the values of the Fourier integral are returned, otherwise, a list with the elements

\(w \) A vector of size \(m \) where the integral was computed.

\(\text{values} \) A complex vector of size \(m \) with the values of the integral

Examples

```r
## Example 1

library(fourierin)

myfun <- function(t) exp(-t^2/2)

out <- fourierin_1d(f = myfun, lower_int = -5, upper_int = 5, lower_eval = -3, upper_eval = 3, const_adj = -1, freq_adj = -1, resolution = 64)

grid <- out$w
values <- Re(out$values)

plot(grid, values, type = "l", col = 3)
lines(grid, dnorm(grid), col = 4)

## Example 2

library(fourierin)

myfun <- function(t) dgamma(t, shape, rate)

shape <- 5

rate <- 3

out <- fourierin_1d(f = myfun, lower_int = 0, upper_int = 6, lower_eval = -4, upper_eval = 4, const_adj = 1, freq_adj = 1, resolution = 64)

grid <- out$w
re_values <- Re(out$values)
im_values <- Im(out$values)
```
Now compute the real and
imaginary true values of the
characteristic function.
true_cf <- function(t, shape, rate) (1 - 1i*t/rate)^-shape
true_re <- Re(true_cf(grid, shape, rate))
true_im <- Im(true_cf(grid, shape, rate))

Compare them. We can see a
slight discrepancy on the
tails, but that is fixed
when resolution is
increased.
plot(grid, re_values, type = "l", col = 3)
lines(grid, true_re, col = 4)

Same here
plot(grid, im_values, type = "l", col = 3)
lines(grid, true_im, col = 4)

fourierin_2d

Bivariate Fourier integrals

Description

It computes Fourier integrals for functions of one and two variables.

Usage

```r
fourierin_2d(f, lower_int, upper_int, lower_eval = NULL, upper_eval = NULL, const_adj, freq_adj, resolution = NULL, eval_grid = NULL, use_fft = TRUE)
```

Arguments

- **f**: function or a vector of size m. If a function is provided, it must be able to be evaluated at vectors. If a vector of values is provided, such evaluations must have been obtained on a regular grid and the Fourier integral is faster if m is a power of 2.
- **lower_int**: Lower integration limit(s).
- **upper_int**: Upper integration limit(s).
- **lower_eval**: Lower evaluation limit(s). It can be NULL if an evaluation grid is provided.
- **upper_eval**: Upper evaluation limit(s). It can be NULL if an evaluation grid is provided.
- **const_adj**: Factor related to adjust definition of Fourier transform. It is usually equal to 0, -1 or 1.
- **freq_adj**: Constant to adjust the exponent on the definition of the Fourier transform. It is usually equal to 1, -1, 2pi or -2pi.
resolution A vector of integers (faster if powers of two) determining the resolution of the evaluation grid. Not required if f is a vector.

eval_grid Optional matrix with d columns with the points where the Fourier integral will be evaluated. If it is provided, the FFT will not be used.

use_fft Logical value specifying whether the FFT will be used.

Value

If w is given, only the values of the Fourier integral are returned, otherwise, a list with three elements

w1 Evaluation grid for first entry

w2 Evaluation grid for second entry

values m1 x m2 matrix of complex numbers, corresponding to the evaluations of the integral

Examples

```r
##--- Recovering std. normal from its characteristic function -----
library(fourierin)

##-Parameters of bivariate normal distribution
mu <- c(-1, 1)
sig <- matrix(c(3, -1, -1, 2), 2, 2)

##-Multivariate normal density
##-x is n x d
f <- function(x) {
  ##-Auxiliar values
d <- ncol(x)
z <- sweep(x, 2, mu, "-"
  ##-Get numerator and denominator of normal density
  num <- exp(-0.5*rowSums(z * (z %*% solve(sig))))
denom <- sqrt((2*pi)^d*det(sig))
return(num/denom)
}

##-Characteristic function
##-s is n x d
phi <- function(s) {
  complex(modulus = exp(- 0.5*rowSums(s*s %*% sig))),
  argument = s %*% mu)
}

##-Approximate cf using Fourier integrals
eval <- fourierin_2d(f, lower_int = c(-8, -6), upper_int = c(6, 8),
  lower_eval = c(-4, -4), upper_eval = c(4, 4),
  const_adj = 1, freq_adj = 1,
  resolution = c(128, 128))
```
Extract values

\[t_1 \leftarrow \text{eval$w_{1}} \]

\[t_2 \leftarrow \text{eval$w_{2}} \]

\[t \leftarrow \text{as.matrix(expand.grid}(t_1 = t_1, t_2 = t_2)) \]

\[\text{approx} \leftarrow \text{eval$values} \]

\[\text{true} \leftarrow \text{matrix}(\phi(t), 128, 128) \quad \text{# Compute true values} \]

This is a section of the characteristic functions

\[i \leftarrow 65 \]

\[\text{plot}(t_2, \text{Re(approx[i,]}, \text{type = "l", col = 2,} \]

\[\quad \text{ylab = "",} \]

\[\quad \text{xlab = expression}(t[2]),} \]

\[\quad \text{main = expression}(\text{paste("Real part section at ",} \]

\[\quad \quad \text{t[1], "= 0")}))} \]

\[\text{lines}(t_2, \text{Re(true[i,]}, \text{col = 3}) \]

\[\text{legend("topleft", legend = c("true", "approximation"),} \]

\[\quad \text{col = 3:2, lwd = 1})} \]

Another section, now of imaginary part

\[\text{plot}(t_1, \text{Im(approx[, i]), type = "l", col = 2,} \]

\[\quad \text{ylab = "",} \]

\[\quad \text{xlab = expression}(t[1]),} \]

\[\quad \text{main = expression}(\text{paste("Imaginary part section at ",} \]

\[\quad \quad \text{t[2], "= 0")}))} \]

\[\text{lines}(t_1, \text{Im(true[, i]), col = 3}) \]

\[\text{legend("topleft", legend = c("true", "approximation"),} \]

\[\quad \text{col = 3:2, lwd = 1})} \]
Index

fourierin, 2
fourierin_1d, 5
fourierin_2d, 7