Package ‘fssemR’

December 4, 2019

Title Fused Sparse Structural Equation Models to Jointly Infer Gene Regulatory Network

Version 0.1.6

Author Xin Zhou, Xiaodong Cai

Maintainer Xin Zhou <xxz220@miami.edu>

Description An optimizer of Fused-Sparse Structural Equation Models, which is the state of the art jointly fused sparse maximum likelihood function for structural equation models proposed by Xin Zhou and Xiaodong Cai (2018 <doi:10.1101/466623>).

License GPL (>= 3)

Encoding UTF-8

LazyData true

Depends methods

Imports Rcpp, Matrix, stats, igraph, mvtnorm, qtl, stringr, glmnet, MASS

Suggests plotly, knitr, rmarkdown, network, ggnetwork

LinkingTo Rcpp, RcppEigen

RoxygenNote 6.1.1

URL https://github.com/Ivis4ml/fssemR

NeedsCompilation yes

Repository CRAN

VignetteBuilder knitr

Date/Publication 2019-12-04 16:10:05 UTC

R topics documented:

 cv.multiFSSEMiPALM .. 2
 cv.multiFSSEMiPALM2 .. 3
 cv.multiRegression .. 4
 cwiseGradient4FSSEM ... 4
cv.multiFSSEMiPALM

Description

`cv.multiFSSEMiPALM`

Usage

```r
cv.multiFSSEMiPALM(Xs, Ys, Bs, Fs, Sk, sigma2, nlambda = 20, nrho = 20, nfold = 5, p, q, wt = TRUE, plot = FALSE)
```

Arguments

- `Xs` eQTL matrices
- `Ys` Gene expression matrices
- `Bs` initialized GRN-matrices
- `Fs` initialized eQTL effect matrices
- `Sk` eQTL index of genes
- `sigma2` initialized noise variance
cv.multiFSSEMiPALM2

nlambda
 number of hyper-parameter of lasso term in CV
nrho
 number of hyper-parameter of fused-lasso term in CV
nfold
 CVfold number. Default 5/10
p
 number of genes
q
 number of eQTLs
wt
 use adaptive lasso or not. Default TRUE.
plot
 plot contour of cvmean or not. Default FALSE.

Value
 list of cross-validation result

Description
cv.multiFSSEMiPALM2

Usage
 cv.multiFSSEMiPALM2(Xs, Ys, Bs, Fs, Sk, sigma2, nlambda = 20,
 nrho = 20, nfold = 5, p, q, wt = TRUE, plot = FALSE)

Arguments
 Xs
 eQTL matrices
 Ys
 Gene expression matrices
 Bs
 initialized GRN-matrices
 Fs
 initialized eQTL effect matrices
 Sk
 eQTL index of genes
 sigma2
 initialized noise variance
 nlambda
 number of hyper-parameter of lasso term in CV
 nrho
 number of hyper-parameter of fused-lasso term in CV
 nfold
 CVfold number. Default 5/10
 p
 number of genes
 q
 number of eQTLs
 wt
 use adaptive lasso or not. Default TRUE.
 plot
 plot contour of cvmean or not. Default FALSE.

Value
 list of cross-validation result
cv.multiRegression

Description

cv.multiRegression

Usage

cv.multiRegression(Xs, Ys, Sk, ngamma = 20, nfold = 5, n, p, k)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xs</td>
<td>eQTL matrices</td>
</tr>
<tr>
<td>Ys</td>
<td>Gene expression matrices</td>
</tr>
<tr>
<td>Sk</td>
<td>eQTL index of genes</td>
</tr>
<tr>
<td>ngamma</td>
<td>number of hyper-parameter in CV</td>
</tr>
<tr>
<td>nfold</td>
<td>CVfold number. Default 5/10</td>
</tr>
<tr>
<td>n</td>
<td>number of observations</td>
</tr>
<tr>
<td>p</td>
<td>number of genes</td>
</tr>
<tr>
<td>k</td>
<td>number of eQTLs</td>
</tr>
</tbody>
</table>

Value

gamma_min optimal gamma to minimize cross-validation error

cwiseGradient4FSSEM

Description

function generator function

Usage

cwiseGradient4FSSEM(n, c, Y, R, Y2norm, sigma2)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>number of observations</td>
</tr>
<tr>
<td>c</td>
<td>cofactor vector</td>
</tr>
<tr>
<td>Y</td>
<td>Matrix of gene expression</td>
</tr>
<tr>
<td>R</td>
<td>Residual matrix</td>
</tr>
<tr>
<td>Y2norm</td>
<td>Column of YtY</td>
</tr>
<tr>
<td>sigma2</td>
<td>noise variance</td>
</tr>
</tbody>
</table>
FDR

Value

function whose argument is column vector bi

Description

False discovery rate for network prediction

Usage

\[FDR(X, B, PREC = 0) \]

Arguments

- **X**: list of predicted network matrices
- **B**: list of true network matrices
- **PREC**: precision threshold for FDR test. Default 0.

flinvB

Description

inversed difference of two B matrices. For adaptive fused lasso penalty

Usage

\[flinvB(Bs) \]

Arguments

- **Bs**: list of network matrices

Value

inversed difference matrices
Description

if you do not want adaptive fused lasso penalty, floneB replace flinvB

Usage

floneB(Bs)

Arguments

Bs list of network matrices

Value

matrix whose entries are all 1

Solving Sparse Structural Equation Model

Description

Solving Sparse Structural Equation Model

Author(s)

Xin Zhou <xxz220@miami.edu>

Examples

seed = as.numeric(Sys.time())
N = 100 # sample size
Ng = 5 # gene number
Nk = 5 * 3 # eQTL number
Ns = 1 # sparse ratio
sigma2 = 0.01 # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
u = 5, type = "DG", nhub = 1, dag = TRUE)
gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
N, Ng, Nk)
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
trans = FALSE)
Xs = data$Data$X
Ys = data$Data$Y
Sk = data$Data$Sk

cross-validation
cvfitc <- cv.multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
sigma2 = fit$sigma2, nlambda = 10, nrho = 10,
nfold = 5, p = Ng, q = Nk, wt = TRUE)

fitm <- opt.multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
 sigma2 = fit$sigma2, nlambda = 10, nrho = 10,
 p = Ng, q = Nk, wt = TRUE)

fitc0 <- fitm$fit

(TPR(fitc0$Bs[[1]], data$Vars$B[[1]]) + TPR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
(FDR(fitc0$Bs[[1]], data$Vars$B[[1]]) + FDR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
TPR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
FDR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])

implFSSEM

implFSSEM

Description

Implementor function of FSSEM solver

Usage

implFSSEM(data = NULL, method = c("CV", "BIC"))

Arguments

- **data**: Data archive of experiment measurements, including eQTL matrices, Gene expression matrices of different conditions, marker of eQTLs and data generation SEM model
- **method**: Use cross-validation (CV) or bayesian-information-criterion (BIC)

Value

List of TPR and FDR
initLambdaiPALM

Description
initLambdaiPALM

Usage
initLambdaiPALM(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, p, k)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xs</td>
<td>eQTL matrices</td>
</tr>
<tr>
<td>Ys</td>
<td>Gene expression matrices</td>
</tr>
<tr>
<td>Bs</td>
<td>initialized GRN-matrices</td>
</tr>
<tr>
<td>Fs</td>
<td>initialized eQTL effect matrices</td>
</tr>
<tr>
<td>Sk</td>
<td>eQTL index of genes</td>
</tr>
<tr>
<td>sigma2</td>
<td>initialized noise variance</td>
</tr>
<tr>
<td>Wl</td>
<td>weight matrices for adaptive lasso terms</td>
</tr>
<tr>
<td>Wf</td>
<td>weight matrix for adaptive fused lasso term</td>
</tr>
<tr>
<td>p</td>
<td>number of genes</td>
</tr>
<tr>
<td>k</td>
<td>number of eQTL</td>
</tr>
</tbody>
</table>

Value
lambda_max

initLambdaiPALM2

Description
initLambdaiPALM2

Usage
initLambdaiPALM2(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, p, k)
initRhoiPALM

Arguments

- **Xs** eQTL matrices
- **Ys** Gene expression matrices
- **Bs** initialized GRN-matrices
- **Fs** initialized eQTL effect matrices
- **Sk** eQTL index of genes
- **sigma2** initialized noise variance
- **Wl** weight matrices for adaptive lasso terms
- **Wf** weight matrix for adaptive fused lasso term
- **p** number of genes
- **k** number of eQTL

Value

- lambda_max

Description

initRhoiPALM

Usage

initRhoiPALM(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, lambda, n, p)

Arguments

- **Xs** eQTL matrices
- **Ys** Gene expression matrices
- **Bs** initialized GRN-matrices
- **Fs** initialized eQTL effect matrices
- **Sk** eQTL index of genes
- **sigma2** initialized noise variance
- **Wl** weight matrices for adaptive lasso terms
- **Wf** weight matrix for adaptive fused lasso term
- **lambda** lambda w.r.t. rho_max
- **n** number of observations
- **p** number of genes

Value

- rho_max
initRhoiPALM2

Description
initRhoiPALM2

Usage
initRhoiPALM2(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, lambda, n, p)

Arguments
- **Xs**: eQTL matrices
- **Ys**: Gene expression matrices
- **Bs**: initialized GRN-matrices
- **Fs**: initialized eQTL effect matrices
- **Sk**: eQTL index of genes
- **sigma2**: initialized noise variance
- **Wl**: weight matrices for adaptive lasso terms
- **Wf**: weight matrix for adaptive fused lasso term
- **lambda**: lambda w.r.t. rho_max
- **n**: number of observations
- **p**: number of genes

Value
- **rho_max**

inverseB

Description
inverse matrices of B network for adaptive FSSEM

Usage
inverseB(Bs)

Arguments
- **Bs**: list of network matrices
invoneB

Value

list of inversed B matrices

Description

if you do not want to get inversed B matrices, invoneB gives you a matrix with constant 1 instead in FSSEM

Usage

invoneB(Bs)

Arguments

Bs
list of network matrices

Value

list of invone B matrices

logLikFSSEM

Description

logLikFSSEM

Usage

logLikFSSEM(Bs, Wl, Wf, lambda, rho, sigma2, Dets, n, p)

Arguments

Bs
Network matrices

Wl
Weights for lasso term

Wf
Weights for fused term

lambda
Hyperparameter of lasso term

rho
Hyperparameter of fused lasso term

sigma2
noise variance

Dets
determinants of I-B matrices

n
umber of observations

p
umber of genes
Value

objective value of FSSEM with specified hyper-paramters

multiFSSEMiPALM

Description

Implementing FSSELM algorithm for network inference. If Xs is identify for different conditions, multiFSSEMiPALM will be use, otherwise, please use multiFSSEMiPALM2 for general cases

Usage

```
multiFSSEMiPALM(Xs, Ys, Bs, Fs, Sk, sigma2, lambda, rho, Wl, Wf, p,
maxit = 100, inert = inert_opt("linear"), threshold = 1e-06,
verbose = TRUE, sparse = TRUE, trans = FALSE, B2norm = NULL,
strict = FALSE)
```

Arguments

- **Xs**: eQTL matrices
- **Ys**: Gene expression matrices
- **Bs**: initialized GRN-matrices
- **Fs**: initialized eQTL effect matrices
- **Sk**: eQTL index of genes
- **sigma2**: initialized noise variance from ridge regression
- **lambda**: Hyperparameter of lasso term in FSSEM
- **rho**: Hyperparameter of fused-lasso term in FSSEM
- **Wl**: weight matrices for adaptive lasso terms
- **Wf**: weight matrix for adaptive fused lasso term
- **p**: number of genes
- **maxit**: maximum iteration number. Default 100
- **inert**: inertial function for iPALM. Default as k-1/k+2
- **threshold**: convergence threshold. Default 1e-6
- **verbose**: Default TRUE
- **sparse**: Sparse Matrix or not
- **trans**: Fs matrix is transposed to k x p or not. If Fs from ridge regression, trans = TRUE, else, trans = FALSE
- **B2norm**: B2norm matrices generated from ridge regression. Default NULL.
- **strict**: Converge strictly or not. Default False
Value

fit List of FSSEM model

Bs coefficient matrices of gene regulatory networks

Fs coefficient matrices of eQTL-gene effect

mu Bias vector

sigma2 estimate of covariance in SEM

Examples

```r
seed = 1234
N = 100  # sample size
Ng = 5   # gene number
Nk = 5 * 3 # eQTL number
Ns = 1  # sparse ratio
sigma2 = 0.01  # sigma2
set.seed(seed)
lattice(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
u = 5, type = "DG", nhub = 1, dag = TRUE)
## If we assume that different condition has different genetics perturbations (eQTLs)
## gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
## gamma = 0.6784248  ## optimal gamma computed by cv.multiRegression
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
trans = FALSE)
Xs = data$Data$X
Ys = data$Data$Y
Sk = data$Data$Sk
cvfitc <- cv.multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
sigma2 = fit$sigma2, nlambda = 5, nrho = 5,
nfold = 5, p = Ng, q = Nk, wt = TRUE)
fic0 <- multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
sigma2 = fit$sigma2, lambda = cvfitc$lambda, rho = cvfitc$rho,
Wl = inverseB(fit$Bs), Wf = flinvB(fit$Bs),
p = Ng, maxit = 100, threshold = 1e-5, sparse = TRUE,
verbose = TRUE, trans = TRUE, strict = TRUE)

(TPR(fic0$Bs[1], data$Vars$B[1]) + TPR(fic0$Bs[2], data$Vars$B[2])) / 2
(FDR(fic0$Bs[1], data$Vars$B[1]) + FDR(fic0$Bs[2], data$Vars$B[2])) / 2
```

multiFSSEM\textsubscript{i}PALM2

Description

Implementing FSSEM algorithm for network inference. If Xs is identify for different conditions, multiFSSEM\textsubscript{i}PALM will be use, otherwise, please use multiFSSEM\textsubscript{i}PALM2 for general cases

Usage

\begin{verbatim}
multiFSSEM\textsubscript{i}PALM2(Xs, Ys, Bs, Fs, Sk, sigma2, lambda, rho, Wl, Wf, p,
maxit = 100, inert = inert_opt("linear"), threshold = 1e-06,
verbose = TRUE, sparse = TRUE, trans = FALSE, B2norm = NULL,
strict = FALSE)
\end{verbatim}

Arguments

- Xs: eQTL matrices
- Ys: Gene expression matrices
- Bs: initialized GRN-matrices
- Fs: initialized eQTL effect matrices
- Sk: eQTL index of genes
- $sigma2$: initialized noise variance from ridge regression
- $lambda$: Hyperparameter of lasso term in FSSEM
- rho: Hyperparameter of fused-lasso term in FSSEM
- Wl: weight matrices for adaptive lasso terms
- Wf: weight matrix for adaptive fused lasso term
- p: number of genes
- $maxit$: maximum iteration number. Default 100
- $inert$: inertial function for iPALM. Default as $k-1/k+2$
- $threshold$: convergence threshold. Default 1e-6
- $verbose$: Default TRUE
- $sparse$: Sparse Matrix or not
- $trans$: Fs matrix is transposed to $k \times p$ or not. If Fs from ridge regression, $trans = TRUE$, else, $trans = FALSE$
- $B2norm$: $B2norm$ matrices generated from ridge regression. Default NULL.
- $strict$: Converge strictly or not. Default False
multiFSSEMiPALM2

Value

fit List of FSSE model

- **Bs** coefficient matrices of gene regulatory networks
- **Fs** coefficient matrices of eQTL-gene effect
- **mu** Bias vector
- **sigma2** estimate of covariance in SEM

Examples

```r
seed = 1234
N = 100 # sample size
Ng = 5 # gene number
Nk = 5 * 3 # eQTL number
Ns = 1 # sparse ratio
sigma2 = 0.01 # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2, u = 5, type = "DG", nhub = 1, dag = TRUE)

# If we assume that different condition has different genetics perturbations (eQTLs)
data$data$X = list(data$data$X, data$data$X)

# gamma = cv.multiRegression(data$data$X, data$data$Y, data$data$Sk, ngamma = 20, nfold = 5,
# gamma = 0.6784248 # optimal gamma computed by cv.multiRegression
fit = multiRegression(data$data$X, data$data$Y, data$data$Sk, gamma, N, Ng, Nk,
trans = FALSE)
Xs = data$data$X
Ys = data$data$Y
Sk = data$data$Sk


```

```r
cvfitc <- cv.multiFSSEMiPALM2(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
sigma2 = fit$sigma2, nlambda = 5, nrho = 5,
nfold = 5, p = Ng, q = Nk, wt = TRUE)
fitc0 <- multiFSSEMiPALM2(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
sigma2 = fit$sigma2, lambda = cvfitc$lambda, rho = cvfitc$rho,
W1 = inverseB(fit$Bs), Wf = flinvB(fit$Bs),
p = Ng, maxit = 100, threshold = 1e-5, sparse = TRUE,
verbose = TRUE, trans = TRUE, strict = TRUE)

(TPR(fitc0$Bs[[1]], data$Vars$B[[1]]) + TPR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
(FDR(fitc0$Bs[[1]], data$Vars$B[[1]]) + FDR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
TPR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
FDR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
```

```
multiRegression

Description

Ridge regression on multiple conditions, initialization of FSSEM algorithm

Usage

multiRegression(Xs, Ys, Sk, gamma, n, p, k, trans = FALSE)

Arguments

- **Xs**: eQTL matrices. eQTL matrix can be matrix/list of multiple conditions
- **Ys**: Gene expression matrices
- **Sk**: eQTL index of genes
- **gamma**: Hyperparameter for ridge regression
- **n**: number of observations
- **p**: number of genes
- **k**: number of eQTLs
- **trans**: if rows for sample, trans = TRUE, otherwise, trans = FALSE. Default FALSE

Value

- **fit**: List of SEM model
- **Bs**: coefficient matrices of gene regulatory networks
- **fs**: eQTL's coefficients w.r.t each gene
- **Fs**: coefficient matrices of eQTL-gene effect
- **mu**: Bias vector
- **sigma2**: estimate of covariance in SEM

Examples

seed = 1234
N = 100 # sample size
Ng = 5  # gene number
Nk = 5 * 3 # eQTL number
Ns = 1  # sparse ratio
sigma2 = 0.01  # sigma2
set.seed(seed)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2, u = 5, type = "DG", nhub = 1, dag = TRUE)

## If we assume that different condition has different genetics perturbations (eQTLs)
## data$Data$X = list(data$Data$X, data$Data$X)
gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5, N, Ng, Nk)
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk, trans = FALSE)

Description

obj.multiRegression

Usage

obj.multiRegression(Xs, Ys, fit, trans = F)

Arguments

Xs eQTL matrices
Ys gene expression matrices
fit regression fit result object
trans if rows for sample, trans = TRUE, otherwise, trans = FALSE. Default FALSE

Value

error squared norm of \| (I-B)Y - FX_2 \|^2

Description

optimize multiFSSEMiPALM’s parameters by minimize BIC, when feature size is large (> 300), BIC methods will be much faster than Cross-validation

Usage

opt.multiFSSEMiPALM(Xs, Ys, Bs, Fs, Sk, sigma2, nlambda = 20, nrho = 20, p, q, wt = TRUE)
opt.multiFSSEMiPALM

Arguments

- **Xs**: eQTL matrices
- **Ys**: Gene expression matrices
- **Bs**: initialized GRN-matrices
- **Fs**: initialized eQTL effect matrices
- **Sk**: eQTL index of genes
- **sigma2**: initialized noise variance
- **nlambda**: number of hyper-parameter of lasso term in CV
- **nrho**: number of hyper-parameter of fused-lasso term in CV
- **p**: number of genes
- **q**: number of eQTLs
- **wt**: use adaptive lasso or not. Default TRUE.

Value

list of model selection result

Examples

```r
seed = 1234
N = 100 # sample size
Ng = 5 # gene number
Nk = 5 * 3 # eQTL number
Ns = 1 # sparse ratio
sigma2 = 0.01 # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
 u = 5, type = "DG", nhub = 1, dag = TRUE)
If we assume that different condition has different genetics perturbations (eQTLs)
data$Data$X = list(data$Data$X, data$Data$X)
gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
N, Ng, Nk)
gamma = 0.6784248 # optimal gamma computed by cv.multiRegression
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk, # sparse ratio
 trans = FALSE)
Xs = data$Data$X
Ys = data$Data$Y
Sk = data$Data$Sk

fitm <- opt.multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
 sigma2 = fit$sigma2, nlambda = 10, nrho = 10,
 p = Ng, q = Nk, wt = TRUE)

fitc0 <- fitm$fit

(TPR(fitc0$Bs[[1]], data$Vars$B[[1]]) + TPR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
(FDR(fitc0$Bs[[1]], data$Vars$B[[1]]) + FDR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
```
Description

optimize multiFSSEMiPALM’s parameters by minimize BIC, when feature size is large (> 300), BIC methods will be much faster than Cross-validation

Usage

opt.multiFSSEMiPALM2(Xs, Ys, Bs, Fs, Sk, sigma2, nlambda = 20, nrho = 20, p, q, wt = TRUE)

Arguments

Xs eQTL matrices
Ys Gene expression matrices
Bs initialized GRN-matrices
Fs initialized eQTL effect matrices
Sk eQTL index of genes
sigma2 initialized noise variance
nlambda number of hyper-parameter of lasso term in CV
nrho number of hyper-parameter of fused-lasso term in CV
p number of genes
q number of eQTLs
wt use adaptive lasso or not. Default TRUE.

Value

list of model selection result

Examples

seed = 1234
N = 100 # sample size
Ng = 5 # gene number
Nk = 5 * 3 # eQTL number
Ns = 1 # sparse ratio
sigma2 = 0.01 # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
## Description

proc.centerFSSEM

## Usage

proc.centerFSSEM(Xs, Ys)

## Arguments

- **Xs**: eQTL matrices
- **Ys**: list of gene expression matrices

## Value

centered Xs and Ys and mean vectors
proc.centerFSSEM2

Description
proc.centerFSSEM2

Usage
proc.centerFSSEM2(Xs, Ys)

Arguments
Xs list of eQTL matrices
Ys list of gene expression matrices

Value
centered Xs and Ys and mean vectors

randomFSSEMdata

Description
randomFSSEMdata

Usage
randomFSSEMdata(n, p, k, sparse = 0.1, df = 0.2, sigma2 = 0.01, u = 5, type = c("DG", "ER"), dag = TRUE, coef = c(0.2, 0.4), nhub = 2)

Arguments
n number of observations
p number of genes
k number of eQTLs
sparse ratio of edges / gene_number
df ratio of differential edges among two network
sigma2 noise variance of error
u variance of bias in SEM model.
type type of generated network, can be selected as DG, ER, Scale-free network
randomFSSEMdata2

dag network is directed-acyclic or not. Default TRUE
do coef Range of absolute value of coefficients in simulated network matrices. Default (0.2, 0.4), or (0.5, 1)
do nhub If you select to generate ER network, nhub is the number of pre-defined hub node number. Default 2

Value

list of generated data

Data List of observed, Xs, Ys, Sk

Vars List of model, Bs, Fs, mu, n, p, k

randomFSSEMdata2 randomFSSEMdata2

Description

randomFSSEMdata2

Usage

randomFSSEMdata2(n, p, k, sparse = 0.1, df = 0.2, sigma2 = 0.01,
u = 5, type = c("DG", "ER"), dag = TRUE, coef = c(0.2, 0.4),
nhub = 2)

Arguments

n number of observations. Vector for unbalance observations
p number of genes
k number of eQTLs
sparse ratio of edges / gene_number
df ratio of differential edges among two network
sigma2 noise variance of error
u variance of bias in SEM model.
type type of generated network, can be selected as DG, ER, Scale-free network
dag network is directed-acyclic or not. Default TRUE
coef Range of absolute value of coefficients in simulated network matrices. Default (0.2, 0.4), or (0.5, 1)
nhub If you select to generate ER network, nhub is the number of pre-defined hub node number. Default 2
TPR

Value

list of generated data

Data List of observed, Xs, Ys, Sk

Vars List of model, Bs, Fs, mu, n, p, k

TPR TPR

Description

Power of detection for network prediction

Usage

TPR(X, B, PREC = 0)

Arguments

X list of predicted network matrices
B list of true network matrices
PREC precision threshold for FDR test. Default 0.

transx transx

Description

transx

Usage

c transx(data)

Arguments

data Collecting data structure generated by randomFSSEMdata function

Value

transformed list of eQTL matrices
Index

cv.multiFSSEMiPALM, 2
cv.multiFSSEMiPALM2, 3
cv.multiRegression, 4
cwiseGradient4FSSEM, 4
FDR, 5
flinvB, 5
floneB, 6
fssemR, 6
fssemR-package (fssemR), 6
implFSSEM, 7
initLambdaiPALM, 8
initLambdaiPALM2, 8
initRhoiPALM, 9
initRhoiPALM2, 10
inverseB, 10
invoneB, 11
logLikFSSEM, 11
multiFSSEMiPALM, 12
multiFSSEMiPALM2, 14
multiRegression, 16
obj.multiRegression, 17
opt.multiFSSEMiPALM, 17
opt.multiFSSEMiPALM2, 19
package-fssemR (fssemR), 6
proc.centerFSSEM, 20
proc.centerFSSEM2, 21
randomFSSEMDdata, 21
randomFSSEMDdata2, 22
TPR, 23
transx, 23