Package ‘frequencyConnectedness’

February 16, 2020

Type Package
Title Spectral Decomposition of Connectedness Measures
Version 0.2.2
Date 2020-02-04
Description Accompanies a paper (Barunik, Krehlik (2018) <doi:10.1093/jjfinec/nby001>) dedicated to spectral decomposition of connectedness measures and their interpretation. We implement all the developed estimators as well as the historical counterparts. For more information, see the help or GitHub page (<https://github.com/tomaskrehlik/frequencyConnectedness>) for relevant information.
Depends vars, urca, knitr, pbapply
Suggests testthat, stringr, mAr, reshape2, ggplot2, parallel, zoo, BigVAR
Imports methods
License GPL-2
RoxygenNote 7.0.2
BugReports https://github.com/tomaskrehlik/frequencyConnectedness/issues
URL https://github.com/tomaskrehlik/frequencyConnectedness
NeedsCompilation no
Author Tomas Krehlik [aut, cre]
Maintainer Tomas Krehlik <tomas.krehlik@gmail.com>
Repository CRAN
Date/Publication 2020-02-16 19:20:02 UTC

R topics documented:

collapseBounds .. 3
collapseBounds.list_of_spills 3
collapseBounds.spillover_table 4
eexampleSim .. 4
fevd ... 5
R topics documented:

fftFEVD .. 5
fftGenFEVD ... 6
from ... 7
from.list_of_spills .. 7
from.spillover_table ... 8
genFEVD .. 9
getIndeces ... 9
getPartition .. 10
net ... 11
net.list_of_spills .. 11
net.spillover_table .. 12
overall .. 13
overall.list_of_spills ... 13
overall.spillover_table 14
pairwise .. 15
pairwise.list_of_spills 15
pairwise.spillover_table 16
plotFrom .. 17
plotFrom.list_of_spills 17
plotNet .. 18
plotNet.list_of_spills .. 19
plotOverall ... 19
plotOverall.list_of_spills 20
plotPairwise ... 21
plotPairwise.list_of_spills 21
plotTo ... 22
plotTo.list_of_spills ... 22
print.list_of_spills ... 23
print.spillover_table .. 23
spillover .. 24
spilloverBK09 ... 25
spilloverBK12 ... 25
spilloverDY09 ... 26
spilloverDY12 ... 26
spilloverFft ... 27
spilloverRolling ... 28
spilloverRollingBK09 ... 29
spilloverRollingBK12 ... 30
spilloverRollingDY09 ... 31
spilloverRollingDY12 ... 32
to ... 33
to.list_of_spills ... 34
to.spillover_table ... 34
volatilities .. 35

Index 36
collapseBounds

Method for for collapsing bound for frequency spillovers

Description

Method for for collapsing bound for frequency spillovers

Usage
collapseBounds(spillover_table, which)

Arguments

spillover_table
 the output of spillover estimation function or rolling spillover estimation function

which
 integer vector indicating which of the frequency bounds we want to have collapsed

Value

New spillover object with collapsed bounds

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

collapseBounds.list_of_spills

Function to collapse bounds

Description

Taking in list_of_spills, if the individual spillover_tables are frequency based, it allows you to collapse several frequency bands into one.

Usage

S3 method for class 'list_of_spills'
collapseBounds(spillover_table, which)

Arguments

spillover_table
 a list_of_spills object, ideally from the provided estimation functions

which
 which frequency bands to collapse. Should be a sequence like 1:2 or 1:5, etc.
Value

list_of_spills with less frequency bands.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

collapseBounds.spillover_table

Function to collapse bounds

Description

Taking in spillover_table, if the spillover_table is frequency based, it allows you to collapse several frequency bands into one.

Usage

S3 method for class 'spillover_table'
collapseBounds(spillover_table, which)

Arguments

spillover_table

a spillover_table object, ideally from the provided estimation functions

which

which frequency bands to collapse. Should be a sequence like 1:2 or 1:5, etc.

Value

spillover_table with less frequency bands.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

eampleSim

The simulated time-series

Description

The dataset includes three simulated processes with spillover dynamics.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
fevd

Compute a forecast error vector decomposition in recursive identification scheme

Description
This function computes the standard forecast error vector decomposition given the estimate of the VAR.

Usage
fevd(est, n.ahead = 100, no.corr = F)

Arguments
- est: the VAR estimate from the vars package
- n.ahead: how many periods ahead should be taken into account
- no.corr: boolean if the off-diagonal elements should be set to 0.

Value
a matrix that corresponds to contribution of ith variable to jth variance of forecast

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

fftFEVD
Compute a FFT transform of forecast error vector decomposition in recursive identification scheme

Description
This function computes the decomposition of standard forecast error vector decomposition given the estimate of the VAR. The decomposition is done according to the Stiassny (1996)

Usage
fftFEVD(est, n.ahead = 100, no.corr = F, range)

Arguments
- est: the VAR estimate from the vars package
- n.ahead: how many periods ahead should be taken into account
- no.corr: boolean if the off-diagonal elements should be set to 0.
- range: defines the frequency partitions to which the spillover should be decomposed
Value

a list of matrices that corresponds to contribution of ith variable to jth variance of forecast

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

fftGenFEVD

Compute a FFT transform of forecast error vector decomposition in generalised VAR scheme.

Description

This function computes the decomposition of standard forecast error vector decomposition given the estimate of the VAR. The decomposition is done according to the Stiassny (1996)

Usage

fftGenFEVD(est, n.ahead = 100, no.corr = F, range)

Arguments

est the VAR estimate from the vars package
n.ahead how many periods ahead should be taken into account
no.corr boolean if the off-diagonal elements should be set to 0.
range defines the frequency partitions to which the spillover should be decomposed

Value

a list of matrices that corresponds to contribution of ith variable to jth variance of forecast

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
Method for computing FROM spillovers

Description
Method for computing FROM spillovers

Usage
from(spillover_table, ...)

Arguments
spillover_table
the output of spillover estimation function or rolling spillover estimation function
...
other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value
Value for FROM spillover

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

Function to compute from spillovers

Description
Taking in list_of_spillovers, the function computes the from spillovers for all the individual spillover_table.

Usage
S3 method for class 'list_of_spills'
from(spillover_table, within = F, ...)

Arguments
spillover_table
a list_of_spills object, ideally from rolling window estimation
within
whether to compute the within spillovers if the spillover tables are frequency based.
...
for the sake of CRAN not to complain
Value

a list containing the from spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

from.spillover_table Function to compute from spillovers

Description

Taking in spillover_table, the function computes the from spillover.

Usage

S3 method for class 'spillover_table'
from(spillover_table, within = F, ...)

Arguments

spillover_table
 a spillover_table object, ideally from the provided estimation functions

within
 whether to compute the within spillovers if the spillover tables are frequency based.

... for the sake of CRAN not to complain

Value

a list containing the from spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
Description

This function computes the standard forecast error vector decomposition given the estimate of the VAR. There are common complaints and requests whether the computation is ok and why it does not follow the original Pesaran Shin (1998) article. So let me clear two things out. First, the σ in the equation on page 20 refers to elements of Σ, not standard deviation. Second, the indexing is wrong, it should be $\sigma_{j,j}$ not $\sigma_{i,i}$. Look, for example, to Diebold and Yilmaz (2012) or ECB WP by Dees, Holly, Pesaran, and Smith (2007) for the correct version.

Usage

```
genFEVD(est, n.ahead = 100, no.corr = F)
```

Arguments

- `est`: the VAR estimate from the vars package
- `n.ahead`: how many periods ahead should be taken into account
- `no.corr`: boolean if the off-diagonal elements should be set to 0.

Value

- a matrix that corresponds to contribution of ith variable to jth variance of forecast

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

getIndeces

Get the indeces for the individual intervals

Description

This function returns the indeces of the vector coming from DFT of time series of length n.ahead that correspond to frequencies in the interval (up, down].

Usage

```
getIndeces(n.ahead, up, down)
```
getPartition

Arguments

- **n. ahead**: the length of the vector coming out of the DFT
- **up**: the upper boundary of the interval
- **down**: the lower boundary of the interval

Author(s)

Tomas Krehlik <tomas.krehlik@sorgmail.com>

getPartition

Get a list of indeces corresponding to parts of frequency partition

Description

This function takes in a vector of numbers denoting the breaks in partition of an interval and returns a list of indeces that correspond to indeces that are contained within an individual intervals. The individual parts then contain (a,b] for all pairs in the interval. Hence if you want pi to be included, the partition should start with something slightly bigger than pi.

Usage

```r
getPartition(partition, n.ahead)
```

Arguments

- **partition**: breaking points of partition of frequency interval, should be ordered decreasingly.
- **n. ahead**: how many observations is the FFT done on.

Value

A list of vectors of indeces corresponding to individual partitions

Author(s)

Tomas Krehlik <tomas.krehlik@sorgmail.com>
net
Method for computing NET spillovers

Description

Method for computing NET spillovers

Usage

```r
net(spillover_table, ...)  
```

Arguments

- `spillover_table`
 the output of spillover estimation function or rolling spillover estimation function

- `...`
 other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

Value for NET spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

net.list_of_spills
Function to compute net spillovers

Description

Taking in list_of_spillovers, the function computes the net spillovers for all the individual spillover_table.

Usage

```r
## S3 method for class 'list_of_spills'
net(spillover_table, within = F, ...)
```

Arguments

- `spillover_table`
 a list_of_spills object, ideally from rolling window estimation

- `within`
 whether to compute the within spillovers if the spillover tables are frequency based.

- `...`
 for the sake of CRAN not to complain
Value

a list containing the net spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

net.spillover_table

Function to compute net spillovers

Description

Taking in spillover_table, the function computes the net spillover.

Usage

```r
## S3 method for class 'spillover_table'
net(spillover_table, within = F, ...)
```

Arguments

- `spillover_table`
a spillover_table object, ideally from the provided estimation functions
- `within`
whether to compute the within spillovers if the spillover tables are frequency based.
- `...`
for the sake of CRAN not to complain

Value

a list containing the net spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
Method for computing overall spillovers

Description
Method for computing overall spillovers

Usage
overall(spillover_table, ...)

Arguments
- spillover_table: the output of spillover estimation function or rolling spillover estimation function
- ...: other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value
Value for overall spillover

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

Function to compute overall spillovers

Description
Taking in list_of_spillovers, the function computes the overall spillovers for all the individual spillover_table.

Usage

```r
## S3 method for class 'list_of_spills'
overall(spillover_table, within = F, ...)
```
overall.spillover_table

Arguments

- `spillover_table`

 a list_of_spills object, ideally from rolling window estimation

- `within`

 whether to compute the within spillovers if the spillover tables are frequency based.

- `...`

 for the sake of CRAN not to complain

Value

- a list containing the overall spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Description

Taking in spillover_table, the function computes the overall spillover.

Usage

```r
## S3 method for class 'spillover_table'
overall(spillover_table, within = F, ...)  
```

Arguments

- `spillover_table`

 a spillover_table object, ideally from the provided estimation functions

- `within`

 whether to compute the within spillovers if the spillover tables are frequency based.

- `...`

 for the sake of CRAN not to complain

Value

- a list containing the overall spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
pairwise

Method for computing PAIRWISE spillovers

Description

Method for computing PAIRWISE spillovers

Usage

pairwise(spillover_table, ...)

Arguments

- **spillover_table**
 - the output of spillover estimation function or rolling spillover estimation function
- **...**
 - other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

Value for PAIRWISE spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

pairwise.list_of_spills

Function to compute pairwise spillovers

Description

Taking in list_of_spillovers, the function computes the pairwise spillovers for all the individual spillover_table.

Usage

```r
## S3 method for class 'list_of_spills'
pairwise(spillover_table, within = F, ...)
```
pairwise.spillover_table

Arguments

spillover_table
 a list_of_spills object, ideally from rolling window estimation
within
 whether to compute the within spillovers if the spillover tables are frequency based.
...
 for the sake of CRAN not to complain

Value

 a list containing the pairwise spillovers

Author(s)

 Tomas Krehlik <tomas.krehlik@gmail.com>

pairwise.spillover_table

 Function to compute pairwise spillovers

Description

 Taking in spillover_table, the function computes the pairwise spillover.

Usage

 ## S3 method for class 'spillover_table'
 pairwise(spillover_table, within = F, ...)

Arguments

spillover_table
 a spillover_table object, ideally from the provided estimation functions
within
 whether to compute the within spillovers if the spillover tables are frequency based.
...
 for the sake of CRAN not to complain

Value

 a list containing the pairwise spillover

Author(s)

 Tomas Krehlik <tomas.krehlik@gmail.com>
plotFrom

Method for plotting FROM spillovers

Description

Method for plotting FROM spillovers

Usage

```r
plotFrom(spillover_table, ...)
```

Arguments

- `spillover_table`
 - the output of rolling spillover estimation function
- `...`
 - other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

The plot

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

plotFrom.list_of_spills

Function to plot from spillovers

Description

Taking in list_of_spillovers, the function plots the from spillovers using the zoo::plot.zoo function

Usage

```r
## S3 method for class 'list_of_spills'
plotFrom(
  spillover_table,
  within = F,
  which = 1:nrow(spillover_table$list_of_tables[[1]]$tables[[1]]),
  ...
)
```
plotNet

Arguments

- `spillover_table`
 a list_of_spills object, ideally from rolling window estimation
- `within` whether to compute the within spillovers if the spillover tables are frequency based.
- `which` a vector with indices specifying which plots to plot.
- `...` for the sake of CRAN not to complain

Value

a plot of from spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

plotNet

Description

Method for plotting NET spillovers

Usage

`plotNet(spillover_table, ...)`

Arguments

- `spillover_table`
 the output of rolling spillover estimation function
- `...` other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

The plot

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
plotNet.list_of_spills

Function to plot net spillovers

Description
Taking in list_of_spillovers, the function plots the net spillovers using the zoo::plot.zoo function

Usage
```r
# S3 method for class 'list_of_spills'
plotNet(
  spillover_table,
  within = F,
  which = 1:nrow(spillover_table$list_of_tables[[1]]$tables[[1]]),
  ...
)
```

Arguments
- `spillover_table`: a list_of_spills object, ideally from rolling window estimation
- `within`: whether to compute the within spillovers if the spillover tables are frequency based.
- `which`: a vector with indices specifying which plots to plot.
- `...`: for the sake of CRAN not to complain

Value
a plot of net spillovers

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

plotOverall

Method for plotting overall spillovers

Description
Method for plotting overall spillovers

Usage
```r
plotOverall(spillover_table, ...)
```
Arguments

spillover_table
 the output of rolling spillover estimation function

... other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

The plot

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
plotPairwise

Method for plottingPAIRWISE spillovers

Description
Method for plotting PAIRWISE spillovers

Usage
plotPairwise(spillover_table, ...)

Arguments
spillover_table
 the output of rolling spillover estimation function
...
 other arguments like whether it is within or absolute spillover in case of the
 frequency spillovers

Value
The plot

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

plotPairwise.list_of_spills

Function to plot pairwise spillovers

Description
Taking in list_of_spillovers, the function plots the pairwise spillovers using the zoo::plot.zoo function

Usage
S3 method for class 'list_of_spills'
plotPairwise(
 spillover_table,
 within = F,
 which = 1:ncol(utils::combn(nrow(spillover_table$list_of_tables[[1]]$tables[[1]]), 2)),
 ...
)
plotTo

Method for plotting TO spillovers

Arguments

spillover_table
 a list_of_spills object, ideally from rolling window estimation

within
 whether to compute the within spillovers if the spillover tables are frequency based.

which
 a vector with indices specifying which plots to plot.

... for the sake of CRAN not to complain

Value

a plot of pairwise spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Description

Method for plotting TO spillovers

Usage

plotTo(spillover_table, ...)

Arguments

spillover_table
 the output of rolling spillover estimation function

... other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

The plot

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
plotTo.list_of_spills Function to plot to spillovers

Description
Taking in list_of_spillovers, the function plots the to spillovers using the zoo::plot.zoo function

Usage
S3 method for class 'list_of_spills'
plotTo(
 spillover_table,
 within = F,
 which = 1:nrow(spillover_table$list_of_tables[[1]]$tables[[1]]),
 ...
)

Arguments
 spillover_table
 a list_of_spills object, ideally from rolling window estimation
 within
 whether to compute the within spillovers if the spillover tables are frequency based.
 which
 a vector with indices specifying which plots to plot.
 ...
 for the sake of CRAN not to complain

Value
a plot of to spillovers

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

print.list_of_spills Function to not print the list_of_spills object

Description
Usually it is not a good idea to print the list_of_spills object, hence this function implements warning and shows how to print them individually if the user really wants to.

Usage
S3 method for class 'list_of_spills'
print(x, ...)
Arguments

\texttt{x}
a \texttt{list_of_spills} object, ideally from the provided estimation functions
\texttt{...}
for the sake of CRAN not to complain

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

\texttt{print.spillover_table} \textit{Function to print the spillover table object}

Description

The function takes as an argument the \texttt{spillover_table} object and prints it nicely to the console. While doing that it also computes all the necessary measures.

Usage

\begin{verbatim}
S3 method for class 'spillover_table'
print(x, ...)
\end{verbatim}

Arguments

\texttt{x}
a \texttt{spillover_table} object, ideally from the provided estimation functions
\texttt{...}
for the sake of CRAN not to complain

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

\texttt{spillover} \textit{Computing spillover from a fevd}

Description

This function is an internal implementation of the spillover. The spillover is in general defined as the contribution of the other variables to the fevd of the self variable. This function computes the spillover as the contribution of the diagonal elements of the fevd to the total sum of the matrix. The other functions are just wrappers around this function. In general, other spillovers could be implemented using this function.

Usage

\begin{verbatim}
spillover(func, est, n.ahead, no.corr = F)
\end{verbatim}
spilloverBK09

Arguments

- **func**: name of the function that returns FEVD for the estimate `est`
- **est**: the estimate of a system, typically VAR estimate in our case
- **n.ahead**: how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
- **no.corr**: boolean parameter whether the off-diagonal in the covariance matrix should be set to zero

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

spilloverBK09

Computing the decomposed spillover from a fevd as defined by Barunik, Krehlik (2018)

Description

This function is an internal implementation of the frequency spillover. We apply the identification scheme suggested by `fevd` to the frequency decomposition of the transfer functions from the estimate `est`.

Usage

`spilloverBK09(est, n.ahead = 100, no.corr, partition)`

Arguments

- **est**: the estimate of a system, typically VAR estimate in our case
- **n.ahead**: how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
- **no.corr**: boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
- **partition**: defines the frequency partitions to which the spillover should be decomposed

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
spilloverBK12
Computing the decomposed spillover from a generalized fevd as defined by Barunik, Krehlik (2018)

Description

This function is an internal implementation of the frequency spillover. We apply the identification scheme suggested by fevd to the frequency decomposition of the transfer functions from the estimate est.

Usage

```r
spilloverBK12(est, n.ahead = 100, no.corr, partition)
```

Arguments

- `est` the estimate of a system, typically VAR estimate in our case
- `n.ahead` how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
- `no.corr` boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
- `partition` defines the frequency partitions to which the spillover should be decomposed

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

spilloverDY09
Computing spillover from a fevd according to Diebold Yilmaz (2009)

Description

This function is an internal implementation of the spillover. The spillover is in general defined as the contribution of the other variables to the fevd of the self variable. This function computes the spillover as the contribution of the diagonal elements of the fevd to the total sum of the matrix. The other functions are just wrappers around this function. In general, other spillovers could be implemented using this function.

Usage

```r
spilloverDY09(est, n.ahead = 100, no.corr)
```
spilloverDY12

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>est</td>
<td>the estimate of a system, typically VAR estimate in our case</td>
</tr>
<tr>
<td>n.ahead</td>
<td>how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period</td>
</tr>
<tr>
<td>no.corr</td>
<td>boolean parameter whether the off-diagonal in the covariance matrix should be set to zero</td>
</tr>
</tbody>
</table>

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Description

This function is an internal implementation of the spillover. The spillover is in general defined as the contribution of the other variables to the fevd of the self variable. This function computes the spillover as the contribution of the diagonal elements of the fevd to the total sum of the matrix. The other functions are just wrappers around this function. In general, other spillovers could be implemented using this function.

Usage

spilloverDY12(est, n.ahead = 100, no.corr)
spilloverFft Computing the decomposed spillover from a fevd

Description

This function is an internal implementation of the frequency spillover. We apply the identification scheme suggested by fevd to the frequency decomposition of the transfer functions from the estimate est.

Usage

spilloverFft(func, est, n.ahead, partition, no.corr = F)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>func</td>
<td>name of the function that returns FEVD for the estimate est</td>
</tr>
<tr>
<td>est</td>
<td>the estimate of a system, typically VAR estimate in our case</td>
</tr>
<tr>
<td>n.ahead</td>
<td>how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period</td>
</tr>
<tr>
<td>partition</td>
<td>defines the frequency partitions to which the spillover should be decomposed</td>
</tr>
<tr>
<td>no.corr</td>
<td>boolean parameter whether the off-diagonal in the covariance matrix should be set to zero</td>
</tr>
</tbody>
</table>

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

spilloverRolling Computing rolling spillover

Description

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover. For usage, see how spilloverRollingDY09, etc. are implemented.
Usage

```r
spilloverRolling(
  func_spill,
  params_spill,
  func_est,
  params_est,
  data,
  window,
  cluster = NULL
)
```

Arguments

- `func_spill`: name of the function that returns FEVD for the estimate `est`
- `params_spill`: parameters from spillover estimation function as a list
- `func_est`: name of the estimation function
- `params_est`: parameters from the estimation function as a list
- `data`: variable containing the dataset
- `window`: length of the window to be rolled
- `cluster`: either NULL for no parallel processing or the variable containing the cluster.

Value

A corresponding spillover value on a given frequency band, ordering of bands corresponds to the ordering of original bounds.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Description

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover.
Usage

```r
spilloverRollingBK09(
  data,
  n.ahead = 100,
  no.corr,
  partition,
  func_est,
  params_est,
  window,
  cluster = NULL
)
```

Arguments

- **data**: variable containing the dataset
- **n.ahead**: how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
- **no.corr**: boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
- **partition**: how to split up the estimated spillovers into frequency bands. Should be a vector of bound points that starts with 0 and ends with pi+0.00001.
- **func_est**: estimation function, usually would be VAR or BigVAR function to estimate the multivariate system
- **params_est**: parameters passed to the estimation function, as a list, for parameters refer to documentation of the estimating function
- **window**: length of the window to be rolled
- **cluster**: either NULL for no parallel processing or the variable containing the cluster.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

spilloverRollingBK12
Computing rolling frequency spillover from a generalized fevd as defined by Barunik, Krehlik (2018)

Description

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover.
Usage

spilloverRollingBK12(
 data,
 n.ahead = 100,
 no.corr,
 partition,
 func_est,
 params_est,
 window,
 cluster = NULL
)

Arguments

data variable containing the dataset
n.ahead how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
no.corr boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
partition defines the frequency partitions to which the spillover should be decomposed
func_est a name of the function to estimate with, for example "var" for VAR from vars package
params_est a list of the parameters to pass to the function besides the data that are passed as a first element.
window length of the window to be rolled
cluster either NULL for no parallel processing or the variable containing the cluster.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Description

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover.
Usage

```r
spilloverRollingDY09(
  data,
  n.ahead = 100,
  no.corr,
  func_est,
  params_est,
  window,
  cluster = NULL
)
```

Arguments

data variable containing the dataset
n.ahead how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
no.corr boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
func_est estimation function, usually would be VAR or BigVAR function to estimate the multivariate system
params_est parameters passed to the estimation function, as a list, for parameters refer to documentation of the estimating function
window length of the window to be rolled
cluster either NULL for no parallel processing or the variable containing the cluster.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

spilloverRollingDY12 Computing rolling spillover from the generalized fevd according to Diebold Yilmaz (2012)

Description

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover.

Usage

```r
spilloverRollingDY12(
  data,
  n.ahead = 100,
  no.corr,
```
args <- list(
 func_est,
 params_est,
 window,
 cluster = NULL
)

Arguments

data variable containing the dataset
n.ahead how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won't change with additional period
no.corr boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
func_est estimation function, usually would be VAR or BigVAR function to estimate the multivariate system
params_est parameters passed to the estimation function, as a list, for parameters refer to documentation of the estimating function
window length of the window to be rolled
cluster either NULL for no parallel processing or the variable containing the cluster.

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

Method for computing TO spillovers

Description
Method for computing TO spillovers

Usage
to(spillover_table, ...)

Arguments
spillover_table the output of spillover estimation function or rolling spillover estimation function
...
other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value
Value for TO spillover
Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

to.list_of_spills Function to compute to spillovers

Description
Taking in list_of_spillovers, the function computes the to spillovers for all the individual spillover_table.

Usage
```r
## S3 method for class 'list_of_spills'
spillover_table

spillover_table to(spillover_table, within = FALSE, ...)
```

Arguments
- `spillover_table`: a list_of_spills object, ideally from rolling window estimation
- `within`: whether to compute the within spillovers if the spillover tables are frequency based.
- `...`: for the sake of CRAN not to complain

Value
a list containing the to spillovers

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

to.spillover_table Function to compute to spillovers

Description
Taking in spillover_table, the function computes the to spillover.

Usage
```r
## S3 method for class 'spillover_table'
spillover_table

spillover_table to(spillover_table, within = FALSE, ...)
```
Arguments

spillover_table

a spillover_table object, ideally from the provided estimation functions

within

whether to compute the within spillovers if the spillover tables are frequency based.

... for the sake of CRAN not to complain

Value

a list containing the to spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

description

The dataset includes median realised volatilities of some financial indices

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
Index

*Topic **data**
 exampleSim, 4
 volatilities, 35

collapseBounds, 3
collapseBounds.list_of_spills, 3
collapseBounds.spillover_table, 4

eexampleSim, 4
fevd, 5
fftfFEVD, 5
fftfGenFEVD, 6
from, 7
from.list_of_spills, 7
from.spillover_table, 8

geneFEVD, 9
getIndeces, 9
getPartition, 10

net, 11
net.list_of_spills, 11
net.spillover_table, 12

overall, 13
overall.list_of_spills, 13
overall.spillover_table, 14

pairwise, 15
pairwise.list_of_spills, 15
pairwise.spillover_table, 16
plotFrom, 17
plotFrom.list_of_spills, 17
plotNet, 18
plotNet.list_of_spills, 19
plotOverall, 19
plotOverall.list_of_spills, 20
plotPairwise, 21
plotPairwise.list_of_spills, 21
plotTo, 22
plotTo.list_of_spills, 23
print.list_of_spills, 23
print.spillover_table, 24

spillover, 24
spilloverBK09, 25
spilloverBK12, 26
spilloverDY09, 26
spilloverDY12, 27
spilloverFft, 28
spilloverRolling, 28
spilloverRollingBK09, 29
spilloverRollingBK12, 30
spilloverRollingDY09, 31
spilloverRollingDY12, 32

to, 33
to.list_of_spills, 34
to.spillover_table, 34

volatilities, 35