Package ‘fractional’

October 13, 2022

Type Package
Title Vulgar Fractions in R
Version 0.1.3
Author Bill Venables
Maintainer Bill Venables <bill.venables@gmail.com>
Description The main function of this package allows numerical vector objects to be displayed with their values in vulgar fractional form. This is convenient if patterns can then be more easily detected. In some cases replacing the components of a numeric vector by a rational approximation can also be expected to remove some component of round-off error. The main functions form a re-implementation of the functions 'fractions' and 'rational' of the MASS package, but using a radically improved programming strategy.
License GPL (>= 2)
Suggests stats, MASS, knitr, rmarkdown, ggplot2, dplyr
Imports Rcpp
LazyData TRUE
LinkingTo Rcpp
RoxygenNote 5.0.1
NeedsCompilation yes
VignetteBuilder knitr
Repository CRAN
Date/Publication 2016-02-15 16:03:13

R topics documented:

fractional ... 2
Math.fractional .. 3
numerators ... 4
numerical ... 5
Ops.fractional ... 6
rat ... 7
fractional

representation of a numeric vector in vulgar fractional form

Description

The object is flagged so that if it is coerced to character, or printed, the numerical quantities are represented by a rational approximation. In other respects the numerical object behaves as normally.

Usage

fractional(x, eps = 1e-06, maxConv = 20, sync = FALSE)

S3 method for class 'fractional'
as.character(x, eps = attr(x, "eps"), maxConv = attr(x, "maxConv"), ...)

S3 method for class 'charFrac'
print(x, ...)

S3 method for class 'fractional'
print(x, ...)

Arguments

x A numeric object
eps An absolute error tolerance
maxConv An upper limit on the number of convergents to use in the continued fractions.
sync A logical value. Should the numerical value be changed to match the rational approximation, as closely as possible with floating point, (TRUE)? Or, should it be left and used in its original state (FALSE)?
... Currently ignored.

Value

A numeric object of class "fractional".

Methods (by generic)

- as.character: S3 method for coercion to character, producing an object inheriting from class "charFrac"
- print: Print method for class "charFrac" objects, unquoted.
- print: Print method for "fractional" objects
Math.fractional

See Also

fractions for a similar functionality.

Examples

(M <- solve(cbind(1, contr.helmert(5))))
(Mf <- fractional(M)) ## print method right justifies
(Mc <- as.character(Mf)) ## print method left justifies
(Mn <- numerical(Mc))
set.seed(123)
u <- matrix(runif(10), 2, 5)
(uf <- fractional(u))
(us <- fractional(u, sync = TRUE)) ## may look different!
unfractional(uf) - unfractional(us) ## rational approximation errors

Math.fractional Method for the group generic function for the elementary mathematical functions

Description

Allows graceful operations with mathematical functions.

Usage

S3 method for class 'fractional'
Math(x, ...)

Arguments

x A numerical object flagged as fractional
...
Passed on to further methods (but usually not required)

Value

A numeric object with the results of the computations, but NOT flagged as of class "fractional".

Examples

(M <- fractional(solve(cbind(1, contr.helmert(5)))))
(M0 <- abs(M)*sign(M)) ## fractional flag lost
numerators

Extract the parts of a fractional object

Description
Generic function for extracting numerators with methods for "fractional" or "charFrac" objects
Generic function for extracting denominators with methods for "fractional" or "charFrac" objects

Usage

numerators(x)

S3 method for class 'charFrac'
numerators(x)

S3 method for class 'fractional'
numerators(x)

Default S3 method:
numerators(x)

denominators(x)

S3 method for class 'charFrac'
denominators(x)

S3 method for class 'fractional'
denominators(x)

Default S3 method:
denominators(x)

Arguments

x An object of class "fractional" or "charFrac"

Value

An integer vector of numerators
An integer vector of denominators

Methods (by class)

- charFrac: numerators method function for "charFrac" objects
- fractional: numerators method function for "fractional" objects
• default: Default numerators method for numeric objects
• charFrac: denominators method function for "charFrac" objects
• fractional: denominators method function for "fractional" objects
• default: Default denominators method for numeric objects

Examples

(pi_approx <- vfractional(base::pi, eps = 0, maxConv = 1:10))
numerators(pi_approx)
denominators(pi_approx)

numerical Convert a fractional object to the equivalent numeric object

Description

Convert an object of class "fractional" or "charFrac" to a purely numeric object. This is effectively a method function for the .Primitive generic function as.numeric but written as a separate function for purely technical reasons.

Usage

numerical(vulgar)

S3 method for class 'fractional'
numerical(vulgar)

S3 method for class 'charFrac'
numerical(vulgar)

Default S3 method:
numerical(vulgar)

Arguments

vulgar character string form of a class 'fractional' object.

Value

A numeric object as represented by its (usually fractional) display.

Methods (by class)

• fractional: Method for "fractional" objects
• charFrac: Method for "charFrac" objects
• default: Default method for numerical generic
Examples

suppressPackageStartupMessages(library(dplyr))
m <- 2*diag(5)
m[abs(row(m) - col(m)) == 1] <- -1
m ## How much roundoff error does inverting entail?
(mi <- solve(m) %>% fractional) ## patterned inverse
mi * max(denominators(mi)) ## clearer pattern
m1 <- solve(mi)
range(m1 - m) ## roundoff still present
m2 <- m1 %>% numerical ## remove roundoff error - hopefully!
identical(m2, m) ## no roundoff

Ops.fractional

Method for the group generic function for the arithmetic operators

Description

Provides arithmetic operations for numeric objects or of class "fractional".

Usage

S3 method for class 'fractional'
Ops(e1, e2)

Arguments

e1 A numeric objet, possibly of class "fractional"
e2 A numeric objet, possibly of class "fractional"

Value

The result of the arithmetic operation, flagged as class "fractional"

Examples

(M <- fractional(1:10/7))
M + 1
1 + M + M^2
Description
This is a behind-the-scenes function not likely to be used other than internally within the package. It computes the rational approximations for each value in the principal argument.

Usage

```r
rat(x, eps = 1e-06, maxConv = 20L)
`.ratr(x, eps = 1e-06, maxConv = 20)
ratr(x, eps = 1e-06, maxConv = 20)
```

Arguments

- **x**: A numeric vector for which rational approximations are required.
- **eps**: An absolute error tolerance on the approximation.
- **maxConv**: An upper limit on the number of convergents that the continued fraction expansion may employ. The fraction is terminated once the desired accuracy is met (or the upper limit is about to be exceeded).

Value
A 3 column matrix giving, respectively, the numerators, denominators and number of convergents needed to achieve the error tolerance, in the columns.

Functions
- **rat**: C++ version of the same function used for speed
- **.ratr**: Workhorse function for a single value

See Also
- **rat** which has the same functionality, but is coded in C++.

Examples

```r
fractional(base::pi)
ratr(base::pi)

set.seed(123)
(u <- matrix(runif(10), 2, 5))
(ru <- ratr(u, eps = 1.0e-3, maxConv = 6))
(abs_error <- matrix(abs(u - ru[, 1]/ru[, 2]), 2, 5))
```
unfractional
Demote a fractional object back to a numeric one

Description

Given an object of class "fractional" this simple function removes the attributes that signal that it is to be treated as a fractional object, thus returning it to its original numeric status alone.

Usage

`unfractional(x)`

Arguments

- `x` A "fractional" object

Value

A simple numeric object like `x`

Examples

```r
(tst <- fractional(matrix(0:9/10, 2, 5)))
(tst <- unfractional(tst))
```

vfractional
Vectorized form for fractional

Description

A function which allows any or all of the first three arguments of `fractional` to be vectors, with short vectors recycled in the usual way. Note that the return value is a *character string* vector and may not be used in arithmetic operations.

Usage

`vfractional(x, eps = 1e-06, maxConv = 20)`

Arguments

- `x` as for `fractional`
- `eps` as for `fractional`, but may be a vector
- `maxConv` as for `fractional` but may be a vector
\textbf{vfractional}

\textbf{Value}

A character string vector of class "charFrac"

\textbf{Examples}

\begin{verbatim}
oldOpt <- options(scipen = 15)
pi_approx <- vfractional(base::pi, eps = 0, maxConv = 1:10)
within(data.frame(pi_approx, stringsAsFactors = FALSE), {
 value = numerical(pi_approx)
 error = signif(base::pi - value, 3)
 n = seq_along(value) - 1
})[, c("n", "pi_approx", "value", "error")]
options(oldOpt)
\end{verbatim}
Index

.ratr (rat), 7
as.character.fractional (fractional), 2
denominators (numerators), 4
fractional, 2
fractions, 3
Math.fractional, 3
numerators, 4
numerical, 5
Ops.fractional, 6
print.charFrac (fractional), 2
print.fractional (fractional), 2
rat, 7, 7
ratr (rat), 7
unfractional, 8
vfractonal, 8