Package ‘fusionclust’

September 19, 2017

Title Clustering and Feature Screening using L1 Fusion Penalty

Version 1.0.0

Depends R (>= 3.4.1)

License GPL (>= 2)

Encoding UTF-8

LazyData true

Imports bbmle, stats, graphics

RoxygenNote 6.0.1

URL https://github.com/trambakbanerjee/fusionclust

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Trambak Banerjee [aut, cre],
 Gourab Mukherjee [aut],
 Peter Radchenko [aut]

Maintainer Trambak Banerjee <trambak@usc.edu>

Repository CRAN

Date/Publication 2017-09-19 08:21:58 UTC

R topics documented:

 bmt ... 2
cosci_is .. 3
cosci_is_select .. 4
nclust .. 5

Index 7
bmt

Big Merge Tracker

Description

Solves an L1 relaxed univariate clustering criterion and returns a sequence of \(\lambda \) values where the clusters merge.

Usage

\[
bmt(x, \alpha = 0.1, \text{small.perturbation} = 10^{-6})
\]

Arguments

- \(x \) : observation vector
- \(\alpha \) : merging threshold. Default is 0.1
- \(\text{small.perturbation} \) : a small positive number to remove ties. Default is \(10^{-6} \)

Details

solves a convex relaxation of the univariate clustering criterion given by equation (2) in the referenced paper and generates a sequence of cluster merges and corresponding \(\lambda \) values. See algorithm 1 in the referenced paper for more details.

Value

1. path - number of clusters on the big merge path
2. lambda.path - sequence of lambda where clusters merge
3. index - cluster index at the point where clusters merge
4. merge - merge points
5. split - split points
6. prob - merging proportion
7. boundaries - cluster boundaries

References

See Also

- nclust
Examples

```r
library(fusionclust)
set.seed(42)
x <- c(rnorm(1000,-2,1), rnorm(1000,2,1))
out <- bmt(x)
```

cosci_is

Rank the p features in an n by p design matrix

Description

Ranks the p features in an n by p design matrix where n represents the sample size and p is the number of features.

Usage

```r
cosci_is(dat, min.alpha, small.perturbation = 10^(-6))
```

Arguments

- `dat`: n by p data matrix
- `min.alpha`: the smallest threshold (typically set to 0)
- `small.perturbation`: a small positive number to remove ties. Default value is 10^(-6)

Details

Uses the univariate merging algorithm `bmt` and produces a score for each feature that reflects its relative importance for clustering.

Value

A p vector of scores

References

See Also

- `bmt`
- `cosci_is_select`
Examples

```r
library(fusionclust)
set.seed(42)
n <- matrix(rnorm(49000), nrow=1000, ncol=49)
set.seed(42)
signal <- c(rnorm(500, -1.5, 1), rnorm(500, 1.5, 1))
x <- cbind(signal, noise)
scores <- cosci_is(x, 0)
```

cosci_is_select

Use a data driven approach to select the features

Description

Once you have the feature scores from `cosci_is`, you can select the features

1. based on a pre-defined threshold,
2. using table A.10 in the paper[1] to determine an appropriate threshold or,
3. using a data driven approach described in the references to select the features and obtain an implicit threshold value.

`cosci_is_select` implements option 3.

Usage

```r
cosci_is_select(score, gamma)
```

Arguments

- `score` a p vector of scores
- `gamma` what proportion of the p features is noise? If your sample size n is smaller than 100, setting gamma = 0.85 is recommended. Otherwise set gamma = 0.9

Details

Converts the problem of screening out features with lower scores into a problem in large scale multiple testing and uses the procedure described in reference [2] to determine the signal features.

Value

a vector of selected features
nclust

References

See Also

cosci_is

Examples

library(fusionclust)
set.seed(42)
noise<-matrix(rnorm(49000),nrow=1000,ncol=49)
set.seed(42)
signal<-c(rnorm(500,-1.5,1),rnorm(500,1.5,1))
x<-cbind(signal,noise)
scores<- cosci_is(x,0)
features<-cosci_is_select(scores,0.9)

<table>
<thead>
<tr>
<th>nclust</th>
<th>No.of clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Estimates the number of clusters from the bmt run

Usage

nclust(bmt_output, prob_threshold = 0.5)

Arguments

bmt_output output from the bmt run

prob_threshold probability threshold. Default is 0.5. Do not change it unless you know what you are doing. See the referenced paper
Details

Estimates the number of clusters as the number of big merges + 1. The probability threshold is an adjustment that renders this estimation process more robust to sampling fluctuations. If the sum of the sample frequencies for the two merging clusters in the last big merge is less than 50 percent, we do not report any merges and thus are left with just 1 cluster. See the referenced paper for more details.

Value

The number of clusters

References

See Also

bmt

Examples

library(fusionclust)
set.seed(42)
x<- c(rnorm(1000,-2,1), rnorm(1000,2,1))
out<- bmt(x)
k<- nclust(out)
Index

bmt, 2, 3, 5, 6

cosci_is, 3, 4, 5
cosci_is_select, 3, 4

nclust, 2, 5