Package ‘fungible’

January 20, 2020

Version 1.95.2
Date 2020-01-19
Title Psychometric Functions from the Waller Lab
Maintainer Niels Waller <nwaller@umn.edu>
Depends R (>= 3.5)
Imports clue, GPArotation, lattice, MASS, methods, mvtnorm, nleqslv, Rcsdp, RSpectra, utils, graphics, grDevices
Description Computes fungible coefficients and Monte Carlo data. Underlying theory for these functions is described in the following publications:
License GPL (>= 2)
Encoding UTF-8
NeedsCompilation no
RoxygenNote 7.0.2
Author Niels Waller [aut, cre],
Jeff Jones [ctb],
Casey Giordano [ctb]
Repository CRAN
Date/Publication 2020-01-20 19:30:11 UTC
R topics documented:

adfCor ... 4
adfCov ... 5
AmzBoxes ... 6
BadRBY ... 7
BadRJN ... 8
BadRKtB ... 8
BadRLG ... 9
BadRRM ... 10
Bigen ... 14
Boruch70 ... 16
Box20 ... 17
Box26 ... 18
corSample ... 20
corSmooth ... 21
cosMat ... 22
d2r ... 24
eap ... 25
eigGen ... 26
enhancement ... 28
erf ... 29
faAlign .. 30
faEKC ... 34
faIB ... 35
fals ... 41
faMain ... 42
faMAP .. 50
faMB ... 52
fapa ... 57
fareg ... 60
faScores ... 62
faSort .. 65
faStandardize .. 67
faX ... 68
FMP ... 71
FMPMonotonicityCheck .. 74
fungible .. 75
fungibleExtrema .. 77
fungibleL ... 79
fungibleR ... 81
FUP ... 86
gen4PMData ... 89
genCorr ... 91
GenerateBoxData .. 92
genFMPData ... 96
genPhi .. 98
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS9Var</td>
<td>99</td>
</tr>
<tr>
<td>HW</td>
<td>100</td>
</tr>
<tr>
<td>irf</td>
<td>101</td>
</tr>
<tr>
<td>itemDescriptives</td>
<td>103</td>
</tr>
<tr>
<td>Jackson67</td>
<td>104</td>
</tr>
<tr>
<td>kurt</td>
<td>106</td>
</tr>
<tr>
<td>Ledermann</td>
<td>107</td>
</tr>
<tr>
<td>Malmi79</td>
<td>108</td>
</tr>
<tr>
<td>monte</td>
<td>110</td>
</tr>
<tr>
<td>monte1</td>
<td>118</td>
</tr>
<tr>
<td>normalCor</td>
<td>119</td>
</tr>
<tr>
<td>normF</td>
<td>120</td>
</tr>
<tr>
<td>Omega</td>
<td>121</td>
</tr>
<tr>
<td>orderFactors</td>
<td>122</td>
</tr>
<tr>
<td>plot.monte</td>
<td>123</td>
</tr>
<tr>
<td>print.faMain</td>
<td>124</td>
</tr>
<tr>
<td>print.faMB</td>
<td>125</td>
</tr>
<tr>
<td>promaxQ</td>
<td>125</td>
</tr>
<tr>
<td>r2d</td>
<td>130</td>
</tr>
<tr>
<td>rarc</td>
<td>130</td>
</tr>
<tr>
<td>rcone</td>
<td>132</td>
</tr>
<tr>
<td>rcor</td>
<td>133</td>
</tr>
<tr>
<td>rellipsoid</td>
<td>134</td>
</tr>
<tr>
<td>restScore</td>
<td>135</td>
</tr>
<tr>
<td>rGivens</td>
<td>137</td>
</tr>
<tr>
<td>rMAP</td>
<td>138</td>
</tr>
<tr>
<td>rmsd</td>
<td>140</td>
</tr>
<tr>
<td>RnpdMAP</td>
<td>141</td>
</tr>
<tr>
<td>SchmidLeiman</td>
<td>144</td>
</tr>
<tr>
<td>seBeta</td>
<td>148</td>
</tr>
<tr>
<td>seBetaCor</td>
<td>150</td>
</tr>
<tr>
<td>seBetaFixed</td>
<td>151</td>
</tr>
<tr>
<td>simFA</td>
<td>153</td>
</tr>
<tr>
<td>skew</td>
<td>158</td>
</tr>
<tr>
<td>SLi</td>
<td>159</td>
</tr>
<tr>
<td>smoothAPA</td>
<td>163</td>
</tr>
<tr>
<td>smoothBY</td>
<td>166</td>
</tr>
<tr>
<td>smoothKB</td>
<td>168</td>
</tr>
<tr>
<td>smoothLG</td>
<td>169</td>
</tr>
<tr>
<td>summary.faMain</td>
<td>171</td>
</tr>
<tr>
<td>summary.faMB</td>
<td>176</td>
</tr>
<tr>
<td>summary.monte</td>
<td>180</td>
</tr>
<tr>
<td>summary.monte1</td>
<td>182</td>
</tr>
<tr>
<td>svdNorm</td>
<td>183</td>
</tr>
<tr>
<td>tetcor</td>
<td>184</td>
</tr>
<tr>
<td>tetcorQuasi</td>
<td>186</td>
</tr>
<tr>
<td>Thurstone41</td>
<td>187</td>
</tr>
<tr>
<td>ThurstoneBox20</td>
<td>188</td>
</tr>
</tbody>
</table>
adfCor

Asymptotic Distribution-Free Covariance Matrix of Correlations

Description
Function for computing an asymptotic distribution-free covariance matrix of correlations.

Usage
adfCor(X, y = NULL)

Arguments
X
Data matrix.
y
Optional vector of criterion scores.

Value
adfCorMat
Asymptotic distribution-free estimate of the covariance matrix of correlations.

Author(s)
Jeff Jones and Niels Waller

References

Examples
Generate non-normal data using monte1
set.seed(123)
we will simulate data for 1000 subjects
N <- 1000

R = the desired population correlation matrix among predictors
R <- matrix(c(1, .5, .5, 1), 2, 2)
Consider a regression model with coefficient of determination (Rsq):
Rsq <- .50

and vector of standardized regression coefficients
Beta <- sqrt(Rsq/t(sqrt(c(.5, .5)))) %*% R %*% sqrt(c(.5, .5))

generate non-normal data for the predictors (X)
x1 has expected skew = 1 and kurtosis = 3
x2 has expected skew = 2 and kurtosis = 5
X <- monte1(seed = 123, nvar = 2, nsub = N, cormat = R, skewvec = c(1, 2),
 kurtvec = c(3, 5))$data

generate criterion scores
y <- X %*% Beta + sqrt(1-Rsq)*rnorm(N)

Create ADF Covariance Matrix of Correlations
adfCor(X, y)

Description

Function for computing an asymptotic distribution-free covariance matrix of covariances.

Usage

adfCov(X, y = NULL)

Arguments

- **X**: Data matrix.
- **y**: Optional vector of criterion scores.

Value

- **adfCovMat**: Asymptotic distribution-free estimate of the covariance matrix of covariances

Author(s)

Jeff Jones and Niels Waller
References

Examples

```r
## Generate non-normal data using monte1
set.seed(123)

## we will simulate data for 1000 subjects
N <- 1000

## R = the desired population correlation matrix among predictors
R <- matrix(c(1, .5, .5, 1), 2, 2)

## Consider a regression model with coefficient of determination (Rsq):
Rsq <- .50

## and vector of standardized regression coefficients
Beta <- sqrt(Rsq/t(sqrt(c(.5, .5)))) %*% R %*% sqrt(c(.5, .5))

## generate non-normal data for the predictors (X)
## x1 has expected skew = 1 and kurtosis = 3
## x2 has expected skew = 2 and kurtosis = 5
X <- monte1(seed = 123, nvar = 2, nsub = N, cormat = R, skewvec = c(1, 2),
            kurtvec = c(3, 5))$data

## generate criterion scores
y <- X %*% Beta + sqrt(1-Rsq)*rnorm(N)

## Create ADF Covariance Matrix of Covariances
adfCov(X, y)
```

```
     11 12 13 22 23 33
11 3.438760 2.317159 2.269080 2.442003 1.962584 1.688631
12 2.317159 3.171722 2.278212 3.349173 2.692097 2.028701
13 2.269080 2.278212 2.303659 2.395033 2.149316 2.106310
22 2.442003 3.349173 2.395033 6.275088 4.086652 2.687647
23 1.962584 2.692097 2.149316 4.086652 3.287088 2.501094
33 1.688631 2.028701 2.106310 2.687647 2.501094 2.818664
```

| AmzBoxes | Length, width, and height measurements for 98 Amazon shipping boxes |

Description

Length, width, and height measurements for 98 Amazon shipping boxes
Usage

data(AmzBoxes)

Format

A data set of measurements for 98 Amazon shipping boxes. These data were downloaded from the BoxDimensions website: (https://www.boxdimensions.com/). The data set includes five variables:

- Amazon Box Size
- Length (inches)
- Width (inches)
- Height (inches)
- Volume (inches)

Examples

data(AmzBoxes)

hist(AmzBoxes$`Length (inches)`,
 main = "Histogram of Box Lengths",
 xlab = "Length",
 col = "blue")

BadRBY

Improper correlation matrix reported by Bentler and Yuan

Description

Example improper R matrix reported by Bentler and Yuan (2011)

Format

A 12 by 12 non-positive definite correlation matrix.

Source

Examples

data(BadRBY)
BadRJN

Improper R matrix reported by Joseph and Newman

Description
Example NPD improper correlation matrix reported by Joseph and Newman

Format
A 14 by 14 non-positive definite correlation matrix.

Source

Examples

data(BadRJN)

BadRKtB

Improper R matrix reported by Knol and ten Berge

Description
Example improper R matrix reported by Knol and ten Berge

Format
A 6 by 6 non-positive definite correlation matrix.

Source

Examples

data(BadRKtB)
BadRLG

Improper R matrix reported by Lurie and Goldberg

Description
Example improper R matrix reported by Lurie and Goldberg

Format
A 3 by 3 non-positive definite correlation matrix.

Source

Examples
data(BadRLG)

BadRRM

Improper R matrix reported by Rousseeuw and Molenberghs

Description
Example improper R matrix reported by Rousseeuw and Molenberghs

Format
A 3 by 3 non-positive definite correlation matrix.

Source

Examples
data(BadRRM)
Description

This function estimates the (rank-deficient) Direct Schmid-Leiman (DSL) bifactor solution as well as the (full-rank) Direct Bifactor (DBF) solution.

Usage

BiFAD(
 R,
 B = NULL,
 numFactors = NULL,
 facMethod = "fals",
 rotate = "oblimin",
 salient = 0.25,
 rotateControl = NULL,
 faControl = NULL
)

Arguments

R (Matrix) A correlation matrix.
B (Matrix) Bifactor target matrix. If B is NULL the program will create an empirically defined target matrix.
numFactors (Numeric) The number of group factors to estimate.
facMethod (Character) The method used for factor extraction (faX). The supported options are "fals" for unweighted least squares, "faml" for maximum likelihood, "fapa" for iterated principal axis factoring, "faregLS" for regularized least squares, "faregML" for regularized maximum likelihood, and "pca" for principal components analysis. The default method is "fals".
 • "fals": Factors are extracted using the unweighted least squares estimation procedure using the fals function.
 • "faml": Factors are extracted using the maximum likelihood estimation procedure using the factanal function.
 • "fapa": Factors are extracted using the iterated principal axis factoring estimation procedure using the fapa function.
 • "faregLS": Factors are extracted using regularized least squares factor analysis using the fareg function.
 • "faregML": Factors are extracted using regularized maximum likelihood factor using the fareg function.
 • "pca": Principal components are extracted.
rotate (Character) Designate which rotation algorithm to apply. See the faMain function for more details about possible rotations. An oblimin rotation is the default.
salient (Numeric) Threshold value for creating an empirical target matrix.
rotateControl (List) A list of control values to pass to the factor rotation algorithms.
 • **numberStarts**: (Numeric) The number of random (orthogonal) starting configurations for the chosen rotation method (e.g., oblimin). The first rotation will always commence from the unrotated factors’ orientation. Defaults to numberStarts = 10.
 • **gamma**: (Numeric) This is a tuning parameter (between 0 and 1, inclusive) for an oblimin rotation. See the GPArotation library’s oblimin documentation for more details. Defaults to gamma = 0 (i.e., a quartimin rotation).
 • **delta**: (Numeric) This is a tuning parameter for the geomin rotation. It adds a small number (default = 0.01) to the squared factor loadings before computing the geometric means in the discrepancy function.
 • **kappa**: (Numeric) The main parameterization of the Crawford-Ferguson (CF) rotations (i.e., "cfT" and "cfQ" for orthogonal and oblique CF rotation, respectively). Defaults to kappa = 0.
 • **k**: (Numeric) A specific parameter of the simplimax rotation. Defaults to k = the number of observed variables.
 • **standardize**: (Character) The standardization routine used on the unrotated factor structure. The three options are "none", "Kaiser", and "CM". Defaults to standardize = "none".
 – "none" : No standardization is applied to the unrotated factor structure.
 – "Kaiser" : Use a factor structure matrix that has been normed by Kaiser’s method (i.e., normalize all rows to have a unit length).
 – "CM" : Use a factor structure matrix that has been normed by the Cureton-Mulaik method.
 • **epsilon**: (Numeric) The rotational convergence criterion to use. Defaults to epsilon = 1e-5.
 • **power**: (Numeric) Raise factor loadings the n-th power in the promaxQ rotation. Defaults to power = 4.
 • **maxItr**: (Numeric) The maximum number of iterations for the rotation algorithm. Defaults to maxItr = 15000.
faControl (List) A list of optional parameters passed to the factor extraction (faX) function.
 • **treatHeywood**: (Logical) In faXs, if treatHeywood is true, a penalized least squares function is used to bound the communality estimates below 1.0. Defaults to treatHeywood = TRUE.
 • **nStart**: (Numeric) The number of starting values to be tried in faX. Defaults to nStart = 10.
 • **start**: (Matrix) NULL or a matrix of starting values, each column giving an initial set of uniquenesses. Defaults to start = NULL.
 • **maxCommunality**: (Numeric) In faX, set the maximum communality value for the estimated solution. Defaults to maxCommunality = .995.
 • **epsilon**: (Numeric) In fapa, the numeric threshold designating when the algorithm has converged. Defaults to epsilon = 1e-4.
 • **communality**: (Character) The method used to estimate the initial communality values in fapa. Defaults to communality = ‘SMC’.
– "SMC": Initial communalities are estimated by taking the squared multiple correlations of each indicator after regressing the indicator on the remaining variables.

– "maxr": Initial communalities equal the largest (absolute value) correlation in each column of the correlation matrix.

– "unity": Initial communalities equal 1.0 for all variables.

• maxItr: (Numeric) In fapa, the maximum number of iterations to reach convergence. Defaults to maxItr = 15,000.

Value

The following output are returned in addition to the estimated Direct Schmid-Leiman bifactor solution.

• B: (Matrix) The target matrix used for the Procrustes rotation.

• BstarSL: (Matrix) The resulting (rank-deficient) matrix of Direct Schmid-Leiman factor loadings.

• BstarFR: (Matrix) The resulting (full-rank) matrix of Direct Bifactor factor loadings.

• rmsrSL: (Scalar) The root mean squared residual (rmse) between the known B matrix and the estimated (rank-deficient) Direct Schmid-Leiman rotation. If the B target matrix is empirically generated, this value is NULL.

• rmsrFR: (Scalar) The root mean squared residual (rmse) between the known B matrix and the estimated (full-rank) Direct Bifactor rotation. If the B target matrix is empirically generated, this value is NULL.

Author(s)

• Niels G. Waller (nwaller@umn.edu)

References

See Also

Other Factor Analysis Routines: Box26, GenerateBoxData(), Ledermann(), SL1(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()
Examples

```
cat("\nExample 1:\nEmpirical Target Matrix:\n")
# Mansolf and Reise Table 2 Example
Btrue <- matrix(c(.48, .40, 0, 0, 0,
                   .51, .35, 0, 0, 0,
                   .67, .62, 0, 0, 0,
                   .34, .55, 0, 0, 0,
                   .44, 0, .45, 0, 0,
                   .40, 0, .48, 0, 0,
                   .32, 0, .70, 0, 0,
                   .45, 0, .54, 0, 0,
                   .55, 0, 0, .43, 0,
                   .33, 0, 0, .33, 0,
                   .52, 0, 0, .51, 0,
                   .35, 0, 0, .69, 0,
                   .32, 0, 0, 0, .65,
                   .66, 0, 0, 0, .51,
                   .68, 0, 0, 0, .39,
                   .32, 0, 0, 0, .56), 16, 5, byrow=TRUE)
Rex1 <- Btrue %*% t(Btrue)
diag(Rex1) <- 1
out.ex1 <- BiFAD(R = Rex1,
                 B = NULL,
                 numFactors = 4,
                 facMethod = "fals",
                 rotate = "oblimin",
                 salient = .25)

cat("\nRank Deficient Bifactor Solution:\n")
print( round(out.ex1$BstarSL, 2) )

cat("\nFull Rank Bifactor Solution:\n")
print( round(out.ex1$BstarFR, 2) )

cat("\nExample 2:\nUser Defined Target Matrix:\n")
Bpattern <- matrix(c(1, 1, 0, 0, 0,
                      1, 1, 0, 0, 0,
                      1, 1, 0, 0, 0,
                      1, 1, 0, 0, 0,
                      1, 0, 1, 0, 0,
                      1, 0, 1, 0, 0,
                      1, 0, 1, 0, 0,
                      1, 0, 1, 0, 0,
                      1, 0, 0, 1, 0,
                      1, 0, 0, 1, 0,
                      1, 0, 0, 1, 0,
                      1, 0, 0, 1, 0,
                      1, 0, 0, 0, 1,
                      1, 0, 0, 0, 1),
                 nrow=16, byrow=TRUE)

Rex1 <- Bpattern %*% t(Bpattern)
diag(Rex1) <- 1
out.ex2 <- BiFAD(R = Rex1,
                 B = NULL,
                 numFactors = 4,
                 facMethod = "fals",
                 rotate = "oblimin",
                 salient = .25)

cat("\nRank Deficient Bifactor Solution:\n")
print( round(out.ex2$BstarSL, 2) )

cat("\nFull Rank Bifactor Solution:\n")
print( round(out.ex2$BstarFR, 2) )
```

bigen

Generate Correlated Binary Data

Description

Function for generating binary data with population thresholds.

Usage

bigen(data, n, thresholds = NULL, Smooth = FALSE, seed = NULL)

Arguments

data Either a matrix of binary (0/1) indicators or a correlation matrix.
n The desired sample size of the simulated data.
thresholds If data is a correlation matrix, thresholds must be a vector of threshold cut points.
Smooth (logical) Smooth = TRUE will smooth the tetrachoric correlation matrix.
seed Default = FALSE. Optional seed for random number generator.

Value

data Simulated binary data
r Input or calculated (tetrachoric) correlation matrix

Author(s)

Niels G Waller
Example: generating binary data to match an existing binary data matrix

Generate correlated scores using factor analysis model

\[
X = Z \cdot L' + U \cdot D
\]

- \(Z \) is a vector of factor scores
- \(L \) is a factor loading matrix
- \(U \) is a matrix of unique factor scores
- \(D \) is a scaling matrix for \(U \)

```r
N <- 5000

# Generate data from a single factor model
# factor pattern matrix
L <- matrix(rep(.707, 5), nrow = 5, ncol = 1)

# common factor scores
Z <- as.matrix(rnorm(N))

# unique factor scores
U <- matrix(rnorm(N * 5), nrow = N, ncol = 5)
D <- diag(as.vector(sqrt(1 - L^2)))

# observed scores
X <- Z %*% t(L) + U %*% D

cat("Correlation of continuous scores\n")
print(round(cor(X), 3))

# desired difficulties (i.e., means) of the dichotomized scores
difficulties <- c(.2, .3, .4, .5, .6)

# cut the observed scores at these thresholds to approximate the above difficulties
thresholds <- qnorm(difficulties)

Binary <- matrix(0, N, ncol(X))
for(i in 1:ncol(X)) {
  Binary[X[,i] <= thresholds[i],i] <- 1
}

cat("Correlation of Binary scores\n")
print(round(cor(Binary), 3))
```

Now use `bigen` to generate binary data matrix with same correlations as in Binary

\[
z <- \text{bigen}(data = Binary, n = N)
\]
Description

The original study assessed supervisors on seven dimensions (i.e., 7 variables) from two sources (i.e., their least effective and most effective subordinate).

Usage

data(Boruch70)

Format

A 14 by 14 correlation matrix with dimension names

Details

The sample size is \(n = 111 \).

The following variables were assessed: Variables:

1. Consideration
2. Structure
3. Satisfaction with the supervisor
4. Job satisfaction
5. General effectiveness
6. Human relations skill
7. Leadership

The test structure is as follows: Test Structure:

- Test One: variables 1 through 7
- Test Two: variables 8 through 14
Source

Examples

```r
## Load Boruch et al.'s dataset
data(Boruch70)

Example4Output <- faMB(R = Boruch70, 
n = 111, 
NB = 2, 
NVB = c(7,7), 
numFactors = 2, 
rotate = "oblimin", 
rotateControl = list(standardize = "Kaiser", numberStarts = 100))

summary(Example4Output, digits = 3)
```

Description

Length, width, and height measurements for Thurstone’s 20 hypothetical boxes

Usage

data(Box20)

Format

A data set of measurements for Thurstone’s 20 hypothetical boxes. The data set includes three variables:

- `x` Box length
- `y` Box width
- `z` Box height

Examples

data(Box20)

```r
hist(Box20$x, 
    main = "Histogram of Box Lengths", 
    xlab = "Length", 
    col = "blue")
```
To create the raw data for Thurstone's 20 hypothetical box attributes:
data(Box20)
ThurstoneBox20 <- GenerateBoxData(XYZ = Box20,
 BoxStudy = 20,
 Reliability = 1,
 ModApproxErrVar = 0)$BoxData

RThurstoneBox20 <- cor(ThurstoneBox20)

Smooth matrix to calculate factor indeterminacy values
RsmThurstoneBox20 <- smoothBY(RThurstoneBox20)$RBY

fout <- faMain(R = RsmThurstoneBox20,
 numFactors = 3,
 rotate = "varimax",
 facMethod = "faregLS",
 rotateControl = list(numberStarts = 100,
 maxItr = 15000))

summary(fout, digits=3)

Note that given the small ratio of subjects to variables,
it is not possible to generate data for this example with model error
(unless SampleSize is increased).

Box26

R matrix for Thurstone’s 26 hypothetical box attributes.

Description

Correlation matrix for Thurstone’s 26 hypothetical box attributes.

Usage

data(Box26)

Format

Correlation matrix for Thurstone’s 26 hypothetical box attributes. The so-called Thurstone invariant box problem contains measurements on the following 26 functions of length, width, and height. **Box26** variables:

1. x
2. y
3. z
4. xy
5. xz
6. yz
7. \(x^2 * y \)
8. \(x * y^2 \)
9. \(x^2 * z \)
10. \(x * z^2 \)
11. \(y^2 * z \)
12. \(y * z^2 \)
13. \(x/y \)
14. \(y/x \)
15. \(x/z \)
16. \(z/x \)
17. \(y/z \)
18. \(z/y \)
19. \(2x + 2y \)
20. \(2x + 2z \)
21. \(2y + 2z \)
22. \(\sqrt{x^2 + y^2} \)
23. \(\sqrt{x^2 + z^2} \)
24. \(\sqrt{y^2 + z^2} \)
25. \(xyz \)
26. \(\sqrt{x^2 + y^2 + z^2} \)

- x Box length
- y Box width
- z Box height

Details

Two data sets have been described in the literature as Thurstone’s Box Data (or Thurstone’s Box Problem). The first consists of 20 measurements on a set of 20 hypothetical boxes (i.e., Thurstone made up the data). Those data are available in Box20. The second data set, which is described in this help file, was collected by Thurstone to provide an illustration of the invariance of simple structure factor loadings. In his classic textbook on multiple factor analysis (Thurstone, 1947), Thurstone states that “[m]easurements of a random collection of thirty boxes were actually made in the Psychometric Laboratory and recorded for this numerical example. The three dimensions, x, y, and z, were recorded for each box. A list of 26 arbitrary score functions was then prepared” (p. 369). The raw data for this example were not published. Rather, Thurstone reported a correlation matrix for the 26 score functions (Thurstone, 1947, p. 370). Note that, presumably due to rounding error in the reported correlations, the correlation matrix for this example is non positive definite.

References

See Also

Box20, AmzBoxes

Other Factor Analysis Routines: BiFAD(), GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()

Examples

data(Box26)
fout <- faMain(R = Box26, numFactors = 3, facMethod = "faregLS", rotate = "varimax", bootstrapSE = FALSE, rotateControl = list(numberStarts = 100, standardize = "none"), Seed = 123)
summary(fout)

We now choose Cureton-Mulaik row standardization to reveal # the underlying factor structure.

fout <- faMain(R = Box26, numFactors = 3, facMethod = "faregLS", rotate = "varimax", bootstrapSE = FALSE, rotateControl = list(numberStarts = 100, standardize = "CM"), Seed = 123)
summary(fout)

corSample

Sample Correlation Matrices from a Population Correlation Matrix

Description

Sample correlation (covariance) matrices from a population correlation matrix (see Browne, 1968; Kshirsagar, 1959)
Usage

corSample(R, n)

Arguments

R A population correlation matrix.
n Sample correlation (covariance) matrices will be generated assuming a sample size of n.

Value

cor.sample Sample correlation matrix.
cov.sample Sample covariance matrix.

Author(s)

Niels Waller

References

Examples

R <- matrix(c(1, .5, .5, 1), 2, 2)
generate a sample correlation from pop R with n = 25
out <- corSample(R, n = 25)
out$cor.sample
out$cov.sample

corSmooth

Smooth a Non PD Correlation Matrix

Description

A function for smoothing a non-positive definite correlation matrix by the method of Knol and Berger (1991).

Usage

corSmooth(R, eps = 1e+08 * .Machine$double.eps)
cosMat

Compute the cosine(s) between either 2 matrices or 2 vectors.

Description

This function will compute the cosines (i.e., the angle) between two vectors or matrices. When applied to matrices, it will compare the two matrices one vector (i.e., column) at a time. For instance, the cosine (angle) between factor 1 in matrix A and factor 1 in matrix B.

Usage

cosMat(A, B, align = FALSE, digits = NULL)
Arguments

A (Matrix, Vector) Either a matrix or vector.
B (Matrix, Vector) Either a matrix or vector (must be of the same dimensions as A).
align (Logical) Whether to run a factor alignment before computing the cosine.
digits (Numeric) The number of digits to round the output to.

Details

• **Chance Congruence:** Factor cosines were originally described by Burt (1948) and later popularized by Tucker (1951). Several authors have noted the tendency for two factors to have spuriously large factor cosines. Paunonen (1997) provides a good overview and describes how factor cosines between two vectors of random numbers can appear to be congruent.

• **Effect Size Benchmarks:** When computing congruence coefficients (cosines) in factor analytic studies, it can be useful to know what constitutes large versus small congruence. Lorenzo-Seva and ten Berge (2006) currently provide the most popular (i.e., most frequently cited) recommended benchmarks for congruence. “A value in the range .85-.94 means that the two factors compared display *fair* similarity. This result should prevent congruence below .85 from being interpreted as indicative of any factor similarity at all. A value higher than .95 means that the two factors or components compared can be considered equal. That is what we have called a *good* similarity in our study” (Lorenzo-Seva & ten Berge, 2006, p. 61, emphasis theirs).

Value

A vector of cosines will be returned. When comparing two vectors, only one cosine can be computed. When comparing matrices, one cosine is computed per column.

• **cosine:** (Matrix) A matrix of cosines between the two inputs.
• **A:** (Matrix) The A input matrix.
• **B:** (Matrix) The B input matrix.
• **align:** (Logical) Whether Matrix B was aligned to A.

Author(s)

• Casey Giordano (Giord023@umn.edu)
• Niels G. Waller (nwaller@umn.edu)

References

Examples

```r
## Cosine between two vectors
A <- rnorm(5)
B <- rnorm(5)
cosMat(A, B)

## Cosine between the columns of two matrices
A <- matrix(rnorm(5 * 5), 5, 5)
B <- matrix(rnorm(5 * 5), 5, 5)
cosMat(A, B)
```

d2r
Convert Degrees to Radians

Description

A simple function to convert degrees to radians

Usage

```r
d2r(deg)
```

Arguments

- `deg`
 Angle in degrees.

Value

Angle in radians.

Examples

```r
d2r(90)
```
Description

Compute eap trait estimates for items fit by filtered monotonic polynomial IRT models.

Usage

```r
eap(data, bParams, NQuad = 21, priorVar = 2, mintheta = -4, maxtheta = 4)
```

Arguments

- `data`: N(subjects)-by-p(items) matrix of 0/1 item response data.
- `bParams`: A p-by-9 matrix of FMP or FUP item parameters and model designations. Columns 1 - 8 hold the (possibly zero valued) polynomial coefficients; column 9 holds the value of k.
- `NQuad`: Number of quadrature points used to calculate the eap estimates.
- `priorVar`: Variance of the normal prior for the eap estimates. The prior mean equals 0.
- `mintheta, maxtheta`: NQuad quadrature points will be evenly spaced between `mintheta` and `maxtheta`.

Value

eap trait estimates.

Author(s)

Niels Waller

Examples

```r
## this example demonstrates how to calculate
eap trait estimates for a scale composed of items
## that have been fit to FMP models of different
## degree

NSubjects <- 2000

## Assume that
## items 1 - 5 fit a k=0 model,
## items 6 - 10 fit a k=1 model, and
## items 11 - 15 fit a k=2 model.
```
itmParameters <- matrix(c(
 # b0 b1 b2 b3 b4 b5 b6 b7 k
-1.05, 1.63, 0.00, 0.00, 0.00, 0, 0, 0, 0, #1
-1.97, 1.75, 0.00, 0.00, 0.00, 0, 0, 0, 0, #2
-1.77, 1.82, 0.00, 0.00, 0.00, 0, 0, 0, 0, #3
-4.76, 2.67, 0.00, 0.00, 0.00, 0, 0, 0, 0, #4
-2.15, 1.93, 0.00, 0.00, 0.00, 0, 0, 0, 0, #5
-1.25, 1.17, -0.25, 0.12, 0.00, 0, 0, 0, 1, #6
 1.65, 0.01, 0.02, 0.03, 0.00, 0, 0, 0, 1, #7
-2.99, 1.64, 0.17, 0.03, 0.00, 0, 0, 0, 1, #8
-3.22, 2.40, -0.12, 0.10, 0.00, 0, 0, 0, 1, #9
-0.75, 1.09, -0.39, 0.31, 0.00, 0, 0, 0, 1, #10
-1.21, 9.07, 1.20,-0.01,-0.01, 0.01, 0, 0, 2, #11
-1.92, 1.55,-0.17, 0.50,-0.01, 0.01, 0, 0, 2, #12
-1.76, 1.29,-0.13, 1.60,-0.01, 0.01, 0, 0, 2, #13
-2.32, 1.40, 0.55, 0.05,-0.01, 0.01, 0, 0, 2, #14
-1.24, 2.48,-0.65, 0.60,-0.01, 0.01, 0, 0, 2), #15
15, 9, byrow=TRUE)

generate data using the above item parameters
ex1.data<-genFMPData(NSubj = NSubjects, bParams = itmParameters,
 seed = 345)$data

calculate eap estimates for mixed models
thetaEAP<-eap(data = ex1.data, bParams = itmParameters,
 NQuad = 25, priorVar = 2,
 mintheta = -4, maxtheta = 4)

compare eap estimates with initial theta surrogates
if(FALSE){ #set to TRUE to see plot
 thetaInit <- svdNorm(ex1.data)
 plot(thetaInit,thetaEAP, xlim = c(-3.5,3.5),
 ylim = c(-3.5,3.5),
 xlab = "Initial theta surrogates",
 ylab = "EAP trait estimates (Mixed models)"
}

eigGen

Generate eigenvalues for R matrices with underlying component structure

Description

Generate eigenvalues for R matrices with underlying component structure

Usage

```r
eigGen(nDimensions = 15, nMajorFactors = 5, PrcntMajor = 0.8, threshold = 0.5)
```
Arguments

- **nDimensions**: Total number of dimensions (variables).
- **nMajorFactors**: Number of major factors.
- **PrctntMajor**: Percentage of variance accounted for by major factors.
- **threshold**: Minimum difference in eigenvalues between the last major factor and the first minor factor.

Value

A vector of eigenvalues that satisfies the above criteria.

Author(s)

Niels Waller

Examples

```r
## Example
set.seed(323)
nDim <- 25  # number of dimensions
nMaj <- 5  # number of major components
pmaj <- 0.70  # percentage of variance accounted for
             # by major components
thresh <- 1  # eigenvalue difference between last major component
             # and first minor component

L <- eigGen(nDimensions = nDim, nMajorFactors = nMaj,
            PrctntMajor = pmaj, threshold = thresh)

dimensions <- max(L+1)

plotTitle <- paste("n Dimensions = ", nDim,
                   "n Major Factors = ", nMaj,
                   "\% Variance Major Factors = ", pmaj*100,
                   "\%", sep = "")

plot(1:length(L), L,
     type = "b",
     main = plotTitle,
     ylim = c(0, maxy),
     xlab = "Dimensions",
     ylab = "Eigenvalues",
     cex.main = .9)
```
Find OLS Regression Coefficients that Exhibit Enhancement

Description

Find OLS regression coefficients that exhibit a specified degree of enhancement.

Usage

enhancement(R, br, rr)

Arguments

R Predictor correlation matrix.
br Model R-squared = $b' r$. That is, br is the model coefficient of determination:
 $b'Rb = Rsq = br$
rr Sum of squared predictor-criterion correlations (r_{xy}). That is, $rr = r'r = \text{Sum}(r_{xy}^2)$

Value

b Vector of standardized regression coefficients.
r Vector of predictor-criterion correlations.

Author(s)

Niels Waller

References

Examples

```r
## Example: For a given predictor correlation matrix (R) generate
## regression coefficient vectors that produce enhancement (br - rr > 0)

## Predictor correlation matrix
R <- matrix(c(1, .5, .25,
         .5, 1, .30,
         .25, .30, 1), 3, 3)

## Model coefficient of determination
Rsq <- .60

output<-enhancement(R, br = Rsq, rr = .40)
```

Utility function to compute the components for an empirical response function

Description

Utility function to compute empirical response functions.

Usage

erf(theta, data, whichItem, min = -3, max = 3, Ncuts = 12)

Arguments

theta Vector of estimated latent trait scores.
data A matrix of binary item responses.
whichItem Data for an erf will be generated for whichItem.
max Default = 3. Maximum value of theta.
Ncuts Number of score groups for erf.

Value

probs A vector (of length Ncuts) of bin response probabilities for the empirical response function.
centers A vector of bin centers.
Ni Bin sample sizes.
se.p Standard errors of the estimated bin response probabilities.
Author(s)
Niels Waller

Examples

NSubj <- 2000

#generate sample k=1 FMP data
b <- matrix(c(
 #b0 b1 b2 b3 b4 b5 b6 b7 k
 1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,
 1.550, 1.805, -0.230, 0.032, 0, 0, 0, 0, 1,
 1.282, 1.063, -0.103, 0.003, 0, 0, 0, 0, 1,
 0.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
 1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,
 -0.008, 1.349, -0.195, 0.144, 0, 0, 0, 0, 1,
 0.512, 1.538, -0.089, 0.082, 0, 0, 0, 0, 1,
 0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,
 1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1,
 -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1,
 0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
 -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
 0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
 1.030, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1,
 0.140, 1.209, 0.082, 0.148, 0, 0, 0, 0, 1,
 0.429, 1.480, -0.008, 0.061, 0, 0, 0, 0, 1,
 0.089, 0.785, -0.065, 0.018, 0, 0, 0, 0, 1,
 -0.516, 1.013, 0.016, 0.023, 0, 0, 0, 0, 1,
 0.143, 1.315, -0.011, 0.136, 0, 0, 0, 0, 1,
 0.347, 0.733, -0.121, 0.041, 0, 0, 0, 0, 1,
 -0.074, 0.869, 0.013, 0.026, 0, 0, 0, 0, 1,
 0.630, 1.484, -0.001, 0.000, 0, 0, 0, 0, 1),
nrow=23, ncol=9, byrow=TRUE)

theta <- rnorm(NSubj)
data <- genFMPData(NSubj = NSubj, bParam = b, theta = theta, seed = 345)$data

erfItem1 <- erf(theta, data, whichItem = 1, min = -3, max = 3, Ncuts = 12)

plot(erfItem1$centers, erfItem1$probs, type="b",
 main="Empirical Response Function",
 xlab = expression(theta),
 ylab="Probability",
 cex.lab=1.5)
Description
Align factor loading matrices across solutions using the Hungarian algorithm to locate optimal matches. faAlign will match the factors of F2 (the input matrix) to those in F1 (the target matrix) to minimize a least squares discrepancy function or to maximize factor congruence coefficients (i.e., vector cosines).

Usage
faAlign(F1, F2, Phi2 = NULL, MatchMethod = "LS")

Arguments
- **F1**: target Factor Loadings Matrix.
- **F2**: input Factor Loadings Matrix. F2 will be aligned with the target matrix, F1.
- **Phi2**: optional factor correlation matrix for F2 (default = NULL).
- **MatchMethod**: "LS" (Least Squares) or "CC" (congruence coefficients).

Value
- **F2**: re-ordered and reflected loadings of F2.
- **Phi2**: reordered and reflected factor correlations.
- **FactorMap**: a 2 x k matrix (where k is the number of columns of F1) structured such that row 1: the original column order of F2; row 2: the sorted column order of F2.
- **UniqueMatch**: (logical) indicates whether a unique match was found.
- **MatchMethod**: "LS" (least squares) or "CC" (congruence coefficients, i.e., cosines).
- **CC**: Congruence coefficients for the matched factors.
- **LS**: Root-mean-squared-deviations (least squares criterion) for the matched factors.

Note

Author(s)
Niels Waller

References
See Also

Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()

Examples

This example demonstrates the computation of
non-parametric bootstrap confidence intervals
for rotated factor loadings.

library(GPArotation)

data(HS9Var)

HS9 <- HS9Var[HS9Var$school == "Grant-White",7:15]

Compute an R matrix for the HSVar9 Mental Abilities Data
R.HS9 <- cor(HS9)

varnames <- c("vis.per", "cubes", "lozenges", "paragraph.comp", "sentence.comp","word.mean", "speed.add", "speed.count.dots", "speed.distr")

Extract and rotate a 3-factor solution
via unweighted least squares factor extraction
and oblimin rotation.

NFac <- 3
NVar <- 9
B <- 200 # Number of bootstrap samples
NSubj <- nrow(HS9)

Unrotated 3 factor uls solution
F3.uls <- fals(R = R.HS9, nfactors = NFac)

Rotate via oblimin
F3.rot <- oblimin(F3.uls$loadings, gam = 0, normalize = FALSE)

F3.loadings <- F3.rot$loadings
F3.phi <- F3.rot$Phi

Reflect factors so that salient loadings are positive
faAlign

```r
Dsgn <- diag(sign(colSums(F3.loadings^3)))
F3.loadings <- F3.loadings %*% Dsgn
F3.phi <- Dsgn %*% F3.phi %*% Dsgn

rownames(F3.loadings) <- varnames
colnames(F3.loadings) <- paste0("f", 1:3)
colnames(F3.phi) <- rownames(F3.phi) <- paste0("f", 1:3)

cat("\nOblimin rotated factor loadings for 9 Mental Abilities Variables")
print( round(F3.loadings, 2))

cat("\nFactor correlation matrix")
print( round( F3.phi, 2))

# Declare variables to hold bootstrap output
Flist <- Philist <- as.list(rep(0, B))
UniqueMatchVec <- rep(0, B)
rows <- 1:NSubj

# Analyze bootstrap samples and record results
for(i in 1:B){
  cat("\nWorking on sample ", i)
  set.seed(i)

  # Create bootstrap samples
  bsRows <- sample(rows, NSubj, replace= TRUE)
  Fuls <- fals(R = cor(HS9[bsRows, ]), nfactors = NFac)
  # rotated loadings
  Fboot <- oblimin(Fuls$loadings,
                   gam = 0,
                   normalize = FALSE)

  out <- faAlign(F1 = F3.loadings,
                 F2 = Fboot$loadings,
                 MatchMethod = "LS")
  Flist[[i]] <- out$F2 # aligned version of Fboot$loadings
  UniqueMatchVec[i] <- out$UniqueMatch
}

cat("\nNumber of Unique Matches: ",
     100*round(mean(UniqueMatchVec),2),"\n")

# Make a 3D array from list of matrices
arr <- array( unlist(Flist) , c(NVar, NFac, B) )

# Get quantiles of factor elements over third dimension (samples)
F95 <- apply( arr , 1:2 , quantile, .975 )
F05 <- apply( arr , 1:2 , quantile, .025 )
Fse <- apply( arr , 1:2, sd )
```
Calculate Reference Eigenvalues for the Empirical Kaiser Criterion

Description

Calculate Reference Eigenvalues for the Empirical Kaiser Criterion

Usage

faEKC(R = NULL, NSubj = NULL, Plot = FALSE)

Arguments

R
 Input correlation matrix.

NSubj
 Number of subjects (observations) used to create R.

Plot
 (logical). If Plot = TRUE the function will plot the observed and reference eigenvalues of R.

Value

- ljEKC,
- ljEKC1,
- dimensions The estimated number of common factors.

Author(s)

Niels Waller
faIB

Inter-Battery Factor Analysis by the Method of Maximum Likelihood

Description

This function conducts maximum likelihood inter-battery factor analysis using procedures described by Browne (1979). The unrotated solution can be rotated (using the GPArotation package) from a user-specified number of random (orthogonal) starting configurations. Based on the resulting complexity function value, the function determines the number of local minima and, among these local solutions, will find the "global minimum" (i.e., the minimized complexity value from the finite number of solutions). See Details below for an elaboration on the global minimum. This function can also return bootstrap standard errors of the factor solution.

Usage

faIB(
 X = NULL,
 R = NULL,
 n = NULL,
 NVarX = 4,
 numFactors = 2,
 itemSort = FALSE,
 rotate = "oblimin",
 bootstrapSE = FALSE,
 numBoot = 1000,
 CILevel = 0.95,
 rotateControl = NULL,
 Seed = 1
)

See Also

Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()

Examples

```r

data(AmzBoxes)
AmzBox20<- GenerateBoxData(XYZ = AmzBoxes[,2:4],
    BoxStudy = 20)$BoxData
RAmzBox20 <- cor(AmzBox20)
EkCout <- faEkC(R = RAmzBox20,
    NSubj = 98,
    Plot = TRUE)
```
Arguments

X (Matrix) A raw data matrix (or data frame).
R (Matrix) A correlation matrix.
n (Numeric) Sample size associated with the correlation matrix. Defaults to n = NULL.
NVarX (Integer) Given batteries X and Y, NVarX denotes the number of variables in battery X.
numFactors (Numeric) The number of factors to extract for subsequent rotation.
itemSort (Logical) if itemSort = TRUE the factor loadings will be sorted within batteries.
rotate (Character) Designate which rotation algorithm to apply. The following are available rotation options: "oblimin", "quartimin", "targetT", "targetQ", "oblimax", "entropy", "quartimax", "varimax", "simplimax", "bentlerT", "bentlerQ", "tandemI", "tandemII", "geominT", "geominQ", "cfT", "cfQ", "infomaxT", "infomaxQ", "mccammon", "bifactorT", "bifactorQ", and "none". Defaults to rotate = "oblimin". See GPArotation package for more details. Note that rotations ending in "T" and "Q" represent orthogonal and oblique rotations, respectively.
bootstrapSE (Logical) Computes bootstrap standard errors. All bootstrap samples are aligned to the global minimum solution. Defaults to bootstrapSE = FALSE (no standard errors).
numBoot (Numeric) The number bootstraps. Defaults to numBoot = 1000.
CILevel (Numeric) The confidence level (between 0 and 1) of the bootstrap confidence interval. Defaults to CILevel = .95.
rotateControl (List) A list of control values to pass to the factor rotation algorithms.
 • numberStarts: (Numeric) The number of random (orthogonal) starting configurations for the chosen rotation method (e.g., oblimin). The first rotation will always commence from the unrotated factors orientation. Defaults to numberStarts = 10.
 • gamma: (Numeric) This is a tuning parameter (between 0 and 1, inclusive) for an oblimin rotation. See the GPArotation library’s oblimin documentation for more details. Defaults to gamma = 0 (i.e., a quartimin rotation).
 • delta: (Numeric) This is a tuning parameter for the geomin rotation. It adds a small number (default = .01) to the squared factor loadings before computing the geometric means in the discrepancy function.
 • kappa: (Numeric) The main parameterization of the Crawford-Ferguson (CF) rotations (i.e., "cfT" and "cfQ" for orthogonal and oblique CF rotation, respectively). Defaults to kappa = 0.
 • k: (Numeric) A specific parameter of the simplimax rotation. Defaults to k = the number of observed variables.
 • standardize: (Character) The standardization routine used on the unrotated factor structure. The three options are "none", "Kaiser", and "CM". Defaults to standardize = "none".
 - "none": No standardization is applied to the unrotated factor structure.
 - "Kaiser": Use a factor structure matrix that has been normed by Kaiser’s method (i.e., normalize all rows to have a unit length).
- "CM": Use a factor structure matrix that has been normed by the Cureton-Mulaik method.

- **epsilon**: (Numeric) The rotational convergence criterion to use. Defaults to epsilon = 1e-5.

- **power**: (Numeric) Raise factor loadings the the n-th power in the promaxQ rotation. Defaults to power = 4.

- **maxItr**: (Numeric) The maximum number of iterations for the rotation algorithm. Defaults to maxItr = 15000.

Details

- **Global Minimum**: This function uses several random starting configurations for factor rotations in an attempt to find the global minimum solution. However, this function is not guaranteed to find the global minimum. Furthermore, the global minimum solution need not be more psychologically interpretable than any of the local solutions (cf. Rozeboom, 1992). As is recommended, our function returns all local solutions so users can make their own judgements.

- **Finding clusters of local minima**: We find local-solution sets by sorting the rounded rotation complexity values (to the number of digits specified in the epsilon argument of the rotateControl list) into sets with equivalent values. For example, by default epsilon = 1e-5, and thus will only evaluate the complexity values to five significant digits. Any differences beyond that value will not effect the final sorting.

Value

The faIB function will produce abundant output in addition to the rotated inter-battery factor pattern and factor correlation matrices.

- **loadings**: (Matrix) The rotated inter-battery factor solution with the lowest evaluated discrepancy function. This solution has the lowest discrepancy function of the examined random starting configurations. It is not guaranteed to find the "true" global minimum. Note that multiple (or even all) local solutions can have the same discrepancy functions.

- **Phi**: (Matrix) The factor correlations of the rotated factor solution with the lowest evaluated discrepancy function (see Details).

- **fit**: (Vector) A vector containing the following fit statistics:
 - **chiSq**: Chi-square goodness of fit value (see Browne, 1979, for details). Note that we apply Lawley’s (1959) correction when computing the chi-square value.
 - **DF**: Degrees of freedom for the estimated model.
 - **p-value**: P-value associated with the above chi-square statistic.
 - **MAD**: Mean absolute difference between the model-implied and the sample across-battery correlation matrices. A lower value indicates better fit.
 - **AIC**: Akaike’s Information Criterion where a lower value indicates better fit.
 - **BIC**: Bayesian Information Criterion where a lower value indicates better fit.

- **R**: (Matrix) Returns the (possibly sorted) correlation matrix, useful when raw data are supplied. If itemSort = TRUE then the returned matrix is sorted to be consistent with the factor loading matrix.
• **Rhat**: (Matrix) The (possibly sorted) reproduced correlation matrix. If `itemSort = TRUE` then the returned matrix is sorted to be consistent with the factor loading matrix.

• **Resid**: (Matrix) A (possibly sorted) residual matrix (R - Rhat) for the between battery correlations.

• **facIndeterminacy**: (Vector) A vector (with length equal to the number of factors) containing Guttman’s (1955) index of factor indeterminacy for each factor.

• **localSolutions**: (List) A list containing all local solutions in ascending order of their factor loadings, rotation complexity values (i.e., the first solution is the "global" minimum). Each solution returns the
 – **loadings**: (Matrix) the factor loadings,
 – **Phi**: (Matrix) factor correlations,
 – **RotationComplexityValue**: (Numeric) the complexity value of the rotation algorithm,
 – **facIndeterminacy**: (Vector) A vector of factor indeterminacy indices for each common factor, and
 – **RotationConverged**: (Logical) convergence status of the rotation algorithm.

• **numLocalSets** (Numeric) How many sets of local solutions with the same discrepancy value were obtained.

• **localSolutionSets**: (List) A list containing the sets of unique local minima solutions. There is one list element for every unique local solution that includes (a) the factor loadings matrix, (b) the factor correlation matrix (if estimated), and (c) the discrepancy value of the rotation algorithm.

• **rotate** (Character) The chosen rotation algorithm.

• **rotateControl**: (List) A list of the control parameters passed to the rotation algorithm.

• **unSpunSolution**: (List) A list of output parameters (e.g., loadings, Phi, etc) from the rotated solution that was obtained by rotating directly from the unrotated (i.e., unspun) common factor orientation.

• **Call**: (call) A copy of the function call.

Author(s)

- Niels G. Waller (nwaller@umn.edu)
- Casey Giordano (Giord023@umn.edu)

References

See Also

Other Factor Analysis Routines: `BiFAD()`, `Box26`, `GenerateBoxData()`, `Ledermann()`, `SLi()`, `SchmidLeiman()`, `faAlign()`, `faEKC()`, `faMB()`, `faMain()`, `faScores()`, `faSort()`, `faStandardize()`, `faX()`, `fals()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMB()`, `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

Examples

```r
# Example 1:
# Data originally reported in:
# Chicago Press.

R.XY <- matrix(c(  
1.00, .554, .227, .189, .461, .506, .408, .280, .241,  
.554, 1.00, .296, .219, .479, .530, .425, .311, .311,  
.227, .296, 1.00, .769, .237, .243, .304, .718, .730,  
.189, .219, .769, 1.00, .212, .226, .291, .681, .661,  
.461, .479, .237, .212, 1.00, .528, .514, .313, .245,  
.506, .530, .243, .226, .520, 1.00, .473, .348, .290,  
.408, .425, .304, .291, .514, .473, 1.00, .374, .306,  
.280, .311, .718, .681, .313, .348, .374, 1.00, .672,  
.241, .311, .730, .661, .245, .290, .306, .672, 1.00), 9, 9)

dimnames(R.XY) <- list(c( paste0("X", 1:4),  
paste0("Y", 1:5)),  
c( paste0("X", 1:4),  
paste0("Y", 1:5)))

out <- faIB(R = R.XY,  
n = 710,  
NVarX = 4,  
numFactors = 2,  
itemSort = FALSE)
```
rotate = "oblimin",
rotateControl = list(standardize = "Kaiser",
 numberStarts = 10),
Seed = 1)

Compare with Browne 1979 Table 2.
print(round(out$loadings, 2))
cat("\n")
print(round(out$Phi,2))
cat("\nMAD = ", round(out$fit["MAD"], 2),"\n")
print(round(out$facIndeterminacy,2))

Example 2:
Correlation values taken from Boruch et al.(1970) Table 2 (p. 838)
See also, Cudeck (1982) Table 1 (p. 59)
corValues <- c(
 1.0,
 1.0, .61, .47, .61, .42,
 .82, .11, .52, .33, .68, .75,
 .77, .32, .64, .37, .80, .15,
 -.02, .01, .04, .00, .13,
 .12, .01, .16, .05, .75,
 .27, .13, .18, .17, .06,
 .24, .02, .12, .12, .07,
 .20, .18, .16, .17, .22)

Generate empty correlation matrix
BoruchCorr <- matrix(0, nrow = 14, ncol = 14)

Add upper-triangle correlations
BoruchCorr[upper.tri(BoruchCorr, diag = TRUE)] <- corValues
BoruchCorr <- BoruchCorr + t(BoruchCorr) - diag(14)

Add variable names to the correlation matrix
varNames <- c("Consideration", "Structure", "Sup.Satisfaction",

Distinguish between rater X and rater Y
varNames <- paste0(c(rep("X.", 7), rep("Y.", 7)), varNames)

Add row/col names to correlation matrix
dimnames(BoruchCorr) <- list(varNames, varNames)

Estimate a model with one, two, and three factors
for (fFactors in 1:3) {
 tempOutput <- faIB(R = BoruchCorr, n = 111,
fals

NVarX = 7,
numFactors = jFactors,
rotate = "oblimin",
rotateControl = list(standardize = "Kaiser",
numberStarts = 100))

cat("\nNumber of inter-battery factors:", jFactors,"\n")
print(round(tempOutput$fit,2))
)

Compare output with Cudeck (1982) Table 2 (p. 60)
BoruchOutput <-
faIB(R = BoruchCorr,
 n = 111,
 NVarX = 7,
 numFactors = 2,
 rotate = "oblimin",
 rotateControl = list(standardize = "Kaiser")))

Print the inter-battery factor loadings
print(round(BoruchOutput$loadings, 3))
print(round(BoruchOutput$Phi, 3))

fals

Unweighted least squares factor analysis

Description

Unweighted least squares factor analysis

Usage

fals(R, nfactors, TreatHeywood = TRUE)

Arguments

R Input correlation matrix.
nfactors Number of factors to extract.
TreatHeywood If TreatHeywood = TRUE then a penalized least squares function is used to
bound the commonality estimates below 1.0. Default(TreatHeywood = TRUE).

Value

loadings Unrotated factor loadings. If a Heywood case is present in the initial solution
then the model is re-estimated via non-iterated principal axes with max(rij^2) as
fixed communality (h2) estimates.
faMain

h2 Vector of final commonality estimates.
uniqueness Vector of factor uniquenesses, i.e. (1 - h2).
Heywood (logical) TRUE if a Heywood case was produced in the LS solution.
TreatHeywood (logical) Value of the TreatHeywood argument.
converged (logical) TRUE if all values of the gradient are sufficiently close to zero.
MaxAbsGrad The maximum absolute value of the gradient at the solution.
f.value The discrepancy value associated with the final solution.

Author(s)
Niels Waller

See Also
Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()

Examples

Rbig <- fungible::rcor(120)
out1 <- fals(R = Rbig,
 nfactors = 2,
 TreatHeywood = TRUE)

faMain

Automatic Factor Rotation from Random Configurations with Bootstrap Standard Errors

Description

This function conducts factor rotations (using the GPArotation package) from a user-specified number of random (orthogonal) starting configurations. Based on the resulting complexity function value, the function determines the number of local minima and, among these local solutions, will find the "global minimum" (i.e., the minimized complexity value from the finite number of solutions). See Details below for an elaboration on the global minimum. This function can also return bootstrap standard errors of the factor solution.
Usage

faMain(
 X = NULL,
 R = NULL,
 n = NULL,
 numFactors = NULL,
 facMethod = "fals",
 urLoadings = NULL,
 rotate = "oblimin",
 targetMatrix = NULL,
 bootstrapSE = FALSE,
 numBoot = 1000,
 CILevel = 0.95,
 Seed = 1,
 digits = NULL,
 faControl = NULL,
 rotateControl = NULL,
 ...
)

Arguments

X (Matrix) A raw data matrix (or data frame).
R (Matrix) A correlation matrix.
n (Numeric) Sample size associated with the correlation matrix. Defaults to n = NULL.
numFactors (Numeric) The number of factors to extract for subsequent rotation.
facMethod (Character) The method used for factor extraction (faX). The supported options are "fals" for unweighted least squares, "faml" for maximum likelihood, "fapa" for iterated principal axis factoring, "faregLS" for regularized least squares, "faregML" for regularized maximum likelihood, and "pca" for principal components analysis. The default method is "fals".

- "fals": Factors are extracted using the unweighted least squares estimation procedure using the fals function.
- "faml": Factors are extracted using the maximum likelihood estimation procedure using the factanal function.
- "fapa": Factors are extracted using the iterated principal axis factoring estimation procedure using the fapa function.
- "faregLS": Factors are extracted using regularized least squares factor analysis using the fareg function.
- "faregML": Factors are extracted using regularized maximum likelihood factor using the fareg function.
- "pca": Principal components are extracted.
urLoadings (Matrix) An unrotated factor-structure matrix to be rotated.
rotate (Character) Designate which rotation algorithm to apply. The following are available rotation options: "oblimin", "quartimin", "targetT", "targetQ", "oblimax", "entropy", "quartimax", "varimax", "simplimax", "bentlerT", "bentlerQ", "tandemI", "tandemII", "geominT", "geominQ", "cfT", "cfQ", "infomaxT", "infomaxQ", "mccammon", "bifactorT", "bifactorQ", and "none". Defaults to rotate = "oblimin". See GPArotation package for more details. Note that rotations ending in "T" and "Q" represent orthogonal and oblique rotations, respectively.

targetMatrix (Matrix) This argument serves two functions. First, if a user has requested either a "targetT" or "targetQ" rotation, then the target matrix is used to conduct a fully or partially specified target rotation. In the latter case, freely estimated factor loadings are designated by "NA" values and rotation will be conducted using Browne's (1972a, 1972b, 2001) method for a partially-specified target rotation. Second, if any other rotation option is chosen then all rotated loadings matrices (and assorted output) will be aligned (but not rotated) with the target solution.

bootstrapSE (Logical) Computes bootstrap standard errors. All bootstrap samples are aligned to the global minimum solution. Defaults to bootstrapSE = FALSE (no standard errors).

numBoot (Numeric) The number bootstraps. Defaults to numBoot = 1000.

CILevel (Numeric) The confidence level (between 0 and 1) of the bootstrap confidence interval. Defaults to CILevel = .95.

Seed (Numeric) Starting seed for reproducible bootstrap results and factor rotations. Defaults to Seed = 1.

digits (Numeric) Rounds the values to the specified number of decimal places. Defaults to digits = NULL (no rounding).

faControl (List) A list of optional parameters passed to the factor extraction (faX) function.

 • treatHeywood: (Logical) In fa1s, if treatHeywood is true, a penalized least squares function is used to bound the communality estimates below 1.0. Defaults to treatHeywood = TRUE.

 • nStart: (Numeric) The number of starting values to be tried in fa1ml. Defaults to nStart = 10.

 • start: (Matrix) NULL or a matrix of starting values, each column giving an initial set of uniquenesses. Defaults to start = NULL.

 • maxCommunality: (Numeric) In fa1ml, set the maximum communality value for the estimated solution. Defaults to maxCommunality = .995.

 • epsilon: (Numeric) In fapa, the numeric threshold designating when the algorithm has converged. Defaults to epsilon = 1e-4.

 • communality: (Character) The method used to estimate the initial communality values in fapa. Defaults to communality = 'SMC'.

 - "SMC": Initial communalities are estimated by taking the squared multiple correlations of each indicator after regressing the indicator on the remaining variables.

 - "maxr": Initial communalities equal the largest (absolute value) correlation in each column of the correlation matrix.

 - "unity": Initial communalities equal 1.0 for all variables.
• **maxItr**: (Numeric) In fapa, the maximum number of iterations to reach convergence. Defaults to maxItr = 15,000.

- **rotateControl**: (List) A list of control values to pass to the factor rotation algorithms.

 - **numberStarts**: (Numeric) The number of random (orthogonal) starting configurations for the chosen rotation method (e.g., oblimin). The first rotation will always commence from the unrotated factors orientation. Defaults to numberStarts = 10.

 - **gamma**: (Numeric) This is a tuning parameter (between 0 and 1, inclusive) for an oblimin rotation. See the GPArotation library’s oblimin documentation for more details. Defaults to gamma = 0 (i.e., a quartimin rotation).

 - **delta**: (Numeric) This is a tuning parameter for the geomin rotation. It adds a small number (default = .01) to the squared factor loadings before computing the geometric means in the discrepancy function.

 - **kappa**: (Numeric) The main parameterization of the Crawford-Ferguson (CF) rotations (i.e., "cfT" and "cfQ" for orthogonal and oblique CF rotation, respectively). Defaults to kappa = 0.

 - **k**: (Numeric) A specific parameter of the simplimax rotation. Defaults to k = the number of observed variables.

 - **standardize**: (Character) The standardization routine used on the unrotated factor structure. The three options are "none", "Kaiser", and "CM". Defaults to standardize = "none".

 - "none": No standardization is applied to the unrotated factor structure.

 - **epsilon**: (Numeric) The rotational convergence criterion to use. Defaults to epsilon = 1e-5.

 - **power**: (Numeric) Raise factor loadings the n-th power in the promaxQ rotation. Defaults to power = 4.

• **maxItr**: (Numeric) The maximum number of iterations for the rotation algorithm. Defaults to maxItr = 15000.

Values to be passed to the `cor` function.

- **use**: (Character) A character string giving a method for computing correlations in the presence of missing values: "everything" (the default), "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".

- **method**: (Character) A character string indicating which correlation coefficient is to be computed: "pearson" (the default), "kendall", or "spearman".

- **na.rm**: (Logical) Should missing values be removed (TRUE) or not (FALSE)?

Details

- **Global Minimum**: This function uses several random starting configurations for factor rotations in an attempt to find the global minimum solution. However, this function is not guaranteed to find the global minimum. Furthermore, the global minimum solution need not be more psychologically interpretable than any of the local solutions (cf. Rozeboom, 1992). As is recommended, our function returns all local solutions so users can make their own judgements.
• **Finding clusters of local minima**: We find local-solution sets by sorting the rounded rotation complexity values (to the number of digits specified in the epsilon argument of the rotateControl list) into sets with equivalent values. For example, by default epsilon = 1e-5, and thus will only evaluate the complexity values to five significant digits. Any differences beyond that value will not effect the final sorting.

Value

The faMain function will produce a lot of output in addition to the rotated factor pattern matrix and the factor correlations.

- **R**: (Matrix) Returns the correlation matrix, useful when raw data are supplied.
- **loadings**: (Matrix) The rotated factor solution with the lowest evaluated discrepancy function. This solution has the lowest discrepancy function of the examined random starting configurations. It is not guaranteed to find the "true" global minimum. Note that multiple (or even all) local solutions can have the same discrepancy functions.
- **Phi**: (Matrix) The factor correlations of the rotated factor solution with the lowest evaluated discrepancy function (see Details).
- **facIndeterminacy**: (Vector) A vector (with length equal to the number of factors) containing Guttman’s (1955) index of factor indeterminacy for each factor.
- **h2**: (Vector) The vector of final communality estimates.
- **loadingsSE**: (Matrix) The matrix of factor-loading standard errors across the bootstrapped factor solutions. Each matrix element is the standard deviation of all bootstrapped factor loadings for that element position.
- **CILevel** (Numeric) The user-defined confidence level (between 0 and 1) of the bootstrap confidence interval. Defaults to CILevel = .95.
- **loadingsCIupper**: (Matrix) Contains the upper confidence interval of the bootstrapped factor loadings matrix. The confidence interval width is specified by the user.
- **loadingsCIlower**: (Matrix) Contains the lower confidence interval of the bootstrapped factor loadings matrix. The confidence interval width is specified by the user.
- **PhiSE**: (Matrix) The matrix of factor correlation standard errors across the bootstrapped factor solutions. Each matrix element is the standard deviation of all bootstrapped factor correlations for that element position.
- **PhiCIupper**: (Matrix) Contains the upper confidence interval of the bootstrapped factor correlation matrix. The confidence interval width is specified by the user.
- **PhiCIlower**: (Matrix) Contains the lower confidence interval of the bootstrapped factor correlation matrix. The confidence interval width is specified by the user.
- **facIndeterminacySE**: (Matrix) A row vector containing the standard errors of Guttman’s (1955) factor indeterminacy indices across the bootstrap factor solutions.
- **localSolutions**: (List) A list containing all local solutions in ascending order of their factor loadings, rotation complexity values (i.e., the first solution is the "global" minimum). Each solution returns the
 - **loadings**: (Matrix) the factor loadings,
 - **Phi**: (Matrix) factor correlations,
- **RotationComplexityValue**: (Numeric) the complexity value of the rotation algorithm,
- **facIndeterminacy**: (Vector) A vector of factor indeterminacy indices for each common factor, and
- **RotationConverged**: (Logical) convergence status of the rotation algorithm.

- **numLocalSets** (Numeric) How many sets of local solutions with the same discrepancy value were obtained.
- **localSolutionSets**: (List) A list containing the sets of unique local minima solutions. There is one list element for every unique local solution that includes (a) the factor loadings matrix, (b) the factor correlation matrix (if estimated), and (c) the discrepancy value of the rotation algorithm.
- **loadingsArray**: (Array) Contains an array of all bootstrapped factor loadings. The dimensions are factor indicators, factors, and the number of bootstrapped samples (representing the row, column, and depth, respectively).
- **PhiArray**: (Array) Contains an array of all bootstrapped factor correlations. The dimensions are the number of factors, the number of factors, and the number of bootstrapped samples (representing the row, column, and depth, respectively).
- **facIndeterminacyArray**: (Array) Contains an array of all bootstrap factor indeterminacy indices. The dimensions are 1, the number of factors, and the number of bootstrap samples (representing the row, column, and depth order, respectively).
- **faControl**: (List) A list of the control parameters passed to the factor extraction (**faX**) function.
- **faFit**: (List) A list of additional output from the factor extraction routines.
 - **facMethod**: (Character) The factor extraction routine.
 - **df**: (Numeric) Degrees of Freedom from the maximum likelihood factor extraction routine.
 - **n**: (Numeric) Sample size associated with the correlation matrix.
 - **objectiveFunc**: (Numeric) The evaluated objective function for the maximum likelihood factor extraction routine.
 - **RMSEA**: (Numeric) Root mean squared error of approximation from Steiger & Lind (1980). Note that bias correction is computed if the sample size is provided.
 - **testStat**: (Numeric) The significance test statistic for the maximum likelihood procedure. Cannot be computed unless a sample size is provided.
 - **pValue**: (Numeric) The p value associated with the significance test statistic for the maximum likelihood procedure. Cannot be computed unless a sample size is provided.
 - **gradient**: (Matrix) The solution gradient for the least squares factor extraction routine.
 - **maxAbsGradient**: (Numeric) The maximum absolute value of the gradient at the least squares solution.
 - **Heywood**: (Logical) TRUE if a Heywood case was produced.
 - **convergedX**: (Logical) TRUE if the factor extraction routine converged.
 - **convergedR**: (Logical) TRUE if the factor rotation routine converged (for the local solution with the minimum discrepancy value).
- **rotateControl**: (List) A list of the control parameters passed to the rotation algorithm.
- **unSpunSolution**: (List) A list of output parameters (e.g., loadings, Phi, etc) from the rotated solution that was obtained by rotating directly from the unrotated (i.e., unspun) common factor orientation.
• **targetMatrix** (Matrix) The input target matrix if supplied by the user.
• **Call**: (call) A copy of the function call.

Author(s)
- Niels G. Waller (nwaller@umn.edu)
- Casey Giordano (Giord023@umn.edu)
- The authors thank Allie Cooperman and Hoang Nguyen for their help implementing the standard error estimation and the Cureton-Mulaik standardization procedure.

References

See Also

Other Factor Analysis Routines: `BiFAD()`, `Box26`, `GenerateBoxData()`, `Ledermann()`, `SLi()`, `SchmidLeiman()`, `faAlign()`, `faEKC()`, `faIB()`, `faMB()`, `faScores()`, `faSort()`, `faStandardize()`, `faX()`, `fals()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMB()`, `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

Examples

```r
## Example 1

## Generate an orthogonal factor model

lambda <- matrix(c(.41, .00, .00,
                   .45, .00, .00,
                   .00, .00, .00,
                   .00, .00, .00,
                   .00, .00, .00,
                   .00, .00, .00), nrow = 3)
```

faMain

.53, .00, .00,
.00, .66, .00,
.00, .38, .00,
.00, .66, .00,
.00, .00, .68,
.00, .00, .56,
.00, .00, .55),
nrow = 9, ncol = 3, byrow = TRUE)

Generate factor correlation matrix
Phi <- matrix(.50, nrow = 3, ncol = 3)
diag(Phi) <- 1

Model-implied correlation matrix
R <- lambda %*% Phi %*% t(lambda)
diag(R) <- 1

Load the MASS package to create multivariate normal data
library(MASS)

Generate raw data to perfectly reproduce R
X <- mvrnorm(Sigma = R, mu = rep(0, nrow(R)), empirical = TRUE, n = 300)

Not run:
Execute 50 promax rotations from a least squares factor extraction
Compute 100 bootstrap samples to compute standard errors and
80 percent confidence intervals
Out1 <- faMain(X = X,
numFactors = 3,
facMethod = "fals",
rotate = "promaxQ",
bootstrapSE = TRUE,
numBoot = 100,
CILevel = .80,
faControl = list(treatHeywood = TRUE),
rotateControl = list(numberStarts = 2,
 power = 4,
 standardize = "Kaiser"),
digits = 2)
Out1[1c("loadings", "Phi")]

End(Not run)

Example 2

Load Thurstone's (in)famous box data
data(Thurstone, package = "GPArotation")

Execute 5 oblimin rotations with Cureton-Mulaik standardization
Out2 <- faMain(urLoadings = box26,
rotate = "oblimin",
bootstrapSE = FALSE,
rotateControl = list(numberStarts = 5,
faMAP

Velicer’s minimum partial correlation method for determining the number of major components for a principal components analysis or a factor analysis

Description

Uses Velicer’s MAP (i.e., matrix of partial correlations) procedure to determine the number of components from a matrix of partial correlations.
Usage

faMAP(R, max.fac = 8, Print = TRUE, Plot = TRUE, ...)

Arguments

R
input data in the form of a correlation matrix.
max.fac
maximum number of dimensions to extract.
Print
(logical) Print = TRUE will print complete results.
Plot
(logical) Plot = TRUE will plot the MAP values.
...
Arguments to be passed to the plot functions (see par).

Value

MAP
Minimum partial correlations
MAP4
Minimum partial correlations
fm
average of the squared partial correlations after the first m components are partialled out.
fm4
PlotAvgSq
A saved object of the original MAP plot (based on the average squared partial r's.)
PlotAvg4th
A saved object of the revised MAP plot (based on the average 4th power of the partial r's.)

Author(s)

Niels Waller

References

Examples

Harman's data (1967, p 80)
R = matrix(c(
1.000, .846, .805, .859, .473, .398, .301, .382,
.846, 1.000, .881, .826, .376, .326, .277, .415,
.805, .881, 1.000, .801, .380, .319, .237, .345,
.859, .826, .801, 1.000, .436, .329, .327, .365,
.473, .376, .380, .436, 1.000, .762, .730, .629,
.398, .326, .319, .329, .762, 1.000, .583, .577,
...
faMB

Multiple Battery Factor Analysis by Maximum Likelihood Methods

Description

faMB estimates multiple battery factor analysis using maximum likelihood estimation procedures described by Browne (1979, 1980). Unrotated multiple battery solutions are rotated (using the GPArotation package) from a user-specified number of random (orthogonal) starting configurations. Based on procedures analogous to those in the faMain function, rotation complexity values of all solutions are ordered to determine the number of local solutions and the "global" minimum solution (i.e., the minimized rotation complexity value from the finite number of solutions).

Usage

faMB(
 X = NULL,
 R = NULL,
 n = NULL,
 NB = NULL,
 NVB = NULL,
 numFactors = NULL,
 epsilon = 1e-06,
 rotate = "oblimin",
 rotateControl = NULL,
 PrintLevel = 0,
 Seed = 1
)
Arguments

X (Matrix) A raw data matrix (or data frame) structured in a subject (row) by variable (column) format. Defaults to \(X = \text{NULL} \).

R (Matrix) A correlation matrix. Defaults to \(R = \text{NULL} \).

n (Numeric) Sample size associated with either the raw data (X) or the correlation matrix (R). Defaults to \(n = \text{NULL} \).

NB (Numeric) The number of batteries to analyze. In interbattery factor analysis \(NB = 2 \).

NVB (Vector) The number of variables in each battery. For example, analyzing three batteries including seven, four, and five variables (respectively) would be specified as \(NVB = c(7, 4, 5) \).

numFactors (Numeric) The number of factors to extract for subsequent rotation.

epsilon (Numeric) The convergence threshold for the Gauss-Seidel iterator when analyzing three or more batteries. Defaults to \(\epsilon = 1e-06 \).

rotate (Character) Designate which rotation algorithm to apply. The following are available rotation options: "oblimin", "quartimin", "targetT", "targetQ", "oblimax", "entropy", "quartimax", "varimax", "simplimax", "bentlerT", "bentlerQ", "tandemI", "tandemII", "geominT", "geominQ", "cfT", "cfQ", "infomaxT", "infomaxQ", "mccammon", "bifactorT", "bifactorQ", and "none". Defaults to rotate = "oblimin". See **GPArotation** package for more details. Note that rotations ending in "T" and "Q" represent orthogonal and oblique rotations, respectively.

rotateControl (List) A list of control values to pass to the factor rotation algorithms.

- **numberStarts** (Numeric) The number of random (orthogonal) starting configurations for the chosen rotation method (e.g., oblimin). The first rotation will always commence from the unrotated factors orientation. Defaults to numberStarts = 10.
- **gamma** (Numeric) This is a tuning parameter (between 0 and 1, inclusive) for an oblimin rotation. See the **GPArotation** library’s oblimin documentation for more details. Defaults to gamma = 0 (i.e., a quartimin rotation).
- **delta** (Numeric) This is a tuning parameter for the geomin rotation. It adds a small number (default = .01) to the squared factor loadings before computing the geometric means in the discrepancy function.
- **kappa** (Numeric) The main parameterization of the Crawford-Ferguson (CF) rotations (i.e., "cfT" and "cfQ" for orthogonal and oblique CF rotation, respectively). Defaults to kappa = 0.
- **k** (Numeric) A specific parameter of the simplimax rotation. Defaults to \(k = \text{the number of observed variables} \).
- **standardize** (Character) The standardization routine used on the unrotated factor structure. The three options are "none", "Kaiser", and "CM". Defaults to standardize = "none".
 - "none": No standardization is applied to the unrotated factor structure.
 - "Kaiser": Use a factor structure matrix that has been normed by Kaiser’s method (i.e., normalize all rows to have a unit length).
 - "CM": Use a factor structure matrix that has been normed by the Cureton-Mulaik method.
• **epsilon**: (Numeric) The rotational convergence criterion to use. Defaults to epsilon = 1e-5.
• **power**: (Numeric) Raise factor loadings the the n-th power in the promaxQ rotation. Defaults to power = 4.
• **maxIttr**: (Numeric) The maximum number of iterations for the rotation algorithm. Defaults to maxIttr = 15000.

PrintLevel (Numeric) When a value greater than zero is specified, PrintLevel prints the maximum change in communality estimates for each iteration of the Gauss-Seidel function. Note that Gauss-Seidel iteration is only called when three or more batteries are analyzed. Defaults to PrintLevel = 0.

Seed (Integer) Starting seed for the random number generator. Defaults to Seed = 1.

Value

The faMB function will produce abundant output in addition to the rotated multiple battery factor pattern and factor correlation matrices.

• **loadings**: (Matrix) The (possibly) rotated multiple battery factor solution with the lowest evaluated complexity value of the examined random starting configurations. It is not guaranteed to find the "true" global minimum. Note that multiple (or even all) local solutions can have the same discrepancy functions.

• **Phi**: (Matrix) The factor correlations of the rotated factor solution with the lowest evaluated discrepancy function (see Details).

• **fit**: (Vector) A vector containing the following fit statistics:
 – **ChiSq**: Chi-square goodness of fit value. Note that, as recommended by Browne (1979), we apply Lawley’s (1959) correction when computing the chi-square value when NB = 2.
 – **DF**: Degrees of freedom for the estimated model.
 – **pvalue**: P-value associated with the above chi-square statistic.
 – **AIC**: Akaike’s Information Criterion where a lower value indicates better fit.
 – **BIC**: Bayesian Information Criterion where a lower value indicates better fit.
 – **RMSEA**: Root mean squared error of approximation (Steiger & Lind, 1980).

• **R**: (Matrix) The sample correlation matrix, useful when raw data are supplied.

• **Rhat**: (Matrix) The reproduced correlation matrix with communalities on the diagonal.

• **Resid**: (Matrix) A residual matrix (R - Rhat).

• **facIndeterminacy**: (Vector) A vector (with length equal to the number of factors) containing Guttman’s (1955) index of factor indeterminacy for each factor.

• **localSolutions**: (List) A list (of length equal to the numberStarts argument within rotateControl) containing all local solutions in ascending order of their rotation complexity values (i.e., the first solution is the "global" minimum). Each solution returns the following:
 – **loadings**: (Matrix) the factor loadings,
 – **Phi**: (Matrix) factor correlations,
 – **RotationComplexityValue**: (Numeric) the complexity value of the rotation algorithm,
 – **facIndeterminacy**: (Vector) A vector of factor indeterminacy indices for each common factor, and
– **RotationConverged**: (Logical) convergence status of the rotation algorithm.

• **numLocalSets**: (Numeric) An integer indicating how many sets of local solutions with the same discrepancy value were obtained.

• **localSolutionSets**: (List) A list (of length equal to the numLocalSets) that contains all local solutions with the same rotation complexity value. Note that it is not guaranteed that all solutions with the same complexity values have equivalent factor loading patterns.

• **rotate**: (Character) The chosen rotation algorithm.

• **rotateControl**: (List) A list of the control parameters passed to the rotation algorithm.

• **unSpunSolution**: (List) A list of output parameters (e.g., loadings, Phi, etc) from the rotated solution that was obtained by rotating directly from the unspun (i.e., not multiplied by a random orthogonal transformation matrix) common factor orientation.

• **Call**: (call) A copy of the function call.

Author(s)

• Niels G. Waller (nwaller@umn.edu)

• Casey Giordano (Giord023@umn.edu)

References

See Also

Other Factor Analysis Routines: `BifAD()`, `Box26`, `GenerateBoxData()`, `Ledermann()`, `SLi()`, `SchmidLeiman()`, `faAlign()`, `faEKC()`, `faIB()`, `faMain()`, `faScores()`, `faSort()`, `faStandardize()`, `faX()`, `fals()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMB()`, `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

Examples

These examples reproduce published multiple battery analyses.

----EXAMPLE 1: Browne, M. W. (1979)----
#
Data originally reported in:
Thurstone, L. L. & Thurstone, T. G. (1941). Factorial studies
of intelligence. Psychometric Monograph (2), Chicago: Univ.
Chicago Press.

Load Thurstone & Thurstone's data used by Browne (1979)
data(Thurstone41)

Example1Output <- faMB(R = Thurstone41,
 n = 710,
 NB = 2,
 NVB = c(4,5),
 numFactors = 2,
 rotate = "oblimin",
 rotateControl = list(standardize = "Kaiser"))

summary(Example1Output, PrintLevel = 2)

----EXAMPLE 2: Browne, M. W. (1980)----
Data originally reported in:
Jackson, D. N. & Singer, J. E. (1967). Judgments, items and
personality. Journal of Experimental Research in Personality, 20, 70-79.

Load Jackson and Singer's dataset
data(Jackson67)

Example2Output <- faMB(R = Jackson67,
 n = 480,
 NB = 5,
 NVB = rep(4,5),
 numFactors = 4,
 rotate = "varimax",
 rotateControl = list(standardize = "Kaiser"),
 PrintLevel = 1)

summary(Example2Output)
Example 3: Cudeck (1982)
Data originally reported by:
The interrelationships among some associative learning tasks.
Bulletin of the Psychonomic Society, 13(3), 121-123. DOI: 10.3758/BF03335032

Load Malmi et al.'s dataset
data(Malmi79)
Example3Output <- faMB(R = Malmi79,
n = 97,
NB = 3,
NVB = c(3, 3, 6),
numFactors = 2,
rotate = "oblimin",
rotateControl = list(standardize = "Kaiser"))
summary(Example3Output)

Example 4: Cudeck (1982)
Data originally reported by:

Load Boruch et al.'s dataset
data(Boruch70)
Example4Output <- faMB(R = Boruch70,
n = 111,
NB = 2,
NVB = c(7, 7),
numFactors = 2,
rotate = "oblimin",
rotateControl = list(standardize = "Kaiser",
numberStarts = 100))
summary(Example4Output, digits = 3)

Iterated Principal Axis Factor Analysis (fapa)

Description
This function applies the iterated principal axis factoring method to extract an unrotated factor structure matrix.
Usage

```r
fapa(
R,
numFactors = NULL,
epsilon = 1e-04,
communality = "SMC",
maxItr = 15000
)
```

Arguments

- **R** (Matrix) A correlation matrix to be analyzed.
- **numFactors** (Numeric) The number of factors to extract.
- **epsilon** (Numeric) A numeric threshold to designate whether the function has converged. The default value is 1e-4.
- **communality** (Character) The routine requires an initial estimate of the communality values. There are three options (see below) with "SMC" (i.e., squared multiple correlation) being the default.
 - "SMC": Initial communalities are estimated by taking the squared multiple correlations of each indicator after regressing the indicator on the remaining variables. The following equation is employed to find the squared multiple correlation: $1 - 1/diag(R^{-1})$.
 - "maxr": Initial communalities equal the largest (absolute value) correlation in each column of the correlation matrix.
 - "unity": Initial communalities equal 1.0 for all variables.
- **maxItr** (Numeric) The maximum number of iterations to reach convergence. The default is 15,000.

Details

- **Initial communality estimate**: The choice of the initial communality estimate can impact the resulting principal axis factor solution.
 - **Impact on the Estimated Factor Structure**: According to Widaman and Herringer (1985), the initial communality estimate does not have much bearing on the resulting solution when a stringent convergence criterion is used. In their analyses, a convergence criterion of .001 (i.e., slightly less stringent than the default of 1e-4) is sufficiently stringent to produce virtually identical communality estimates irrespective of the initial estimate used. Based on their findings, it is not recommended to use a convergence criterion lower than 1e-3.
 - **Impact on the Iteration Procedure**: The initial communality estimates have little impact on the final factor structure but they can impact the iterated procedure. It is possible that poor communality estimates produce a non-positive definite correlation matrix (i.e., eigenvalues <= 0) whereas different communality estimates result in a converged solution. If the fapa procedure fails to converge due to a non-positive definite matrix, try using different communality estimates before changing the convergence criterion.
Value
The main output is the matrix of unrotated factor loadings.

- **loadings**: (Matrix) A matrix of unrotated factor loadings extracted via iterated principal axis factoring.
- **h2**: (Vector) A vector containing the resulting communality values.
- **iterations**: (Numeric) The number of iterations required to converge.
- **converged**: (Logical) TRUE if the iterative procedure converged.
- **faControl**: (List) A list of the control parameters used to generate the factor structure.
 - **epsilon**: (Numeric) The convergence criterion used for evaluating each iteration.
 - **communality**: (Character) The method for estimating the initial communality values.
 - **maxItr**: (Numeric) The maximum number of allowed iterations to reach convergence.

Author(s)
- Casey Giordano (Giord023@umn.edu)
- Niels G. Waller (nwaller@umn.edu)

References

See Also
Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fareg(), orderFactors(), print/faMB(), print/faMain(), promaxQ(), summary/faMB(), summary/faMain()

Examples
```r
## Generate an example factor structure matrix
lambda <- matrix(c(.62, .00, .00,
                   .54, .00, .00,
                   .41, .00, .00,
                   .00, .31, .00,
                   .00, .58, .00,
                   .00, .62, .00,
                   .00, .00, .38,
                   .00, .00, .43,
                   .00, .00, .37),
                  nrow = 9, ncol = 3, byrow = TRUE)

## Find the model implied correlation matrix
R <- lambda %*% t(lambda)
diag(R) <- 1
```
Extract factors using the fapa function
Out1 <- fapa(R = R,
 numFactors = 3,
 communality = "SMC")

Call fapa through the factExtract function
Out2 <- faX(R = R,
 numFactors = 3,
 facMethod = "fapa",
 faControl = list(communality = "maxr",
 epsilon = 1e-4))

Check for equivalence of the two results
all.equal(Out1$loadings, Out2$loadings)

fareg

Regularized Factor Analysis

Description
This function applies the regularized factoring method to extract an unrotated factor structure matrix.

Usage

```r
dfa(R, numFactors = 1, facMethod = "rls")
```

Arguments

- **R** (Matrix) A correlation matrix to be analyzed.
- **numFactors** (Integer) The number of factors to extract. Default: numFactors = 1.
- **facMethod** (Character) "rls" for regularized least squares estimation or "rml" for regularized maximum likelihood estimation. Default: facMethod = "rls".

Value

The main output is the matrix of unrotated factor loadings.

- **loadings**: (Matrix) A matrix of unrotated factor loadings.
- **h2**: (Vector) A vector of estimated communality values.
- **L**: (Numeric) Value of the estimated penalty parameter.
- **Heywood** (Logical) TRUE if a Heywood case is detected (this should never happen).

Author(s)

Niels G. Waller (nwaller@umn.edu)
References

See Also

Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()

Examples

data("HW")

load first HW data set
RHW <- cor(x = HW$HW6)

Compute principal axis factor analysis
fapaOut <- faMain(R = RHW,
 numFactors = 3,
 facMethod = "fapa",
 rotate = "oblimin",
 faControl = list(treatHeywood = FALSE))

fapaOut$faFit$Heywood
round(fapaOut$h2, 2)

Conduct a regularized factor analysis
regOut <- fareg(R = RHW,
 numFactors = 3,
 facMethod = "rls")

regOut$L
regOut$Heywood

rotate regularized loadings and align with
population structure
regOutRot <- faMain(urLoadings = regOut$loadings,
 rotate = "oblimin")

ALIGN
FHW <- faAlign(HW$popLoadings, fapaOut$loadings)$F2
Freg <- faAlign(HW$popLoadings, regOutRot$loadings)$F2

AllSolutions <- round(cbind(HW$popLoadings, Freg, FHW),2)
colnames(AllSolutions) <- c("F1", "F2", "F3", "Fr1", "Fr2", "Fr3",
 "Fhw1", "Fhw2", "Fhw3")
AllSolutions
faScores <- function(X = NULL, faMainObject = NULL, Loadings = NULL, Phi = NULL, Method = "Thurstone") {
 # Description
 This function computes factor scores by various methods. The function will accept an object of class faMain or, alternatively, user-input factor pattern (i.e., Loadings) and factor correlation (Phi) matrices.

 # Usage
 faScores(
 X = NULL,
 faMainObject = NULL, Loadings = NULL,
 Phi = NULL,
 Method = "Thurstone"
)

 # Arguments
 X (Matrix) An N x variables data matrix. If X is a matrix of raw scores then faScores will convert the data to z scores.
 faMainObject (Object of class faMain) The returned object from a call to faMain. Default = NULL
 Loadings (Matrix) A factor pattern matrix. Default = NULL.
 Phi (Matrix) A factor correlation matrix. Default = NULL. If a factor pattern is entered via the Loadings argument but Phi = NULL the program will set Phi to an identity matrix.
 Method (Character) Factor scoring method. Defaults to the Thurstone or regression based method. Available options include:

 rmsdHW <- rmsd(HW$popLoadings, FHW, IncludeDiag = FALSE, Symmetric = FALSE)
 rmsdReg <- rmsd(HW$popLoadings, Freg, IncludeDiag = FALSE, Symmetric = FALSE)
 cat("\nrmshw = ", round(rmsdHW,3), "\nrmsereg = ", round(rmsdReg,3))
• **Thurstone** Generates regression based factor score estimates.
• **Bartlett** Generates Bartlett method factor score estimates.
• **tenBerge** Generates factor score estimates with correlations identical to that found in Phi.
• **Anderson** The Anderson Rubin method. Generates uncorrelated factor score estimates. This method is only appropriate for orthogonal factor models.
• **Harman** Generates estimated factor scores by Harman’s idealized variables method.
• **PCA** Returns unrotated principal component scores.

Details

faScores can be used to calculate estimated factor scores by various methods. In general, to calculate score estimates, users must input a data matrix \(X \) and either (a) an object of class **faMain** or (b) a factor loadings matrix, **Loadings** and an optional (for oblique models) factor correlation matrix **Phi**. The one exception to this rule concerns scores for the principal components model. To calculate unrotated PCA scores (i.e., when **Method = "PCA"**) users need only enter a data matrix, \(X \).

Value

- **fscores** A matrix of common factor score estimates.
- **Method** The method used to create the factor score estimates.
- **W** The factor scoring coefficient matrix.
- **Z** A matrix of standardized data used to create the estimated factor scores.

Author(s)

Niels Waller

References

See Also

Other Factor Analysis Routines: `BifAD()`, `Box26`, `GenerateBoxData()`, `Ledermann()`, `SLi()`, `SchmidLeiman()`, `faAlign()`, `faEKC()`, `faIB()`, `faMB()`, `faMain()`, `faSort()`, `faStandardize()`, `faX()`, `fals()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMB()`, `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

Examples

```r
lambda.Pop <- matrix(c(.41, .00, .00,
                        .45, .00, .00,
                        .53, .00, .00,
                        .00, .66, .00,
                        .00, .38, .00,
                        .00, .66, .00,
                        .00, .00, .68,
                        .00, .00, .56,
                        .00, .00, .55),
nrow = 9, ncol = 3, byrow = TRUE)
NVar <- nrow(lambda.Pop)
NFac <- 3

## Factor correlation matrix
Phi.Pop <- matrix(.50, nrow = 3, ncol = 3)
diag(Phi.Pop) <- 1

# Model-implied correlation matrix
R <- lambda.Pop %*% Phi.Pop %*% t(lambda.Pop)
diag(R) <- 1

# Generate population data to perfectly reproduce pop R
Out <- simFA( Model = list(Model = "oblique"),
             Loadings = list(FacPattern = lambda.Pop),
             Phi = list(PhiType = "user",
                        UserPhi = Phi.Pop),
             FactorScores = list(FS = TRUE,
                                  CFSeed = 1,
                                  SFSeed = 2,
                                  EFSeed = 3,
                                  Population = TRUE,
                                  NFacScores = 100),
             Seed = 1)

PopFactorScores <- Out$Scores$FactorScores
X <- PopObservedScores <- Out$Scores$ObservedScores

fout <- faMain(X = X,
               numFactors = 3,
               facMethod = "fals",
               rotate = "oblimin")
```
print(round(fout$loadings, 2))
print(round(fout$Phi,2))

fload <- fout$loadings
Phi <- fout$Phi

fsOut <- faScores(X = X,
 faMainObject = fout,
 Method = "Thurstone")

fscores <- fsOut$fscores

print(round(cor(fscores), 2))
print(round(Phi,2))

CommonFS <- PopFactorScores[,1:NFac]
SpecificFS <-PopFactorScores[,(NFac+1):(NFac+NVar)]
ErrorFS <- PopFactorScores[, (NFac + NVar + 1):(NFac + 2*NVar)]

print(cor(fscores, CommonFS))

faSort

Sort a factor loadings matrix

Description

faSort takes an unsorted factor pattern or structure matrix and returns a sorted matrix with (possibly) reflected columns. Sorting is done such that variables that load on a common factor are grouped together for ease of interpretation.

Usage

faSort(fmat, phi = NULL, BiFactor = FALSE, salient = 0.25, reflect = TRUE)

Arguments

fmat
factor loadings (pattern or structure) matrix.

phi
factor correlation matrix. Default = NULL. If reflect = TRUE then phi will be corrected to match the new factor orientations.

BiFactor
(logical) Is the solution a bifactor model?

salient
factor markers with loadings >= abs(salient) will be saved in the markers list. Note that a variable can be a marker of more than one factor.

reflect
(logical) if reflect = TRUE then the factors will be reflected such that salient loadings are mostly positive.
Value

loadings sorted factor loadings matrix.
phi reflected factor correlation matrix when phi is given as an argument.
markers A list of factor specific markers with loadings >= abs(salient). Markers are sorted by the absolute value of the salient factor loadings.
sortOrder sorted row numbers.
SEmat The SEmat is a so-called Start-End matrix that lists the first (start) and last (end) row for each factor in the sorted pattern matrix.

Author(s)
Niels Waller

See Also
fals
Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faStandardize(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()

Examples

```r
set.seed(123)
F <- matrix( c( .5, 0,
               .6, 0,
               0, .6,
               .6, 0,
               0, .5,
               .7, 0,
               0, .7,
               0, .6), nrow = 8, ncol = 2, byrow=TRUE)
Rex1 <- F %*% t(F); diag(Rex1) <- 1

Items <- c("1. I am often tense.\n", "2. I feel anxious much of the time.\n", "3. I am a naturally curious individual.\n", "4. I have many fears.\n", "5. I read many books each year.\n", "6. My hands perspire easily.\n", "7. I have many interests.\n", "8. I enjoy learning new words.\n")

exampleOut <- fals(R = Rex1, nfactors = 2)

# Varimax rotation
Fload <- varimax(exampleOut$loadings)$loadings]
```

faStandardize

Standardize the Unrotated Factor Loadings

Description

This function standardizes the unrotated factor loadings using two methods: Kaiser’s normalization and Cureton-Mulaik standardization.

Usage

faStandardize(method, lambda)

Arguments

method (Character) The method used for standardization. There are three option: "none", "Kaiser", and "CM".

- "none": No standardization is conducted on the unrotated factor loadings matrix
- "Kaiser": The rows of the unrotated factor loadings matrix are rescaled to have unit-lengths.
- "CM": Apply the Cureton-Mulaik standardization to the unrotated factor loadings matrix.

lambda (Matrix) The unrotated factor loadings matrix (or data frame).
Value

The resulting output can be used to standardize the factor loadings as well as providing the inverse matrix used to unstandardize the factor loadings after rotating the factor solution.

- **Dv**: (Matrix) A diagonal weight matrix used to standardize the unrotated factor loadings. Pre-multiplying the loadings matrix by the diagonal weight matrix (i.e., Dv
- **DvInv**: (Matrix) The inverse of the diagonal weight matrix used to standardize. To unstandardize the ultimate rotated solution, pre-multiply the rotated factor loadings by the inverse of Dv (i.e., DvInv
- **lambda**: (Matrix) The standardized, unrotated factor loadings matrix.
- **unstdLambda**: (Matrix) The original, unstandardized, unrotated factor loadings matrix. (DvInv

References

See Also

Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()
Arguments

- **R** (Matrix) A correlation matrix used for factor extraction.
- **n** (Numeric) Sample size associated with the correlation matrix. Defaults to \(n = \text{NULL} \).
- **numFactors** (Numeric) The number of factors to extract for subsequent rotation.
- **facMethod** (Character) The method used for factor extraction. The supported options are "fals" for unweighted least squares, "faml" for maximum likelihood, "fapa" for iterated principal axis factoring, and "pca" for principal components analysis. The default method is "fals".
 - "fals": Factors are extracted using the unweighted least squares estimation procedure using the `fals` function.
 - "faml": Factors are extracted using the maximum likelihood estimation procedure using the `factanal` function.
 - "faregLS"": Factors are extracted using regularized least squares factor analysis using the `fareg` function.
 - "faregML": Factors are extracted using regularized maximum likelihood factor using the `fareg` function.
 - "fapa": Factors are extracted using the iterated principal axis factoring estimation procedure using the `fapa` function.
 - "pca": Principal components are extracted.
- **faControl** (List) A list of optional parameters passed to the factor extraction (`faX`) function.
 - **treatHeywood** (Logical) In `fals`, if `treatHeywood` is true, a penalized least squares function is used to bound the communality estimates below 1.0. Defaults to `treatHeywood = TRUE`.
 - **nStart** (Numeric) The number of starting values to be tried in `faml`. Defaults to `nStart = 10`.
 - **start** (Matrix) NULL or a matrix of starting values, each column giving an initial set of uniquenesses. Defaults to `start = NULL`.
 - **maxCommunality** (Numeric) In `faml`, set the maximum communality value for the estimated solution. Defaults to `maxCommunality = .995`.
 - **epsilon** (Numeric) In `fapa`, the numeric threshold designating when the algorithm has converged. Defaults to `epsilon = 1e-4`.
 - **communality** (Character) The method used to estimate the initial communality values in `fapa`. Defaults to `communality = 'SMC'`.
 - "SMC": Initial communalities are estimated by taking the squared multiple correlations of each indicator after regressing the indicator on the remaining variables.
 - "maxr": Initial communalities equal the largest (absolute value) correlation in each column of the correlation matrix.
 - "unity": Initial communalities equal 1.0 for all variables.
 - **maxItr** (Numeric) In `fapa`, the maximum number of iterations to reach convergence. Defaults to `maxItr = 15,000`.

faX
Details

- **Initial communality estimate**: According to Widaman and Herringer (1985), the initial communality estimate does not have much bearing on the resulting solution when the a stringent convergence criterion is used. In their analyses, a convergence criterion of .001 (i.e., slightly less stringent than the default of 1e-4) is sufficiently stringent to produce virtually identical communality estimates irrespective of the initial estimate used. It should be noted that all four methods for estimating the initial communality in Widaman and Herringer (1985) are the exact same used in this function. Based on their findings, it is not recommended to use a convergence criterion lower than 1e-3.

Value

This function returns a list of output relating to the extracted factor loadings.

- **loadings**: (Matrix) An unrotated factor structure matrix.
- **h2**: (Vector) Vector of final communality estimates.
- **faFit**: (List) A list of additional factor extraction output.
 - facMethod: (Character) The factor extraction routine.
 - df: (Numeric) Degrees of Freedom from the maximum likelihood factor extraction routine.
 - n: (Numeric) Sample size associated with the correlation matrix.
 - objectiveFunc: (Numeric) The evaluated objective function for the maximum likelihood factor extraction routine.
 - RMSEA: (Numeric) Root mean squared error of approximation from Steiger & Lind (1980). Note that bias correction is computed if the sample size is provided.
 - testStat: (Numeric) The significance test statistic for the maximum likelihood procedure. Cannot be computed unless a sample size is provided.
 - pValue: (Numeric) The p value associated with the significance test statistic for the maximum likelihood procedure. Cannot be computed unless a sample size is provided.
 - gradient: (Matrix) The solution gradient for the least squares factor extraction routine.
 - maxAbsGradient: (Numeric) The maximum absolute value of the gradient at the least squares solution.
 - Heywood: (Logical) TRUE if a Heywood case was produced.
 - converged: (Logical) TRUE if the least squares or principal axis factor extraction routine converged.

Author(s)

- Casey Giordano (Giord023@umn.edu)
- Niels G. Waller (nwaller@umn.edu)

References

See Also

Other Factor Analysis Routines: `BiFAD()`, `Box26`, `GenerateBoxData()`, `Ledermann()`, `SLi()`, `SchmidLeiman()`, `faAlign()`, `faEKC()`, `faIB()`, `faMB()`, `faMain()`, `faScores()`, `faSort()`, `faStandardize()`, `fals()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMB()`), `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

Examples

```r
## Generate an example factor structure matrix
lambda <- matrix(c(.62, ,0, 0, .54, 0, 0, .41, 0, 0, 0, .31, 0, 0, .58, 0, 0, .62, 0, 0, .00, 0, .38, 0, .43, 0, .37),
nrow = 9, ncol = 3, byrow = TRUE)
## Find the model implied correlation matrix
R <- lambda %*% t(lambda)
diag(R) <- 1
## Extract (principal axis) factors using the factExtract function
Out1 <- faX(R = R,
numFactors = 3,
facMethod = "fapa",
faControl = list(communality = "maxr",
epsilon = 1e-4))

## Extract (least squares) factors using the factExtract function
Out2 <- faX(R = R,
numFactors = 3,
facMethod = "fals",
faControl = list(treatHeywood = TRUE))
```

FMP

Estimate the coefficients of a filtered monotonic polynomial IRT model

Description

Estimate the coefficients of a filtered monotonic polynomial IRT model.
Usage

FMP(data, thetaInit, item, startvals, k = 0, eps = 1e-06)

Arguments

data N(subjects)-by-p(items) matrix of 0/1 item response data.
thetaInit Initial theta (θ) surrogates (e.g., calculated by svdNorm).
item Item number for coefficient estimation.
startvals Start values for function minimization. Start values are in the gamma metric (see Liang & Browne, 2015)
k Order of monotonic polynomial = 2k+1 (see Liang & Browne, 2015). k can equal 0, 1, 2, or 3.
eps Step size for gradient approximation, default = 1e-6. If a convergence failure occurs during function optimization reducing the value of eps will often produce a converged solution.

Details

As described by Liang and Browne (2015), the filtered polynomial model (FMP) is a quasi-parametric IRT model in which the IRF is a composition of a logistic function and a polynomial function, $m(\theta)$, of degree 2k + 1. When k = 0, $m(\theta) = b_0 + b_1 \theta$ (the slope intercept form of the 2PL). When k = 1, 2k + 1 equals 3 resulting in $m(\theta) = b_0 + b_1 \theta + b_2 \theta^2 + b_3 \theta^3$. Acceptable values of k = 0,1,2,3. According to Liang and Browne, the "FMP IRF may be used to approximate any IRF with a continuous derivative arbitrarily closely by increasing the number of parameters in the monotonic polynomial" (2015, p. 2) The FMP model assumes that the IRF is monotonically increasing, bounded by 0 and 1, and everywhere differentiable with respect to theta (the latent trait).

Value

b Vector of polynomial coefficients.
gamma Polynomial coefficients in gamma metric (see Liang & Browne, 2015).
FHAT Function value at convergence.
counts Number of function evaluations during minimization (see optim documentation for further details).
AIC Pseudo scaled Akaike Information Criterion (AIC). Candidate models that produce the smallest AIC suggest the optimal number of parameters given the sample size. Scaling is accomplished by dividing the non-scaled AIC by sample size.
BIC Pseudo scaled Bayesian Information Criterion (BIC). Candidate models that produce the smallest BIC suggest the optimal number of parameters given the sample size. Scaling is accomplished by dividing the non-scaled BIC by sample size.
convergence Convergence = 0 indicates that the optimization algorithm converged; convergence=1 indicates that the optimization failed to converge.
Author(s)
Niels Waller

References

Examples

```r
## Not run:
## In this example we will generate 2000 item response vectors
## for a k = 1 order filtered polynomial model and then recover
## the estimated item parameters with the FMP function.

k <- 1 # order of polynomial

NSubjects <- 2000

## generate a sample of 2000 item response vectors
## for a k = 1 FMP model using the following
## coefficients
b <- matrix(c(
  1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,
  1.550, 1.805, -0.230, 0.032, 0, 0, 0, 0, 1,
  1.282, 1.063, -0.103, 0.003, 0, 0, 0, 0, 1,
  0.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
  1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,
  -0.008, 1.349, -0.195, 0.144, 0, 0, 0, 0, 1,
  0.512, 1.538, -0.089, 0.082, 0, 0, 0, 0, 1,
  0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,
  1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,
  -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1,
  -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1,
  0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
  -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
  0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
  1.030, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1,
  0.140, 1.209, 0.082, 0.148, 0, 0, 0, 0, 1,
  0.429, 1.480, -0.008, 0.061, 0, 0, 0, 0, 1,
  0.089, 0.785, -0.055, 0.018, 0, 0, 0, 0, 1,
  -0.516, 1.013, 0.016, 0.023, 0, 0, 0, 0, 1,
  0.143, 1.315, -0.011, 0.136, 0, 0, 0, 0, 1,
  0.347, 0.733, -0.121, 0.041, 0, 0, 0, 0, 1,
  -0.074, 0.869, 0.013, 0.026, 0, 0, 0, 0, 1,
  0.630, 1.484, -0.001, 0.000, 0, 0, 0, 0, 1),
  nrow=23, ncol=9, byrow=TRUE)
```
FMPMonotonicityCheck

Utility function for checking FMP monotonicity

```r
ex1.data <- genFMPData(NSubj = NSubjects, bParams = b, seed = 345)$data

## number of items in the data matrix
NItems <- ncol(ex1.data)

# compute (initial) surrogate theta values from
# the normed left singular vector of the centered
# data matrix
thetaInit <- svdNorm(ex1.data)

## earlier we defined k = 1
if(k == 0) {
  startVals <- c(1.5, 1.5)
  bmat <- matrix(0, NItems, 6)
  colnames(bmat) <- c(paste("b", 0:1, sep = ""), "FHAT", "AIC", "BIC", "convergence")
}
if(k == 1) {
  startVals <- c(1.5, 1.5, .10, .10)
  bmat <- matrix(0, NItems, 8)
  colnames(bmat) <- c(paste("b", 0:3, sep = ""), "FHAT", "AIC", "BIC", "convergence")
}
if(k == 2) {
  startVals <- c(1.5, 1.5, .10, .10, .10, .10)
  bmat <- matrix(0, NItems, 10)
  colnames(bmat) <- c(paste("b", 0:5, sep = ""), "FHAT", "AIC", "BIC", "convergence")
}
if(k == 3) {
  startVals <- c(1.5, 1.5, .10, .10, .10, .10, .10, .10)
  bmat <- matrix(0, NItems, 12)
  colnames(bmat) <- c(paste("b", 0:7, sep = ""), "FHAT", "AIC", "BIC", "convergence")
}

# estimate item parameters and fit statistics
for(i in 1:NItems){
  out <- FMP(data = ex1.data, thetaInit, item = i, startvals = startVals, k = k)
  Nb <- length(out$b)
  bmat[i,1:Nb] <- out$b
  bmat[i,Nb+1] <- out$FHAT
  bmat[i,Nb+2] <- out$AIC
  bmat[i,Nb+3] <- out$BIC
  bmat[i,Nb+4] <- out$convergence
}

# print output
print(bmat)

## End(Not run)
```
fungible

Description
Utility function for checking whether candidate FMP coefficients yield a monotonically increasing polynomial.

Usage
FMPMonotonicityCheck(b, lower = -20, upper = 20, PLOT = FALSE)

Arguments
- **b**: A vector of 8 polynomial coefficients \(b \) for \(m(\theta) = b_0 + b_1 \theta + b_2 \theta^2 + b_3 \theta^3 + b_4 \theta^4 + b_5 \theta^5 + b_6 \theta^6 + b_7 \theta^7 \).
- **lower, upper**: \(\theta \) bounds for monotonicity check.
- **PLOT**: Logical (default = FALSE). If PLOT = TRUE the function will plot the original polynomial function for \(\theta \) between lower and upper.

Value
- **increasing**: Logical indicating whether function is monotonically increasing.
- **minDeriv**: Minimum value of the derivative for the polynomial.
- **minTheta**: Value of \(\theta \) at derivative minimum.

Author(s)
Niels Waller

Examples

```r
# A set of candidate coefficients for an FMP model.
# These coefficients fail the test and thus
# should not be used with genFMPdata to generate
# item response data that are consistent with an
# FMP model.
b <- c(1.21, 1.87, -1.02, 0.18, 0.18, 0, 0, 0)
FMPMonotonicityCheck(b)
```


fungible

Generate Fungible Regression Weights

Description
Generate fungible weights for OLS Regression Models.
fungible

Usage

fungible(R.X, rxy, r.yhata.yhatb, sets, print = TRUE)

Arguments

R.X p x p Predictor correlation matrix.
rx y p x 1 Vector of predictor-criterion correlations.
r.yhata.yhatb Correlation between least squares (yhatb) and alternate-weight (yhata) compos-
ites.
sets Number of returned sets of fungible weights.
print Logical, if TRUE then print 5-point summaries of alternative weights.

Value

a Number of sets x p matrix of fungible weights.
k Number of sets x p matrix of k weights.
b p x 1 vector of LS weights.
u p x 1 vector of u weights.
r.yhata.yhatb Correlation between yhata and yhatb.
r.y.yhatb Correlation between y and yhatb.
cov.a Expected covariance matrix for a.
cor.a Expected correlation matrix for a.

Author(s)

Niels Waller

References

Examples

Predictor correlation matrix
R.X <- matrix(c(1.00, .56, .77,
 .56, 1.00, .73,
 .77, .73, 1.00), 3, 3)

vector of predictor-criterion correlations
rxy <- c(.39, .34, .38)

OLS standardized regression coefficients
b <- solve(R.X) %*% rxy
Coefficient of determination (Rsq)

\[
OLSRSQ <- t(b) \times R.X \times b
\]

theta controls the correlation between
yhatb: predicted criterion scores using OLS coefficients
yhata: predicted criterion scores using alternate weights

\[
\text{theta} \leftarrow .01
\]

desired correlation between yhata and yhatb

\[
r.yhata.yhatb \leftarrow \sqrt{1 - \frac{(\text{theta})}{OLSRSQ}}
\]

number of returned sets of fungible weight vectors

\[
\text{Nsets} \leftarrow 50
\]

\[
\text{output} \leftarrow \text{fungible}(R.X, rxy, r.yhata.yhatb, \text{sets} = \text{Nsets}, \text{print} = \text{TRUE})
\]

fungibleExtrema
Locate Extrema of Fungible Regression Weights

Description

Locate extrema of fungible regression weights.

Usage

fungibleExtrema(R.X, rxy, r.yhata.yhatb, Nstarts = 100, MaxMin = "Max")

Arguments

- **R.X**
 p x p Predictor variable correlation matrix.

- **rxy**
 p x 1 Vector of predictor-criterion correlations.

- **r.yhata.yhatb**
 Correlation between least squares (yhatb) and alternate-weight (yhata) composites.

- **Nstarts**
 Maximum number of (max) minimizations from random starting configurations.

- **MaxMin**
 Character: "Max" = maximize cos(a,b); "Min" = minimize cos(a,b).

Value

- **cos.ab**
 cosine between OLS and alternate weights.

- **a**
 extrema of fungible weights.

- **k**
 k weights.

- **z**
 z weights: a normalized random vector.

- **b**
 OLS weights.

- **u**
 p x 1 vector of u weights.

- **r.yhata.yhatb**
 Correlation between yhata and yhatb.

- **r.y.yhatb**
 Correlation between y and yhatb.

- **gradient**
 Gradient of converged solution.
Author(s)

Niels Waller and Jeff Jones

References

Examples

```r
## Not run:
## Example
## This is Koopman's Table 2 Example

R.X <- matrix(c(1.00, .69, .49, .39,
                .69, 1.00, .38, .19,
                .49, .38, 1.00, .27,
                .39, .19, .27, 1.00), 4, 4)

R.X <- matrix(c(1.00, .69, .49, .39,
                .69, 1.00, .38, .19,
                .49, .38, 1.00, .27,
                .39, .19, .27, 1.00), 4, 4)

b <- c(.39, .22, .02, .43)
rxy <- R.X %*% b

OLSRSQ <- t(b) %*% R.X %*% b

## theta <- .02
## r.yhata.yhatb <- sqrt( 1 - (theta)/OLSRSQ)
r.yhata.yhatb <- .90

set.seed(5)
output <- fungibleExtrema(R.X, rxy, r.yhata.yhatb, Nstarts = 500,
                          MaxMin = "Min")

## Scale to replicate Koopman
a <- output$a
a.old <- a
aRa <- t(a) %*% R.X %*% a

## Scale a such that a' R a = .68659
## vc = variance of composite
vc <- aRa
## sf = scale factor
sf <- .68659/vc
a <- as.numeric(sqrt(sf)) * a

cat("\nKoopman Scaling\n")
print(round(a,2))
```
fungibleL

End(Not run)

fungibleL
Generate Fungible Logistic Regression Weights

Description

Generate fungible weights for Logistic Regression Models.

Usage

```r
fungibleL(
  X, 
  y, 
  Nsets = 1000, 
  method = "LLM", 
  RsqDelta = NULL, 
  rLaLb = NULL, 
  s = 0.3, 
  Print = TRUE
)
```

Arguments

- **X**: An n by nvar matrix of predictor scores without the leading column of ones.
- **y**: An n by 1 vector of dichotomous criterion scores.
- **Nsets**: The desired number of fungible coefficient vectors.
- **RsqDelta**: The desired decrement in the pseudo-R-squared - used when method = "LLM".
- **rLaLb**: The desired correlation between the logits - used when method = "EM".
- **s**: Scale factor for random deviates. s controls the range of random start values for the optimization routine. Recommended 0 <= s < 1. Default: s = 0.3.
- **Print**: Boolean (TRUE/FALSE) for printing output summary.

Details

fungibleL provides two methods for evaluating parameter sensitivity in logistic regression models by computing fungible logistic regression weights. For for additional information on the underlying theory of these methods see Jones and Waller (in press).
Value

- `model`: A glm model object.
- `call`: The function call to glm().
- `ftable`: A data frame with the mle estimates and the minimum and maximum fungible coefficients.
- `lnLML`: The maximum likelihood log likelihood value.
- `lnLf`: The decremented, fungible log likelihood value.
- `pseudoRsq`: The pseudo R-squared.
- `fungibleRsq`: The fungible pseudo R-squared.
- `fungiblea`: The Nsets by Nvar + 1 matrix of fungible (alternate) coefficients.
- `rLaLb`: The correlation between the logits.
- `maxPosCoefChange`: The maximum positive change in a single coefficient holding all other coefficients constant.
- `maxNegCoefChange`: The maximum negative change in a single coefficient holding all other coefficients constant.

Author(s)

Jeff Jones and Niels Waller

References

Examples

```r
# low : low birth rate (0 >= 2500 grams, 1 < 2500 grams)
# race: 1 = white, 2 = black, 3 = other
# ftv : number of physician visits during the first trimester

library(MASS)
attach(birthwt)

race <- factor(race, labels = c("white", "black", "other"))
predictors <- cbind(lwt, model.matrix(~ race)[, -1])

# compute mle estimates
BWght.out <- glm(low ~ lwt + race, family = "binomial")

# compute fungible coefficients
fungible.LLM <- fungibleL(X = predictors, y = low, method = "LLM",
                        Nsets = 10, RsqDelta = .005, s = .3)
```

fungibleL.

print(summary(BWght.out))
print(fungible.LLM$call)
print(fungible.LLM$ftable)
cat("\nMLE log likelihood = ", fungible.LLM$lnLML,
 "fungible log likelihood = ", fungible.LLM$lnLf)
cat("\nPseudo Rsq = ", round(fungible.LLM$pseudoRsq, 3))
cat("\nfungible Pseudo Rsq = ", round(fungible.LLM$fungibleRsq, 3))

fungible.EM <- fungibleL(X = predictors, y = low, method = "EM",
 Nsets = 10, rLaLb = 0.99)

print(fungible.EM$call)
print(fungible.EM$ftable)
cat("\nrLaLb = ", round(fungible.EM$rLaLb, 3))

fungibleR

Generate Fungible Correlation Matrices

Description

Generate fungible correlation matrices. For a given vector of standardized regression coefficients, Beta, and a user-defined R-squared value, Rsq, find predictor correlation matrices, R, such that Beta' R Beta = Rsq. The size of the smallest eigenvalue (Lp) of R can be defined.

Usage

fungibleR(R, Beta, Lp = 0, eps = 1e-08, Print.Warnings = TRUE)

Arguments

R	A p x p predictor correlation matrix.
Beta	A p x 1 vector of standardized regression coefficients.
Lp	Controls the size of the smallest eigenvalue of RstarLp.
eps	Convergence criterion.
Print.Warnings	Logical, default = TRUE. When TRUE, convergence failures are printed.
Value

- **R**: Any input correlation matrix that satisfies Beta’ R Beta = Rsq.
- **Beta**: Input vector of std reg coefficients.
- **Rstar**: A random fungible correlation matrix.
- **RstarLp**: A fungible correlation matrix with a fixed minimum eigenvalue (RstarLp can be PD, PSD, or ID).
- **s**: Scaling constant for Rstar.
- **sLp**: Scaling constant for RstarLp.
- **Delta**: Vector in the null space of vecp(Beta Beta’).
- **Q**: Left null space of Beta.
- **FrobNorm**: Frobenius norm ||R - Rstar||_F.
- **FrobNormLp**: Frobenius norm ||R - RstarLp||_F given random Delta.
- **converged**: An integer code. 0 indicates successful completion.

Author(s)

Niels Waller

References

Examples

```r
library(fungible)

## ===== Example 1 =====
## Generate 5 random PD fungible R matrices
## that are consistent with a user-defined predictive
## structure: B’ Rxx B = .30
set.seed(246)
# Create a 5 x 5 correlation matrix, R, with all r_ij = .25
R.ex1 <- matrix(.25, 5, 5)
diag(R.ex1) <- 1
# create a 5 x 1 vector of standardized regression coefficients,
# Beta.ex1
Beta.ex1 <- c(-.4, -.2, 0, .2, .4)
cat("\nModel Rsq = ", t(Beta.ex1) %*% R.ex1 %*% Beta.ex1)
# Generate fungible correlation matrices, Rstar, with smallest
# eigenvalues > 0.
```
Rstar.list <- list(rep(99, 5))
i <- 0
while(i <= 5){
 out <- fungibleR(R = R.ex1, Beta = Beta.ex1, Lp = 1e-8, eps = 1e-8,
 Print.Warnings = TRUE)
 if(out$converged==0){
 i <- i + 1
 Rstar.list[[i]] <- out$Rstar
 }
}

Check Results
for(i in 1:5){
 cat("Rstar", i, "
 print(round(Rstar.list[[i]], 2),)
 cat("eigenvalues of Rstar", i, "
 print(eigen(Rstar.list[[i]])$values)
 cat("Beta\' Rstar", i, "Beta = ",
 t(Beta.ex1) %**% Rstar.list[[i]] %**% Beta.ex1)
}

===== Example 2 =====
Generate a PD fungible R matrix with a fixed smallest
eigenvalue (Lp).

Create a 5 x 5 correlation matrix, R, with all r_ij = .5
R <- matrix(.5, 5, 5)
diag(R) <- 1

create a 5 x 1 vector of standardized regression coefficients, Beta,
such that Beta_i = .1 for all i
Beta <- rep(.1, 5)

Generate fungible correlation matrices (a) Rstar and (b) RstarLp.
Set Lp = 0.12345678 so that the smallest eigenvalue (Lp) of RstarLp
= 0.12345678
out <- fungibleR(R, Beta, Lp = 0.12345678, eps = 1e-10, Print.Warnings = TRUE)

print R
cat("R: a user-specified seed matrix")
print(round(out$R, 3))

Rstar
cat("Rstar: A random fungible correlation matrix for R")
print(round(out$Rstar, 3))

cat("Coefficient of determination when using R\n")
print(t(Beta) %**% R %**% Beta)
cat("\nCoefficient of determination when using Rstar\n")
print(t(Beta) %*% out$Rstar %*% Beta)

Eigenvalues of R
cat("\nEigenvalues of R\n")
print(round(eigen(out$R)$values, 9))

Eigenvalues of Rstar
cat("\nEigenvalues of Rstar\n")
print(round(eigen(out$Rstar)$values, 9))

What is the Frobenius norm (Euclidean distance) between
R and Rstar
cat("\nFrobenious norm ||R - Rstar||\n")
print(out$FrobNorm)

RstarLp is a random fungible correlation matrix with
a fixed smallest eigenvalue of 0.12345678
cat("\nRstarLp: a random fungible correlation matrix with a user-defined smallest eigenvalue\n")
print(round(out$RstarLp, 3))

Eigenvalues of RstarLp
cat("\nEigenvalues of RstarLp\n")
print(eigen(out$RstarLp)$values, digits = 9)

cat("\nCoefficient of determination when using RstarLp\n")
print(t(Beta) %*% out$RstarLp %*% Beta)

Check function convergence
if(out$converged) print("Failed to converge")

===== Example 3 =====
This examples demonstrates how fungibleR can be used
to generate improper correlation matrices (i.e., pseudo
correlation matrices with negative eigenvalues).
library(fungible)

We desire an improper correlation matrix that
is close to a user-supplied seed matrix. Create an
interesting seed matrix that reflects a Big Five
factor structure.
set.seed(123)
minCrossLoading <- -.2
maxCrossLoading <- .2
F1 <- c(rep(.6,5),runif(20,minCrossLoading, maxCrossLoading))
F2 <- c(runif(5,minCrossLoading, maxCrossLoading), rep(.6,5),
 runif(15,minCrossLoading, maxCrossLoading))
F3 <- c(runif(10,minCrossLoading,maxCrossLoading), rep(.6,5),
 runif(10,minCrossLoading,maxCrossLoading))
F4 <- c(runif(15,minCrossLoading,maxCrossLoading), rep(.6,5),
fungibleR

runif(5, minCrossLoading, maxCrossLoading))
F5 <- c(runif(20, minCrossLoading, maxCrossLoading), rep(.6, 5))
FacMat <- cbind(F1, F2, F3, F4, F5)
R.bfi <- FacMat %*% t(FacMat)
diag(R.bfi) <- 1

Set Beta to a null vector to inform fungibleR that we are
not interested in placing constraints on the predictive structure
of the fungible R matrices.
Beta <- rep(0, 25)

We seek a NPD fungible R matrix that is close to the bfi seed matrix.
To find a suitable matrix we generate a large number (e.g., 50000)
fungible R matrices. For illustration purposes I will set Nmatrices
to a smaller number: 10.
Nmatrices <- 10

Initialize a list to contain the Nmatrices fungible R objects
RstarLp.list <- as.list(rep(0, Nmatrices))
Initialize a vector for the Nmatrices Frobeius norms ||R - RstarLp||
FrobLp.vec <- rep(0, Nmatrices)

Constraint the smallest eigenvalue of RStarLp by setting
Lp = -.1 (or any suitably chosen user-defined value).

Generate Nmatrices fungibleR matrices and identify the NPD correlation
matrix that is "closest" (has the smallest Frobenious norm) to the bfi
seed matrix.
BestR.i <- 0
BestFrob <- 99
i <- 0
set.seed(1)
while(i < Nmatrices){
 out <- fungibleR(R = R.bfi, Beta, Lp = -.1, eps=1e-10)
 ## retain solution if algorithm converged
 if(out$converged == 0){
 i <- i + 1
 ## print progress
 cat("Generating matrix ", i, " Current minimum ||R - RstarLp|| = ",BestFrob)
 tmp <- FrobLp.vec[i] <- out$FrobNormLp #Frobenious Norm ||R - RstarLp||
 RstarLp.list[[i]]<- out$RstarLp
 if(tmp < BestFrob){
 BestR.i <- i # matrix with lowest ||R - RstarLp||
 BestFrob <- tmp # value of lowest ||R - RstarLp||
 }
 }
}

CloseR is an improper correlation matrix that is close to the seed matrix.

```r
CloseR <- RstarLp.list[[BestR.i]]
```

```r
plot(1:25, eigen(R.bfi)$values,
    type = "b",
    lwd = 2,
    main = "Scree Plots for R and RstarLp",
    cex.main = 1.5,
    ylim = c(-.2,6),
    ylab = "Eigenvalues",
    xlab = "Dimensions")
points(1:25,eigen(CloseR)$values,
    type = "b",
    lty = 2,
    lwd = 2,
    col = "red")
abline(h = 0, col = "grey")
legend(legend=c(expression(paste(lambda[i] ~ " of R",sep = "")),
               expression(paste(lambda[i] ~ " of RstarLp",sep = ""))),
       lty=c(1,2),
       x = 17,y = 5.75,
       cex = 1.5,
       col=c("black","red"),
       text.width = 5.5,
       lwd = 2)
```

FUP

Estimate the coefficients of a filtered unconstrained polynomial IRT model

Description

Estimate the coefficients of a filtered unconstrained polynomial IRT model.

Usage

```r
FUP(data, thetaInit, item, startvals, k = 0)
```

Arguments

- **data**
 N(subjects)-by-p(items) matrix of 0/1 item response data.
- **thetaInit**
 Initial theta surrogates (e.g., calculated by `svdNorm`).
- **item**
 item number for coefficient estimation.
- **startvals**
 start values for function minimization.
- **k**
 order of monotonic polynomial = 2k+1 (see Liang & Browne, 2015).
Value

- \(b \) Vector of polynomial coefficients.
- \(\text{FHAT} \) Function value at convergence.
- \(\text{counts} \) Number of function evaluations during minimization (see optim documentation for further details).
- \(\text{AIC} \) Pseudo scaled Akaike Information Criterion (AIC). Candidate models that produce the smallest AIC suggest the optimal number of parameters given the sample size. Scaling is accomplished by dividing the non-scaled AIC by sample size.
- \(\text{BIC} \) Pseudo scaled Bayesian Information Criterion (BIC). Candidate models that produce the smallest BIC suggest the optimal number of parameters given the sample size. Scaling is accomplished by dividing the non-scaled BIC by sample size.
- \(\text{convergence} \) Convergence = 0 indicates that the optimization algorithm converged; convergence=1 indicates that the optimization failed to converge.

Author(s)

Niels Waller

References

Examples

```r
## Not run:
NSubjects <- 2000

## generate sample k=1 FMP data
b <- matrix(c(
    #b0    b1    b2    b3    b4    b5    b6    b7   k
    1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,  
    1.550, 1.805, -0.230, 0.032, 0, 0, 0, 0, 1,  
    1.282, 1.063, -0.103, 0.003, 0, 0, 0, 0, 1,  
    0.704, 1.376, -0.007, 0.040, 0, 0, 0, 0, 1,  
    1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,  
    0.704, 1.376, -0.017, 0.040, 0, 0, 0, 0, 1,  
    1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,  
    0.512, 1.343, -0.139, 0.144, 0, 0, 0, 0, 1,  
    0.512, 1.343, -0.089, 0.082, 0, 0, 0, 0, 1,  
    0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,  
    1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,  
    -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1,  
    -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1,  
    0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,  
    -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,  
    ...), nrow = 20, byrow = TRUE)
```

generate data using the above item parameters
ex1.data<-genFMPData(NSubj = NSubjects, bParams = b, seed = 345)$data

NItems <- ncol(ex1.data)

compute (initial) surrogate theta values from
the normed left singular vector of the centered
data matrix
thetaInit <- svdNorm(ex1.data)

Choose model
k <- 1 # order of polynomial = 2k+1

Initialize matrices to hold output
if(k == 0) {
 startVals <- c(1.5, 1.5)
 bmat <- matrix(0, NItems, 6)
 colnames(bmat) <- c(paste("b", 0:1, sep = ""), "FHAT", "AIC", "BIC", "convergence")
}

if(k == 1) {
 startVals <- c(1.5, 1.5, .10, .10)
 bmat <- matrix(0, NItems, 8)
 colnames(bmat) <- c(paste("b", 0:3, sep = ""), "FHAT", "AIC", "BIC", "convergence")
}

if(k == 2) {
 startVals <- c(1.5, 1.5, .10, .10, .10, .10)
 bmat <- matrix(0, NItems, 10)
 colnames(bmat) <- c(paste("b", 0:5, sep = ""), "FHAT", "AIC", "BIC", "convergence")
}

if(k == 3) {
 startVals <- c(1.5, 1.5, .10, .10, .10, .10, .10, .10)
 bmat <- matrix(0, NItems, 12)
 colnames(bmat) <- c(paste("b", 0:7, sep = ""), "FHAT", "AIC", "BIC", "convergence")
}

estimate item parameters and fit statistics
for(i in 1:NItems){

gen4PMData

Generate item response data for 1, 2, 3, or 4-parameter IRT models

Description

Generate item response data for 1, 2, 3, or 4-parameter IRT models.

Usage

gen4PMData(
 NSubj = NULL,
 abcdParams,
 D = 1.702,
 seed = NULL,
 theta = NULL,
 thetaMN = 0,
 thetaVar = 1
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSubj</td>
<td>the desired number of subject response vectors.</td>
</tr>
<tr>
<td>abcdParams</td>
<td>a p(items)-by-4 matrix of IRT item parameters: a = discrimination, b = difficulty, c = lower asymptote, and d = upper asymptote.</td>
</tr>
<tr>
<td>D</td>
<td>Scaling constant to place the IRF on the normal ogive or logistic metric. Default = 1.702 (normal ogive metric)</td>
</tr>
<tr>
<td>seed</td>
<td>Optional seed for the random number generator.</td>
</tr>
<tr>
<td>theta</td>
<td>Optional vector of latent trait scores. If theta = NULL (the default value) then gen4PMData will simulate theta from a normal distribution.</td>
</tr>
<tr>
<td>thetaMN</td>
<td>Mean of simulated theta distribution. Default = 0.</td>
</tr>
<tr>
<td>thetaVar</td>
<td>Variance of simulated theta distribution. Default = 1.</td>
</tr>
</tbody>
</table>
Value

- **data**: N(subject)-by-p(items) matrix of item response data.
- **theta**: Latent trait scores.
- **seed**: Value of the random number seed.

Author(s)

Niels Waller

Examples

```r
## Generate simulated 4PM data for 2,000 subjects
# 4PM Item parameters from MMPI-A CYN scale

Params<-matrix(c(1.41, -0.79, .01, .98, #1
   1.19, -0.81, .02, .96, #2
   0.79, -1.11, .05, .94, #3
   0.94, -0.53, .02, .93, #4
   0.90, -1.02, .04, .95, #5
   1.00, -0.21, .02, .84, #6
   1.05, -0.27, .02, .97, #7
   0.90, -0.75, .04, .73, #8
   0.80, -1.42, .06, .98, #9
   0.71, 0.13, .05, .94, #10
   1.01, -0.14, .02, .81, #11
   0.63, 0.18, .18, .97, #12
   0.68, 0.18, .02, .87, #13
   0.60, -0.14, .09, .96, #14
   0.85, -0.71, .04, .99, #15
   0.83, -0.07, .05, .97, #16
   0.86, -0.36, .03, .95, #17
   0.66, -0.64, .04, .77, #18
   0.60, 0.52, .04, .94, #19
   0.90, -0.06, .02, .96, #20
   0.62, -0.47, .05, .86, #21
   0.57, 0.13, .06, .93, #22
   0.77, -0.43, .04, .97),23,4, byrow=TRUE)

data <- gen4PMData(NSubj=2000, abcdParams = Params, D = 1.702,
   seed = 123, thetaMN = 0, thetaVar = 1)$data

cat("Classical item difficulties for simulated data")
print( round( apply(data,2,mean),2 )
```
Generate Correlation Matrices with User-Defined Eigenvalues

Description

Uses the Marsaglia and Olkin (1984) algorithm to generate correlation matrices with user-defined eigenvalues.

Usage

genCorr(eigenval, seed = "rand")

Arguments

eigenval A vector of eigenvalues that must sum to the order of the desired correlation matrix. For example: if you want a correlation matrix of order 4, then you need 4 eigenvalues that sum to 4. A warning message will display if sum(eigenval) != length(eigenval)

seed Either a user supplied seed for the random number generator or ‘rand’ for a function generated seed. Default seed=‘rand’.

Value

Returns a correlation matrix with the eigen-structure specified by eigenval.

Author(s)

Jeff Jones

References

Examples

```r
## Example
## Generate a correlation matrix with user-specified eigenvalues
set.seed(123)
R <- genCorr(c(2.5, 1, 1, .3, .2))

print(round(R, 2))

#> [1,] 1.00 0.90 0.80 0.40 0.20
#> [2,] 0.90 1.00 0.20 0.10 0.10
#> [3,] 0.80 0.20 1.00 0.10 0.10
#> [4,] 0.40 0.10 0.10 1.00 0.20
#> [5,] 0.20 0.10 0.10 0.20 1.00
```
GenerateBoxData

Generate Thurstone's Box Data From length, width, and height box measurements

Description

Generate data for Thurstone's 20 variable and 26 variable Box Study From length, width, and height box measurements.

Usage

GenerateBoxData(
 XYZ,
 BoxStudy = 20,
 Reliability = 0.75,
 ModApproxErrVar = 0.1,
 SampleSize = NULL,
 NMinorFac = 50,
 epsTKL = 0.2,
 Seed = 1,
 SeedErrorFactors = 2,
 SeedMinorFactors = 3,
 PRINT = FALSE,
 LB = FALSE,
 LBVal = 1,
 Constant = 0
)

Arguments

XYZ (Matrix) Length, width, and height measurements for N boxes. The Amazon Box data can be accessed by calling data(AmxBoxes). The Thurstone Box data (20 hypothetical boxes) can be accessed by calling data(Thurstone20Boxes).

BoxStudy (Integer) If BoxStudy = 20 then data will be generated for Thurstone's classic 20 variable box problem. If BoxStudy = 26 then data will be generated for Thurstone's 26 variable box problem. Default: BoxStudy = 20.
GenerateBoxData

Reliability (Scalar [0, 1]) The common reliability value for each measured variable. Default: Reliability = .75.

ModApproxErrVar (Scalar [0, 1]) The proportion of reliable variance (for each variable) that is due to all minor common factors. Thus, if \(x \) (i.e., error free length) has variance \(\text{var}(x) \) and \(\text{ModApproxErrVar} = .10 \), then \(\text{var}(e_{ma}) / \text{var}(x + e_{ma}) = .10 \).

SampleSize (Integer) Specifies the number of boxes to be sampled from the population. If SampleSize = NULL then measurements will be generated for the original input box sizes.

NMinorFac (Integer) The number of minor factors to use while generating model approximation error. Default: NMinorFac = 50.

epsTKL (Numeric [0, 1]) A parameter of the Tucker, Koopman, and Linn (1969) algorithm that controls the spread of the influence of the minor factors. Default: \(\text{epsTKL} = .20 \).

Seed (Integer) Starting seed for box sampling.

SeedErrorFactors (Integer) Starting seed for the error-factor scores.

SeedMinorFactors (Integer) Starting seed for the minor common-factor scores.

PRINT (Logical) If PRINT = TRUE then the computed reliabilities will be printed. Default: PRINT = FALSE. Setting PRINT to TRUE can be useful when LB = TRUE.

LB (lower bound; logical) If LB = TRUE then minimum box measurements will be set to LBVal (inches) if they fall below 0 after adding measurement error. If LB = FALSE then negative attribute values will not be modified. This argument has no effect on data that include model approximation error.

LBVal (Numeric) If LB = TRUE then values in BoxDataE will be bounded from below at LBVal. This can be used to avoid negative or very small box measurements.

Constant (Numeric) Optional value to add to all box measurements. Default: Constant = 0.

Details

This function can be used with the Amazon boxes dataset (data(AmzBoxes)) or with any collection of user-supplied scores on three variables. The Amazon Boxes data were downloaded from the BoxDimensions website: (https://www.boxdimensions.com/). These data contain length (x), width (y), and height (z) measurements for 98 Amazon shipping boxes. In his classical monograph on Multiple Factor Analysis (Thurstone, 1947) Thurstone describes two data sets (one that he created from fictitious data and a second data set that he created from actual box measurements) that were used to illustrate topics in factor analysis. The first (fictitious) data set is known as the Thurstone Box problem (see Kaiser and Horst, 1975). To create his data for the Box problem, Thurstone constructed 20 nonlinear combinations of fictitious length, width, and height measurements. Box20 variables:

1. \(x^2 \)
2. \(y^2 \)
GenerateBoxData

3. z^2
4. xy
5. xz
6. yz
7. $\sqrt{x^2 + y^2}$
8. $\sqrt{x^2 + z^2}$
9. $\sqrt{y^2 + z^2}$
10. $2x + 2y$
11. $2x + 2z$
12. $2y + 2z$
13. $\log(x)$
14. $\log(y)$
15. $\log(z)$
16. xyz
17. $\sqrt{x^2 + y^2 + z^2}$
18. $\exp(x)$
19. $\exp(y)$
20. $\exp(z)$

The second Thurstone Box problem contains measurements on the following 26 functions of length, width, and height. **Box26** variables:

1. x
2. y
3. z
4. xy
5. xz
6. yz
7. $x^2 \cdot y$
8. $x \cdot y^2$
9. $x^2 \cdot z$
10. $x \cdot z^2$
11. $y^2 \cdot z$
12. $y \cdot z^2$
13. x/y
14. y/x
15. x/z
16. z/x
17. y/z
18. \(\frac{z}{y} \)
19. \(2x + 2y \)
20. \(2x + 2z \)
21. \(2y + 2z \)
22. \(\sqrt{x^2 + y^2} \)
23. \(\sqrt{x^2 + z^2} \)
24. \(\sqrt{y^2 + z^2} \)
25. \(xyz \)
26. \(\sqrt{x^2 + y^2 + z^2} \)

Note that when generating unreliable data (i.e., variables with reliability values less than 1) and/or data with model error, \texttt{SampleSize} must be greater than \texttt{NMinorFac}.

Value

- \texttt{XYZ} The length (x), width (y), and height (z) measurements for the sampled boxes. If \texttt{SampleSize = NULL} then XYZ contains the x, y, z values for the original 98 boxes.
- \texttt{BoxData} Error free box measurements.
- \texttt{BoxDataE} Box data with added measurement error.
- \texttt{BoxDataEME} Box data with added (reliable) model approximation and (unreliable) measurement error.
- \texttt{Rel.E} Classical reliabilities for the scores in \texttt{BoxDataE}.
- \texttt{Rel.EME} Classical reliabilities for the scores in \texttt{BoxDataEME}.
- \texttt{NMinorFac} Number of minor common factors used to generate \texttt{BoxDataEME}.
- \texttt{epsTKL} Minor factor spread parameter for the Tucker, Koopman, Linn algorithm.
- \texttt{SeedErrorFactors} Starting seed for the error-factor scores.
- \texttt{SeedMinorFactors} Starting seed for the minor common-factor scores.

Author(s)

Niels G. Waller (nwaller@umn.edu)

References

genFMPData

Generate item response data for a filtered monotonic polynomial IRT model

Description

Generate item response data for the filtered polynomial IRT model.

Usage

```r
genFMPData(NSubj, bParams, theta = NULL, thetaMN = 0, thetaVar = 1, seed)
```
Arguments

NSubj the desired number of subject response vectors.
bParams a p(items)-by-9 matrix of polynomial coefficients and model designations. Columns 1-8 hold the polynomial coefficients; column 9 holds the value of k.
theta A user-supplied vector of latent trait scores. Default theta = NULL.
thetaMN If theta = NULL genFMPdata will simulate random normal deviates from a population with mean thetaMN and variance thetaVar.
thetaVar If theta = NULL genFMPData will simulate random normal deviates from a population with mean thetaMN and variance thetaVar.
seed initial seed for the random number generator.

Value

theta theta values used for data generation
data N(subject)-by-p(items) matrix of item response data.
seed Value of the random number seed.

Author(s)

Niels Waller

Examples

The following code illustrates data generation for
an FMP of order 3 (i.e., 2k+1)
data will be generated for 2000 examinees
NSubjects <- 2000

Example item parameters, k=1 FMP
b <- matrix(c(
 #b0 b1 b2 b3 b4 b5 b6 b7 k
 1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,
 1.550, 1.805, -0.230, 0.032, 0, 0, 0, 0, 1,
 1.282, 1.063, -0.103, 0.003, 0, 0, 0, 0, 1,
 0.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
 0.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
 1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,
 0.512, 1.538, -0.089, 0.082, 0, 0, 0, 0, 1,
 0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,
 1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1,
 -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1,
 0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
 -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
 0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
), nrow=10, byrow=TRUE)

The following code illustrates data generation for
an FMP of order 3 (i.e., 2k+1)
data will be generated for 2000 examinees
NSubjects <- 2000

Example item parameters, k=1 FMP
b <- matrix(c(
 #b0 b1 b2 b3 b4 b5 b6 b7 k
 1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,
 1.550, 1.805, -0.230, 0.032, 0, 0, 0, 0, 1,
 1.282, 1.063, -0.103, 0.003, 0, 0, 0, 0, 1,
 0.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
 0.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
 1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,
 0.512, 1.538, -0.089, 0.082, 0, 0, 0, 0, 1,
 0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,
 1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1,
 -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1,
 0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
 -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
 0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
), nrow=10, byrow=TRUE)


```r
1.030, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1,
0.140, 1.209, 0.082, 0.148, 0, 0, 0, 0, 1,
0.429, 1.480, -0.008, 0.061, 0, 0, 0, 0, 1,
0.089, 0.785, -0.065, 0.018, 0, 0, 0, 0, 1,
-0.516, 1.013, 0.016, 0.023, 0, 0, 0, 0, 1,
0.143, 1.315, -0.011, 0.136, 0, 0, 0, 0, 1,
0.347, 0.733, -0.121, 0.041, 0, 0, 0, 0, 1,
-0.074, 0.869, 0.013, 0.026, 0, 0, 0, 0, 1,
0.630, 1.484, -0.001, 0.000, 0, 0, 0, 0, 1),
nrow=23, ncol=9, byrow=TRUE)
```

generate data using the above item parameters
data <- genFMPData(NSubj = NSubjects, bParams=b, seed=345)$data

genPhi

Create a random Phi matrix with maximum factor correlation

Description

Create a random Phi matrix with maximum factor correlation.

Usage

`genPhi(NFac, EigenValPower = 6, MaxAbsPhi = 0.5)`

Arguments

- **NFac**
 - Number of factors.
- **EigenValPower**
 - (Scalar > 1) A scalar than controls the positive skewness of the distribution of eigenvalues of Phi.
- **MaxAbsPhi**
 - (Scaler in [0,1]) The maximum off diagonal of Phi (the factor correlation matrix).

Value

A factor correlation matrix. Note that the returned matrix is not guaranteed to be positive definite. However, a PD check is performed in simFA so that simFA always produces a PD Phi matrix.

Author(s)

Niels Waller
Examples

```r
NFac <- 5
colar(mfrow=c(2,2))
for(i in 1:4){
  R <- genPhi(NFac,
              EigenValPower = 6,
              MaxAbsPhi = 0.5)

  L <- eigen(R)$values
  plot(1:NFac, L,
       type="b",
       ylab = "Eigenvalues of Phi",
       xlab = "Dimensions",
       ylim=c(0,L[1]+.5))
}
```

HS9Var

9 Variables from the Holzinger and Swineford (1939) Dataset

Description

Mental abilities data on seventh- and eighth-grade children from the classic Holzinger and Swineford (1939) dataset.

Format

A data frame with 301 observations on the following 15 variables.

- **id**: subject identifier
- **sex**: gender
- **ageyr**: age, year part
- **agemo**: age, month part
- **school**: school name (Pasteur or Grant-White)
- **grade**: grade
- **x1**: Visual perception
- **x2**: Cubes
- **x3**: Lozenges
- **x4**: Paragraph comprehension
- **x5**: Sentence completion
- **x6**: Word meaning
- **x7**: Speeded addition
- **x8**: Speeded counting of dots
- **x9**: Speeded discrimination straight and curved capitals
Source

These data were retrieved from the lavaan package. The complete data for all 26 tests are available in the MBESS package.

References

Examples

data(HS9Var)
head(HS9Var)

HW

Six data sets that yield a Heywood case

Description

Six data sets that yield a Heywood case in a 3-factor model.

Usage

data(HW)

Format

Each data set is a matrix with 150 rows and 12 variables:

- Each data set (HW1, HW2, ... HW6) represents a hypothetical sample of 150 subjects from a population 3-factor model. The population factor loadings are given in HW$popLoadings.

Examples

data(HW)

Compute a principal axis factor analysis
on the first data set
RHW <- cor(HW$HW1)
fapaOut <- faMain(R = RHW,
 numFactors = 3,
 facMethod = "fapa",
 rotate = "oblimin",
 faControl = list(treatHeywood = FALSE))
irf

Plot item response functions for polynomial IRT models.

Description

Plot model-implied (and possibly empirical) item response function for polynomial IRT models.

Usage

```r
irf(
  data,  # N(subjects)-by-p(items) matrix of 0/1 item response data.
  bParams,  # p(items)-by-9 matrix. The first 8 columns of the matrix should contain the FMP or FUP polynomial coefficients for the p items. The 9th column contains the value of k for each item (where the item specific order of the polynomial is 2k+1).
  item,  # The IRF for item will be plotted.
  plotERF = TRUE,  # A logical that determines whether to plot discrete values of the empirical response function.
  thetaEAP = NULL,  # If plotERF=TRUE, the user must supply previously calculated eap trait estimates to thetaEAP.
  minCut = -3,  # If plotERF=TRUE, the program will (attempt to) plot NCuts points of the empirical response function between trait values of minCut and maxCut. Default minCut = -3. Default maxCut = 3.
  maxCut = 3,  # Desired number of bins for the empirical response function.
  NCuts = 9
)
```

Arguments

data
N(subjects)-by-p(items) matrix of 0/1 item response data.

bParams
p(items)-by-9 matrix. The first 8 columns of the matrix should contain the FMP or FUP polynomial coefficients for the p items. The 9th column contains the value of k for each item (where the item specific order of the polynomial is 2k+1).

item
The IRF for item will be plotted.

plotERF
A logical that determines whether to plot discrete values of the empirical response function.

thetaEAP
If plotERF=TRUE, the user must supply previously calculated eap trait estimates to thetaEAP.

minCut, maxCut
If plotERF=TRUE, the program will (attempt to) plot NCuts points of the empirical response function between trait values of minCut and maxCut. Default minCut = -3. Default maxCut = 3.

NCuts
Desired number of bins for the empirical response function.

Author(s)

Niels Waller
Examples

NSubjects <- 2000
NItems <- 15

itmParameters <- matrix(c(
 # b0 b1 b2 b3 b4 b5, b6, b7, k
 -1.05, 1.63, 0.00, 0.00, 0.00, 0, 0, 0, 0, #1
 -1.97, 1.75, 0.00, 0.00, 0.00, 0, 0, 0, 0, #2
 -1.77, 1.82, 0.00, 0.00, 0.00, 0, 0, 0, 0, #3
 -4.76, 2.67, 0.00, 0.00, 0.00, 0, 0, 0, 0, #4
 -2.15, 1.93, 0.00, 0.00, 0.00, 0, 0, 0, 0, #5
 -1.25, 1.17, -0.25, 0.12, 0.00, 0, 0, 0, 1, #6
 1.65, 0.01, 0.02, 0.03, 0.00, 0, 0, 0, 1, #7
 -2.99, 1.64, 0.17, 0.03, 0.00, 0, 0, 0, 1, #8
 -3.22, 2.40, -0.12, 0.10, 0.00, 0, 0, 0, 1, #9
 -0.75, 1.09, -0.39, 0.31, 0.00, 0, 0, 0, 1, #10
 -1.21, 9.07, 1.20, -0.01, -0.01, 0.01, 0, 0, 2, #11
 -1.92, 1.55, -0.17, 0.50, -0.01, 0.01, 0, 0, 2, #12
 -1.76, 1.29, -0.13, 1.60, -0.01, 0.01, 0, 0, 2, #13
 -2.32, 1.40, 0.55, 0.05, -0.01, 0.01, 0, 0, 2, #14
 -1.24, 2.48, -0.65, 0.60, -0.01, 0.01, 0, 0, 2), #15
 15, 9, byrow=TRUE)

ex1.data<-genFMPData(NSubj = NSubjects, bParams = itmParameters,
 seed = 345)$data

compute initial theta surrogates
thetaInit <- svdNorm(ex1.data)

For convenience we assume that the item parameter
estimates equal their population values. In practice,
item parameters would be estimated at this step.
itmEstimates <- itmParameters

calculate eap estimates for mixed models
thetaEAP <- eap(data = ex1.data, bParams = itmEstimates, NQuad = 21,
 priorVar = 2,
 mintheta = -4, maxtheta = 4)

plot irf and erf for item 1
irf(data = ex1.data, bParams = itmEstimates,
 item = 1,
 plotERF = TRUE,
 thetaEAP)

plot irf and erf for item 12
irf(data = ex1.data, bParams = itmEstimates,
 item = 12,
 plotERF = TRUE,
 thetaEAP)
itemDescriptives

Compute basic descriptives for binary-item analysis

Description

Compute basic descriptives for binary item analysis

Usage

itemDescriptives(X, digits = 3)

Arguments

X a matrix of binary (0/1) item responses.
digits number of digits to print.

Value

alpha Coefficient alpha for the total scale.
means item means.
standard deviations item standard deviations.
pt. biserial correlations corrected item-total point biserial correlations.
biserial correlations item-total point biserial correlations.
corrected.alpha corrected (leave item out) alpha coefficients.

Author(s)

Niels Waller

Examples

Example 1: generating binary data to match
an existing binary data matrix
##
Generate correlated scores using factor
analysis model
X <- Z *L' + U*D
Z is a vector of factor scores
L is a factor loading matrix
U is a matrix of unique factor scores
D is a scaling matrix for U

```r
Nsubj <- 2000
L <- matrix(rep(.707, 5), nrow = 5, ncol = 1)
Z <- as.matrix(rnorm(Nsubj))
U <- matrix(rnorm(Nsubj * 5), nrow = Nsubj, ncol = 5)
tmp <- sqrt(1 - L^2)
D <- matrix(0, 5, 5)
diag(D) <- tmp
X <- Z %*% t(L) + U %*% D
```

```
cat("\nCorrelation of continuous scores\n")
print(round(cor(X), 3))
```

```
thresholds <- c(.2, .3, .4, .5, .6)
```

```
Binary <- matrix(0, Nsubj, 5)
for(i in 1:5){
    Binary[X[,i] <= thresholds[i], i] <- 1
}
```

```
cat("\nCorrelation of Binary scores\n")
print(round(cor(Binary), 3))
```

Now use 'bigen' to generate binary data matrix with same correlations as in Binary

```r
z <- bigen(data = Binary, n = 5000)
```

```
cat("\n
names in returned object\n")
print(names(z))
```

```
cat("\nCorrelation of Simulated binary scores\n")
print(round( cor(z$data), 3))
```

```
cat("Observed thresholds of simulated data:\n")
cat( apply(z$data, 2, mean) )
```

```
itemDescriptives(z$data)
```

Jackson67

Multi-Trait Multi-Method correlation matrix reported by Jackson and Singer (1967)

Description

The original study assessed four personality traits (i.e., femininity, anxiety, somatic complaints, and socially-deviant attitudes) from five judgemental perspectives (i.e., ratings about (a) desirability in...
self, (b) desirability in others, (c) what others find desirable, (d) frequency, and (e) harmfulness). The harmfulness variable was reverse coded.

The sample size is \(n = 480 \).

The following four variables were assessed (abbreviations in parentheses): **Variables:**

1. Femininity (Fem)
2. Anxiety (Anx)
3. Somatic Complaints (SomatComplaint)
4. Socially-Deviant Attitudes (SDAttitude)

Usage

```r
data(Jackson67)
```

Format

A 20 by 20 correlation matrix with dimension names

Details

The above variables were assessed from the following methodological judgement perspectives (abbreviations in parentheses): **Test Structure:**

- Desirability in the Self (DiS)
- Desirability in Others (DiO)
- What Others Find Desirable (WOFD)
- Frequency (Freq)
- Harmfulness (Harm)

Source

Examples

```r
## Load Jackson and Singer's dataset
data(Jackson67)

Example2Output <- faMB(R = Jackson67, 
                         n = 480, 
                         NB = 5, 
                         NVB = rep(4,5), 
                         numFactors = 4, 
                         rotate = "varimax", 
                         rotateControl = list(standardize = "Kaiser"), 
                         PrintLevel = 1)
```
Calculate univariate kurtosis for a vector or matrix (algorithm G2 in Joanes & Gill, 1998).

Usage

```r
kurt(x)
```

Arguments

- `x`: Either a vector or matrix of numeric values.

Value

Kurtosis for each column in `x`.

Author(s)

Niels Waller

References

See Also

`skew`

Examples

```r
x <- matrix(rnorm(1000), 100, 10)
print(kurt(x))
```
Ledermann’s inequality for factor solution identification

Description

Ledermann’s (1937) inequality to determine either (a) how many factor indicators are needed to uniquely estimate a user-specified number of factors or (b) how many factors can be uniquely estimated from a user-specified number of factor indicators. See the Details section for more information.

Usage

Ledermann(numFactors = NULL, numVariables = NULL)

Arguments

numFactors (Numeric) Determine the number of variables needed to uniquely estimate the [user-specified] number of factors. Defaults to numFactors = NULL.

numVariables (Numeric) Determine the number of factors that can be uniquely estimated from the [user-specified] number of variables. Defaults to numVariables = NULL.

Details

The user will specified either (a) numFactors or (b) numVariables. When one value is specified, the obtained estimate for the other may be a non-whole number. If estimating the number of required variables, the obtained estimate is rounded up (using ceiling). If estimating the number of factors, the obtained estimate is rounded down (using floor). For example, if numFactors = 2, roughly 4.56 variables are required for an identified solution. However, the function returns an estimate of 5.

For the relevant equations, see Thurstone (1947, p. 293) Equations 10 and 11.

Value

• numFactors (Numeric) Given the inputs, the number of factors to be estimated from the numVariables number of factor indicators.

• numVariables (Numeric) Given the inputs, the number of variables needed to estimate numFactors.

Author(s)

Casey Giordano

References

Thurstone, L. L. (1947). Multiple-factor analysis; a development and expansion of The Vectors of Mind.
See Also

Other Factor Analysis Routines: `BiFAD()`, `Box26.GenerateBoxData()`, `SLi()`, `SchmidLeiman()`, `faAlign()`, `faEKC()`, `faIB()`, `faMB()`, `faMain()`, `faScores()`, `faSort()`, `faStandardize()`, `faX()`, `fals()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMB()`, `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

Examples

```r
## To estimate 3 factors, how many variables are needed?
Ledermann(numFactors = 3, 
          numVariables = NULL)

## Provided 10 variables are collected, how many factors
## can be estimated?
Ledermann(numFactors = NULL, 
          numVariables = 10)
```

Malmi79

Multi-Trait Multi-Method correlation matrix reported by Malmi, Underwood, and Carroll (1979).

Description

The original study assessed six variables across three separate assessment methods. Note that only the last method included six variables whereas the other two methods included three variables.

Usage

data(Malmi79)

Format

A 12 by 12 correlation matrix with dimension names

Details

The sample size is \(n = 97 \).

The following variables were assessed (abbreviations in parentheses): **Variables**:

1. Words (Words)
2. Triads (Triads)
3. Sentences (Sentences)
4. 12 stimuli with 2 responses each (12s.2r)
5. 4 stimuli with 6 responses each (4s.6r)
6. 2 stimuli with 12 responses each (2s.12r)
The above variables were assessed from the following three assessment methods (abbreviations in parentheses): **Test Structure**:

- **Free Recall (FR)**
 - Words
 - Triads
 - Sentences

- **Serial List (SL)**
 - Words
 - Triads
 - Sentences

- **Paired Association (PA)**
 - Words
 - Triads
 - Sentences
 - 12 stimuli with 4 responses
 - 4 stimuli with 6 responses
 - 2 stimuli with 12 responses

Source

Examples

```r
## Load Malmi et al.'s dataset
data(Malmi79)

Example3Output <- faMB(R = Malmi79,
n = 97,
NB = 3,
NVB = c(3, 3, 6),
numFactors = 2,
rotate = "oblimin",
rotateControl = list(standardize = "Kaiser"))

summary(Example3Output)
```
Simulate Clustered Data with User-Defined Properties

Description

Function for simulating clustered data with user defined characteristics such as: within cluster indicator correlations, within cluster indicator skewness values, within cluster indicator kurtosis values, and cluster separations as indexed by each variable (indicator validities).

Usage

```r
monte(
  seed = 123,
  nvar = 4,
  nclus = 3,
  clus.size = c(50, 50, 50),
  eta2 = c(0.619, 0.401, 0.941, 0.929),
  cor.list = NULL,
  random.cor = FALSE,
  skew.list = NULL,
  kurt.list = NULL,
  secor = NULL,
  compactness = NULL,
  sortMeans = TRUE
)
```

Arguments

- **seed**: Required: An integer to be used as the random number seed.
- **nvar**: Required: Number of variables to simulate.
- **nclus**: Required: Number of clusters to simulate. Note that number of clusters must be equal to or greater than 2.
- **clus.size**: Required: Number of objects in each cluster.
- **eta2**: Required: A vector of indicator validities that range from 0 to 1. Higher numbers produce clusters with greater separation on that indicator.
- **cor.list**: Optional: A list of correlation matrices. There should be one correlation matrix for each cluster. The first correlation matrix will represent the indicator correlations within cluster 1. The second correlation matrix will represent the indicator correlations for cluster 2. Etc.
- **random.cor**: Optional: Set to TRUE to generate a common within cluster correlation matrix.
- **skew.list**: Optional: A list of within cluster indicator skewness values.
- **kurt.list**: Optional: A list of within cluster indicator kurtosis values.
- **secor**: Optional: If `random.cor = TRUE` then `secor` determines the standard error of the simulated within group correlation matrices.
compactness Optional: A vector of cluster compactness parameters. The meaning of this option is explained Waller et al. (1999). Basically, 'compactness' allows users some control over cluster overlap without changing indicator validities. See the example below for an illustration.

sortMeans Optional: A logical that determines whether the latent means will be sorted by taxon. Default = TRUE

Value

data The simulated data. The 1st column of 'data' denotes cluster membership.

lmn The cluster indicator means.

fl The factor loading matrix as described in Waller, et al. 1999.

fs The unique values of the linearized factor scores.

call The call.

nclus Number of clusters.

nvar Number of variables.

cor.list The input within cluster correlation matrices.

skew.list The input within cluster indicator skewness values.

kurt.list The input within cluster indicator kurtosis values.

clus.size The number of observations in each cluster.

eta2 Vector of indicator validities.

seed The random number seed.

Author(s)

Niels Waller

References

Examples

Example 1
Simulating Fisher's Iris data
The original data were reported in:
problems. Annals of Eugenics, 7, Part II, 179-188.
This example includes 3 clusters. Each cluster represents an Iris species: Setosa, Versicolor, and Virginica. On each species, four variables were measured: Sepal Length, Sepal Width, Petal Length, and Petal Width.

The within species (cluster) correlations of the flower indicators are as follows:

Iris Type 1:
\[
\begin{bmatrix}
[1,] & [2,] & [3,] & [4,] \\
[1,] & 1.000 & 0.743 & 0.267 & 0.178 \\
[2,] & 0.743 & 1.000 & 0.278 & 0.233 \\
[3,] & 0.267 & 0.278 & 1.000 & 0.332 \\
[4,] & 0.178 & 0.233 & 0.332 & 1.000
\end{bmatrix}
\]

Iris Type 2:
\[
\begin{bmatrix}
[1,] & [2,] & [3,] & [4,] \\
[1,] & 1.000 & 0.526 & 0.754 & 0.546 \\
[2,] & 0.526 & 1.000 & 0.561 & 0.664 \\
[3,] & 0.754 & 0.561 & 1.000 & 0.787 \\
[4,] & 0.546 & 0.664 & 0.787 & 1.000
\end{bmatrix}
\]

Iris Type 3:
\[
\begin{bmatrix}
[1,] & [2,] & [3,] & [4,] \\
[1,] & 1.000 & 0.457 & 0.864 & 0.281 \\
[2,] & 0.457 & 1.000 & 0.401 & 0.538 \\
[3,] & 0.864 & 0.401 & 1.000 & 0.322 \\
[4,] & 0.281 & 0.538 & 0.322 & 1.000
\end{bmatrix}
\]

'monte' expects a list of correlation matrices

create a list of within species correlations
data(iris)
cormat <- cm <- lapply(split(iris[,1:4], iris[,5]), cor)

create a list of within species indicator skewness and kurtosis
sk.lst <- list(c(0.120, 0.041, 0.106, 1.254),
 c(0.105, -0.363, -0.607, -0.031),
 c(0.118, 0.366, 0.549, -0.129))

kt.lst <- list(c(-0.253, 0.955, 1.022, 1.719),
 c(-0.533, -0.366, 0.048, -0.410),
 c(0.033, 0.706, -0.154, -0.602))

Generate a new sample of iris data
my.iris <- monte(seed=123, nvar=4, nclus=3, cor.list = cormat,
 clus.size = c(50, 50, 50),
 eta2=c(0.619, 0.401, 0.941, 0.929),
random.cor = FALSE,
skew.list = sk.lst,
kurt.list = kt.lst,
secor = .3, compactness=c(1, 1, 1),
sortMeans = TRUE)

summary(my.iris)
plot(my.iris)

Now generate a new data set with the sample indicator validities
as before but with different cluster compactness values.

my.iris2<-monte(seed = 123, nvar = 4, nclus = 3,
cor.list = cormat, clus.size = c(50, 50, 50),
eta2 = c(0.619, 0.401, 0.941, 0.929), random.cor = FALSE,
skew.list = sk.lst ,kurt.list = kt.lst,
secor = .3,
compactness=c(2, .5, .5),
sortMeans = TRUE)

summary(my.iris2)

Notice that cluster 1 has been blow up whereas clusters 2 and 3 have been shrunk.
plot(my.iris2)

Now compare your original results with the actual
Fisher iris data
library(lattice)
data(iris)
super.sym <- trellis.par.get("superpose.symbol")
splom(~iris[1:4], groups = Species, data = iris,
panel = panel.superpose,
key = list(title = "Three Varieties of Iris",
columns = 3,
points = list(pch = super.sym$pch[1:3],
col = super.sym$col[1:3]),
text = list(c("Setosa", "Versicolor", "Virginica"))))

###

Example 2
Simulating data for Taxometric
Monte Carlo Studies.
##
In this four part example we will
generate two group mixtures
(Complement and Taxon groups)
under four conditions.
##
Example 2
Simulating data for Taxometric
Monte Carlo Studies.
##
In this four part example we will
generate two group mixtures
(Complement and Taxon groups)
under four conditions.
##
In all conditions
base rate (BR) = .20
3 indicators
indicator validities = .50
(This means that 50 percent of the total
variance is due to the mixture.)
##
Condition 1:
All variables have a slight degree
of skewness (.10) and kurtosis (.10).
Within group correlations = 0.00.
##
Condition 2:
In this condition we generate data in which the
complement and taxon distributions differ in shape.
In the complement group all indicators have
skewness values of 1.75 and kurtosis values of 3.75.
In the taxon group all indicators have skewness values
of .50 and kurtosis values of 0.
As in the previous condition, all within group
correlations (nuisance covariance) are 0.00.
##
Condition 3:
In this condition we retain all previous
characteristics except that the within group
indicator correlations now equal .80
(they can differ between groups).
##
Condition 4:
In this final condition we retain
all previous data characteristics except that
the variances of the indicators in the complement
class are now 5 times the indicator variances
in the taxon class (while maintaining indicator skewness,
kurtosis, correlations, etc.).

library(lattice)

Condition 1
###
in.nvar <- 3 ##Number of variables
in.nclus <- 2 ##Number of taxa
in.seed <- 123
BR <- .20 # Base rate of higher taxon

Within taxon indicator skew and kurtosis
in.skew.list <- list(c(1, 1, 1), c(1, 1, 1))
in.kurt.list <- list(c(1, 1, 1), c(1, 1, 1))

Indicator validities
in.eta2 <- c(.50, .50, .50)

Groups sizes for Population
BigN <- 100000
in.clus.size <- c(BigN*(1-BR), BR * BigN)

Generate Population of scores with "monte"
sample.data <- monte(seed = in.seed,
 nvar = in.nvar,
 nclus = in.nclus,
 clus.size = in.clus.size,
 eta2 = in.eta2,
 skew.list = in.skew.list,
 kurt.list = in.kurt.list)

output <- summary(sample.data)

z <- data.frame(sample.data$data[sample(1:BigN, 600, replace=FALSE),])
z[,2:4] <- scale(z[,2:4])
names(z) <- c("id","v1","v2","v3")

trellis.device()
trellis.par.set(col.whitebg())
print(
 cloud(v3 ~ v1 * v2,
 groups = as.factor(id), data=z,
 subpanel = panel.superpose,
 zlim=c(-4, 4),
 xlim=c(-4, 4),
 ylim=c(-4, 4),
 main="",
 screen = list(z = 20, x = -70)),
 position=c(.1, .5, .5, 1), more = TRUE)

##
Condition 2
##

Within taxon indicator skew and kurtosis
in.skew.list <- list(c(1.75, 1.75, 1.75), c(.50, .50, .50))
in.kurt.list <- list(c(3.75, 3.75, 3.75), c(0, 0, 0))
Generate Population of scores with "monte"

```r
sample.data <- monte(seed = in.seed,
                      nvar = in.nvar,
                      nclus = in.nclus,
                      clus.size = in.clus.size,
                      eta2 = in.eta2,
                      skew.list = in.skew.list,
                      kurt.list = in.kurt.list)

output <- summary(sample.data)
```

```r
z <- data.frame(sample.data$data[sample(1:BigN, 600, replace=FALSE),])
z[,2:4] <- scale(z[, 2:4])
names(z) <-c("id", "v1","v2", "v3")

print(
  cloud(v3 ~ v1 * v2,
       groups = as.factor(id), data = z,
       subpanel = panel.superpose,
       zlim = c(-4, 4),
       xlim = c(-4, 4),
       ylim = c(-4, 4),
       main="",
       screen = list(z = 20, x = -70)),
  position = c(.5, .5, 1, 1), more = TRUE)
```

Condition 3

```r
cormat <- matrix(.80, 3, 3)
diag(cormat) <- rep(1, 3)
in.cor.list <- list(cormat, cormat)

## Generate Population of scores with "monte"

```r
sample.data <- monte(seed = in.seed,
 nvar = in.nvar,
 nclus = in.nclus,
 clus.size = in.clus.size,
 eta2 = in.eta2,
 skew.list = in.skew.list,
 kurt.list = in.kurt.list,
 cor.list = in.cor.list)

output <- summary(sample.data)
```

```r
z <- data.frame(sample.data$data[sample(1:BigN, 600, replace = FALSE),])
z[,2:4] <- scale(z[, 2:4])
names(z) <- c("id", "v1", "v2", "v3")
```
## trellis.device()
## trellis.par.set( col.whitebg() )
print(
  cloud(v3 ~ v1 * v2,
       groups = as.factor(id), data=z,
       subpanel = panel.superpose,
       zlim = c(-4, 4),
       xlim = c(-4, 4),
       ylim = c(-4, 4),
       main="",
       screen = list(z = 20, x = -70)),
  position = c(.1, .0, .5, .5), more = TRUE)

##########################################################################
## Condition 4
##########################################################################

## Change compactness so that variance of
## complement indicators is 5 times
## greater than variance of taxon indicators

v <- (2 * sqrt(5))/(1 + sqrt(5))
in.compactness <- c(v, 2-v)

## Generate Population of scores with "monte"
sample.data <- monte(seed = in.seed,
                      nvar = in.nvar,
                      nclus = in.nclus,
                      clus.size = in.clus.size,
                      eta2 = in.eta2,
                      skew.list = in.skew.list,
                      kurt.list = in.kurt.list,
                      cor.list = in.cor.list,
                      compactness = in.compactness)

output <- summary(sample.data)

z <- data.frame(sample.data$data[sample(1:BigN, 600, replace = FALSE), ])
z[, 2:4] <- scale(z[, 2:4])
names(z) <- c("id", "v1", "v2", "v3")
print(
  cloud(v3 ~ v1 * v2,
       groups = as.factor(id), data=z,
       subpanel = panel.superpose,
       zlim = c(-4, 4),
       xlim = c(-4, 4),
       ylim = c(-4, 4),
       main="",
       screen = list(z = 20, x = -70)),
  position = c(.5, .0, 1, .5), more = TRUE)
**monte1**  
*Simulate Multivariate Non-normal Data by Vale & Maurelli (1983)*  
*Method*

### Description
Function for simulating multivariate nonnormal data by the methods described by Fleishman (1978) and Vale & Maurelli (1983).

### Usage
```
monte1(seed, nvar, nsub, cormat, skewvec, kurtvec)
```

### Arguments
- **seed**: An integer to be used as the random number seed.
- **nvar**: Number of variables to simulate.
- **nsub**: Number of simulated subjects (response vectors).
- **cormat**: The desired correlation matrix.
- **skewvec**: A vector of indicator skewness values.
- **kurtvec**: A vector of indicator kurtosis values.

### Value
- **data**: The simulated data.
- **call**: The call.
- **nsub**: Number of subjects.
- **nvar**: Number of variables.
- **cormat**: The desired correlation matrix.
- **skewvec**: The desired indicator skewness values.
- **kurtvec**: The desired indicator kurtosis values.
- **seed**: The random number seed.

### Author(s)
Niels Waller

### References
## Generate dimensional data for 4 variables.
## All correlations = .60; all variable
## skewness = 1.75;
## all variable kurtosis = 3.75

cormat <- matrix(.60, 4, 4)
diag(cormat) <- 1

nontaxon.dat <- monte1(seed = 123, nsub = 100000, nvar = 4, skewvec = rep(1.75, 4),
                       kurtvec = rep(3.75, 4), cormat = cormat)

print(cor(nontaxon.dat$data), digits = 3)
print(apply(nontaxon.dat$data, 2, skew), digits = 3)
print(apply(nontaxon.dat$data, 2, kurt), digits = 3)
References


See Also

`adfCor`

Examples

```r
data(Harman23.cor)
normalCor(Harman23.cor$cov, Nobs = 305)
```

---

**normF**

*Compute the Frobenius norm of a matrix*

Description

A function to compute the Frobenius norm of a matrix

Usage

```r
normF(X)
```

Arguments

- **X**
  - A matrix.

Value

The Frobenius norm of X.

Author(s)

Niels Waller

Examples

```r
data(BadRLG)
out <- smoothLG(R = BadRLG, Penalty = 50000)
cat("\nGradient at solution:", out$gr,"\n")
cat("\nNearest Correlation Matrix\n")
print(round(out$RLG,8))
cat("\nFrobenius norm of (NPD - PSD) matrix\n")
print(normF(BadRLG - out$RLG))
```
Description

This function computes McDonald’s Omega hierarchical to determine the proportions of variance (for a given test) associated with the latent factors and with the general factor.

Usage

Omega(lambda, genFac = 1, digits = NULL)

Arguments

- lambda: (Matrix) A factor pattern matrix to be analyzed.
- genFac: (Scalar, Vector) Which column(s) contains the general factor(s). The default value is the first column.
- digits: (Scalar) The number of digits to round all output to.

Details

- **Omega Hierarchical**: For a reader-friendly description (with some examples), see the Rodriguez et al., (2016) *Psychological Methods* article. Most of the relevant equations and descriptions are found on page 141.

Value

- **omegaTotal**: (Scalar) The total reliability of the latent, common factors for the given test.
- **omegaGeneral**: (Scalar) The proportion of total variance that is accounted for by the general factor(s).

Author(s)

- Casey Giordano (Giord023@umn.edu)
- Niels G. Waller (nwaller@umn.edu)

References


**Examples**

```r
Create a bifactor structure
bifactor <- matrix(c(0.21, 0.49, 0.00, 0.00,
 0.12, 0.28, 0.00, 0.00,
 0.17, 0.38, 0.00, 0.00,
 0.23, 0.00, 0.34, 0.00,
 0.34, 0.00, 0.52, 0.00,
 0.22, 0.00, 0.34, 0.00,
 0.41, 0.00, 0.34, 0.00,
 0.46, 0.00, 0.00, 0.42,
 0.48, 0.00, 0.00, 0.49),
 nrow = 9, ncol = 4, byrow = TRUE)

Compute Omega
Out1 <- Omega(lambda = bifactor)
```

---

**orderFactors**

*Order factor-loadings matrix by the sum of squared factor loadings*

**Description**

Order the columns of a factor loadings matrix in descending order based on the sum of squared factor loadings.

**Usage**

```r
orderFactors(Lambda, PhiMat, salient = 0.29, reflect = TRUE)
```

**Arguments**

- **Lambda**: (Matrix) Factor loadings matrix to be reordered.
- **PhiMat**: (Matrix, NULL) Factor correlation matrix to be reordered.
- **salient**: (Numeric) Indicators with loadings < salient will be suppressed when computing the factor sum of squares values. Defaults to salient = .29.
- **reflect**: (Logical) If true, negatively-keyed factors will be reflected. Defaults to reflect = TRUE.

**Value**

Returns the sorted factor loading and factor correlation matrices.

- **Lambda**: (Matrix) The sorted factor loadings matrix.
- **Phi**: (Matrix) The sorted factor correlation matrix.
plot.monte

See Also

Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), fareg(), print.faMB(), print.faMain(), promaxQ(), summary.faMB(), summary.faMain()

Examples

## Not run:
Loadings <-
    matrix(c(.49, .41, .00, .00,
     .73, .45, .00, .00,
     .47, .53, .00, .00,
     .54, .00, .66, .00,
     .60, .00, .38, .00,
     .55, .00, .66, .00,
     .39, .00, .00, .68,
     .71, .00, .00, .56,
     .63, .00, .00, .55),
    nrow = 9, ncol = 4, byrow = TRUE)
fungible::orderFactors(Lambda = Loadings,
    PhiMat = NULL)$Lambda

## End(Not run)

---

plot.monte  Plot Method for Class Monte

Description

plot method for class "monte"

Usage

## S3 method for class 'monte'
plot(x, ...)

Arguments

x  An object of class 'monte', usually, a result of a call to monte.

...  Optional arguments passed to plotting function.

Value

The function plot.monte creates a scatter plot of matrices plot (a splom plot). Cluster membership is denoted by different colors in the plot.
Examples

# plot(monte.object)

print.faMain

Print Method for an Object of Class faMain

Description

Print Method for an Object of Class faMain

Usage

## S3 method for class 'faMain'
print(x, ..., digits = 2, Set = 1, itemSort = FALSE)

Arguments

x (Object of class faMain) The returned object from a call to faMain.

... Additional arguments affecting the summary produced.

digits (Integer) Print output with user-specified number of significant digits. Default digits = 2.

Set

• integer (Integer) Summarize the solution from the specified solution set.

• 'UnSpun' (Character) Summarize the solution from the rotated output that was produced by rotating from the unrotated (i.e., unspun) factor orientation.

itemSort (Logical) If TRUE, sort the order of the observed variables to produce a "staircase"-like pattern. In bifactor models (i.e., bifactorT and bifactorQ) item sorting is determined by the magnitudes of the group factor loadings. Defaults to itemSort = FALSE.

See Also

Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), promaxQ(), summary.faMB(), summary.faMain()
Description

Print Method for an Object of Class faMB

Usage

```r
S3 method for class 'faMB'
print(x, ..., digits = 2, Set = 1, itemSort = FALSE)
```

Arguments

- `x` (Object of class `faMB`) The returned object from a call to `faMB`.
- `...` Additional arguments affecting the summary produced.
- `digits` (Integer) Print output with user-specified number of significant digits. Default `digits = 2`.
- `Set` • integer (Integer) Summarize the solution from the specified solution set.
  • 'UnSpun' (Character) Summarize the solution from the rotated output that was produced by rotating from the unrotated (i.e., unspun) factor orientation.
- `itemSort` (Logical) If TRUE, sort the order of the observed variables to produce a "staircase"-like pattern. Defaults to `itemSort = FALSE`.

See Also

Other Factor Analysis Routines: `BiFAD()`, `Box26()`, `GenerateBoxData()`, `Ledermann()`, `SLi()`, `SchmidLeiman()`, `faAlign()`, `faEKC()`, `faIB()`, `faMB()`, `faMain()`, `faScores()`, `faSort()`, `faStandardize()`, `faX()`, `fals()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

---

**promaxQ**

*Conduct an Oblique Promax Rotation*

Description

This function is an extension of the `promax` function. This function will extract the unrotated factor loadings (with three algorithm options, see `faX`) if they are not provided. The factor intercorrelations (Phi) are also computed within this function.
Usage

```r
promaxQ(
 R = NULL,
 urLoadings = NULL,
 facMethod = "fals",
 numFactors = NULL,
 power = 4,
 standardize = "Kaiser",
 epsilon = 1e-04,
 maxItr = 15000,
 faControl = NULL
)
```

Arguments

- **R** (Matrix) A correlation matrix.
- **urLoadings** (Matrix) An unrotated factor-structure matrix to be rotated.
- **facMethod** (Character) The method used for factor extraction (faX). The supported options are "fals" for unweighted least squares, "faml" for maximum likelihood, "fapa" for iterated principal axis factoring, "faregLS" for regularized least squares, "faregML" for regularized maximum likelihood, and "pca" for principal components analysis. The default method is "fals".
  - "fals": Factors are extracted using the unweighted least squares estimation procedure using the `fals` function.
  - "faml": Factors are extracted using the maximum likelihood estimation procedure using the `factanal` function.
  - "fapa": Factors are extracted using the iterated principal axis factoring estimation procedure using the `fapa` function.
  - "faregLS": Factors are extracted using regularized least squares factor analysis using the `fareg` function.
  - "faregML": Factors are extracted using regularized maximum likelihood factor using the `fareg` function.
  - "pca": Principal components are extracted.
- **numFactors** (Scalar) The number of factors to extract if the lambda matrix is not provided.
- **power** (Scalar) The power with which to raise factor loadings for minimizing trivial loadings. The default value is 4.
- **standardize** (Character) Which standardization routine is applied to the unrotated factor structure. The three options are "none", "Kaiser", and "CM". The default option is "Kaiser" as is recommended by Kaiser and others. See `faStandardize` for more details.
  - "none": Do not rotate the normalized factor structure matrix.
  - "Kaiser": Use a factor structure matrix that has been normed by Kaiser’s method (i.e., normalize all rows to have a unit length).
  - "CM": Use a factor structure matrix that has been normed by the Cureton-Mulaik method.
epsilon (Scalar) The convergence criterion used for evaluating the varimax rotation. The default value is 1e-4 (i.e., .0001).

maxItr (Scalar) The maximum number of iterations allowed for computing the varimax rotation. The default value is 15,000 iterations.

faControl (List) A list of optional parameters passed to the factor extraction (faX) function.

- treatHeywood: (Logical) In faXs, if treatHeywood is true, a penalized least squares function is used to bound the communality estimates below 1.0. Defaults to treatHeywood = TRUE.
- nStart: (Numeric) The number of starting values to be tried in faX. Defaults to nStart = 10.
- start: (Matrix) NULL or a matrix of starting values, each column giving an initial set of uniquenesses. Defaults to start = NULL.
- maxCommunality: (Numeric) In faX, set the maximum communality value for the estimated solution. Defaults to maxCommunality = .995.
- epsilon: (Numeric) In faPa, the numeric threshold designating when the algorithm has converged. Defaults to epsilon = 1e-4.
- communality: (Character) The method used to estimate the initial communality values in faPa. Defaults to communality = 'SMC'.
  - "SMC": Initial communalities are estimated by taking the squared multiple correlations of each indicator after regressing the indicator on the remaining variables.
  - "maxr": Initial communalities equal the largest (absolute value) correlation in each column of the correlation matrix.
  - "unity": Initial communalities equal 1.0 for all variables.
- maxItr: (Numeric) In faPa, the maximum number of iterations to reach convergence. Defaults to maxItr = 15,000.

Details

- **Varimax Standardization**: When conducting the varimax rotation, it is recommended to standardize the factor loadings using Kaiser’s normalization (i.e., rescaling the factor indicators [rows] so that the vectors have unit length). The standardization/normalization occurs by pre-multiplying the unrotated factor structure, A, by the inverse of H, where $H^2$ is a diagonal matrix with the communality estimates on the diagonal. A varimax rotation is then applied to the normalized, unrotated factor structure. Then, the varimax-rotated factor structure is rescaled to its original metric by pre-multiplying the varimax factor structure by H. For details, see Mulaik (2009).

- **Oblique Procrustes Rotation of the Varimax Solution**: According to Hendrickson & White (1964), an unrestricted (i.e., oblique) Procrustes rotation is applied to the orthogonal varimax solution. Specifically, a target matrix is generated by raising the varimax factor loadings to the user-specified power (typically, power = 4) (must retain the signs of the original factor loadings). This should quickly diminish trivial factor loadings while retaining larger factor loadings. The Procrustes rotation takes the varimax solution and rotates it toward the promax-generated target matrix. For a modern description of this approach, see Mulaik (2009, ch. 12, p. 342-343).
• **Choice of a Power**: Changing the power in which varimax factor loadings are raised will change the target matrix in the oblique Procrustes rotation. After raising factor loadings to some power, there will be a larger discrepancy between high and low loadings than before (e.g., squaring factor loadings of .6 and .7 yields loadings of .36 and .49 and cubing yields loadings of .216 and .343). Furthermore, increasing the power will increase the number of near-zero loadings, resulting in larger factor intercorrelations. Many (cf. Gorsuch, 1983; Hendrickson & White, 1964; Mulaik, 2009) advocate for raising varimax loadings to the fourth power (the default) but some (e.g., Gorsuch) advocate for trying power = 2 and power = 6 to see if there is an improvement in the simple structure without overly inflating factor correlations.

**Value**

A list of the following elements are produced:

- **loadings**: (Matrix) The oblique, promax-rotated, factor-pattern matrix.
- **vmaxLoadings**: (Matrix) The orthogonal, varimax-rotated, factor-structure matrix used as the input matrix for the promax rotation.
- **rotMatrix**: (Matrix) The (rescaled) transformation matrix used in an attempt to minimize the Euclidean distance between the varimax loadings and the generated promax target matrix (cf. Hendrickson & White, 1964; Mulaik, 2009, p. 342-343, eqn. 12.44).
- **Phi**: (Matrix) The factor correlation matrix associated with the promax solution. Phi is found by taking the inverse of the inner product of the (rescaled) rotation matrix (rotMatrix) with itself (i.e., \(\text{solve}(T^T T)\), where \(T\) is the (rescaled) rotation matrix).
- **vmaxDiscrepancy**: (Scalar) The value of the minimized varimax discrepancy function. promax does not have a rotational criterion but the varimax rotation does.
- **convergence**: (Logical) Whether the varimax rotation converged.
- **Table**: (Matrix) The table returned from \(\text{GPForth}\) from the \(\text{GPArotation}\) package.
- **rotateControl**: (List) A list containing (a) the power parameter used, (b) whether the varimax rotation used Kaiser normalization, (c) the varimax epsilon convergence criterion, and (d) the maximum number of iterations specified.
  - **power**: The power in which the varimax-rotated factor loadings are raised.
  - **standardize**: Which standardization routine was used.
  - **epsilon**: The convergence criterion set for the varimax rotation.
  - **maxItr**: The maximum number of iterations allowed for reaching convergence in the varimax rotation.

**Author(s)**

- Casey Giordano (Giord023@umn.edu)
- Niels G. Waller (nwaller@umn.edu)

**References**

See Also

Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), summary.faMB(), summary.faMain()

Examples

## Generate an orthogonal factor model
lambda <- matrix(c(.41, .00, .00,
                   .45, .00, .00,
                   .53, .00, .00,
                   .00, .66, .00,
                   .00, .38, .00,
                   .00, .66, .00,
                   .00, .00, .68,
                   .00, .00, .56,
                   .00, .00, .55),
nrow = 9, ncol = 3, byrow = TRUE)

## Model-implied correlation (covariance) matrix
R <- lambda %*% t(lambda)

## Unit diagonal elements
diag(R) <- 1

## Start from just a correlation matrix
Out1 <- promaxQ(R  = R,
                facMethod = "fals",
                numFactors = 3,
                power = 4,
                standardize = "Kaiser")$loadings

## Iterate the promaxQ rotation using the rotate function
Out2 <- faMain(R  = R,
               facMethod = "fals",
               numFactors = 3,
               rotate = "promaxQ",
               rotateControl = list(power = 4,
                                      standardize = "Kaiser"))$loadings

## Align the factors to have the same orientation
Out1 <- faAlign(F1 = Out2,
                F2 = Out1)$F2

## Show the equivalence of factor solutions from promaxQ and rotate
all.equal(Out1, Out2, check.attributes = FALSE)
**r2d**

Convert Radians to Degrees

Description

Convert radian measure to degrees.

Usage

\[
r2d(\text{radian})
\]

Arguments

- **radian**: Radian measure of an angle

Value

Degree measure of an angle

Examples

\[
r2d(.5\times\pi)
\]

**rarc**

Rotate Points on the Surface on an N-Dimensional Ellipsoid

Description

Rotate between two points on the surface on an n-dimensional ellipsoid. The hyper-ellipsoid is composed of all points, \( B \), such that \( B' Rxx B = Rsq \). Vector \( B \) contains standardized regression coefficients.

Usage

\[
rarc(Rxx, Rsq, b1, b2, Npoints)
\]

Arguments

- **Rxx**: Predictor correlation matrix.
- **Rsq**: Model coefficient of determination.
- **b1**: First point on ellipsoid. If \( b1 \) and \( b2 \) are scalars then choose scaled eigenvectors \( v\{b1\} \) and \( v\{b2\} \) as the start and end vectors.
- **b2**: Second point on ellipsoid. If \( b1 \) and \( b2 \) are scalars then choose scaled eigenvectors \( v\{b1\} \) and \( v\{b2\} \) as the start and end vectors.
- **Npoints**: Generate “Npoints” +1 OLS coefficient vectors between \( b1 \) and \( b2 \).
Value

\( b \quad \text{N+1 sets of OLS coefficient vectors between b1 and b2.} \)

Author(s)

Niels Waller and Jeff Jones.

References


Examples

```r
Example
GRE/GPA Data
##-------------------##
R <- Rxx <- matrix(c(1.00, .56, .77, .56, 1.00, .73, .77, .73, 1.00), 3, 3)
GPA validity correlations
rxy <- c(.39, .34, .38)
b <- solve(Rxx) %*% rxy
Rsq <- t(b) %*% Rxx %*% b
N <- 200
b <- rarc(Rxx = R, Rsq, b1 = 1, b2 = 3, Npoints = N)
compute validity vectors
r <- Rxx %*% b
N <- N + 1
Rsq.r <- Rsq.unit <- rep(0, N)
for(i in 1:N){
 ## eval performance of unit weights
 Rsq.unit[i] <- (t(sign(r[,i])) %*% r[,i])^2 / (t(sign(r[,i])) %*% R %*% sign(r[,i]))
 ## eval performance of correlation weights
 Rsq.r[i] <- (t(r[,i]) %*% r[,i])^2 / (t(r[,i]) %*% R %*% r[,i])
}
cat("\nAverage relative performance of unit weights across elliptical arc:", round(mean(Rsq.unit)/Rsq,3))
cat("\nAverage relative performance of r weights across elliptical arc:", round(mean(Rsq.r)/Rsq,3))
```
plot(seq(0, 90, length = N), Rsq.r, typ = "1",
    ylim = c(0, .20),
    xlim = c(0, 95),
    lwd = 3,
    ylab = expression(R^2),
    xlab = expression(paste("Degrees from ",b[1]," in the direction of ",b[2])),
    cex.lab = 1.25, lab = c(10, 5, 5))
points(seq(0, 90, length = N), Rsq.unit,
    type = "l",
    lty = 2, lwd = 3)
legend(x = 0,y = .12,
    legend = c("r weights", "unit weights"),
    lty = c(1, 2),
    lwd = c(4, 3),
    cex = 1.5)

---

rcone  Generate a Cone of Regression Coefficient Vectors

Description

Compute a cone of regression vectors with a constant R-squared around a target vector.

Usage

rcone(R, Rsq, b, axis1, axis2, deg, Npoints = 360)

Arguments

- **R**: Predictor correlation matrix.
- **Rsq**: Coefficient of determination.
- **b**: Target vector of OLS regression coefficients.
- **axis1**: 1st axis of rotation plane.
- **axis2**: 2nd axis of rotation plane.
- **deg**: All vectors b.i will be ‘deg’ degrees from b.
- **Npoints**: Number of rotation vectors, default = 360.

Value

- **b.i**: Npoints values of b.i

Author(s)

Niels Waller and Jeff Jones
References


Examples

```r
R <- matrix(.5, 4, 4)
diag(R) <- 1

Npoints <- 1000
Rsq <- .40
NumDeg <- 20
V <- eigen(R)$vectors

create b parallel to v[,3]
rotate in the 2 - 4 plane
b <- V[,3]
bsq <- t(b) %*% R %*% b
b <- b * sqrt(Rsq/bsq)
b.i <- rcone(R, Rsq, b, V[,2], V[,4], deg = NumDeg, Npoints)

t(b.i[,1]) %*% R %*% b.i[,1]
t(b.i[,25]) %*% R %*% b.i[,25]
```

---
**rcor**  
*Generate Random PSD Correlation Matrices*

Description

Generate random PSD correlation matrices.

Usage

```r
rcor(Nvar)
```

Arguments

- `Nvar`  
  An integer that determines the order of the random correlation matrix.

Details

rcor generates random PSD correlation matrices by (1) generating Nvar squared random normal deviates, (2) scaling the deviates to sum to Nvar, and then (3) placing the scaled values into a diagonal matrix L. Next, (4) an Nvar x Nvar orthogonal matrix, Q, is created by performing a QR decomposition of a matrix, M, that contains random normal deviates. (5) A PSD covariance matrix, C, is created from Q L Q^T and then (6) scaled to a correlation metric.
**rellipsoid**

*Generate Uniformly Spaced OLS Regression Coefficients that Yield a User-Supplied R-Squared Value*

**Description**

Given predictor matrix R, generate OLS regression coefficients that yield a user-supplied R-Squared value. These regression coefficient vectors will be uniformly spaced on the surface of a (hyper) ellipsoid.

**Usage**

```r
rellipsoid(R, Rsq, Npoints)
```

**Arguments**

- **R**
  
  A p x p predictor correlation matrix.

- **Rsq**
  
  A user-supplied R-squared value.

- **Npoints**
  
  Desired number of generated regression vectors.

**Value**

- **b**
  
  A p x Npoints matrix of regression coefficients

**Author(s)**

Niels Waller and Jeff Jones.
References


Examples

```r
generate uniformly distributed regression vectors
on the surface of a 14-dimensional ellipsoid
N <- 10000
Rsq <- .21

Correlations from page 224 WAIS-III manual
The Psychological Corporation (1997).
wais3 <- matrix(
c(1, .76, .58, .43, .75, .75, .42, .54, .41, .57, .64, .54, .50, .53,
 .76, 1, .57, .36, .69, .71, .45, .52, .36, .63, .68, .51, .47, .54,
 .58, .57, 1, .45, .65, .60, .47, .48, .43, .59, .60, .49, .56, .47,
 .43, .36, .45, 1, .37, .40, .60, .30, .32, .34, .35, .28, .35, .29,
 .75, .69, .65, .37, 1, .70, .44, .54, .34, .59, .62, .54, .45, .50,
 .75, .71, .60, .40, .70, 1, .42, .51, .44, .53, .60, .50, .52, .44,
 .42, .45, .47, .60, .44, .42, 1, .46, .49, .47, .43, .27, .50, .42,
 .54, .52, .48, .30, .54, .51, .46, 1, .45, .50, .58, .55, .53, .56,
 .41, .36, .43, .32, .34, .44, .49, .45, 1, .47, .49, .41, .70, .38,
 .57, .63, .59, .34, .59, .53, .47, .50, .47, 1, .63, .62, .58, .66,
 .64, .68, .60, .35, .62, .60, .43, .58, .49, .63, 1, .59, .50, .59,
 .54, .51, .49, .28, .54, .50, .27, .55, .41, .62, .59, 1, .48, .53,
 .50, .47, .56, .35, .45, .52, .50, .53, .70, .58, .50, .48, 1, .51,
 .53, .54, .47, .29, .50, .44, .42, .56, .38, .66, .59, .53, .51, 1),
nrow = 14, ncol = 14)

R <- wais3[1:6,1:6]
b <- rellipsoid(R, Rsq, Npoints = N)
b <- b$b

#
plot(b[1,],b[2,])
```

**restScore**

*Plot an ERF using rest scores*

**Description**

Plot an empirical response function using rest scores.

**Usage**

```r
restScore(data, item, NCuts = 10)
```
Arguments

data N(subjects)-by-p(items) matrix of 0/1 item response data.
item Generate a rest score plot for item item.
NCuts Divide the rest scores into NCuts bins of equal width.

Value

A restscore plot with 95% confidence interval bars for the conditional probability estimates.

item The item number.
bins A vector of bin limits and bin sample sizes.
binProb A vector of bin conditional probabilities.

Author(s)

Niels Waller

Examples

NSubj <- 2000

#generate sample k=1 FMP data
b <- matrix(c(
    #b0  b1  b2  b3  b4  b5  b6  b7  k
    1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,
    1.550, 1.805, -0.230, 0.032, 0, 0, 0, 0, 1,
    1.282, 1.063, -0.103, 0.003, 0, 0, 0, 0, 1,
    0.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
    1.417, 1.413, -0.021, 0.000, 0, 0, 0, 0, 1,
    -0.008, 1.349, -0.195, 0.144, 0, 0, 0, 0, 1,
    0.512, 1.538, -0.089, 0.082, 0, 0, 0, 0, 1,
    0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,
    1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,
    -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1,
    -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1,
    0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
    -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
    0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
    1.038, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1,
    0.140, 1.209, 0.082, 0.148, 0, 0, 0, 0, 1,
    0.429, 1.480, -0.008, 0.061, 0, 0, 0, 0, 1,
    0.089, 0.785, -0.065, 0.018, 0, 0, 0, 0, 1,
    -0.516, 1.013, 0.016, 0.023, 0, 0, 0, 0, 1,
    0.143, 1.315, -0.011, 0.136, 0, 0, 0, 0, 1,
    0.347, 0.733, -0.121, 0.041, 0, 0, 0, 0, 1,
    -0.074, 0.869, 0.013, 0.026, 0, 0, 0, 0, 1,
    0.630, 1.484, -0.001, 0.000, 0, 0, 0, 0, 1)

nrow=23, ncol=9, byrow=TRUE)
data<-genFMPData(NSubj = NSubj, bParam = b, seed = 345)$data

## generate a rest score plot for item 12.
## the grey horizontal lines in the plot
## respresent pseudo asymptotes that
## are significantly different from the
## (0,1) boundaries
restScore(data, item = 12, NCuts = 9)

---

### rGivens

**Generate Correlation Matrices with Specified Eigenvalues**

#### Description

rGivens generates correlation matrices with user-specified eigenvalues via a series of Givens rotations by methods described in Bendel & Mickey (1978) and Davis & Higham (2000).

#### Usage

rGivens(eigs, Seed = NULL)

#### Arguments

- **eigs**: A vector of eigenvalues that must sum to the order of the desired correlation matrix. A fatal error will occur if sum(eigs) != length(eigs).
- **Seed**: Either a user supplied seed for the random number generator or ‘NULL’ for a function generated seed. Default Seed = ‘NULL’.

#### Value

- **R**: A correlation matrix with desired spectrum.
- **Frob**: The Frobenius norm of the difference between the initial and final matrices with the desired spectrum.
- **convergence** (Logical) TRUE if rGivens converged to a feasible solution, otherwise FALSE.

#### References


Examples

```r
Example
Generate a correlation matrix with user-specified eigenvalues

out <- rGivens(c(2.5, 1, 1, .3, .2), Seed = 123)

#> eigen(out$R)$values
#[1] 2.5 1.0 1.0 0.3 0.2

print(out)
#$R
#[1,] 1.000000 -0.1104098 -0.24512327 0.46497370 0.2392817
#[2,] -0.1104098 1.0000000 0.33564370 -0.46640155 -0.7645915
#[3,] -0.2451233 0.3356437 1.00000000 -0.02935466 -0.2024926
#[4,] 0.4649737 -0.4664016 -0.02935466 1.00000000 0.6225880
#[5,] 0.2392817 -0.7645915 -0.20249261 0.62258797 1.0000000

#$Frob
#[1] 2.691613

#$S0
#[1,] 1.0349665 0.22537748 -0.46827121 -0.10448336 -0.24730565
#[2,] 0.2253775 0.31833805 -0.23208078 0.06591368 -0.14584161
#[3,] -0.4682712 -0.23208078 2.28911499 0.05430754 0.06964858
#[4,] -0.1044834 0.06591368 0.05430754 0.94884439 -0.14439623
#[5,] -0.2473056 -0.14584161 0.06964858 -0.14439623 0.40873606

#$convergence
#[1] TRUE
```

rMAP

Generate Correlation Matrices with Specified Eigenvalues

Description

rMAP uses the method of alternating projections (MAP) to generate correlation matrices with specified eigenvalues.

Usage

```r
rMAP(eigenval, eps = 1e-12, maxits = 5000, Seed = NULL)
```
Arguments

eigenval A vector of eigenvalues that must sum to the order of the desired correlation matrix. A fatal error will occur if sum(eigenval) != length(eigenval).

eps Convergence criterion. Default = 1e-12.

maxits Maximum number of iterations of MAP.

Seed Either a user supplied seed for the random number generator or ‘NULL’ for a function generated seed. Default Seed = ‘NULL’.

Value

R A correlation matrix with the desired spectrum.

evals Eigenvalues of the returned matrix, R.

convergence (Logical) TRUE if MAP converged to a feasible solution, otherwise FALSE.

Author(s)

Niels Waller

References


Examples

## Example
## Generate a correlation matrix with user-specified eigenvalues

R <- rMAP(c(2.5, 1, 1, .3, .2), Seed = 123)$R
print(R, 2)

# [1,] 1.000 0.5355 -0.746 -0.0688 -0.545
# [2,] 0.535 1.0000 -0.671 -0.0016 -0.056
# [3,] -0.746 -0.6711 1.000 0.0608 0.298
# [4,] -0.069 -0.0016 0.061 1.0000 0.002
# [5,] -0.545 -0.0564 0.298 0.0020 1.000

eigen(R)$values
# [,1] 2.5 1.0 1.0 0.3 0.2
**Description**

Calculates the root mean squared deviation of matrices A and B. If these matrices are symmetric (Symmetric = TRUE) then the calculation is based on the upper triangles of each matrix. When the matrices are symmetric, the diagonal of each matrix can be included or excluded from the calculation (IncludeDiag = FALSE).

**Usage**

```r
rmsd(A, B, Symmetric = TRUE, IncludeDiag = FALSE)
```

**Arguments**

- **A**: A possibly non square matrix.
- **B**: A matrix of the same dimensions as matrix A.
- **Symmetric**: Logical indicating whether A and B are symmetric matrices. (Default: Symmetric = TRUE)
- **IncludeDiag**: Logical indicating whether to include the diagonals in the calculation. (Default: IncludeDiag = FALSE).

**Value**

Returns the root mean squared deviation of (A - B).

**Author(s)**

Niels Waller

**Examples**

```r
A <- matrix(rnorm(9), nrow = 3)
B <- matrix(rnorm(9), nrow = 3)
(rmsd(A, B, Symmetric = FALSE, IncludeDiag = TRUE))
```
RnpdMAP

Generate Random NPD R matrices from a user-supplied population R

Description

Generate a list of Random NPD (pseudo) R matrices with a user-defined fixed minimum eigenvalue from a user-supplied population R using the method of alternating projections.

Usage

RnpdMAP(
  Rpop,
  Lp = NULL,
  NNegEigs = 1,
  NSmoothPosEigs = 4,
  NSubjects = NULL,
  NSamples = 0,
  MaxIts = 15000,
  PRINT = FALSE,
  Seed = NULL
)

Arguments

Rpop     input (PD or PSD) p x p Population correlation matrix.
Lp       desired minimum eigenvalue in the NPD matrices.
NNegEigs number of eigenvalues < 0 in Rnpd.
NSmoothPosEigs number of eigenvalues > 0 to smooth: the smallest NSmoothPosEigs > 0 be smoothed toward 0.
NSubjects sample size (required when NSamples > 0) parameter used to generate sample correlation matrices. Default = NULL.
NSamples generate NSamples sample R matrices. If NSamples = 0 the program will attempt to find Rnpd such that ||Rpop - Rnpd||_2 is minimized.
MaxIts    maximum number of projection iterations.
PRINT     (logical) If TRUE the program will print the iteration history for Lp. Default = NULL.
Seed      Optional seed for random number generation.

Value

Rpop    population (PD) correlation matrix.
Rnpd    NPD improper (pseudo) correlation matrix.
Lp      desired value of minimum eigenvalue.
minEig observed value of minimum eigenvalue of Rnpd.

convergence 0 = converged; 1 = not converged in MaxIts iterations of the alternating projections algorithm.

feasible logical) TRUE if max(abs(r_ij)) <= 1. If FALSE then one or more values in Rnpd > 1 in absolute value.

Seed saved seed for random number generator.

prbs1 vector probabilities used to generate eigenvalues < 0.

prbs2 vector of probabilities used to smooth the smallest NSmoothPosEigs towards zero.

Author(s)
Niels G. Waller

Examples

library(MASS)

Nvar = 20
Nfac = 4
NSubj = 600
Seed = 123

set.seed(Seed)

## Generate a vector of classical item difficulties
p <- runif(Nvar)

cat("\nClassical Item Difficulties:\n")

print(rbind(1:Nvar,round(p,2)) )

summary(p)

## Convert item difficulties to quantiles
b <- qnorm(p)

## fnc to compute root mean squared standard deviation
RMSD <- function(A, B){
  sqrt(mean( ( A[lower.tri(A, diag = FALSE)] - B[lower.tri(B, diag = FALSE) ] )^2 )
}

## Generate vector of eigenvalues with clear factor structure
L <- eigGen(nDimensions = Nvar,
             nMajorFactors = Nfac,
             PrctntMajor = .60,
             ...}
threshold = .50)

## Generate a population R matrix with the eigenvalues in L
Rpop <- rGivens(eigs = L)$R

## Generate continuous data that will reproduce Rpop (exactly)
X <- mvrnorm(n = NSubj, mu = rep(0, Nvar),
             Sigma = Rpop, empirical = TRUE)

if( any(colSums(X) == 0) ){
  stop("One or more variables have zero variance. Generate a new data set.")
}

## Cut X at thresholds given in b to produce binary data U
U <- matrix(0, nrow(X), ncol(X))
for(j in 1:Nvar){
  U[X[,j] <= b[j],j] <- 1
}

## Compute tetrachoric correlations
Rtet <- tetcor(U, Smooth = FALSE, PRINT = TRUE)$r
# Calculate eigenvalues of tetrachoric R matrix
Ltet <- eigen(Rtet)$values
if(Ltet[Nvar] >= 0) stop("Rtet is P(S)D")

## Simulate NPD R matrix with minimum eigenvalue equal to
# min(Ltet)
out <- RnpdMAP(Rpop,
               Lp = Ltet[Nvar],
               NNegEigs = Nvar/5,
               NSmoothPosEigs = Nvar/5,
               NSubjects = 150,
               NSamples = 1,
               MaxIts = 15000,
               PRINT = FALSE,
               Seed = Seed)

## RLp is a NPD pseudo R matrix with min eigenvalue = min(Ltet)
RLp <- out[[1]]$Rnpd

## Calculate eigenvalues of simulated NPD R matrix (Rnpd)
Lnpd <- eigen(RLp, only.values = TRUE)$values

## Scree plots for observed and simulated NPD R matrices.
ytop <- max(c(L,Lnpd,Ltet))
pointSize = .8
plot(1:Nvar, L, typ = "b", col = "darkgrey", lwd=3,
     lty=1,
     main = "Eigenvalues of Rpop, Tet R, and Sim Tet R:
     \nSimulated vs Observed npd Tetrachoric R Matrices",
     pointsize = pointSize)

## RLp is a NPD pseudo R matrix with min eigenvalue = min(Ltet)
RLp <- out[[1]]$Rnpd

## Calculate eigenvalues of simulated NPD R matrix (Rnpd)
Lnpd <- eigen(RLp, only.values = TRUE)$values

## Scree plots for observed and simulated NPD R matrices.
ytop <- max(c(L,Lnpd,Ltet))
pointSize = .8
plot(1:Nvar, L, typ = "b", col = "darkgrey", lwd=3,
     lty=1,
     main = "Eigenvalues of Rpop, Tet R, and Sim Tet R:
     \nSimulated vs Observed npd Tetrachoric R Matrices",
     pointsize = pointSize)
ylim = c(-1, ytop),
xlab = "Dimensions",
ylab = "Eigenvalues",
cex = pointSize,cex.main = 1.2)
points(1:Nvar, Lnpd, typ="b",
col = "red", lwd = 3, lty=2, cex=pointSize)
points(1:Nvar, Ltet, typ="b",
col = "darkgreen", lwd = 3, lty = 3, cex= pointSize)

legend("topright",
legend = c("eigs Rpop", "eigs Sim Rnpd", "eigs Emp Rnpd"),
col = c("darkgrey", "red","darkgreen"),
lty = c(1,2,3),
lwd = c(4,4,4), cex = 1.5)

abline(h = 0, col = "grey", lty = 2, lwd = 4)

cat("\nRMSD(Rpop, Rtet) = ", round(rmsd(Rpop, Rtet), 3))
cat("\nRMSD(Rpop, RLp) = ", round(rmsd(Rpop, RLp), 3))

SchmidLeiman  Schmid-Leiman Orthogonalization to a (Rank-Deficient) Bifactor Structure

Description

The Schmid-Leiman (SL) procedure orthogonalizes a higher-order factor structure into a rank-deficient bifactor structure. The Schmid-Leiman method is a generalization of Thomson’s orthogonalization routine.

Usage

SchmidLeiman(
  R,
  numFactors,
  facMethod = "fals",
  rotate = "oblimin",
  rescaleH2 = 0.98,
  faControl = NULL,
  rotateControl = NULL
)

Arguments

R  (Matrix) A correlation matrix.
numFactors (Vector) The number of latent factors at each level of analysis. For example, c(3, 1) estimates three latent factors in the first-order common factor model and one latent factor in the second-order common factor model (i.e., 3 group factors
and 1 general factor). This function can orthogonalize up to (and including) a three-order factor solution.

**facMethod**

(Characteristic) The method used for factor extraction (*faX*). The supported options are "fals" for unweighted least squares, "faml" for maximum likelihood, "fapa" for iterated principal axis factoring, "faregLS" for regularized least squares, "faregML" for regularized maximum likelihood, and "pca" for principal components analysis. The default method is "fals".

- "fals": Factors are extracted using the unweighted least squares estimation procedure using the *fals* function.
- "faml": Factors are extracted using the maximum likelihood estimation procedure using the *factanal* function.
- "fapa": Factors are extracted using the iterated principal axis factoring estimation procedure using the *fapa* function.
- "faregLS": Factors are extracted using regularized least squares factor analysis using the *fareg* function.
- "faregML": Factors are extracted using regularized maximum likelihood factor using the *fareg* function.
- "pca": Principal components are extracted.

**rotate**

(Characteristic) Designate which rotation algorithm to apply. See the *faMain* function for more details about possible rotations. Defaults to rotate = "oblimin".

**rescaleH2**

(Numeric) If a Heywood case is detected at any level of the higher-order factor analyses, rescale the communality value to continue with the matrix algebra. When a Heywood case occurs, the uniques (i.e., specific-factor variances) will be negative and the SL orthogonalization of the group factors is no longer correct.

**faControl**

(List) A list of optional parameters passed to the factor extraction (*faX*) function.

- **treatHeywood**: (Logical) In *fals*, if treatHeywood is true, a penalized least squares function is used to bound the communality estimates below 1.0. Defaults to treatHeywood = TRUE.
- **nStart**: (Numeric) The number of starting values to be tried in *faml*. Defaults to nStart = 10.
- **start**: (Matrix) NULL or a matrix of starting values, each column giving an initial set of uniques. Defaults to start = NULL.
- **maxCommunality**: (Numeric) In *faml*, set the maximum communality value for the estimated solution. Defaults to maxCommunality = .995.
- **epsilon**: (Numeric) In *fapa*, the numeric threshold designating when the algorithm has converged. Defaults to epsilon = 1e-4.
- **communality**: (Character) The method used to estimate the initial communality values in *fapa*. Defaults to communality = 'SMC'.
  - "SMC": Initial communalities are estimated by taking the squared multiple correlations of each indicator after regressing the indicator on the remaining variables.
  - "maxr": Initial communalities equal the largest (absolute value) correlation in each column of the correlation matrix.
  - "unity": Initial communalities equal 1.0 for all variables.
- **maxItr**: (Numeric) In fapa, the maximum number of iterations to reach convergence. Defaults to maxItr = 15,000.
- **rotateControl**: (List) A list of control values to pass to the factor rotation algorithms.
  - **numberStarts**: (Numeric) The number of random (orthogonal) starting configurations for the chosen rotation method (e.g., oblimin). The first rotation will always commence from the unrotated factors orientation. Defaults to numberStarts = 10.
  - **gamma**: (Numeric) This is a tuning parameter (between 0 and 1, inclusive) for an oblimin rotation. See the GPArotation library’s oblimin documentation for more details. Defaults to gamma = 0 (i.e., a quartimin rotation).
  - **delta**: (Numeric) This is a tuning parameter for the geomin rotation. It adds a small number (default = .01) to the squared factor loadings before computing the geometric means in the discrepancy function.
  - **kappa**: (Numeric) The main parameterization of the Crawford-Ferguson (CF) rotations (i.e., "cfT" and "cfQ" for orthogonal and oblique CF rotation, respectively). Defaults to kappa = 0.
  - **k**: (Numeric) A specific parameter of the simplimax rotation. Defaults to k = the number of observed variables.
  - **standardize**: (Character) The standardization routine used on the unrotated factor structure. The three options are "none", "Kaiser", and "CM". Defaults to standardize = "none".
    - "none": No standardization is applied to the unrotated factor structure.
    - "Kaiser": Use a factor structure matrix that has been normed by Kaiser’s method (i.e., normalize all rows to have a unit length).
    - "CM": Use a factor structure matrix that has been normed by the Cureton-Mulaik method.
  - **epsilon**: (Numeric) The rotational convergence criterion to use. Defaults to epsilon = 1e-5.
  - **power**: (Numeric) Raise factor loadings the n-th power in the promaxQ rotation. Defaults to power = 4.
  - **maxItr**: (Numeric) The maximum number of iterations for the rotation algorithm. Defaults to maxItr = 15000.

**Details**

The obtained Schmid-Leiman (SL) factor structure matrix is rescaled if its communalities differ from those of the original first-order solution (due to the presence of one or more Heywood cases in a solution of any order). Rescaling will produce SL communalities that match those of the original first-order solution.

**Value**

- **L1**: (Matrix) The first-order (oblique) factor pattern matrix.
- **L2**: (Matrix) The second-order (oblique) factor pattern matrix.
- **L3**: (Matrix, NULL) The third-order (oblique) factor pattern matrix (if applicable).
- **Phi1**: (Matrix) The first-order factor correlation matrix.
• **Phi2**: (Matrix) The second-order factor correlation matrix.
• **Phi3**: (Matrix, NULL) The third-order factor pattern matrix (if applicable).
• **U1**: (Matrix) The square root of the first-order factor uniquenesses (i.e., factor standard deviations).
• **U2**: (Matrix) The square root of the second-order factor uniquenesses (i.e., factor standard deviations).
• **U3**: (Matrix, NULL) The square root of the third-order factor uniquenesses (i.e., factor standard deviations) (if applicable).
• **B**: (Matrix) The resulting Schmid-Leiman transformation.
• **rotateControl**: (List) A list of the control parameters passed to the `faMain` function.
• **faControl**: (List) A list of optional parameters passed to the factor extraction (`faX`) function.
• **strongHeywoodFlag**: (Integer) An integer indicating whether one or more Heywood cases were encountered during estimation.

Author(s)
• Casey Giordano (Giord023@umn.edu)
• Niels G. Waller (nwaller@umn.edu)

References


See Also
Other Factor Analysis Routines: `BifAD()`, `Box26()`, `GenerateBoxData()`, `Ledermann()`, `SLi()`, `faAlign()`, `faEKC()`, `faIB()`, `faMain()`, `faScores()`, `faSort()`, `faStandardize()`, `faX()`, `fals()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMB()`, `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

Examples
```r
Dataset used in Schmid & Leiman (1957) rounded to 2 decimal places
SLdata <-
 matrix(c(1.0, .72, .31, .27, .10, .05, .13, .04, .29, .16, .06, .08,
 .72, 1.0, .35, .30, .11, .06, .15, .04, .33, .18, .07, .08,
 .31, .35, 1.0, .42, .08, .04, .10, .03, .22, .12, .05, .06,
 .27, .30, .42, 1.0, .06, .03, .08, .02, .19, .11, .04, .05,
 .10, .11, .08, .06, 1.0, .32, .13, .04, .11, .06, .02, .03,
 .05, .06, .04, .03, .32, 1.0, .07, .02, .05, .03, .01, .01,
 .13, .15, .10, .08, .13, .07, 1.0, .14, .14, .08, .03, .04),
 dimnames = list(letters[1:26], letters[1:26])
```
seBeta

Standard Errors and CIs for Standardized Regression Coefficients

Description

Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients

Usage

seBeta(
X = NULL,
y = NULL,
cov.x = NULL,
cov.xy = NULL,
var.y = NULL,
Nobs = NULL,
numFactors = c(6, 3, 1),
rotate = "oblimin")$B

Out1 <- SchmidLeiman(R = SLdata,
numFactors = c(6, 3, 1))$B

## An orthogonalization of a two-order structure
bifactor <- matrix(c(.46, .57, .00, .00,
                      .48, .61, .00, .00,
                      .61, .58, .00, .00,
                      .46, .00, .55, .00,
                      .51, .00, .62, .00,
                      .46, .00, .55, .00,
                      .47, .00, .00, .48,
                      .50, .00, .00, .50,
                      .49, .00, .00, .49),
nrow = 9, ncol = 4, byrow = TRUE)

## Model-implied correlation (covariance) matrix
R <- bifactor %*% t(bifactor)

## Unit diagonal elements
diag(R) <- 1

Out2 <- SchmidLeiman(R = R,
numFactors = c(3, 1),
rotate = "oblimin")$B
alpha = 0.05,
estimator = "ADF",
digits = 3
)

Arguments

X  Matrix of predictor scores.
y  Vector of criterion scores.
cov.x  Covariance or correlation matrix of predictors.
cov.xy  Vector of covariances or correlations between predictors and criterion.
var.y  Criterion variance.
Nobs  Number of observations.
alpha  Desired Type I error rate; default = .05.
estimator  ’ADF’ or ’Normal’ confidence intervals - requires raw X and raw y; default = ’ADF’.
digits  Number of significant digits to print; default = 3.

Value

cov.Beta  Normal theory or ADF covariance matrix of standardized regression coefficients.
se.Beta  standard errors for standardized regression coefficients.
alpha  desired Type-I error rate.
CI.Beta  Normal theory or ADF (1-alpha)% confidence intervals for standardized regression coefficients.
estimator  estimator = "ADF" or "Normal".

Author(s)

Jeff Jones and Niels Waller

References


Examples

library(MASS)
set.seed(123)
R <- matrix(.5, 3, 3)
diag(R) <- 1
X <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
Beta <- c(.2, .3, .4)
y <- X %*% Beta + .64 * scale(rnorm(200))
seBeta(X, y, Nobs = 200, alpha = .05, estimator = 'ADF')

# 95% CIs for Standardized Regression Coefficients:
#
# lbound  estimate   ubound
# beta_1  0.104    0.223   0.341
# beta_2  0.245    0.359   0.473
# beta_3  0.245    0.360   0.476

seBetaCor

Standard Errors and CIs for Standardized Regression Coefficients from Correlations

Description
Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients from Correlations

Usage
seBetaCor(R, rxy, Nobs, alpha = 0.05, digits = 3, covmat = "normal")

Arguments
R A p x p predictor correlation matrix.
rxy A p x 1 vector of predictor-criterion correlations
Nobs Number of observations.
alpha Desired Type I error rate; default = .05.
digits Number of significant digits to print; default = 3.
covmat String = 'normal' (the default) or a (p+1)p/2 x (p+1)p/2 covariance matrix of correlations. The default option computes an asymptotic covariance matrix under the assumption of multivariate normal data. Users can supply a covariance matrix under asymptotic distribution free (ADF) or elliptical distributions when available.

Value
cov.Beta Covariance matrix of standardized regression coefficients.
se.Beta Vector of standard errors for the standardized regression coefficients.
alpha Type-I error rate.
CI.Beta (1-alpha)% confidence intervals for standardized regression coefficients.
seBetaFixed

Author(s)
Jeff Jones and Niels Waller

References

Examples

```r
R <- matrix(c(1.0000, 0.3511, 0.3661, 0.3511, 1.0000, 0.4359, 0.3661, 0.4359, 1.0000), 3, 3)

rxy <- c(0.5820, 0.6997, 0.7621)
Nobs <- 46
out <- seBetaCor(R = R, rxy = rxy, Nobs = Nobs)

95% CIs for Standardized Regression Coefficients:
#
lbound estimate ubound
beta_1 0.107 0.263 0.419
beta_2 0.231 0.391 0.552
beta_3 0.337 0.495 0.653
```

seBetaFixed

*Covariance Matrix and Standard Errors for Standardized Regression Coefficients for Fixed Predictors*

Description
Computes Normal Theory Covariance Matrix and Standard Errors for Standardized Regression Coefficients for Fixed Predictors

Usage

```r
seBetaFixed(
 X = NULL,
 y = NULL,
 cov.x = NULL,
)```
cov.xy = NULL,
var.y = NULL,
var.error = NULL,
Nobs = NULL
)

Arguments

X Matrix of predictor scores.
y Vector of criterion scores.
cov.x Covariance or correlation matrix of predictors.
cov.xy Vector of covariances or correlations between predictors and criterion.
var.y Criterion variance.
var.error Optional argument to supply the error variance: var(y - yhat).
Nobs Number of observations.

Value

cov.Beta Normal theory covariance matrix of standardized regression coefficients for fixed predictors.
se.Beta Standard errors for standardized regression coefficients for fixed predictors.

Author(s)

Jeff Jones and Niels Waller

References

See Also

seBeta

Examples

We will generate some data and pretend that the Predictors are being held fixed
library(MASS)
R <- matrix(.5, 3, 3); diag(R) <- 1
Beta <- c(.2, .3, .4)
rm(list = ".Random.seed", envir = globalenv()); set.seed(123)
X <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
y <- X %*% Beta + .64*scale(rnorm(200))
seBetaFixed(X, y)
simFA

Generate Factor Analysis Models and Data Sets for Simulation Studies

Description

A function to simulate factor loadings matrices and Monte Carlo data sets for common factor models and bifactor models.

Usage

```r
simFA(
  Model = list(),
  Loadings = list(),
  CrossLoadings = list(),
  Phi = list(),
  ModelError = list(),
  Bifactor = list(),
  MonteCarlo = list(),
  FactorScores = list(),
  Missing = list(),
  Control = list(),
  Seed = NULL
)
```

```r
 # $covBeta
 #   b1   b2   b3
 # b1  0.003275127 -0.001235665 -0.001274303
 # b2 -0.001235665  0.003037100 -0.001491736
 # b3 -0.001274303 -0.001491736  0.002830157
 #
 # $seBeta
 #   b1   b2   b3
 # 0.05722872 0.05510989 0.05319922

## you can also supply covariances instead of raw data

seBetaFixed(cov.x = cov(X), cov.xy = cov(X, y), var.y = var(y), Nobs = 200)
```

```r
 # $covBeta
 #   b1   b2   b3
 # b1  0.003275127 -0.001235665 -0.001274303
 # b2 -0.001235665  0.003037100 -0.001491736
 # b3 -0.001274303 -0.001491736  0.002830157
 #
 # $seBeta
 #   b1   b2   b3
 # 0.05722872 0.05510989 0.05319922
```
Arguments

Model (list)

• NFac (scalar) Number of common or group factors; defaults to NFac = 3.
• NItemPerFac
 - (scalar) All factors have the same number of primary loadings.
 - (vector) A vector of length NFac specifying the number of primary loadings for each factor; defaults to NItemPerFac = 3.
• Model (character) "orthogonal" or "oblique"; defaults to Model = "orthogonal".

Loadings (list)

• FacPattern (NULL or matrix).
 - FacPattern = M where M is a user-defined factor pattern matrix.
 - FacPattern = NULL; simFA will generate a factor pattern based on the arguments specified under other keywords (e.g., Model, CrossLoadings, etc.); defaults to FacPattern = NULL.
• FacLoadDist (character) Specifies the sampling distribution for the common factor loadings. Possible values are "runif", "rnorm", "sequential", and "fixed"; defaults to FacLoadDist = "runif".
• FacLoadRange (vector of length NFac, 2, or 1); defaults to FacLoadRange = c(.3,.7).
 - If FacLoadDist = "runif" the vector defines the bounds of the uniform distribution;
 - If FacLoadDist = "rnorm" the vector defines the mean and standard deviation of the normal distribution from which loadings are sampled.
 - If FacLoadDist = "sequential" the vector specifies the lower and upper bound of the loadings sequence.
 - If FacLoadDist = "fixed" and FacLoadRange is a vector of length 1 then all common loadings will equal the constant specified in FacLoadRange. If FacLoadDist = "fixed" and FacLoadRange is a vector of length NFac then each factor will have fixed loadings as specified by the associated element in FacLoadRange.
• h2 (vector) An optional vector of communalities used to constrain the population communalities to user-defined values; defaults to h2 = NULL.

CrossLoadings (list)

• ProbCrossLoad (scalar) A value in the (0,1) interval that determines the probability that a cross loading will be present in elements of the loadings matrix that do not have salient (primary) factor loadings. If set to ProbCrossLoad = 1, a single cross loading will be added to each factor; defaults to ProbCrossLoad = 0.
• CrossLoadRange (vector of length 2) Controls size of the crossloadings; defaults to CrossLoadRange= c(.20,.25).
• CrossLoadPositions (matrix) Specifies the row and column positions of (optional) cross-loadings; defaults to CrossLoadPositions = NULL.
• CrossLoadValues (vector) If CrossLoadPositions is specified then CrossLoadValues is a vector of user-supplied cross-loadings; defaults to CrossLoadValues = NULL.
CrudFactor (scalar) Controls the size of tertiary factor loadings. If CrudFactor != 0 then elements of the loadings matrix with neither primary nor secondary (i.e., cross) loadings will be sampled from a \([-\text{CrudFactor}, \text{CrudFactor}]\) uniform distribution; defaults to CrudFactor = 0.

Phi (list)
- MaxAbsPhi (scalar) Upper (absolute) bound on factor correlations; defaults to MaxAbsPhi = .5.
- EigenValPower (scalar) Controls the skewness of the eigenvalues of Phi. Larger values of EigenValPower result in a Phi spectrum that is more right-skewed (and thus closer to a unidimensional model); defaults to EigenValPower = 2.
- PhiType (character); defaults to PhiType = "free".
 - If PhiType = "free" factor correlations will be randomly generated under the constraints of MaxAbsPhi and EigenValPower.
 - If PhiType = "fixed" all factor correlations will equal the value specified in MaxAbsPhi. A fatal error will be produced if Phi is not positive semidefinite.
 - If PhiType = "user" the factor correlations are defined by the matrix specified in UserPhi (see below).
- UserPhi (matrix) A positive semidefinite (PSD) matrix of user-defined factor correlations; defaults to UserPhi = NULL.

ModelError (list)
-ModelError (logical) If ModelError = TRUE model error will be introduced into the factor pattern via the method described by Tucker, Koopman, and Linn (TKL, 1969); defaults to ModelError = FALSE.
- NMinorFac (scalar) Number of minor factors in the TKL model; defaults to NMinorFac = 150.
-ModelErrorType (character) If ModelErrorType = "U" then ModelErrorVar is the proportion of uniqueness variance that is due to model error. If ModelErrorType = "V" then ModelErrorVar is the proportion of total variance that is due to model error; defaults to ModelErrorType = "U".
- ModelErrorVar (scalar [0,1]) The proportion of uniqueness (U) or total (V) variance that is due to model error; defaults to ModelErrorVar = .10.
- epsTKL (scalar [0,1]) Controls the size of the factor loadings in successive minor factors; defaults to epsTKL = .20.
- RSpecific (matrix) Optional correlation matrix for specific factors; defaults to RSpecific = NULL.

Bifactor (list)
- Bifactor (logical) If Bifactor = TRUE parameters for the bifactor model will be generated; defaults to Bifactor = FALSE.
- Hierarchical (logical) If Hierarchical = TRUE then a hierarchical Schmid Leiman (1957) bifactor model will be generated; defaults to Hierarchical = FALSE.
- F1FactorDist (character) Specifies the sampling distribution for the general factor loadings. Possible values are "runif", "rnorm", "sequential", and "fixed"; defaults to F1FactorDist = "sequential".
• **F1FactorRange** (vector of length 1 or 2) Controls the sizes of the general factor loadings in nonhierarchical bifactor models; defaults to \(F1FactorRange = c(0.4, 0.7) \).
 - If \(F1FactorDist = \text{"runif"} \), the vector of length 2 defines the bounds of the uniform distribution, \(c(\text{lower}, \text{upper}) \);
 - If \(F1FactorDist = \text{"rnorm"} \), the vector defines the mean and standard deviation of the normal distribution from which loadings are sampled, \(c(\text{MN}, \text{SD}) \);
 - If \(F1FactorDist = \text{"sequential"} \), the vector specifies the lower and upper bound of the loadings sequence, \(c(\text{lower}, \text{upper}) \).

 MonteCarlo (list)
 - **NSamples** (integer) Defines number of Monte Carlo Samples; defaults to \(\text{NSamples} = 0 \).
 - **SampleSize** (integer) Sample size for each Monte Carlo sample; defaults to \(\text{SampleSize} = 250 \).
 - **Raw** (logical) If \(\text{Raw} = \text{TRUE} \), simulated data sets will contain raw data. If \(\text{Raw} = \text{FALSE} \), simulated data sets will contain correlation matrices; defaults to \(\text{Raw} = \text{FALSE} \).
 - **Thresholds** (list) List elements contain thresholds for each item. Thresholds are required when generating Likert variables.

 FactorScores (list)
 - **FS** (logical) If \(\text{FS} = \text{TRUE} \) (true) factor scores will be simulated; defaults to \(\text{FS} = \text{FALSE} \).
 - **CFSeed** (integer) Optional starting seed for the common factor scores; defaults to \(\text{CFSeed} = \text{NULL} \) in which case a random seed is used.
 - **SFSeed** (integer) Optional starting seed for the specific factor scores; defaults to \(\text{SFSeed} = \text{NULL} \) in which case a random seed is used.
 - **EFSeed** (integer) Optional starting seed for the error factor scores; defaults to \(\text{EFSeed} = \text{NULL} \) in which case a random seed is used. Note that \(\text{CFSeed} \), \(\text{SFSeed} \), and \(\text{EFSeed} \) must be different numbers (a fatal error is produced when two or more seeds are specified as equal).
 - **VarRel** (vector) A vector of manifest variable reliabilities. The specific factor variance for variable \(i \) will equal \(\text{VarRel}[i] - h^2[i] \) (the manifest variable reliability minus its commonality). By default, \(\text{VarRel} = h^2 \) (resulting in uniformly zero specific factor variances).
 - **Population** (logical) If \(\text{Population} = \text{TRUE} \), factor scores will fit the correlational constraints of the factor model exactly (e.g., the common factors will be orthogonal to the unique factors); defaults to \(\text{Population} = \text{FALSE} \).
 - **NFacScores** (scalar) Sample size for the factor scores; defaults to \(\text{NFacScores} = 250 \).
 - **Thresholds** (list) A list of quantiles used to polychotomize the observed data that will be generated from the factor scores.

 Missing (list)
 - **Missing** (logical) If \(\text{Missing} = \text{TRUE} \) all data sets will contain missing values; defaults to \(\text{Missing} = \text{FALSE} \).
• **Mechanism** (character) Specifies the missing data mechanism. Currently, the program only supports missing completely at random (MCAR): `Missing = "MCAR"`.
• **MSProb** (scalar or vector of length `NVar`) Specifies the probability of missingness for each variable; defaults to `MSprob = 0`.

Control (list)
• **Maxh2** (scalar) Rows of the loadings matrix will be rescaled to have a maximum communality of `Maxh2`; defaults to `Maxh2 = .98`.
• **itemReflect** (logical) If `Reflect = TRUE` loadings on the common factors will be randomly reflected; defaults to `Reflect = FALSE`.

Seed (integer) Starting seed for the random number generator; defaults to `Seed = NULL`. When no seed is specified by the user, the program will generate a random seed.

Details

`simFA` was specifically designed to simplify the process of running Monte Carlo studies of factor analysis models. Thus, `simFA` can save all relevant output for a user-specified model. Saved output can be accessed by calling one or more of the following object names.

Value
• **loadings** A common factor or bifactor loadings matrix.
• **Phi** A factor correlation matrix.
• **urloadings** The unrotated loadings matrix.
• **h2** A vector of item commonalities.
• **h2PopME** A vector item commonalities that may include model approximation error.
• **Rpop** The model-implied population correlation matrix.
• **RpopME** The model-implied population correlation matrix with model error.
• **CovMatrices** A list containing:
 – **CovMajor** The model implied covariances from the major factors.
 – **CovMinor** The model implied covariances from the minor factors.
 – **CovUnique** The model implied variances from the uniqueness factors.

Bifactor A list containing:
 – **loadingsHier** Factor loadings of the 1st order solution of a hierarchical bifactor model.
 – **PhiHier** Factor correlations of the 1st order solution of a hierarchical bifactor model.

Scores A list containing:
 – **FactorScores** Factor scores for the common and uniqueness factors.
 – **FacInd** Factor indeterminacy indices for the error free population model.
 – **FacIndME** Factor score indeterminacy indices for the population model with model error.
 – **ObservedScores** A matrix of model implied observed scores. If thresholds were supplied under keyword **FactorScores**, **ObservedScores** will be transformed into Likert scores.
- Monte A list containing output from the Monte Carlo simulations if generated.
- IRTFactor loadings expressed in the normal ogive IRT metric. If thresholds were given then IRT difficulty values will also be returned.
- SeedThe initial seed for the random number generator.
- callA copy of the function call.
- cnA list of all active and nonactive function arguments.

Author(s)
Niels G. Waller

References

Examples

```r
# Ex 1. Three Factor Simple Structure Model with Crossloadings and
# Ideal Nonsalient Loadings
out <- simFA(Seed = 1)
print( round( out$loadings, 2 ) )

# Ex 2. Non Hierarchical bifactor model 3 group factors
# with constant loadings on the general factor
out <- simFA(Bifactor = list(Bifactor = TRUE,
Hierarchical = FALSE,
F1FactorRange = c(.4, .4),
F1FactorDist = "runif"),
Seed = 1)
print( round( out$loadings, 2 ) )
```

skew

Calculate Univariate Skewness for a Vector or Matrix

Description

Calculate univariate skewness for vector or matrix (algorithm G1 in Joanes & Gill, 1998).

Usage

```r
skew(x)
```
SLi

Arguments

x

Either a vector or matrix of numeric values.

Value

Skewness for each column in x.

Author(s)

Niels Waller

References

See Also

kurt

Examples

x <- matrix(rnorm(1000), 100, 10)
skew(x)

SLi

Conduct a Schmid-Leiman Iterated (SLi) Target Rotation

Description

Compute an iterated Schmid-Leiman target rotation (SLi). This algorithm applies Browne’s partially-specified Procrustes target rotation to obtain a full-rank bifactor solution from a rank-deficient (Direct) Schmid-Leiman procedure. Note that the target matrix is automatically generated based on the salient argument. Note also that the algorithm will converge when the partially-specified target pattern in the n-th iteration is equivalent to the partially-specified target pattern in the (n-1)th iteration.

Usage

SLi(
R,
SL = NULL,
rotate = "geominQ",
numFactors = NULL,
facMethod = "fals",
)

sl = 0.2,
urLoadings = NULL,
freelyEstG = TRUE,
gFac = 1,
maxSLi1Tr = 20,
rotateControl = NULL,
faControl = NULL
)

Arguments

R (Matrix) A correlation matrix

SL (Matrix, NULL) A (rank-deficient) Schmid-Leiman (SL) bifactor solution (e.g., from a Schmid-Leiman or Direct Schmid-Leiman rotation). If NULL, the function will estimate the SL solution using the SchmidLeiman function.

rotate (Character) Designate which rotation algorithm to apply. See the faMain function for more details about possible rotations. A geomin rotation is the default.

tofstream (Vector) The number of latent factors at each level of analysis. For example, c(3, 1) estimates three latent factors in the first-order common factor model and one latent factor in the second-order common factor model (i.e., 3 group factors and 1 general factor).

facMethod (Character) The method used for factor extraction (faX). The supported options are "fals" for unweighted least squares, "faml" for maximum likelihood, "fapa" for iterated principal axis factoring, "faregLS" for regularized least squares, "faregML" for regularized maximum likelihood factor using the fareg function, and "pca" for principal components analysis. The default method is "fals".

- "fals": Factors are extracted using the unweighted least squares estimation procedure using the fals function.
- "faml": Factors are extracted using the maximum likelihood estimation procedure using the factanal function.
- "fapa": Factors are extracted using the iterated principal axis factoring estimation procedure using the fapa function.
- "faregLS": Factors are extracted using regularized least squares factor analysis using the fareg function.
- "faregML": Factors are extracted using regularized maximum likelihood factor using the fareg function.
- "pca": Principal components are extracted.

salient (Numeric) A threshold parameter used to dichotomize factor loadings to create the target matrix. The default value is .20 (in absolute value) which is based on the Abad et al., 2017 application of this method.

urLoadings (Matrix, NULL) A full-rank matrix of unrotated factor loadings to be rotated using the (automatically generated) target matrix. If specified as NULL, a full-rank matrix of factor loadings will be extracted using the faX function. An unweighted least squares ("fals") procedure is the default.
freelyEstG (Logical) Specify whether the general factor loadings are freely estimated (in the partially-specified target matrix). If set to FALSE, only general factor loadings above the salient threshold will be estimated in the partially-specified target rotation.

gFac (Numeric, Vector) The position of the general factor(s) to be estimated. Solutions with multiple general factors may be estimated. Must either (a) freely estimate all loadings on the general factors or (b) only freely estimate general factor loadings that are above the salient threshold. The default column position is 1.

maxSLiItr (Numeric) The maximum number of iterations for the SLi procedure. Typically, 10 iterations is usually sufficient to converge (cf. Abad et al., 2017). The default is 20 iterations.

rotateControl (List) A list of control values to pass to the factor rotation algorithms.

- numberStarts: (Numeric) The number of random (orthogonal) starting configurations for the chosen rotation method (e.g., oblimin). The first rotation will always commence from the unrotated factors orientation. Defaults to numberStarts = 10.
- gamma: (Numeric) This is a tuning parameter (between 0 and 1, inclusive) for an oblimin rotation. See the GPArotation library’s oblimin documentation for more details. Defaults to gamma = 0 (i.e., a quartimin rotation).
- delta: (Numeric) This is a tuning parameter for the geomin rotation. It adds a small number (default = .01) to the squared factor loadings before computing the geometric means in the discrepancy function.
- kappa: (Numeric) The main parameterization of the Crawford-Ferguson (CF) rotations (i.e., “cfT” and “cfQ” for orthogonal and oblique CF rotation, respectively). Defaults to kappa = 0.
- k: (Numeric) A specific parameter of the simplimax rotation. Defaults to k = the number of observed variables.
- standardize: (Character) The standardization routine used on the unrotated factor structure. The three options are "none", "Kaiser", and "CM". Defaults to standardize = "none".
 - "none": No standardization is applied to the unrotated factor structure.
 - "Kaiser": Use a factor structure matrix that has been normed by Kaiser’s method (i.e., normalize all rows to have a unit length).
 - "CM": Use a factor structure matrix that has been normed by the Cureton-Mulaik method.
- epsilon: (Numeric) The rotational convergence criterion to use. Defaults to epsilon = 1e-5.
- power: (Numeric) Raise factor loadings the n-th power in the promaxQ rotation. Defaults to power = 4.
- maxItr: (Numeric) The maximum number of iterations for the rotation algorithm. Defaults to maxItr = 15000.

faControl (List) A list of optional parameters passed to the factor extraction (faX) function.

- treatHeywood: (Logical) In false, if treatHeywood is true, a penalized least squares function is used to bound the communality estimates below 1.0. Defaults to treatHeywood = TRUE.
• **nStart**: (Numeric) The number of starting values to be tried in `faml`. Defaults to nStart = 10.

• **start**: (Matrix) NULL or a matrix of starting values, each column giving an initial set of uniquenesses. Defaults to start = NULL.

• **maxCommunality**: (Numeric) In `faml`, set the maximum communality value for the estimated solution. Defaults to maxCommunality = .995.

• **epsilon**: (Numeric) In `fapa`, the numeric threshold designating when the algorithm has converged. Defaults to epsilon = 1e-4.

• **communality**: (Character) The method used to estimate the initial communality values in `fapa`. Defaults to communality = 'SMC'.
 - "SMC": Initial communalities are estimated by taking the squared multiple correlations of each indicator after regressing the indicator on the remaining variables.
 - "maxr": Initial communalities equal the largest (absolute value) correlation in each column of the correlation matrix.
 - "unity": Initial communalities equal 1.0 for all variables.

• **maxItr**: (Numeric) In `fapa`, the maximum number of iterations to reach convergence. Defaults to maxItr = 15,000.

Value

This function iterates the Schmid-Leiman target rotation and returns several relevant output.

• **loadings**: (Matrix) The bifactor solution obtain from the SLi procedure.

• **iterations**: (Numeric) The number of iterations required for convergence

• **rotateControl**: (List) A list of the control parameters passed to the `faMain` function.

• **faControl**: (List) A list of optional parameters passed to the factor extraction (faX) function.

Author(s)

• Casey Giordano (Giord023@umn.edu)

• Niels G. Waller (nwaller@umn.edu)

References

See Also

Other Factor Analysis Routines: `BiFAD()`, `Box26()`, `GenerateBoxData()`, `SchmidLeiman()`, `faAlign()`, `faEKC()`, `faIB()`, `faMB()`, `faMain()`, `faScores()`, `faSort()`, `faStandardize()`, `faX()`, `faS()`, `fapa()`, `fareg()`, `orderFactors()`, `print.faMB()`, `print.faMain()`, `promaxQ()`, `summary.faMB()`, `summary.faMain()`

Examples

```r
## Generate a bifactor model
bifactor <- matrix(c(.35, .61, .00, .00,
                     .35, .61, .00, .00,
                     .35, .61, .00, .00,
                     .35, .00, .61, .00,
                     .35, .00, .61, .00,
                     .35, .00, .61, .00,
                     .35, .00, .00, .61,
                     .35, .00, .00, .61,
                     .35, .00, .00, .61),
nrow = 9, ncol = 4, byrow = TRUE)

## Model-implied correlation (covariance) matrix
R <- bifactor %*% t(bifactor)

## Unit diagonal elements
diag(R) <- 1

Out1 <- SLi(R = R,
            numFactors = c(3, 1))
```

smoothAPA

Smooth a NPD R matrix to PD using the Alternating Projection Algorithm

Description

Smooth a Non positive definite (NPD) correlation matrix to PD using the Alternating Projection Algorithm with Dykstra’s correction via Theory described in Higham 2002.

Usage

```r
smoothAPA(R, delta = 1e-06, fixR = NULL, Wghts = NULL, maxTries = 1000)
```
Arguments

- **delta**: Desired value of the smallest eigenvalue of smoothed matrix, RAPA. (Default = 1e-06).
- **fixR**: User-supplied integer list that instructs the program to constrain elements in RAPA to equal corresponding elements in RAPA. For example if fixR = c(1,2) then smoothed matrix, RAPA[1:2,1:2] = R[1:2,1:2]. Default (fixR = NULL).
- **maxTries**: Maximum number of iterations in the alternating projections algorithm. Default (maxTries = 1000).

Value

- **RAPA**: A smoothed matrix.
- **delta**: User-supplied delta value.
- **Wghts**: User-supplied weight vector.
- **fixR**: User-supplied integer list that instructs the program to constrain elements in RAPA to equal corresponding elements in R.
- **convergence**: A value of 0 indicates that the algorithm located a feasible solution. A value of 1 indicates that no feasible solution was located within maxTries.

Author(s)

Niels Waller

Examples

```r
data(BadRKtB)

# Replicate analyses in Table 2 of Knol and ten Berge (1989).

## n1 = 0,1
out<-smoothAPA(R = BadRKtB, delta = .0, fixR = NULL, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val

## n1 = 2
out<-smoothAPA(R = BadRKtB, fixR =c(1,2), delta=.0, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
```
n1 = 4
out<-smoothAPA(R = BadRKtB, fixR = 1:4, delta=.0, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val

n1 = 5
out<-smoothAPA(R = BadRKtB, fixR = 1:5, delta=0, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val

##
Replicate analyses in Table 3 of Knol and ten Berge (1989).
##

n1 = 0,1
out<-smoothAPA(R = BadRKtB, delta = .05, fixR = NULL, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val

n1 = 2
out<-smoothAPA(R = BadRKtB, fixR =c(1,2), delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val

n1 = 4
out<-smoothAPA(R = BadRKtB, fixR = 1:4, delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val

n1 = 5
out<-smoothAPA(R = BadRKtB, fixR = 1:5, delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val

##
This example illustrates differential variable weighting.
##
Imagine a scenerio in which variables 1 & 2 were collected with
5 times more subjects than variables 4 - 6 then . . .
##
smoothBY

Smooth an NPD R matrix to PD using the Bentler Yuan 2011 method

Description

Smooth a NPD correlation matrix to PD using the Bentler and Yuan method.

Usage

smoothBY(R, const = 0.98, eps = 0.001)

Arguments

- **R**: Indefinite Matrix.
- **const**: const is a user-defined parameter that is defined as k in Bentler and Yuan (2011). If 0 < const < 1, then const is treated as a fixed value. If const = 1 then the program will attempt to find the highest value of const such that R is positive (semi) definite.
- **eps**: If const = 1 then the program will iteratively reduce const by eps until either (a) the program converges or (b) const <= 0.

Value

- **RBY**: smoothed correlation matrix.
- **constant**: The final value of const.
- **convergence**: (Logical) a value of TRUE indicates that the function converged.
- **outStatus**: Convergence state for Rcsdp::csdp function.

0:

Success. Problem solved to full accuracy

1:

Success. Problem is primal infeasible

2:
Success. Problem is dual infeasible
3:

Partial Success. Solution found but full accuracy was not achieved
4:

Failure. Maximum number of iterations reached
5:

Failure. Stuck at edge of primal feasibility
6:

Failure. Stuck at edge of dual infeasibility
7:

Failure. Lack of progress
8:

Failure. X or Z (or Newton system O) is singular
9:

Failure. Detected NaN or Inf values

Authors:
Code modified from that reported in Debelak, R. & Tran, U. S. (2011).

References

Examples
smoothKB

Smooth a Non PD Correlation Matrix using the Knol-Berger algorithm

Description

A function for smoothing a non-positive definite correlation matrix by the method of Knol and Berger (1991).

Usage

smoothKB(R, eps = 1e+08 * .Machine$double.eps)

Arguments

R
A non-positive definite correlation matrix.

eps
Small positive number to control the size of the non-scaled smallest eigenvalue of the smoothed R matrix. Default = 1E8 * .Machine$double.eps

Value

RKB
A Smoothed (positive definite) correlation matrix.

eps
Small positive number to control the size of the non-scaled smallest eigenvalue of the smoothed R matrix.

Author(s)

Niels Waller

References

Examples

data(BadRLG)

RKB = smoothed R
RKB <- smoothKB(R = BadRLG, eps = 1E8 * .Machine$double.eps)$RKB
print(eigen(RKB)$values)

smoothLG

Smooth NPD to Nearest PSD or PD Matrix

Description

Smoothing an indefinite matrix to a PSD matrix via theory described by Lurie and Goldberg

Usage

smoothLG(
 R,
 start.val = NULL,
 Wghts = NULL,
 PD = FALSE,
 Penalty = 50000,
 eps = 1e-07
)

Arguments

- `R` Indefinite Matrix.
- `start.val` Optional vector of start values for Cholesky factor of S.
- `Wghts` An optional matrix of weights such that the objective function minimizes \(wij(rij - sij)^2 \), where \(wij \) is \(Wghts[i,j] \).
- `PD` Logical (default = FALSE). If PD = TRUE then the objective function will smooth the least squares solution to insure Positive Definiteness.
- `Penalty` A scalar weight to scale the Lagrangian multiplier. Default = 50000.
- `eps` A small value to add to zero eigenvalues if smoothed matrix must be PD. Default = 1e-07.

Value

- `RLG` Lurie Goldberg smoothed matrix.
- `RKB` Knol and Berger smoothed matrix.
- `convergence` 0 = converged solution, 1 = convergence failure.
smoothLG

start.val Vector of start.values.
gr Analytic gradient at solution.
Penalty Scalar used to scale the Lagrange multiplier.
PD User-supplied value of PD.
Wghts Weights used to scale the squared euclidean distances.
eps Value added to zero eigenvalue to produce PD matrix.

Author(s)
Niels Waller

Examples

data(BadRLG)

out<-smoothLG(R = BadRLG, Penalty = 50000)
cat("\nGradient at solution: ", out$gr, \\
 "\nNearest Correlation Matrix\n")
print(round(out$RLG,8))

###
Rousseeuw Molenbergh example
data(BadRRM)

out <- smoothLG(R = BadRRM, PD=TRUE)
cat("\nGradient at solution: ", out$gr, \\
 "\nNearest Correlation Matrix\n")
print(round(out$RLG,8))

Weights for the weighted solution
W <- matrix(c(1, 1, .5,
 1, 1, 1,
 .5, 1, 1), nrow = 3, ncol = 3)
tmp <- smoothLG(R = BadRRM, PD = TRUE, eps=.001)
cat("\nGradient at solution: ", out$gr, \\
 "\nNearest Correlation Matrix\n")
print(round(out$RLG,8))
print(eigen(out$RLG)$val)

Rousseeuw Molenbergh
non symmetric matrix
T <- matrix(c(.8, -.9, -.9,
 -1.2, 1.1, .3,
 -.8, .4, .9), nrow = 3, ncol = 3, byrow=TRUE)
out <- smoothLG(R = T, PD = FALSE, eps=.001)
cat("\nGradient at solution: ", out$gr, \\
 "\nNearest Correlation Matrix\n")
print(round(out$RLG,8))
summary.faMain
Summary Method for an Object of Class faMain

Description

This function summarizes results from a call to `faMain`.

Usage

```r
## S3 method for class 'faMain'
summary(
  object,
  digits = 2,
  Set = 1,
  HPthreshold = 0.05,
  PrintLevel = 1,
  DiagnosticsLevel = 1,
  itemSort = FALSE,
  ...
)
```

Arguments

- **object**
 (Object of class `faMain`) The returned object from a call to `faMain`.

- **digits**
 (Integer) Print output with user-specified number of significant digits. Default `digits = 2`.

- **Set**
 The argument `Set` can be specified as either an integer value (i.e., 1 through the number of unique solution sets) or a character value (i.e., 'UnSpun').
 - **Integer** Summarize the solution from the specified solution set. If `Set = 1`, the "global minimum" solution is reported. See `faMain` for more details about finding the "global" and local minima.
 - **'UnSpun'** Summarize the solution from the rotated output that was produced by rotating from the unrotated (i.e., unspun) factor orientation. All other solutions are rotated from a randomly 'spun' rotation (i.e., by orientating the unrotated factor solution via a random orthonormal matrix).

- **HPthreshold**
 (Numeric) User-defined threshold for declaring that the absolute value of a factor pattern coefficient is in a hyperplane. The hyperplane count is the number of near-zero (as defined by HPthreshold; see Cattell, 1978, p. 105) elements in the factor pattern matrix. Default `HPthreshold = .05`.

- **PrintLevel**
 (Integer) Controls the level of printing. If `PrintLevel = 0` then no output is printed. If `PrintLevel = 1` then the standard output will be printed. If `PrintLevel = 2` more extensive output (e.g., the Factor Structure Matrix) will be printed. Default `PrintLevel = 1`.
DiagnosticsLevel

=Integer) Controls the amount of diagnostics information that is computed on the rotation local minima. If DiagnosticsLevel = 1 then only the number of local solution sets will be reported. If DiagnosticsLevel = 2 then the program will determine whether all solutions within a solution set are identical. Default DiagnosticsLevel = 1.

itemSort

=TRUE, sort the order of the observed variables to produce a "staircase"-like pattern. Note that this argument cannot handle bifactor models at this time. Defaults to itemSort = FALSE.

Additional arguments affecting the summary produced.

Details

`summary.faMain` provides various criteria for judging the adequacy of the rotated factor solution(s). After reporting the number of solution sets, (i.e., rotated solutions with the same complexity value) the following measures of factor adequacy are reported for each solution set:

- **Complexity Value**: The rotation complexity value (see `faMain` for details).
- **Hyperplane Count**: The number of near-zero loadings (defined by `HPthreshold`) for all factor patterns in a solution set (if `MaxWithinSetRMSD > 0` then Hyperplane Count refers to the first factor pattern in the solution set).
- **% Cases (x 100) in Set**: The percentage of factor patterns in each solution set.
- **RMSD**: The root mean squared deviation between the first factor pattern in each solution set with the first factor pattern in the solution set specified by the Set parameter. By default, Set = 1.
- **MaxWithinSetRMSD**: The maximum root mean squared deviation between all within set solutions and the first element in the solution set. When `MaxWithinSetRMSD > 0` then the solution set contains non-identical rotated factor patterns with identical complexity values.
- **Converged**: A Logical (TRUE/FALSE) that indicates whether all within set rotations converged.

Note that the printed factor pattern is not sorted even if itemSort is requested in `faMain`.

Value

- **loadings (Matrix)** Factor loadings for the solution associated with the minimum (maximum) rotation complexity value (default) or the user-chosen solution.
- **Phi** (Matrix) Factor correlation matrix for the solution associated with the minimum (maximum) rotation complexity value (default) or the user-chosen solution.
- **FS** (Matrix) Factor structure matrix for the solution associated with the minimum (maximum) rotation complexity value (default) or the user-chosen solution.
- **Set** (Integer) The returned Set number.
- **h2** (Matrix) Communalities for the returned factor solution. If `Bootstrap = TRUE` then h2 also returns the bootstrap standard errors and associated confidence bounds from the bootstrap distribution.
• facIndeterminacyMatrix Factor Indeterminacy values. If Bootstrap = TRUE then facIndeterminacy
also returns the bootstrap standard errors and associated confidence bounds from the bootstrap
distribution.
• SetComplexityValues (vector) Rotation complexity value for each solution set.
• HP_counts (vector) Hyperplane count for each solution set.
• MaxWithinSetRMSD (vector) If DiagnosticsLevel = 2 the the program will compute within
set RMSD values. These values represent the root mean squared deviations of each within set
solution with the first solution in a set. If the MaxWithinSetRMSD = 0 for a set, then all within
set solutions are identical. If MaxWithinSetRMSD > 0 then at least one solution differs from
the remaining solutions within a set (i.e., two solutions with different factor loadings produced
identical complexity values).
• RMSD (Numeric) The root mean squared deviation between the observed and model-implied
correlation matrix.
• RMSD (Numeric) The root mean squared absolute deviation between the observed and model-
implied correlation matrix.
• NumberLocalSolutions (Integer) The number of local solution sets.
• LocalSolutions (List) A list of local solutions (factor loadings, factor correlations, etc).
• rotate Designates which rotation method was applied.

Author(s)
• Niels G. Waller (nwaller@umn.edu)
• Casey Giordano (Giord023@umn.edu)

References
New York, Plenum.

See Also
Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi()
SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize()
faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ()
summary.faMB()

Examples
Load Thurstone's Box data from the fungible library
library(fungible)
data(Box26)

Create a matrix from Thurstone's solution
Used as a target matrix to sort columns of the estimated solution
ThurstoneSolution <- matrix(c(.95, .01, .01,
 .02, .92, .01,
 .02, .05, .91,
 })
Example 1: Multiple solution sets.

Ignore warnings about non-positive definite sample correlation matrix

```r
suppressWarnings(
  fout <- faMain(R = Box26,
    numFactors = 3,
    facMethod = 'faregLS',
    rotate = 'infomaxQ',
    targetMatrix = ThurstoneSolution,
    rotateControl =
      list(numberStarts = 25, ## increase in real problem
           standardize = 'none'),
    Seed = 123)
)
```

Summarize the factor analytic output

```r
summary(object = fout,
    digits = 2,
    Set = 2,
    HPthreshold = .10,
    PrintLevel = 1,
    DiagnosticsLevel = 2)
```

Example 2: Bootstrap Illustration

Step 1: In an initial analysis, confirm that all rotations converge to a single minimum complexity value.

Step 2: If Step 1 is satisfied then generate bootstrap samples.

Load Amazon box data
data("AmzBoxes")

Convert box dimensions into Thurstone's indicators
BoxData <- GenerateBoxData(AmzBoxes[, 2:4], ## Select columns 2, 3, & 4
 BoxStudy = 26, ## 26 indicators
 Reliability = 0.75, ## Add unreliability
 SampleSize = 200, ## Add sampling error
 ModApproxErrVar = 0.1, ## Add model approx error
 NMinorFac = 50, ## Number of minor factors
 epsTKL = 0.2, ## Spread of minor factor influence
 SeedErrorFactors = 1, ## Reproducible starting seed
 SeedMinorFactors = 2, ## Reproducible starting seed
 PRINT = FALSE, ## Suppress some output
 LB = FALSE, ## Do not set lower-bounds
 LBVal = 1, ## Lower bound value (ignored)
 Constant = 0) ## Do not add constant to data

Analyze new box data with added measurement error
fout <- faMain(X = BoxData$BoxDataE,
 numFactors = 3,
 facMethod = 'fapa',
 rotate = 'infomaxQ',
 targetMatrix = ThurstoneSolution,
 bootstrapSE = FALSE,
 rotateControl =
 list(numberStarts = 25, ## increase in real problem
 standardize = 'CM'),
 Seed = 1)

Summarize factor analytic output
sout <- summary(object = fout,
 Set = 1,
 PrintLevel = 1)

Generate bootstrap samples
fout <- faMain(X = BoxData$BoxDataE,
 numFactors = 3,
 facMethod = 'fapa',
 rotate = 'infomaxQ',
 targetMatrix = ThurstoneSolution,
 bootstrapSE = TRUE,
 numBoot = 25, ## increase in real problem
 rotateControl =
 list(numberStarts = 1,
 standardize = 'CM'),
 Seed = 1)

Summarize factor analytic output with bootstraps
sout <- summary(object = fout,
 Set = 1,
 PrintLevel = 2)
Summary Method for an Object of Class faMB

Description

This function summarizes results from a call to \texttt{faMB}.

Usage

```r
## S3 method for class 'faMB'
summary(
  object,
  digits = 2,
  Set = 1,
  HPthreshold = 0.05,
  PrintLevel = 1,
  DiagnosticsLevel = 1,
  ...
)
```

Arguments

- **object** (Object of class \texttt{faMB}) The returned object from a call to \texttt{faMB}.
- **digits** (Integer) Print output with user-specified number of significant digits. Default \texttt{digits = 2}.
- **Set** The argument \texttt{Set} can be specified as either an integer value (i.e., 1 through the number of unique solution sets) or a character value (i.e., 'UnSpun').
 - **Integer** Summarize the solution from the specified solution set. If \texttt{Set = 1}, the "global minimum" solution is reported. See \texttt{faMain} for more details about finding the "global" and local minima.
 - **'UnSpun'** Summarize the solution from the rotated output that was produced by rotating from the unrotated (i.e., unspun) factor orientation. All other solutions are rotated from a randomly 'spun' rotation (i.e., by orientating the unrotated factor solution via a random orthonormal matrix).
- **HPthreshold** (Numeric) User-defined threshold for declaring that the absolute value of a factor pattern coefficient is in a hyperplane. The hyperplane count is the number of near-zero (as defined by \texttt{HPthreshold}; see Cattell, 1978, p. 105) elements in the factor pattern matrix. Default \texttt{HPthreshold = .05}.
PrintLevel (Integer) Controls the level of printing. If PrintLevel = 0 then no output is printed. If PrintLevel = 1 then the standard output will be printed. If PrintLevel = 2 more extensive output (e.g., the Factor Structure Matrix, the Residuals Matrix [i.e., Observed - fitted R]) will be printed. Default PrintLevel = 1.

DiagnosticsLevel (Integer) Controls the amount of diagnostics information that is computed on the rotation local minima. If DiagnosticsLevel = 1 then only the number of local solution sets will be reported. If DiagnosticsLevel = 2 then the program will determine whether all solutions within a solution set are identical. Default DiagnosticsLevel = 1.

... Additional arguments affecting the summary produced.

Details

summary.faMB provides various criteria for judging the adequacy of the rotated factor solution(s). After reporting the number of solution sets (i.e., rotated solutions with the same complexity value) the following measures of factor adequacy are reported for each solution set:

- **Complexity Value**: The rotation complexity value (see faMain for details).
- **Hyperplane Count**: The number of near-zero loadings (defined by HPthreshold) for all factor patterns in a solution set (if MaxWithinSetRMSD > 0 then Hyperplane Count refers to the first factor pattern in the solution set).
- **% Cases (x 100) in Set**: The percentage of factor patterns in each solution set.
- **RMSD**: The root mean squared deviation between the first factor pattern in each solution set with the first factor pattern in the solution set specified by the Set parameter. By default, Set = 1.
- **MaxWithinSetRMSD**: The maximum root mean squared deviation between all within set solutions and the first element in the solution set. When MaxWithinSetRMSD > 0 then the solution set contains non-identical rotated factor patterns with identical complexity values.
- **Converged**: A Logical (TRUE/FALSE) that indicates whether all within set rotations converged.

Value

- **loadings** (Matrix) Factor loadings for the solution associated with the minimum (maximum) rotation complexity value (default) or the user-chosen solution.
- **Phi** (Matrix) Factor correlation matrix for the solution associated with the minimum (maximum) rotation complexity value (default) or the user-chosen solution.
- **FS** (Matrix) Factor structure matrix for the solution associated with the minimum (maximum) rotation complexity value (default) or the user-chosen solution.
- **Set** (Integer) The returned Set number.
- **facIndeterminacy** (Matrix) Factor Indeterminacy values.
- **SetComplexityValues** (vector) Rotation complexity value for each solution set.
- **HP_counts** (vector) Hyperplane count for each solution set.
• MaxWithinSetRMSD (vector) If DiagnosticsLevel = 2 the program will compute within set RMSD values. These values represent the root mean squared deviations of each within set solution with the first solution in a set. If the MaxWithinSetRMSD = 0 for a set, then all within set solutions are identical. If MaxWithinSetRMSD > 0 then at least one solution differs from the remaining solutions within a set (i.e., two solutions with different factor loadings produced identical complexity values).

• ChiSq (Numeric) Chi-square goodness of fit value. As recommended by Browne (1979), we apply Lawley’s (1959) correction when computing the chi-square value when NB = 2.

• DF (Numeric) Degrees of freedom for the estimated model.

• pvalue (Numeric) P-value associated with the above chi-square statistic.

• AIC (Numeric) Akaike’s Information Criterion where a lower value indicates better fit.

• BIC (Numeric) Bayesian Information Criterion where a lower value indicates better fit.

• RMSEA (Numeric) The root mean squared error of approximation (Steiger & Lind, 1980).

• Resid (Matrix) The residuals matrix (R - Rhat).

• NumberLocalSolutions (Integer) The number of local solution sets.

• LocalSolutions (List) A list of local solutions (factor loadings, factor correlations, etc).

• rotate Designates which rotation method was applied.

Author(s)

• Niels G. Waller (nwaller@umn.edu)
• Casey Giordano (Giord023@umn.edu)

References

See Also

Other Factor Analysis Routines: BiFAD(), Box26, GenerateBoxData(), Ledermann(), SLi(), SchmidLeiman(), faAlign(), faEKC(), faIB(), faMB(), faMain(), faScores(), faSort(), faStandardize(), faX(), fals(), fapa(), fareg(), orderFactors(), print.faMB(), print.faMain(), promaxQ(), summary.faMain()
data(Thurstone41)

Example1Output <- faMB(R = Thurstone41,
 n = 710,
 NB = 2,
 NVB = c(4,5),
 numFactors = 2,
 rotate = "oblimin",
 rotateControl = list(standardize = "Kaiser"))

Call the summary function
summary(Example1Output)

----EXAMPLE 2: Browne, M. W. (1980)----
Data originally reported in:
Jackson, D. N. & Singer, J. E. (1967). Judgments, items and
personality. Journal of Experimental Research in Personality, 20, 70-79.

Load Jackson and Singer's dataset
data(Jackson67)

Example2Output <- faMB(R = Jackson67,
 n = 480,
 NB = 5,
 NVB = rep(4,5),
 numFactors = 4,
 rotate = "varimax",
 rotateControl = list(standardize = "Kaiser"),
 PrintLevel = 1)

Call the summary function
summary(object = Example2Output,
 Set = 1,
 PrintLevel = 1)

----EXAMPLE 3: Cudeck (1982)----
Data originally reported by:
The interrelationships among some associative learning tasks.
Bulletin of the Psychonomic Society, 13(3), 121-123. DOI: 10.3758/BF03335032

Load Malmi et al.'s dataset
data(Malmi79)

Example3Output <- faMB(R = Malmi79,
 n = 97,
 NB = 3,
 NVB = c(3, 3, 6),
 numFactors = 2,
 rotate = "oblimin",
 rotateControl = list(standardize = "Kaiser"))

Call the summary function
summary(object = Example3Output,
 Set = 1,
 PrintLevel = 2)

----Example 4: Cudeck (1982)----
Data originally reported by:
Alternative methods of analysis: Multitrait-multimethod data. Educational
and Psychological Measurement, 30,833-853.

Load Boruch et al.'s dataset
data(Boruch70)

Example4Output <- faMB(R = Boruch70,
 n = 111,
 NB = 2,
 NVB = c(7,7),
 numFactors = 2,
 rotate = "oblimin",
 rotateControl = list(standardize = "Kaiser",
 numberStarts = 100))

Call the summary function
summary(Example4Output)

summary.monte

Summary Method for an Object of Class Monte

Description

summary method for class "monte"

Usage

S3 method for class 'monte'
summary(
 object,
 digits = 3,
 compute.validities = FALSE,
 Total.stats = TRUE,
 ...
)

Arguments

object An object of class monte, usually, a result of a call to monte.
digits Number of digits to print. Default = 3.
compute.validities
 Logical: If TRUE then the program will calculate the indicator validities (eta^2) for the generated data.

Total.stats
 Logical: If TRUE then the program will return the following statistics for the total sample: (1) indicator correlation matrix, (2) indicator skewness, (3) indicator kurtosis.

... Optional arguments.

Value

Various descriptive statistics will be computed within groups including:

1. clus.size Number of objects within each group.
2. centroids Group centroids.
3. var.matrix Within group variances.
4. Ratio of within group variances (currently printed but not saved.
5. cor.list Expected within group correlations.
6. obs.cor Observed within group correlations.
7. skew.list Expected within group indicator skewness values.
8. obs.skew Observed within group indicator skewness values.
9. kurt.list Expected within group indicator kurtosis values.
10. obs.kurt Observed within group indicator kurtosis values.
11. validities Observed indicator validities.
12. Total.cor Total sample correlation matrix.
13. Total.skew Total sample indicator skewness.
14. Total.kurt Total sample indicator kurtosis.

Examples

```r
## set up a 'monte' run for the Fisher iris data

sk.lst <- list(c(0.120, 0.041, 0.106, 1.254),
               c(0.105, -0.363, -0.607, -0.031),
               c(0.118, 0.366, 0.549, -0.129))
kt.lst <- list(c(-0.253, 0.955, 1.022, 1.719),
               c(-0.533,-0.366, 0.048,-0.410),
               c( 0.033, 0.706, -0.154, -0.602))
cormat <- lapply(split(iris[,1:4],iris[,5]), cor)
my.iris <- monte(seed = 123, nvar = 4, nclus = 3, cor.list = cormat,
                 clus.size = c(50, 50, 50),
                 eta2 = c(0.619, 0.401, 0.941, 0.929),
```

summary.monte1

Summary Method for an Object of Class Monte1

Description

summary method for class "monte1"

Usage

S3 method for class 'monte1'
summary(object, digits = 3, ...)

Arguments

object An object of class monte1, usually, a result of a call to monte1.
digits Number of significant digits to print in final results.
... Additional argument affecting the summary produced.

Value

Various descriptive statistics will be computed including

1. Expected correlation matrix.
2. Observed correlation matrix.
3. Expected indicator skewness values.
4. Observed indicator skewness values.
5. Expected indicator kurtosis values.
6. Observed indicator kurtosis values.

Examples

Generate dimensional data for 4 variables.
All correlations = .60; all variable
skewness = 1.75;
all variable kurtosis = 3.75

cormat <- matrix(.60, 4, 4)
diag(cormat) <- 1

random.cor = FALSE,
skew.list = sk.lst, kurt.list = kt lst,
secor = .3,
compactness = c(1, 1, 1),
sortMeans = TRUE)

summary(my.iris)
nontaxon.dat <- monte1(seed = 123, nsub = 100000, nvar = 4, skewvec = rep(1.75, 4),
 kurtvec = rep(3.75, 4), cormat = cormat)

summary(nontaxon.dat)

svdNorm Compute theta surrogates via normalized SVD scores

Description
Compute theta surrogates by calculating the normalized left singular vector of a (mean-centered)
data matrix.

Usage
svdNorm(data)

Arguments
data N(subjects)-by-p(items) matrix of 0/1 item response data.

Value
the normalized left singular vector of the mean centered data matrix.
svdNorm will center the data automatically.

Author(s)
Niels Waller

Examples
NSubj <- 2000

example item parameters for sample data: k=1 FMP
b <- matrix(c(#b0 b1 b2 b3 b4 b5 b6 b7 k
 1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,
 1.550, 1.805, -0.230, 0.032, 0, 0, 0, 0, 1,
 1.282, 1.063, -0.103, 0.003, 0, 0, 0, 0, 1,
 1.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
 1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,
 -0.008, 1.349, -0.195, 0.144, 0, 0, 0, 0, 1,
 0.512, 1.538, -0.089, 0.082, 0, 0, 0, 0, 1,
 0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,
 1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1),
 nvar = 4))
-0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1, 0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1, -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1, 0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1, 1.030, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1, 0.140, 1.209, 0.082, 0.148, 0, 0, 0, 0, 1, 0.429, 1.480, -0.008, 0.061, 0, 0, 0, 0, 1, 0.089, 0.785, -0.065, 0.018, 0, 0, 0, 0, 1, -0.516, 1.013, 0.016, 0.023, 0, 0, 0, 0, 1, 0.143, 1.315, -0.011, 0.136, 0, 0, 0, 0, 1, 0.347, 0.733, -0.121, 0.041, 0, 0, 0, 0, 1, -0.274, 0.869, 0.013, 0.026, 0, 0, 0, 0, 1, 0.030, 1.844, -0.301, 0.000, 0, 0, 0, 0, 1, nrow=23, ncol=9, byrow=TRUE)

generate data using the above item parameters
data<-genFMPData(NSubj=NSubj, bParam=b, seed=345)$data

compute (initial) surrogate theta values from
the normed left singular vector of the centered
data matrix
thetaInit<-svdNorm(data)

tetcor

Compute ML Tetrachoric Correlations

Description

Compute ML tetrachoric correlations with optional bias correction and smoothing.

Usage

```r
tetcor(  
  X,  
  y = NULL,  
  BiasCorrect = TRUE,  
  stderr = FALSE,  
  Smooth = TRUE,  
  max.iter = 5000,  
  PRINT = TRUE  
)
```

Arguments

- **X**
 Either a matrix or vector of (0/1) binary data.

- **y**
 An optional(if X is a matrix) vector of (0/1) binary data.

- **BiasCorrect**
 A logical that determines whether bias correction (Brown & Benedetti, 1977) is performed. Default = TRUE.
tetcor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stderror</td>
<td>A logical that determines whether standard errors are calculated. Default = FALSE.</td>
</tr>
<tr>
<td>Smooth</td>
<td>A logical which determines whether the tetrachoric correlation matrix should be smoothed. A smoothed matrix is always positive definite.</td>
</tr>
<tr>
<td>max.iter</td>
<td>Maximum number of iterations. Default = 50.</td>
</tr>
<tr>
<td>PRINT</td>
<td>A logical that determines whether to print progress updates during calculations. Default = TRUE</td>
</tr>
</tbody>
</table>

Value

If stderror = FALSE, tetcor returns a matrix of tetrachoric correlations. If stderror = TRUE then tetcor returns a list the first component of which is a matrix of tetrachoric correlations and the second component is a matrix of standard errors (see Hamdan, 1970).

Author(s)

Niels Waller

References

Examples

```r
## generate bivariate normal data
library(MASS)
set.seed(123)
rho <- .85
xy <- mvrnorm(100000, mu = c(0,0), Sigma = matrix(c(1, rho, rho, 1), ncol = 2))

# dichotomize at difficulty values
p1 <- .7
p2 <- .1
xy[,1] <- xy[,1] < qnorm(p1)
xy[,2] <- xy[,2] < qnorm(p2)

print(apply(xy,2,mean), digits = 2)
# [1] 0.700  0.099

tetcor(X = xy, BiasCorrect = TRUE,
       stderror = TRUE, Smooth = TRUE, max.iter = 5000)
# $r
# [,1] [,2]
# [1,] 1.0000000 0.8552535
```
tetcorQuasi

Correlation between a Naturally and an Artificially Dichotomized
Variable

description

A function to compute Ulrich and Wirtz's correlation of a naturally and an artificially dichotomized
variable.

Usage

tetcorQuasi(x, y = NULL)

Arguments

x An N x 2 matrix or an N x 1 vector of binary responses coded 0/1.

y An optional (if x is a vector) vector of 0/1 responses.

Value

A quasi tetrachoric correlation

...

Author(s)

Niels Waller

References

Examples

```r
set.seed(321)
Nsubj <- 5000

## Generate mvn data with rxy = .5
R <- matrix(c(1, .5, .5, 1), 2, 2)
X <- MASS::mvrnorm(n = Nsubj, mu = c(0, 0), Sigma = R, empirical = TRUE)

## dichotomize data
thresholds <- qnorm(c(.2, .3))
binaryData <- matrix(0, Nsubj, 2)
for(i in 1:2){
  binaryData[X[,i] <= thresholds[i],i] <- 1
}

## calculate Pearson correlation
cat("Pearson r: ", round(cor(X)[1,2], 2))

## calculate Pearson Phi correlation
cat("Phi r: ", round(cor(binaryData)[1,2], 2))

## calculate tetrachoric correlation
cat("\nTetrachoric r: ", round(tetcor(binaryData)$r[1,2], 2))

## calculate Quasi-tetrachoric correlation
cat("\nQuasi-tetrachoric r: ", round(tetcorQuasi(binaryData), 2))
```

Thurstone41

Multi-Trait Multi-Method correlation matrix reported by Thurstone and Thurstone (1941).

Description

The original study assessed a total of 63 variables. However, we report the 9 variables, across 2 tests, used to reproduce the multiple battery factor analyses of Browne (1979).

Usage

```r
data(Thurstone41)
```

Format

A 9 by 9 correlation matrix with dimension names
Details

The sample size is \(n = 710 \).

The following variables were assessed (abbreviations in parentheses): **Variables**:

- **Test #1** (X)
 - Prefixes (Prefix)
 - Suffixes (Suffix)
 - Sentences (Sentences)
 - Chicago Reading Test: Vocabulary (Vocab)
 - Chicago Reading Test: Sentences (Sentence)

- **Test #2** (Y)
 - First and Last Letters (FLLetters)
 - First Letters (Letters)
 - Four-Letter Words (Words)
 - Completion (Completion)
 - Same and Opposite (SameOpposite)

Source

Examples

```r
## Load Thurstone & Thurstone's data used by Browne (1979)
data(Thurstone41)
Example1Output <- faMB(R = Thurstone41, 
                      n = 710, 
                      NB = 2, 
                      NVB = c(4,5), 
                      numFactors = 2, 
                      rotate = "oblimin", 
                      rotateControl = list(standardize = "Kaiser"))

summary(Example1Output, PrintLevel = 2)
```

ThurstoneBox20

Factor Pattern and Factor Correlations for Thurstone’s 20 hypothetical box attributes.

Description

Factor Pattern and Factor Correlations for Thurstone’s 20 hypothetical box attributes.
Usage

```r
data(ThurstoneBox20)
```

Format

This is a list containing the Loadings (original factor pattern) and Phi matrix (factor correlation matrix) from Thurstone's 20 Box problem (Thurstone, 1940, p. 227). The original 20-variable Box problem contains measurements on the following score functions of box length (x), width (y), and height (z). **Box20** variables:

1. \(x^2\)
2. \(y^2\)
3. \(z^2\)
4. \(xy\)
5. \(xz\)
6. \(yz\)
7. \(\sqrt{x^2 + y^2}\)
8. \(\sqrt{x^2 + z^2}\)
9. \(\sqrt{y^2 + z^2}\)
10. \(2x + 2y\)
11. \(2x + 2z\)
12. \(2y + 2z\)
13. \(\log(x)\)
14. \(\log(y)\)
15. \(\log(z)\)
16. \(xyz\)
17. \(\sqrt{x^2 + y^2 + z^2}\)
18. \(\exp(x)\)
19. \(\exp(y)\)
20. \(\exp(z)\)

Details

Two data sets have been described in the literature as Thurstone’s Box Data (or Thurstone’s Box Problem). The first consists of 20 measurements on a set of 20 hypothetical boxes (i.e., Thurstone made up the data). Those data are available in **Box20**.

References

See Also

AmzBoxes, Box20, Box26, GenerateBoxData

Examples

```r
data(ThurstoneBox20)
ThurstoneBox20
```

ThurstoneBox26

Factor Pattern Matrix for Thurstone’s 26 box attributes.

Description

Factor Pattern Matrix for Thurstone’s 26 box attributes.

Usage

```r
data(ThurstoneBox26)
```

Format

The original factor pattern (3 graphically rotated centroid factors) from Thurstone’s 26 hypothetical box data as reported by Thurstone (1947, p. 371). The so-called Thurstone invariant box problem contains measurements on the following 26 functions of length (x), width (y), and height (z). **Box26** variables:

1. x
2. y
3. z
4. xy
5. xz
6. yz
7. x^2 * y
8. x * y^2
9. x^2 * z
10. x * z^2
11. y^2 * z
12. y * z^2
13. x/y
14. y/x
15. x/z
16. z/x
17. y/z
18. z/y
19. $2x + 2y$
20. $2x + 2z$
21. $2y + 2z$
22. $\sqrt{x^2 + y^2}$
23. $\sqrt{x^2 + z^2}$
24. $\sqrt{y^2 + z^2}$
25. xyz
26. $\sqrt{x^2 + y^2 + z^2}$

Details

Two data sets have been described in the literature as Thurstone’s Box Data (or Thurstone’s Box Problem). The first consists of 20 measurements on a set of 20 hypothetical boxes (i.e., Thurstone made up the data). Those data are available in `Box20`. The second data set was collected by Thurstone to provide an illustration of the invariance of simple structure factor loadings. In his classic textbook on multiple factor analysis (Thurstone, 1947), Thurstone states that “[m]easurements of a random collection of thirty boxes were actually made in the Psychometric Laboratory and recorded for this numerical example. The three dimensions, x, y, and z, were recorded for each box. A list of 26 arbitrary score functions was then prepared” (p. 369). The raw data for this example were not published. Rather, Thurstone reported a correlation matrix for the 26 score functions (Thurstone, 1947, p. 370). Note that, presumably due to rounding error in the reported correlations, the correlation matrix for this example is non positive definite. This file includes the rotated centroid solution that is reported in his book (Thurstone, 1947, p. 371).

References

See Also

`Box20`, `AmzBoxes`

Examples

data(ThurstoneBox26)
ThurstoneBox26
vcos

Compute the Cosine Between Two Vectors

Description
Compute the cosine between two vectors.

Usage
vcos(x, y)

Arguments
- **x**: A p x 1 vector.
- **y**: A p x 1 vector.

Value
Cosine between x and y

Examples
```r
x <- rnorm(5)
y <- rnorm(5)
vcos(x, y)
```

vnorm

Norm a Vector to Unit Length

Description
Norm a vector to unit length.

Usage
vnorm(x)

Arguments
- **x**: An n by 1 vector.

Value
the scaled (i.e., unit length) input vector
Author(s)
Niels Waller

Examples

```r
x <- rnorm(5)
v <- vnorm(x)
print(v)
```
Index

*Topic Multiple
 Boruch70, 16
 Jackson67, 104
 Malmi79, 108
 Thurstone41, 187
*Topic Statistics
 adfCor, 4
 adfCov, 5
 corSmooth, 21
 d2r, 24
 eigGen, 26
 faAlign, 30
 faEKC, 34
 fals, 41
 kurt, 106
 normalCor, 119
 r2d, 130
 rcor, 133
 seBeta, 148
 seBetaCor, 150
 seBetaFixed, 151
 skew, 158
 smoothKB, 168
 tetcor, 184
 tetcorQuasi, 186
 vcos, 192
*Topic Statistics
 faSort, 65
*Topic battery
 Boruch70, 16
 Jackson67, 104
 Malmi79, 108
 Thurstone41, 187
*Topic datagen
 bigen, 14
 corSample, 20
 enhancement, 28
 genCorr, 91
 monte, 110
 montel, 118
 rarc, 130
 rcone, 132
 rellipsoid, 134
 rGivens, 137
 rMAP, 138
*Topic datasets
 AmzBoxes, 6
 Box20, 17
 Box26, 18
 HS9Var, 99
 HW, 100
 ThurstoneBox20, 188
 ThurstoneBox26, 190
*Topic fungible
 faAlign, 30
 fungible, 75
 fungibleExtrema, 77
 fungibleL, 79
 fungibleR, 81
 RnpdMAP, 141
*Topic statistics
 BadRBY, 7
 BadRJN, 8
 BadRktB, 8
 BadRLG, 9
 BadRRM, 9
 eap, 25
 erf, 29
 faMAP, 50
 FMP, 71
 FMPMonotonicityCheck, 75
 FUP, 86
 gen4PMData, 89
 genFMPData, 96
 irf, 101
 itemDescriptives, 103
 normF, 120
 restScore, 135

194
INDEX

smoothAPA, 163
smoothBY, 166
smoothLG, 169
svdNorm, 183
vnorm, 192

*Topic stats
 genPhi, 98
 rmsd, 140
 simFA, 153

adfCor, 4, 120
adfCov, 5
AmzBoxes, 6, 20, 190, 191

BadRBY, 7
BadRJN, 8
BadRKB, 8
BadRLG, 9
BadRMM, 9
BiFAD, 10, 20, 32, 35, 39, 42, 48, 56, 59, 61,
 64, 66, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 178
bigen, 14
Boruch70, 16
Box20, 17, 20, 190, 191
Box26, 12, 18, 22, 35, 39, 42, 48, 56, 59, 61,
 64, 66, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 178

ceiling, 107
cor, 45
corSample, 20
corSmooth, 21
cosMat, 22
d2r, 24
eap, 25
eigGen, 26
enhancement, 28
erf, 29

faAlign, 12, 20, 30, 35, 39, 42, 48, 56, 59, 61,
 64, 66, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 178
factanal, 10, 43, 69, 126, 145, 160
faEKC, 12, 20, 32, 34, 39, 42, 48, 56, 59, 61,
 64, 66, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 178
faIB, 12, 20, 32, 35, 39, 42, 48, 56, 59, 61, 64,
 66, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 178
fals, 10, 12, 20, 32, 35, 39, 41, 43, 48, 56, 59,
 61, 64, 66, 68, 71, 96, 108, 123–126, 129, 145, 147, 160, 163,
 173, 178
faMain, 10, 12, 20, 32, 35, 39, 42, 48, 52, 56,
 59, 61, 64, 66, 68, 71, 96, 108, 123–125, 129, 147, 148, 160, 162,
 163, 171–173, 176–178
faMAP, 50
faMB, 12, 20, 32, 35, 39, 42, 48, 52, 59, 61, 64,
 66, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 176, 178
fapa, 10, 12, 20, 32, 35, 39, 42, 43, 48, 56, 57,
 61, 64, 66, 68, 69, 71, 96, 108, 123–126, 129, 145, 147, 160, 163,
 173, 178
fareg, 10, 12, 20, 32, 35, 39, 42, 43, 48, 56, 59,
 60, 64, 66, 68, 69, 71, 96, 108, 123–126, 129, 145, 147, 160, 163,
 173, 178
faScores, 12, 20, 32, 35, 39, 42, 48, 56, 59,
 61, 64, 66, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 178
faSort, 12, 20, 32, 35, 39, 42, 48, 56, 59, 61,
 64, 65, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 178
faStandardize, 12, 20, 32, 35, 39, 42, 48, 56,
 59, 61, 64, 66, 67, 71, 96, 108, 123–126, 129, 147, 163, 173, 178
fax, 10–12, 20, 32, 35, 39, 42–44, 47, 48, 56,
 59, 61, 64, 66, 68, 69, 96, 108, 123–127, 129, 145, 147, 160–163,
 173, 178
floor, 107
FMP, 71
FMPMonotonicityCheck, 74
fungible, 75
fungibleExtrema, 77
fungibleL, 79
fungibleR, 81
FUP, 86
gen4PMData, 89
genCorr, 91, 134
GenerateBoxData, 12, 20, 32, 35, 39, 42, 48,
 56, 59, 61, 64, 66, 68, 71, 92, 108,
genFMPData, 96
genPhi, 98
GPForth, 128
HS9Var, 99
HW, 100

irf, 101
itemDescriptives, 103
Jackson67, 104
kurt, 106, 159

Ledermann, 12, 20, 32, 35, 39, 42, 48, 56, 59, 61, 64, 66, 68, 71, 96, 107, 123–125, 129, 147, 163, 173, 178

Malmi79, 108
monte, 110, 119
montel, 118

normalCor, 119
normF, 120

Omega, 121
orderFactors, 12, 20, 32, 35, 39, 42, 48, 56, 59, 61, 64, 66, 68, 71, 96, 108, 122, 124, 125, 129, 147, 163, 173, 178

plot.monte, 123
print.faMain, 12, 20, 32, 35, 39, 42, 48, 56, 59, 61, 64, 66, 68, 71, 96, 108, 123, 124, 125, 129, 147, 163, 173, 178
print.faMB, 12, 20, 32, 35, 39, 42, 48, 56, 59, 61, 64, 66, 68, 71, 96, 108, 123, 124, 125, 129, 147, 163, 173, 178
print.summary.monte (summary.monte), 180
print.summary.montel (summary.montel), 182
promax, 125
promaxQ, 11, 12, 20, 32, 35, 37, 39, 42, 45, 48, 54, 56, 59, 61, 64, 66, 68, 71, 96, 108, 123–125, 125, 146, 147, 161, 163, 173, 178

r2d, 130
rarc, 130
rcone, 132
rcor, 133
rellipsoid, 134
restScore, 135
rGivens, 137
rMAP, 138
rmsd, 140
RnpdMAP, 141

seBeta, 148, 152
seBetaCor, 150
seBetaFixed, 151
simFA, 153
skew, 106, 158
smoothAPA, 163
smoothBY, 166
smoothKB, 168
smoothLG, 169
summary.faMain, 12, 20, 32, 35, 39, 42, 48, 56, 59, 61, 64, 66, 68, 71, 96, 108, 123–125, 129, 147, 159, 173, 178
summary.faMB, 12, 20, 32, 35, 39, 42, 48, 56, 59, 61, 64, 66, 68, 71, 96, 108, 123–125, 129, 147, 163, 173, 176
summary.monte, 119, 180
summary.montel, 119, 182
svdNorm, 72, 86, 183
tetcor, 184
tetcorQuasi, 186
Thurstone41, 187
ThurstoneBox20, 188
ThurstoneBox26, 190
vcos, 192
vnorm, 192