Package ‘freebird’

October 13, 2022

Title Estimation and Inference for High Dimensional Mediation and Surrogate Analysis

Version 1.0

Depends R (>= 3.5.0), scalreg, Rmosek, Matrix

Imports stats, MASS

License GPL (>= 2)

RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation yes

Author Ruixuan Zhou [aut, cph], Dave Zhao [aut, cph], Layla Parast [cre]

Maintainer Layla Parast <parast@austin.utexas.edu>

Repository CRAN

Date/Publication 2022-09-27 10:20:05 UTC

R topics documented:

hilma ... 2
ptehd ... 3

Index 5
Description

This function implements the estimation and inference for the indirect effect in high dimensional linear mediation analysis models. It provides estimates and p-values under both incomplete mediation, where a direct effect may exist, as well as complete mediation, where the direct effect is known to be absent.

Usage

hilma(
 Y,
 G,
 S,
 mediation_setting = "incomplete",
 tuning_method = "uniform",
 lam_list = NA,
 min.ratio = 0.1,
 n.lambda = 5,
 center = TRUE
)

Arguments

Y The n-dimensional outcome vector.
G The n by p mediator matrix. p can be larger than n.
S The n by q exposure matrix. q can be 1, and q < n is required.
mediation_setting Either ‘incomplete’ or ‘complete’
tuning_method ‘uniform’ or ‘aic’, the default is ‘uniform’
lam_list tuning parameter for uniform tuning or list of tuning parameter for aic tuning
min.ratio the ratio of the minimum lambda to the maximum
n.lambda number of tuning parameters to choose from
center center the data or not, the default is TRUE

Value

A list with components:

beta_hat estimated indirect effect
alpha1_hat estimated direct effect
pvalue_beta_hat the p value for testing the significance of the indirect effect
lambda_used lambda used during optimization
Author(s)
Ruixuan Zhou

Examples
n = 30
p = 50
q = 2
G = MASS::mvrnorm(n, rep(0,p), diag(p))
S = as.matrix(MASS::mvrnorm(n, rep(0,q), diag(q)))
Y = as.matrix(rnorm(n))
out = hilma(Y,G,S, mediation_setting = 'complete', tuning_method = 'uniform', lam_list = 0.2)
out

ptehd Proportion of treatment effect explained by high-dimensional surrogates

Description
Estimates the proportion of the treatment effect explained by the indirect effect via high-dimensional surrogates.

Usage
ptehd(Yt, Yc, St, Sc, lambda_range = c(0, 1))

Arguments
Yt The n-dimensional outcome vector in the treatment group.
Yc The n-dimensional outcome vector in the control group.
St The n x p matrix of surrogates in the treatment group.
Sc The n x p matrix of surrogates in the treatment group.
lambda_range Min and max of range of range of tuning parameter to use during the constrained l1 optimization step.

Value
A list with components:
est_id Estimate of indirect effect, defined as $\int E(Y|S = s, Z = 1)dF(s|Z = 1) - \int E(Y|S = s, Z = 0)dF(s|Z = 0)$
sd_id Standard deviation of indirect effect estimate
est_total Estimate of total effect
sd_total Standard deviation of total effect estimate
V Covariance matrix of (est_id, est_total)
est_R Estimate of proportion of treatment effect explained by surrogates
sd_R Standard deviation of proportion estimate
lambda_used lambda used during optimization

Author(s)
Ruixuan Zhou

Examples
n = 10
St = replicate(n, rnorm(20, mean = 1))
Sc = replicate(n, rnorm(20))
Yt = 1 + rowSums(St) / 2 + rnorm(n)
Yc = rowSums(Sc) / 3 + rnorm(n)
Requires installation of mosek to run
Not run:
out = ptehd(Yt, Yc, St, Sc)
End(Not run)
Index

hilma, 2
ptehd, 3