Package ‘fuzzySim’

February 4, 2020

Type Package
Title Fuzzy Similarity in Species Distributions
Version 3.0
Date 2020-02-03
Author Barbosa A.M.
Maintainer A. Marcia Barbosa <ana.marcia.barbosa@gmail.com>
Imports methods
Suggests maptools, parallel, PBSmapping, raster, sp, tools
Description Functions to calculate fuzzy versions of species’ occurrence patterns based on presence-absence data (including inverse distance interpolation, trend surface analysis and prevalence-independent favourability GLM), and pair-wise fuzzy similarity (based on fuzzy versions of commonly used similarity indices) among those occurrence patterns. Includes also functions for model comparison (overlap and fuzzy similarity, loss or gain), and for data preparation, such as obtaining unique abbreviations of species names, converting species lists (long format) to presence-absence tables (wide format), transposing part of a data frame, assessing the false discovery rate, or analysing and dealing with multicollinearity among variables. Includes also sample datasets for providing practical examples.
License GPL-3
URL fuzzysim.r-forge.r-project.org,
https://CRAN.R-project.org/package=fuzzySim
Repository CRAN
Repository/R-Forge/Project fuzzysim
Repository/R-Forge/Revision 124
Repository/R-Forge/DateTimeStamp 2020-02-04 08:41:54
Date/Publication 2020-02-04 15:00:02 UTC
NeedsCompilation no
Depends R (>= 2.10)
R topics documented:

- fuzzySim-package .. 2
- bioThreat ... 5
- corSelect ... 7
- distPres ... 9
- Fav ... 11
- favClass ... 14
- FDR ... 15
- fuzSim ... 17
- fuzzyOverlay ... 20
- fuzzyRangeChange ... 22
- getPreds ... 24
- gridRecords .. 26
- integerCols .. 28
- modelTrim ... 29
- modOverlap .. 31
- multConvert .. 33
- multGLM ... 34
- multicol ... 37
- multTSA ... 39
- pairwiseRangemaps ... 41
- percentTestData ... 43
- rangemapSim ... 44
- rotif.env ... 46
- rotifers ... 48
- sharedFav ... 48
- simFromSetOps .. 50
- simMat ... 52
- spCodes .. 54
- splist2presabs .. 56
- stepByStep .. 57
- timer ... 59
- transpose ... 60
- triMatInd .. 61

Index 62

fuzzySim-package
Fuzzy Similarity in Species Distributions

Description

Functions to calculate fuzzy versions of species occurrence patterns based on presence-absence data (including inverse distance interpolation, trend surface analysis, and prevalence-independent favourability, obtained from probability of presence), as well as pair-wise fuzzy similarity (based on fuzzy logical versions of commonly used similarity indices) among those occurrence patterns. Includes also functions for data preparation, such as obtaining unique abbreviations of species names,
gridding point occurrence data onto raster maps, converting species lists (long format) to presence-absence tables (wide format), transposing part of a data frame, selecting relevant variables for models, assessing the false discovery rate, or analysing and dealing with multicollinearity. Includes also sample datasets for providing practical examples. A step-by-step illustrated tutorial is available from the package homepage (http://fuzzysim.r-forge.r-project.org).

Details

Package: fuzzySim
Type: Package
Version: 3.0
Date: 2020-02-03
License: GPL-3

Author(s)

A. Marcia Barbosa
Maintainer: A. Marcia Barbosa <ana.marcia.barbosa@gmail.com>

References

Examples

data(rotifers)

head(rotifers)

add column with species name abbreviations:
rotifers$spcode <- spCodes(rotifers$species, sep.species = "_", nchar.gen = 1, nchar.sp = 5, nchar.ssp = 0)

head(rotifers)

convert species list (long format) to presence-absence table
(wide format):
rotifers.presabs <- splist2presabs(rotifers, sites.col = "TDWG4", sp.col = "spcode", keep.n = FALSE)

head(rotifers.presabs)
get 3rd-degree spatial trend surface for some species distributions:

data(rotif.env)

names(rotif.env)

rotifers.tsa <- multTSA(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1)

head(rotifers.tsa)

get inverse squared distance to presence for each species:

rotifers.isqd <- distPres(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 2, inv = TRUE)

head(rotifers.isqd)

get prevalence-independent environmental favourability models
for each species:

data(rotif.env)

names(rotif.env)

rotifers.fav <- multGLM(data = rotif.env, sp.cols = 18:20,
var.cols = 5:17, id.col = 1, step = FALSE, trim = TRUE,
Favourability = TRUE)

get matrix of fuzzy similarity between species distributions:
either based on inverse squared distance to presence:
rot.fuz.sim.mat <- simMat(rotifers.isqd[, -1], method = "Jaccard")

or on environmental favourability for presence:
rot.fuz.sim.mat <- simMat(rotifers.fav$predictions[, 5:7],
method = "Jaccard")

head(rot.fuz.sim.mat)

transpose fuzzy rotifer distribution data to compare
regional species composition rather than species' distributions:

names(rotifers.isqd)

rot.fuz.reg <- transpose(rotifers.fav$predictions, sp.cols = 5:7,
reg.names = 1)
bioThreat

head(rot.fuz.reg)

get matrix of fuzzy similarity between (some) regions'
species compositions:
reg.fuz.sim.mat <- simMat(rot.fuz.reg[, 1:10], method = "Jaccard")
head(reg.fuz.sim.mat)

bioThreat
Biotic threat of a stronger over a weaker species based on their favourability values

Description

This function takes two vectors of Favourability values at different localities for, respectively, a stronger and a weaker species (e.g., a superior vs. an inferior competitor, or an invasive predator vs. an unadapted native prey), and calculates the level of threat that the former may potentially pose to the latter in each locality.

Usage

bioThreat(strong_F, weak_F, character = FALSE, ...)

Arguments

- **strong_F**
 a numeric vector of favourability values (obtained, e.g., with functions Fav or multGLM) for the stronger species.

- **weak_F**
 a numeric vector of favourability values for the weaker species. Must be of the same length and in the same order as 'strong_F'.

- **character**
 logical value indicating whether the result should be returned in character rather numeric form. Defaults to FALSE.

- **...**
 additional arguments to pass to favClass, namely the breaks for separating favourability values into low, intermediate and high (see Details).

Details

Based on the notion of "favorableness" by Richerson & Lum (1980), according to which competing species may or may not be able to coexist depending on their relative environmental fitnesses, Acevedo et al. (2010, 2012) and some subsequent studies (e.g. Romero et al. 2014, Munoz et al. 2015, Chamorro et al. 2019) proposed possible biotic interaction outcomes of different combinations of favourability values for two species. Favourability has the advantage, in contrast with other types of potential distribution metrics, of being directly comparable among different species, independently of their relative occurrence frequencies (see Fav). This function builds on those proposals by including additional possible combinations of higher, intermediate or low favourability values.
(following Munoz & Real 2006), producing the following classification of biotic threat across a set of analysed localities:

0 ('white'): areas where favourability is low for at least one of the species (abiotic exclusion), so biotic threat does not apply.

1 ('green'): areas where favourability is high for both species, so they should both be able to thrive and therefore co-occur (sympatric coexistence), hence biotic threat is low.

2 ('yellow'): areas where favourability is high for the weaker species and intermediate for the stronger species, so the level of threat is moderate.

3 ('orange'): areas where favourability is intermediate for both species, so the stronger one potentially prevails and the level of threat is high.

4 ('red'): areas where favourability is high for the stronger species and intermediate for the weaker species, in which case the level of threat is very high (biotic exclusion).

Value

This function returns either an integer or a character vector (following the 'character' argument, which is set to FALSE by default) of the same length as 'strong_F' and 'weak_F', classifying each locality with the level of biotic threat posed by the former on the latter (see Details).

Author(s)

A. Marcia Barbosa

References

corSelect

Select among correlated variables based on a given criterion

Description

This function calculates pairwise correlations among the variables in a dataset and, among each pair of variables correlated above a given threshold, excludes the variable with either the highest variance inflation factor (VIF), or the least significant or least informative bivariate (individual) relationship with the response variable (if supplied), according to a specified criterion.

Usage

corSelect(data, sp.cols = NULL, var.cols, cor.thresh = 0.8, select = "p.value", ...)

Arguments

data a data frame containing the response and predictor variables.
sp.cols index number of the column of 'data' that contains the response (e.g. species) variable. Currently, only one 'sp.cols' can be used at a time, so an error message is returned if length(sp.cols) > 1. If sp.cols = NULL (the default), the function returns only the pairs of variables that are correlated over the given threshold, without selecting those that are more relevant for a target species.
var.cols index numbers of the columns of 'data' that contain the predictor variables.
cor.thresh threshold value of correlation coefficient above which (or below which, for negative correlations) predictor variables should be excluded. The default is 0.8.
select character value indicating the criterion for excluding variables among those that are correlated. Can be "p.value" (the default), "AIC", "BIC", or "VIF" (see Details).
... additional arguments to pass to cor, namely the 'method' to use (either "pearson", "kendall" or "spearman" correlation coefficient; the first is the default) and the way to deal with missing values (use = "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs").

See Also

sharedFav, Fav_favClass

Examples

data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 19:20, var.cols = 5:17)
head(mods$predictions)
favs <- mods$predictions[, 3:4]
threat <- bioThreat(strong_F = favs[,1], weak_F = favs[,2])
threat_chr <- bioThreat(strong_F = favs[,1], weak_F = favs[,2], char = TRUE)
data.frame(favs, threat = threat, threat_col = threat_chr)
Details

Correlations among variables are problematic in multivariate models, as they inflate the variance of coefficients and thus may bias the interpretation of the effects of those variables on the response (Legendre & Legendre 2012). One of the strategies to circumvent this problem is to eliminate one from each pair of correlated variables, but it is not always straightforward to choose the right variable to exclude a priori.

This function selects among correlated variables, based either on their variance inflation factor (VIF: Marquardt 1970; Mansfield & Helms 1982) within the variables dataset (obtained with the `multicoll` function and recalculated iteratively after each variable exclusion); or on their relationship with the response, by building a bivariate model of each individual variable against the response and excluding, among each of two correlated variables, the one with the largest (worst) p-value, AIC (Akaike’s Information Criterion: Akaike, 1973) or BIC (Bayesian Information Criterion, also known as Schwarz criterion, SBC or SBIC: Schwarz, 1978), which it calculates with the FDR function.

If `sp.cols` is left NULL and the `select` criterion is other than "VIF", the function returns only the pairs of variables that are correlated above the given threshold. If the `select` criterion requires assessing bivariate relationships and `sp.cols` is provided, the function uses only the rows of the dataset where this column (used as the response variable) contains finite values against which the predictor variables can be modelled; rows with NA or NaN in `sp.cols` are thus excluded from the calculation of correlations among predictor variables.

Value

This function returns a list of 7 elements, unless `sp.cols = NULL`, in which case it returns only the first of these elements:

- **high.correlations**
 data frame showing the pairs of input variables that are correlated beyond the given threshold, and their correlation coefficient.

- **bivariate.significance**
 data frame with the individual p-value, AIC and BIC (if one of these was the `select` criterion) of each of the highly correlated variables against the response variable.

- **excluded.vars**
 character vector containing the names of the variables to be excluded (i.e., from each highly correlated pair, the variable with the worse `select` score).

- **selected.vars**
 character vector containing the names of the variables to be selected (i.e., the non-correlated variables and, from each correlated pair, the variable with the better `select` score).

- **selected.var.cols**
 integer vector containing the column indices of the selected variables in `data`.

- **strongest.remaining.corr**
 numerical value indicating the strongest correlation coefficient among the selected variables.

- **remaining.multicollinearity**
 data frame showing the multicollinearity among the selected variables.
Author(s)
A. Marcia Barbosa

References

See Also
multicol, FDR.cor

Examples

```r
data(rotif.env)
corSelect(rotif.env, var.cols = 5:17)
corSelect(rotif.env, sp.cols = 46, var.cols = 5:17)
corSelect(rotif.env, sp.cols = 46, var.cols = 5:17, cor.thresh = 0.7)
corSelect(rotif.env, sp.cols = 46, var.cols = 5:17, method = "spearman")
```

Description
This function takes a matrix or data frame containing species presence (1) and absence (0) data and their spatial coordinates (optionally also a pre-calculated distance matrix between all localities), and calculates the (inverse) distance from each locality to the nearest presence locality for each species.

Usage

```r
distPres(data, sp.cols, coord.cols = NULL, id.col = NULL, dist.mat = NULL, method = "euclidian", suffix = "_D", p = 1, inv = TRUE)
```
Arguments

- **data**: a matrix or data frame containing, at least, two columns with spatial coordinates, and one column per species containing their presence (1) and absence (0) data, with localities in rows.
- **sp.cols**: names or index numbers of the columns containing the species presences and absences in `data`. It must contain only zeros (0) for absences and ones (1) for presences.
- **coord.cols**: names or index numbers of the columns containing the spatial coordinates in `data` (in this order, x and y, or longitude and latitude).
- **id.col**: optionally, the name or index number of a column (to be included in the output) containing locality identifiers in `data`.
- **dist.mat**: optionally, if you do not want distances calculated with any of the methods available in `dist`, you may provide a distance matrix calculated elsewhere for the localities in `data`.
- **method**: the method with which to calculate distances between localities. Available options are those of `dist`. The default is "euclidian".
- **suffix**: character indicating the suffix to add to the distance columns in the resulting data frame. The default is "_D".
- **p**: the power to which distance should be raised. The default is 1; use 2 or higher if you want more conservative distances.
- **inv**: logical value indicating whether distance should be inverted, i.e. standardized to vary between 0 and 1 and then subtracted from 1, so that it varies between 0 and 1 and higher values mean closer to presence. The default is TRUE, which is adequate as a fuzzy version of presence-absence (for using e.g. with `fuzSim` and `simMat`). In this case, presences maintain the value 1, and inverse distance to presence is calculated only for absence localities.

Details

This function can be used to calculate a simple spatial interpolation model of a species’ distribution (e.g. Barbosa 2015, Areias-Guerreiro et al. 2016).

Value

This function returns a matrix or data frame containing the identifier column (if provided in 'id.col') and one column per species containing the distance (inverse by default) from each locality to the nearest presence of that species.

Author(s)

A. Marcia Barbosa

References

See Also
dist

Examples

data(rotif.env)
head(rotif.env)
names(rotif.env)

calculate plain distance to presence:
rotifers.dist <- distPres(rotif.env, sp.cols = 18:47,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 1,
inv = FALSE, suffix = ".D")
head(rotifers.dist)

calculate inverse squared distance to presence:
rotifers.invd2 <- distPres(rotif.env, sp.cols = 18:47,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 2,
inv = TRUE, suffix = ".iDsq")
head(rotifers.invd2)

Fav

<table>
<thead>
<tr>
<th>Favourability</th>
</tr>
</thead>
</table>

Description

Environmental (prevalence-independent) favourability for a species’ presence

Usage

Fav(model = NULL, obs = NULL, pred = NULL, n1n0 = NULL,
sample.preval = NULL, method = "RBV", true.preval = NULL)
Arguments

model a model object of class "glm" and binomial family.
obs a vector of the 1 and 0 values of the modelled binary variable. This argument is ignored if 'model' is provided.
pred a vector of predicted probability values for 'obs', given e.g. by logistic regression. This argument is ignored if 'model' is provided.
n1n0 alternatively to 'obs', an integer vector of length 2 providing the total numbers of modelled ones and zeros, in this order. Ignored if 'obs' or 'model' is provided.
sample.preval alternatively to 'obs' or 'n1n0', the prevalence (proportion of positive cases) of the modelled binary variable in the modelled data. Ignored if 'model' is provided.
method either "RBV" for the original Real, Barbosa & Vargas (2006) procedure, or "AT" if you want to try out the modification proposed by Albert & Thuiller (2008) (but see Details).
true.preval the true prevalence (as opposed to sample prevalence), necessary if you want to use the "AT" method.

Details

Logistic regression (Generalised Linear Model with binomial error distribution and a logit link) is widely used for modelling species' potential distributions using presence/absence data and a set of categorical or continuous predictor variables. However, this GLM incorporates the prevalence (proportion of presences) of the species in the training sample, which affects the probability values produced. Barbosa (2006) and Real, Barbosa & Vargas (2006) proposed an environmental favourability function which is based on logistic regression but cancels out uneven proportions of presences and absences in the modelled data. Favourability thus assesses the extent to which the environmental conditions change the probability of occurrence of a species with respect to its overall prevalence in the study area. Model predictions become, therefore, directly comparable among species with different prevalences. The favourability function is implemented in the fuzzySim package and is also in the SAM (Spatial Analysis in Macroecology) software (Rangel et al. 2010).

Using simulated data, Albert & Thuiller (2008) proposed a modification to the favourability function, but it requires knowing the true prevalence of the species (not just the prevalence in the studied sample), which is rarely possible in real-world modelling. Besides, this suggestion was based on the misunderstanding that the favourability function was a way to obtain the probability of occurrence when prevalence differs from 50%, which is incorrect (see Acevedo & Real 2012).

To get environmental favourability with either the Real, Barbosa & Vargas ("RBV") or the Albert & Thuiller ("AT") method, you just need to get a probabilistic model (e.g. logistic regression) from your data and then use the 'Fav' function. Input data for this function are either a model object resulting from the glm function, or the presences-absences (1-0) of your species and the corresponding presence probability values, obtained e.g. with predict(mymodel, mydata, type = "response"). Alternatively to the presences-absences, you can provide either the sample prevalence or the numbers of presences and absences. In case you want to use the "AT" method, you also need to provide the true (absolute) prevalence of your species.

Value

A numeric vector of the favourability values corresponding to the input probability values.
Author(s)

A. Marcia Barbosa

References

See Also

glm, multGLM

Examples

obtain a probability model and its predictions:

data(rotif.env)

names(rotif.env)

mod <- with(rotif.env, glm(Abrigh ~ Area + Altitude + AltitudeRange + HabitatDiversity + HumanPopulation, family = binomial))

prob <- predict(mod, data = rotif.env, type = "response")

obtain predicted favourability in different ways:

Fav(model = mod)

Fav(obs = rotif.env$Abrigh, pred = prob)

Fav(pred = mod$fitted.values, n1n0 = c(112, 179))

Fav(pred = mod$fitted.values, sample.preval = 0.38)
favClass

Classify favourability into 3 categories (low, intermediate, high)

Description

This function takes a vector of favourability values and reclassifies them into 3 increasing categories: low, intermediate or high. By default, the breaks between these classes are 0.2 and 0.8 (see Details), although these can be changed by the user.

Usage

```r
favClass(fav, breaks = c(0.2, 0.8), character = FALSE)
```

Arguments

- `fav`: a numeric vector of favourability values (obtained, e.g., with functions `Fav` or `multGLM`).
- `breaks`: a numeric vector of length 2 containing the two values which will divide `fav` into the 3 classes. Defaults to `c(0.2, 0.8)` following the literature (see Details).
- `character`: logical value indicating whether the result should be returned in character rather numeric form. Defaults to FALSE.

Details

Some applications of species distribution models imply setting a threshold to separate areas with high and low probability or favourability for occurrence (see, e.g., `bioThreat`). However, it makes little sense to establish as markedly different areas with, for example, 0.49 and 0.51 favourability values (Hosmer & Lemeshow, 1989). It may thus be wiser to open a gap between values considered as clearly favourable and clearly unfavourable. When this option is taken in the literature, commonly used breaks are 0.8 as a threshold to classify highly favourable values, as the odds are more than 4:1 favourable to the species; 0.2 as a threshold below which to consider highly unfavourable values, as odds are less than 1:4; and classifying the remaining values as intermediate favourability (e.g., Munoz & Real 2006, Olivero et al. 2016).

Value

This function returns either an integer or a character vector (following the `character` argument, which is set to FALSE by default), of the same length as `fav`, reclassifying it into 3 categories: 1 (‘low’), 2 (‘intermediate’), or 3 (‘high’).

Author(s)

A. Marcia Barbosa
FDR

References

See Also

Fav, multGLM

Examples

data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 20, var.cols = 5:17)
fav <- mods$predictions[, 2]
data.frame(fav = fav, favcl_num = favClass(fav), favcl_chr = favClass(fav, character = TRUE))

FDR

False Discovery Rate

Description

Calculate the false discovery rate (type I error) under repeated testing and determine which variables to select and to exclude from multivariate analysis.

Usage

FDR(data = NULL, sp.cols = NULL, var.cols = NULL, pvalues = NULL, model.type = NULL, family = "auto", correction = "fdr", q = 0.05, verbose = TRUE, simplif = FALSE)

Arguments

data a data frame containing the response and predictor variables (one in each column).
sp.cols index number of the column containing the response variable (currently implemented for only one response variable at a time).
var.cols index numbers of the columns containing the predictor variables.
pvalues optionally, instead of 'data', 'sp.cols' and 'var.cols', a data frame with the names of the predictor variables in the first column and their bivariate p-values (obtained elsewhere) in the second column. Example: pvalues <- data.frame(var = letters[1:5], pval = c(0.02, 0.004, 0.07, 0.03, 0.05)).
model.type

This argument (previously a character value, either "LM" or "GLM") is now deprecated and ignored with a warning if provided. This information is now included in argument 'family' – e.g., if you want linear models (LM), you can set 'family = "gaussian"'.

family

The error distribution and (optionally) the link function to use (see glm or family for details). The default "auto" automatically uses "binomial" family for response variables containing only values of 0 and 1; "poisson" for positive integer responses (i.e., count data); and "gaussian" (i.e., linear models) otherwise.

correction

the correction procedure to apply to the p-values; see p.adjust.methods for available options and p.adjust for more information. The default is "fdr".

q

the threshold value of FDR-corrected significance above which to reject variables. Defaults to 0.05.

verbose

logical value indicating whether to display messages.

simplif

logical value indicating if simplified results should be provided (see Value).

Details

It is common in ecology to search for statistical relationships between species' occurrence and a set of predictor variables. However, when a large number of variables is analysed (compared to the number of observations), false findings may arise due to repeated testing. Garcia (2003) recommended controlling the false discovery rate (FDR; Benjamini & Hochberg 1995) in ecological studies. The p.adjust R function performs this and other corrections to the significance (p) values of variables under repeated testing. The 'FDR' function performs repeated regressions (either linear or binary logistic) or uses already-obtained p values for a set of variables; calculates the FDR with 'p.adjust'; and shows which variables should be retained for or excluded from further multivariate analysis according to their corrected p values (see, for example, Barbosa, Real & Vargas 2009).

The FDR function uses the Benjamini & Hochberg ("BH", alias "fdr") correction by default, but check the p.adjust documentation for other available methods, namely "BY", which allows for non-independent data. Input data may be the response variable (for example, the presence-absence or abundance of a species) and the predictors (a table with one independent variable in each column, with the same number of rows and in the same order as the response); there should be no missing values in the data. Alternatively, you may already have performed the univariate regressions and have a set of variables and corresponding p values which you want to correct with FDR; in this case, get a table with your variables' names in the first column and their p values in the second column, and supply it as the 'pvalues' argument (no need to provide response or predictors in this case).

Value

If simplif = TRUE, this function returns a data frame with the variables' names as row names and 4 columns containing, respectively, their individual (bivariate) coefficients against the response, their individual AIC (Akaike's Information Criterion; Akaike, 1973), BIC (Bayesian Information Criterion, also known as Schwarz criterion, SBC, SBIC; Schwarz, 1978), p-value and adjusted p-value according to the applied 'correction'. If simplif = FALSE (the default), the result is a list of two such data frames:

exclude

with the variables to exclude.

select

with the variables to select (under the given 'q' value).
Author(s)

A. Marcia Barbosa

References

See Also

p.adjust

Examples

data(rotif.env)
names(rotif.env)
FDR(data = rotif.env, sp.cols = 18, var.cols = 5:17)
FDR(data = rotif.env, sp.cols = 18, var.cols = 5:17, simplif = TRUE)

fuzSim

Fuzzy similarity

Description

This function calculates fuzzy similarity, based on a fuzzy version of the binary similarity index specified in method, between two binary (0 or 1) or fuzzy (between 0 and 1) variables.

Usage

fuzSim(x, y, method, na.rm = TRUE)
Arguments

- **x**: a vector of (optionally fuzzy) presence-absence data, with 1 meaning presence, 0 meaning absence, and values in between meaning fuzzy presence (or the degree to which each locality belongs to the set of species presences, or to which each species belongs to the locality; Zadeh, 1965). Fuzzy presence-absence can be obtained, for example, with functions `multGLM`, `multTSA` or `distPres` in this package.

- **y**: a vector similar to 'x', of the same length and in the same order.

- **method**: the similarity index to use. Currently available options are "Jaccard", "Sorensen", "Simpson" and "Baroni" (see Details).

- **na.rm**: logical value indicating whether NA values should be ignored. The default is TRUE.

Details

Similarity between ecological communities, beta diversity patterns, biotic regions, and distributional relationships among species are commonly determined based on pair-wise (dis)similarities in species’ occurrence patterns. Some of the most commonly employed similarity indices are those of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-Urbani & Buser (1976), which are here implemented in their fuzzy versions (Barbosa, 2015), able to deal with both binary and fuzzy data. Jaccard’s and Baroni’s indices have associated tables of significant values (Baroni-Urbani & Buser 1976, Real & Vargas 1996, Real 1999).

Value

The function returns a value between 0 and 1 representing the fuzzy similarity between the provided 'x' and 'y' vectors. Note, for example, that Jaccard similarity can be converted to dissimilarity (or Jaccard distance) if subtracted from 1, while 1=Sorensen is not a proper distance metric as it lacks the property of triangle inequality (see http://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient).

Note

The formulas used in this function may look slightly different from some of their published versions (e.g. Baroni-Urbani & Buser 1976), not only because the letters are switched, but because here the A and B are the numbers of attributes present in each element, whether or not they are also present in the other one. Thus, our 'A+B' is equivalent to 'A+B+C' in formulas where A and B are the numbers of attributes present in one but not the other element, and our A+B-C is equivalent to their A+B+C. The formulas used here (adapted from Olivero et al. 1998) are faster to calculate, visibly for large datasets.

Author(s)

A. Marcia Barbosa
References

See Also

simMat; modOverlap

Examples

data(rotif.env)
names(rotif.env)

you can calculate similarity between binary species occurrence patterns:

fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Jaccard")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Sorensen")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Simpson")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Baroni")

or you can model environmental favourability for these species
and calculate fuzzy similarity between their environmental predictions
which goes beyond the strict coincidence of their occurrence records:

fav <- multGLM(rotif.env, sp.cols = 18:19, var.cols = 5:17, step = TRUE, FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $ predictions

fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Jaccard")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Sorensen")
Description

Logical and set operations are useful for comparative distribution modelling, to assess consensus or mismatches between the predictions of different models, and to quantify differences between models obtained for different time periods. Fuzzy set theory (Zadeh 1965, Barbosa & Real 2012) allows performing such operations without converting model predictions from continuous to binary, thus avoiding the application of arbitrary thresholds and the distortion or over-simplification of those predictions. The result is a continuous numerical value quantifying the intersection, union, sum, or other operation among model predictions, whether binary or continuous.

Usage

```r
def fuzzyOverlay(data, overlay.cols = 1:ncol(data), op = "intersection", na.rm = FALSE, round.digits = 2)
```

Arguments

- `data`: matrix or data frame containing the model predictions to compare.
- `overlay.cols`: vector of the names or index numbers of the columns to compare. The default is all columns in `data`.
- `op`: character value indicating the operation to perform between the prediction columns in `data`. Can be "consensus" for the arithmetic mean of predictions (or the fuzzy equivalent of the proportion of models that agree that the species occurs at each site), "fuzzy_and" or "intersection" for fuzzy intersection; "fuzzy_or" or "union" for fuzzy union; "prob_and" or "prob_or" for probabilistic and/or, respectively (see Details); "maintenance" for the values where all predictions for the same row (rounded to the number of digits specified in the next argument) are the same. If `data` has only two columns to compare, you can also calculate "xor" for exclusive 'or', "AnotB" for the the occurrence of the species in column 1 in detriment of that in column 2, "expansion" for the prediction increase in rows where column 2 has higher values than column 1, "contraction" for the prediction decrease in rows where column 2 has lower values than column 1, or "change" for a mix of the latter two, with positive values where there has been an increase and negative values where there was decrease in favourability from columns 1 to 2. For expansion, contraction and maintenance, rows where the values do not satisfy the condition (i.e. second column larger, smaller, or roughly equal to the first column) get a value of zero.
- `na.rm`: logical value indicating if NA values should be ignored. The default is FALSE, so rows with NA in any of the prediction columns get NA as a result.
- `round.digits`: integer value indicating the number of decimal places to be used if `op = "maintenance"`. The default is 2.
Details

If your predictions are probabilities, "prob_and" (probabilistic 'and') gives the probability of all species in 'data' occurring simultaneously by multiplying all probabilities; and "prob_or" (probabilistic 'or') gives the probability of any of them occurring at each site. These can be quite restrictive, though; probabilistic "and" can give particularly unrealistically small values.

If you have (or convert your probabilities to) favourability predictions, which can be used directly with fuzzy logic (Real et al. 2006; see \texttt{Fav} function), you can use "fuzzy_and" or "intersection" to get the favourability for all species co-occurring at each site, and "fuzzy_or" or "union" to get favourability for any of them to occur at each site (Barbosa & Real 2012).

Value

This function returns a vector, with length equal to the number of rows in \texttt{data}, containing the row-wise result of the operation performed.

Author(s)

A. Marcia Barbosa

References

See Also

\texttt{fuzSim}, \texttt{modOverlap} and \texttt{fuzzyRangeChange} for overall (not row-wise) comparisons among model predictions.

Examples

\begin{verbatim}
data(rotif.env)
names(rotif.env)

get model predictions for 3 of the species in rotif.env:
mods <- multGLM(rotif.env, sp.cols = 18:20, var.cols = 5:17, id.col = 1, step = TRUE, FDR = TRUE, trim = TRUE)
preds <- mods$predictions[, c("Abrigh_F", "Afissa_F", "Apriod_F")]

calculate intersection and union among those predictions:
\end{verbatim}
fuzzyRangeChange

Range change based on continuous (fuzzy) values

Description
This function quantifies overall range change (expansion, contraction, maintenance and balance) based on either presence-absence data or the continuous predictions of two models.

Usage
fuzzyRangeChange(pred1, pred2, number = TRUE, prop = TRUE, na.rm = TRUE, round.digits = 2, measures = c("Gain", "Loss", "Stable presence", "Stable absence", "Balance"), plot = TRUE, ...)

Arguments
pred1 numeric vector containing the predictions (between 0 and 1) of the model that will serve as reference.
fuzzyRangeChange

pred2 numeric vector containing the predictions (between 0 and 1) of the model whose change will be calculated. Must be of the same length and in the same order as 'pred1'.

number logical value indicating if results should include the fuzzy number of cases. The default is TRUE.

prop logical value indicating if results should include the proportion of the total number of cases. The default is TRUE.

na.rm logical value indicating whether NA values should be ignored. The default is TRUE.

round.digits argument to pass to fuzzyOverlay, indicating the number of decimal places to which to round 'pred' for calculating 'maintenance' or 'stability'. The default is 2.

measures character vector listing the range change measures to calculate. The default is all available measures.

plot logical value indicating whether to make a barplot with the results. The default is TRUE.

... additional arguments to be passed to the barplot function (if plot = TRUE).

Value

This function returns a data frame with the following values in different rows (among those that are included in 'measures'):

- **Gain**: sum of the predicted values that have increased from 'pred1' to 'pred2' (fuzzy equivalent of the number of gained presences)
- **Loss**: sum of the predicted values that have decreased from 'pred1' to 'pred2' (fuzzy equivalent of the number of lost presences)
- **Stable_presence**: fuzzy equivalent of the number of predicted presences that have remained as such (when rounded to 'round.digits') between 'pred1' and 'pred2'
- **Stable_absence**: fuzzy equivalent of the number of predicted absences that have remained as such (when rounded to 'round.digits') between 'pred1' and 'pred2'
- **Balance**: sum of the change in predicted values from 'pred1' to 'pred2' (fuzzy equivalent of the balance of gained and lost presences)

If prop = TRUE (the default), there is an additional column named "Proportion" in which these values are divided by the total number of reference values (i.e., the fuzzy range or non-range size). If plot = TRUE (the default), a barplot is also produced representing the last column of the result data frame.

Author(s)

A. Marcia Barbosa

See Also

fuzSim, modOverlap for other ways to compare models; fuzzyOverlay for row-wise model comparisons
getPreds

getPreds

Get model predictions

Description

This function allows getting the predictions of multiple models when applied to a given dataset. It can be useful if you have a list of model objects (e.g. resulting from `multGLM`) and want to apply them to a new data set containing the same variables for another region or time period. There are options to include the logit link ("Y") and/or 'Favourability' (see `Fav`).

Usage

```r
getPreds(data, models, id.col = NULL, Y = FALSE, P = TRUE,
Favourability = TRUE, incl.input = FALSE)
```

Arguments

data an object of class either 'data.frame' or 'RasterStack' to which to apply the 'models' (below) to get their predictions; must contain all variables (with the same names, case-sensitive) included in any of the 'models'.

Examples

```r
# get an environmental favourability model for a rotifer species:

data(rotif.env)

names(rotif.env)

fav_current <- multGLM(rotif.env, sp.cols = 18, var.cols = 5:17,
step = TRUE, FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $
predictions

# imagine you have a model prediction for this species in a future time
# (here we will create one by randomly jittering the current predictions)

fav_imag <- jitter(fav_current, amount = 0.2)
fav_imag[fav_imag < 0] <- 0
fav_imag[fav_imag > 1] <- 1

# calculate range change given by current and imaginary future predictions:

fuzzyRangeChange(fav_current, fav_imag)
fuzzyRangeChange(fav_current, fav_imag, number = FALSE)
fuzzyRangeChange(fav_current, fav_imag, ylim = c(-1, 1),
ylab = "Proportional change")
```
getPreds

models an object of class 'list' containing one or more model objects, obtained e.g. with function glm or multGLM.

id.col optionally, the index number of a column of 'data' containing row identifiers, to be included in the result. Ignored if incl.input = TRUE, or if 'data' is a RasterStack rather than a data frame.

Y logical, whether to include the logit link (y) value in the predictions.

P logical, whether to include the probability value in the predictions.

Favourability logical, whether to include Favourability in the predictions (see Fav).

incl.input logical, whether to include input columns in the output data frame (if the 'data' input is a data frame as well). The default is FALSE.

Value

This function returns the model predictions in an object of the same class as the input 'data', i.e. either a data frame or a RasterStack.

Author(s)

A. Marcia Barbosa

See Also

multGLM, predict

Examples

data(rotif.env)
names(rotif.env)

identify rotifer data in the Eastern and Western hemispheres:
unique(rotif.env$CONTINENT)
rotif.env$HEMISPHERE <- "Eastern"
rotif.env$HEMISPHERE[rotif.env$CONTINENT %in%
c("NORTHERN_AMERICA", "SOUTHERN_AMERICA")]] <- "Western"
head(rotif.env)

separate the rotifer data into hemispheres
east.hem <- rotif.env[rotif.env$HEMISPHERE == "Eastern",]
west.hem <- rotif.env[rotif.env$HEMISPHERE == "Western",]

make models for 3 of the species in rotif.env based on their distribution
in the Eastern hemisphere:

```r
multGLM(east.hem, sp.cols = 18:20, var.cols = 5:17, id.col = 1, step = FALSE, FDR = FALSE, trim = FALSE)
```

get the models' predictions for the Western hemisphere dataset:

```r
getPreds(west.hem, models = mods$models, P = TRUE, Favourability = TRUE)
```

```r
head(preds)
```

gridRecords

Grid point occurrence records onto a raster

Description

This function takes a raster stack and a set of spatial coordinates of a species’ presence (and optionally absence) records, and returns a data frame with the presences and absences, as well as the corresponding values of the rasters in the grid of pixels (cells). If absence coordinates are not supplied, all pixels without any presence point will be returned as absences.

Usage

```r
gridRecords(rst, pres.coords, abs.coords = NULL, na.rm = TRUE)
```

Arguments

- `rst`: a Raster* object with the desired spatial resolution and extent for the species presence-absence data, and the layer(s) whose values to extract for those data. The raster should be masked so that pixels have values only in relevant and reasonably surveyed areas.
- `pres.coords`: a matrix or data frame with two columns containing, respectively, the x and y, or longitude and latitude coordinates (in this order, and in the same coordinate reference system as ‘rst’) of the points where species presence was detected.
- `abs.coords`: same as ‘pres.coords’ but for points where the species was not detected. If NULL (the default), all pixels that are not intersected by ‘pres.coords’ will be output as absence cells.
- `na.rm`: Logical value indicating whether pixels without values in any of the ‘rst’ layers should be removed from the resulting data frame. The default is TRUE.

Details

This function was used e.g. in Baez et al. (2020) to get unique presences and absences from point occurrence data at the spatial resolution of marine raster variables.
Value

This function returns a data frame with the following columns:

- 'presence' integer, 1 for the cells with at least one presence point, and 0 for the cells with absence points (if provided) AND with no presence points
- 'x', 'y' centroid coordinates of each pixel (cell)
- 'cellnumber' the pixel identifier in 'rst'

one column for each layer in 'rst'

with the value of each pixel for that layer.

Note

This function requires the raster package.

Author(s)

A. Marcia Barbosa

References

See Also

'extract' in package raster

Examples

```r
## Not run:
# you can run the following code if you have the 'raster' and 'sp' packages installed

# import a system raster with 3 layers and crop it to a smaller extent:
require(raster)
rst <- stack(system.file("external/rlogo.grd", package = "raster"))
ext <- extent(c(0, 15, 25, 40))
rst <- crop(rst, ext)
plot(rst)
plot(rst[[1]])

# generate some random presence and absence points:
set.seed(123)
presences <- sp::spsample(as(ext, "SpatialPolygons"), 50, type = "random")
absences <- sp::spsample(as(ext, "SpatialPolygons"), 50, type = "random")
points(presences, pch = 20, cex = 0.2, col = "black")
points(absences, pch = 20, cex = 0.2, col = "white")

# use 'gridRecords' on these random points:
gridded_pts <- gridRecords(rst, coordinates(presences), coordinates(absences))
```
head(gridded_pts) # 'red', 'green' and 'blue' are the names of the layers in 'rst'

plot them to check the result:
pres_coords <- gridded_pts[gridded_pts$presence == 1, c("x", "y")]
abs_coords <- gridded_pts[gridded_pts$presence == 0, c("x", "y")]
points(gridded_pts[, c("x", "y")], pch = 4, cex = 0.6, col = gridded_pts$presence)

you can also do it with only presence (no absence) records:
gridded_pres <- gridRecords(rst, coordinates(presences))
head(gridded_pres)
plot(rst[[1]])
points(presences, pch = 20, cex = 0.2, col = "black")
pres_coords <- gridded_pres[gridded_pres$presence == 1, c("x", "y")]
abs_coords <- gridded_pres[gridded_pres$presence == 0, c("x", "y")]
points(gridded_pres[, c("x", "y")], pch = 4, cex = 0.6, col = gridded_pres$presence)

End(Not run)

integerCols

Classify integer columns

Description

This function detects which numeric columns in a data frame contain only whole numbers, and converts those columns to integer class, so that they take up less space.

Usage

integerCols(data)

Arguments

data a data frame containing possibly integer columns classified as "numeric".

Value

The function returns a data frame with the same columns as 'data', but with those that are numeric and contain only whole numbers (possibly including NA) now classified as "integer".

Author(s)

A. Marcia Barbosa

See Also

is.integer, as.integer, multConvert
Examples

dat <- data.frame(
 var1 = 1:10,
 var2 = as.numeric(1:10),
 var3 = as.numeric(c(1:4, NA, 6:10)),
 var4 = as.numeric(c(1:3, NaN, 5, Inf, 7, -Inf, 9:10)),
 var5 = as.character(1:10),
 var6 = seq(0.1, 1, by = 0.1),
 var7 = letters[1:10]
) # creates a sample data frame

dat

str(dat)
var2 classified as "numeric" but contains only whole numbers
var3 same as var2 but containing also NA values
var4 same as var2 but containing also NaN and infinite values
var5 contains only whole numbers but initially classified as factor

dat <- integerCols(dat)

str(dat)
var2 and var3 now classified as "integer"
var4 remains as numeric because contains infinite and NaN
(not integer) values
var5 remains as factor

modelTrim

Trim off non-significant variables from a model

Description

This function performs a stepwise removal of non-significant variables from a model.

Usage

```r
modelTrim(model, method = "summary", alpha = 0.05)
```

Arguments

- `model` a model object.
- `method` the method for getting the individual p-values. Can be either "summary" for the p-values of the coefficient estimates, or "anova" for the p-values of the variables themselves (see Details).
- `alpha` the p-value above which a variable is removed.
Details

Stepwise variable selection is a common procedure for simplifying models. It maximizes predictive efficiency in an objective and reproducible way, and is useful when the individual importance of the predictors is not known a priori (Hosmer & Lemeshow, 2000). The `step` R function performs such procedure using an information criterion (AIC) to select the variables, but it often leaves variables that are not significant in the model. Such variables can be subsequently removed with a manual stepwise procedure (e.g. Crawley 2007, p. 442; Barbosa & Real 2010, 2012; Estrada & Arroyo 2012). The `modelTrim` function performs such removal automatically until all remaining variables are significant. It can also be applied to a full model (i.e., without previous use of the `step` function), as it serves as a backward stepwise selection procedure based on the significance of the coefficients (if method = "summary", the default) or on the significance of the variables themselves (if method = "anova", better when there are categorical variables in the model).

Value

The input model object after removal of non-significant variables.

Author(s)

A. Marcia Barbosa

References

See Also

`step`

Examples

```r
# load sample data:
data(rotif.env)

# build a stepwise model of a species' occurrence based on
```
modOverlap

some of the variables:
mod <- with(rotif.env, step(glm(Abrigh ~ Area + Altitude + AltitudeRange + HabitatDiversity + HumanPopulation, family = binomial)))

examine the model:
summary(mod) # contains non-significant variables

use modelTrim to get rid of non-significant effects:
mod <- modelTrim(mod)
summary(mod) # only significant variables now

modOverlap

Overall overlap between model predictions

Description
This function calculates the degree of overlap between the predictions of two models, using niche comparison metrics such as Schoener's D, Hellinger distance and Warren's I.

Usage
modOverlap(pred1, pred2, na.rm = TRUE)

Arguments
pred1 numeric vector of the predictions of a generalized linear model (values between 0 and 1).
pred2 numeric vector of the predictions of another generalized linear model; must be of the same length and in the same order as 'pred1'.
na.rm logical value indicating whether NA values should be removed prior to calculation. The default is TRUE.

Details
See Warren et al. (2008).

Value
This function returns a list of 3 metrics:
SchoenerD Schoener's (1968) D statistic for niche overlap, varying between 0 (no overlap) and 1 (identical niches).
modOverlap

WarrenI the I index of Warren et al. (2008), based on Hellinger distance (below) but re-formulated to also vary between 0 (no overlap) and 1 (identical niches).

HellingerDist Hellinger distance (as in van der Vaart 1998, p. 211) between probability distributions, varying between 0 and 2.

Note

Thanks to Heidi K. Mod for reporting a typo in a previous version of the function. Another function providing similar measures, niche.overlap, is available in package phyloclim, but it requires complex and software-specific input data formats.

Author(s)

A. Marcia Barbosa

References

See Also

fuzSim; niche.overlap in package phyloclim

Examples

get an environmental favourability model for a rotifer species:

data(rotif.env)

names(rotif.env)

fav_current <- multGLM(rotif.env, sp.cols = 18, var.cols = 5:17, step = TRUE, FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $

predictions

imagine you have a model prediction for this species in a future time
(here we will create one by randomly jittering the current predictions)

fav_imag <- jitter(fav_current, amount = 0.2)
fav_imag[fav_imag < 0] <- 0
fav_imag[fav_imag > 1] <- 1

calculate niche overlap between current and imaginary future predictions:

modOverlap(fav_current, fav_imag)
Description

This function can simultaneously convert multiple columns of a matrix or data frame.

Usage

`multConvert(data, conversion, cols = 1:ncol(data))`

Arguments

- `data`: A matrix or data frame containing columns that need to be converted
- `conversion`: the conversion to apply, e.g. `as.factor` or a custom-made function
- `cols`: the columns of `data` to convert

Details

Sometimes we need to change the data type (class, mode) of a variable in R. There are various possible conversions, performed by functions like `as.integer`, `as.factor` or `as.character`. If we need to perform the same conversion on a number of variables (columns) in a data frame, we can convert them all simultaneously using this function. By default it converts all columns in 'data', but you can specify just some of those. 'multConvert' can also be used to apply other kinds of transformations – for example, if you need to divide some of your columns by 100, just write a function to do this and then use 'multConvert' to apply this function to any group of columns.

Value

The input data with the specified columns converted as specified in 'conversion'.

Author(s)

A. Marcia Barbosa

Examples

```r
data(rotif.env)
str(rotif.env)

# convert the first 4 columns to character:
converted.rotif.env <- multConvert(data = rotif.env, conversion = as.character, cols = 1:4)
str(converted.rotif.env)
```
names(rotif.env)

divide some columns by 100:

div100 <- function(x) x / 100

rotif.env.cent <- multConvert(data = rotif.env, conversion = div100, cols = c(6:10, 12:17))

head(rotif.env.cent)

multGLM

GLMs with variable selection for multiple species

Description

This function performs selection of variables and calculates generalized linear models for a set of (species) presence/absence records in a data frame, with a range of options for data partition, variable selection, and output form.

Usage

```r
multGLM(data, sp.cols, var.cols, id.col = NULL, family = "binomial", test.sample = 0, FDR = FALSE, correction = "fdr", corSelect = FALSE, cor.thresh = 0.8, step = TRUE, trace = 0, start = "null.model", direction = "both", select = "AIC", trim = TRUE, Y.prediction = FALSE, P.prediction = TRUE, Favourability = TRUE, group.preds = TRUE, TSA = FALSE, coord.cols = NULL, degree = 3, verbosity = 2, ...)
```

Arguments

- `data`: a data frame in wide format (see `splist2presabs`) containing, in separate columns, your species’ binary (0/1) occurrence data and the predictor variables.
- `sp.cols`: names or index numbers of the columns containing the species data to be modelled.
- `var.cols`: names or index numbers of the columns containing the predictor variables to be used for modelling.
- `id.col`: (optional) name or index number of column containing the row identifiers (if defined, it will be included in the output ‘predictions’ data frame).
- `family`: argument to be passed to the `glm` function; currently, only ‘binomial’ is implemented here.
- `test.sample`: a subset of data to set aside for subsequent model testing. Can be a value between 0 and 1 for a proportion of the data to choose randomly (e.g. 0.2 for 20%); or an integer number for a particular number of cases to choose randomly among the records in ‘data’; or a vector of integers for the index numbers of the particular rows to set aside; or "Huberty" for his rule of thumb based on the number of variables (Huberty 1994, Fielding & Bell 1997).
FDR argument to pass to the FDR function if FDR = TRUE. The default is "fdr", but see p.adjust for other options.
corSelect logical value indicating whether to do a preliminary exclusion of highly correlated variables (see corSelect). The default is FALSE.
cor.thresh numerical value indicating the correlation threshold to pass to corSelect (used only if corSelect = TRUE).
step logical, whether to use the step function to perform a stepwise variable selection (based on AIC or BIC).
trace if positive, information is printed during the running of step. Larger values may give more detailed information.
start character string specifying whether to start with the 'null.model' (so that variable selection starts forward) or with the 'full.model' (so selection starts backward). Used only if step = TRUE.
direction argument to be passed to step specifying the direction of variable selection ('forward', 'backward' or 'both'). Used only if step = TRUE.
select character string specifying the criterion for stepwise selection of variables. Options are "AIC" (Akaike's Information Criterion; Akaike, 1973), the default; or BIC (Bayesian Information Criterion, also known as Schwarz criterion, SBC or SBIC; Schwarz, 1978). Used only if step = TRUE.
trim logical indicating whether to trim off non-significant variables from the models using modelTrim function. Can be used whether or not step = TRUE. Works as a backward variable elimination procedure based on statistical significance.
Y.prediction logical, whether to include output predictions in the scale of the predictor variables (type = "link" in predict.glm).
P.prediction logical, whether to include output predictions in the scale of the response variable, i.e. probability (type = "response" in predict.glm).
Favourability logical, whether to apply the Favourability function to remove the effect of prevalence on predicted probability (Real et al. 2006) and include its results in the output.
group.preds logical, whether to group together predictions of similar type ("Y", "P" or "F") in the output 'predictions' table (e.g. if FALSE: sp1_Y, sp1_F, sp1_F, sp2_Y, sp2_P, sp2_F; if TRUE: sp1_Y, sp2_Y, sp1_P, sp2_P, sp1_F, sp2_F).
TSA logical, whether to add a trend surface analysis (calculated individually for each species) as a spatial variable in each model. See multTSA for more details. The default is FALSE.
coord.cols argument to pass to multTSA (if TSA = TRUE).
degree argument to pass to multTSA (if TSA = TRUE).
verbosity integer value indicating the amount of messages to display; currently implemented values are from 0, 1, and 2 (the default).
... additional arguments to be passed to modelTrim.
Details

This function automatically calculates binomial GLMs for one or more species (or other binary variables) in a data frame. The function can optionally perform stepwise variable selection (and it does so by default) instead of forcing all variables into the models, starting from either the null model (the default, so selection starts forward) or from the full model (so selection starts backward) and using Akaike’s information criterion (AIC) as a variable selection criterion. Instead or subsequently, it can also perform stepwise removal of non-significant variables from the models using the `modelTrim` function.

There is also an optional preliminary selection of non-correlated variables, and/or of variables with a significant bivariate relationship with the response, based on the false discovery rate (FDR). Note, however, that some variables can be significant in a multivariate model even if they would not have been selected by FDR.

`Favourability` is also calculated, removing the effect of species prevalence from occurrence probability and thus allowing direct comparisons between models (Real et al. 2006).

By default, all data are used in model training, but you can define an optional `test.sample` to be reserved for model testing afterwards. You may also want to do a previous check for multicollinearity among variables, e.g. the variance inflation factor (VIF), using `multicol`.

The `multGLM` function will create a list of the resulting models (each with the name of the corresponding species column) and a data frame with their predictions ('Y', 'P' and/or 'F', all of which are optional). If you plan on representing these predictions in a GIS based on .dbf tables, remember that dbf only allows up to 10 characters in column names; `multGLM` predictions will add 2 characters (_Y, _P and/or _F) to each of your species column names, so use species names/codes with up to 8 characters in the data set that you are modelling. You can create (sub)species name abbreviations with the `spCodes` function.

Value

This function returns a list with the following components:

- **predictions**: a data frame with the model predictions (if either of Y.prediction, P.prediction or Favourability are TRUE).
- **models**: a list of the resulting model objects.
- **variables**: a list of character vectors naming the variables finally included in each model according to the specified selection criteria.

Author(s)

A. Marcia Barbosa

References

See Also

\texttt{glm}, \texttt{Fav}, \texttt{step}, \texttt{modelTrim}, \texttt{multicol}, \texttt{corSelect}

Examples

\begin{verbatim}
data(rotif.env)
names(rotif.env)

make models for 2 of the species in rotif.env:
mods <- multGLM(rotif.env, sp.cols = 46:47, var.cols = 5:17, id.col = 1,
 step = TRUE, FDR = TRUE, trim = TRUE)
names(mods)
head(mods$predictions)
names(mods$models)
mods$models[[1]]
mods$models[["Ttetra"]]

include each species' spatial trend in the models:
mods <- multGLM(rotif.env, sp.cols = 46:47, var.cols = 5:17, id.col = 1,
 step = TRUE, FDR = TRUE, trim = TRUE, TSA = TRUE, coord.cols = c(11, 10))
mods$models[[1]]
mods$models[["Ttetra"]]
mods$variables
you can then use these selected variables elsewhere
\end{verbatim}

\texttt{multicol}

\textit{Analyse multicollinearity in a dataset, including VIF}

Description

This function analyses multicollinearity in a set of variables or in a model, including the R-squared, tolerance and variance inflation factor (VIF).
Usage

```r
multicol(vars = NULL, model = NULL, reorder = TRUE)
```

Arguments

- **vars**: A matrix or data frame containing the numeric variables for which to calculate multicollinearity. Only the 'independent' (predictor, explanatory, right hand side) variables should be entered, as the result obtained for each variable depends on all the other variables present in the analysed data set.

- **model**: Alternatively to 'vars', a model object of class "glm" to calculate 'multicol' among the included variables.

- **reorder**: logical, whether variables should be output in decreasing order or VIF value rather than in their input order. The default is TRUE.

Details

Testing collinearity among covariates is a recommended step of data exploration before applying a statistical model (Zuur et al. 2010). However, you can also calculate multicollinearity among the variables already included in a model.

The multicol function calculates the degree of multicollinearity in a set of numeric variables, using three closely related measures: R squared (the coefficient of determination of a linear regression of each predictor variable on all other predictor variables, i.e., the amount of variation in each variable that is accounted for by other variables in the dataset); tolerance (1 - R squared), i.e. the amount of variation in each variable that is not included in the remaining variables; and the variance inflation factor: \(VIF = 1 / (1 - R \text{ squared}) \), which, in a linear model with these variables as predictors, reflects the degree to which the variance of an estimated regression coefficient is increased due only to the correlations among covariates (Marquardt 1970; Mansfield & Helms 1982).

Value

The function returns a matrix with one row per analysed variable, the names of the variables as row names, and 3 columns: R-squared, Tolerance and VIF.

Author(s)

A. Marcia Barbosa

References

multTSA

Trend Surface Analysis for multiple species

Description

This function performs trend surface analysis for one or more species at a time. It converts categorical presence-absence (1-0) data into continuous surfaces denoting the spatial trend in species’ occurrence patterns.

Usage

multTSA(data, sp.cols, coord.cols, id.col = NULL, degree = 3, step = TRUE, criterion = "AIC", type = "P", Favourability = FALSE, suffix = "_TS", save.models = FALSE, ...)
Arguments

data: a matrix or data frame containing, at least, two columns with spatial coordinates, and one column per species containing their presence (1) and absence (0) data, with localities in rows.

sp.cols: names or index numbers of the columns containing the species presences and absences in data. Must contain only zeros (0) for absences and ones (1) for presences.

coord.cols: names or index numbers of the columns containing the spatial coordinates in data (x and y, or longitude and latitude, in this order!).

id.col: optionally, the name or index number of a column (to be included in the output) containing locality identifiers in data.

degree: the degree of the spatial polynomial to use (see Details). The default is 3.

step: logical value indicating whether the regression of presence-absence on the spatial polynomial should do a stepwise inclusion of the polynomial terms (using the step function with default settings, namely backward AIC selection), rather than forcing all terms into the equation. The default is TRUE.

criterion: character value indicating whether the backward stepwise selection of variables (if step = TRUE) should be made according to "AIC" (the default, using the step function) or to "significance" (using the modelTrim function).

type: the type of trend surface to obtain. Can be either "Y" for the raw polynomial equation (i.e. in the scale of the predictors, e.g. if you want to use the spatial trend as a predictor variable in a model), "P" for the logit-transformed probability (e.g. if you want to use the output as a prediction of presence probability based on spatial trend alone), or "F" for spatial favourability, i.e., prevalence-independent probability (see Fav).

Favourability: deprecated argument; linktype should now be used instead, although (at least for the timebeing) this argument will still be accepted (with Favourability = TRUE internally resulting in type = "F") for back-compatibility.

suffix: character indicating the suffix to add to the trend surface columns in the resulting data frame. The default is ".TS".

save.models: logical value indicating whether the models obtained from the regressions should be saved and included in the output. The default is FALSE.

... additional arguments to be passed to modelTrim (if step = TRUE and criterion = "significance").

Details

Trend Surface Analysis is a way to model the spatial structure in species’ distributions by regressing occurrence data on the spatial coordinates x and y, for a linear trend, or on polynomial terms of these coordinates (x^2, y^2, x*y, etc.), for curvilinear trends (Legendre & Legendre, 1998; Borcard et al., 2011). Second- and third-degree polynomials are often used. ‘multTSA’ allows specifying the degree of the spatial polynomial to use. By default, it uses a 3rd-degree polynomial and performs stepwise AIC selection of the polynomial terms to include.
pairwiseRangemaps

Value
This function returns a matrix or data frame containing the identifier column (if provided in 'id.col') and one column per species containing the value predicted by the trend surface analysis. If save.models = TRUE, the output is a list containing this dataframe plus a list of the model objects.

Author(s)
A. Marcia Barbosa

References

See Also
distPres, poly, multGLM

Examples

data(rotif.env)

head(rotif.env)

names(rotif.env)

tsa <- multTSA(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1)

head(tsa)

pairwiseRangemaps : Pairwise intersection (and union) of range maps

Description
This function takes a set of rangemaps and returns a matrix containing the areas of their pairwise intersections; optionally, also their individual areas and/or their areas of pairwise unions.

Usage
pairwiseRangemaps(rangemaps, projection, diag = TRUE, unions = TRUE,
verbosity = 2, Ncpu = 1, nchunks = 1, subchunks = NULL,
filename = "rangemap_matrix.csv")
Arguments

rangemaps a character vector of rangemap filenames, including folder paths if not in the working directory. ESRI shapefile (.shp) is currently the only accepted format. Specifying the extension is optional.

projection argument to be passed to function 'importShapefile' of package PBSmapping

diag logical, whether to fill the diagonal of the resulting matrix with the area of each rangemap. The default is TRUE, and it is also automatically set to TRUE (as it is necessary) if unions = TRUE.

unions logical, whether to fill the upper triangle of the resulting matrix with the area of union of each pair of rangemaps. The default is TRUE. It is not as computationally intensive as the intersection, as it is calculated not with spatial but with algebraic operations within the matrix (union = area1 + area2 - intersection).

verbosity integer number indicating the amount of progress messages to display.

Ncpu integer indicating the number of CPUs (central processing units) to employ if parallel computing is to be used. The default is 1 CPU, which implies no parallel computing, but you may want to increase this if you have many and/or large rangemaps and your machine has more cores that can be used simultaneously. You can find out the total number of cores in your machine with the detectCores function of the parallel package; a usually wise option is to use all cores except one (i.e., Ncpu = parallel::detectCores()-1).

nchunks either an integer indicating the number of chunks of rows in which to divide the results matrix for calculations, or character "decreasing" to indicate that the matrix should be divided into chunks of decreasing number of rows (as intersections are calculated in the lower triangle, rows further down the matrix have an increasing number of intersections to compute). Note, however, that rangemap size, not rangemap number, is the main determinant of computation time. The default is 1 (no division of the matrix) but, if you have many rangemaps, the process can get clogged. With chunks, each set of rows of the matrix is calculated and saved to disk, and the memory is cleaned before the next chunk begins.

subchunks optional integer vector specifying which chunks to actually calculate. This is useful if a previous, time-consuming run of pairwiseRangemaps was interrupted (e.g. by a power outage) and you want to calculate only the remaining chunks.

filename optional character vector indicating the name of the file to save the resulting matrix to.

Details

This calculation can be very intensive and slow, especially if you have many and/or large rangemaps, due to the time needed for spatial operations between maps. You can set nchunks = "decreasing" for the matrix to be calculated in parts and the memory cleaned between one part and the next; and, if your computer has more than one core that you can use, you can increase 'Ncpu' to get parallel computing.

Value

This function returns a square matrix containing, in the lower triangle, the area of the pair-wise intersections among the input 'rangemaps'; in the diagonal (if diag = TRUE or union = TRUE), the
area of each rangemap; and in the upper triangle (if union = TRUE), the area of the pair-wise unions among the rangemaps.

Note

This function uses the **PBSmapping** package to import and intersect the polygon rangemaps and to calculate areas. Remember to use projected rangemaps, preferably with an equal-area reference system, so that calculations are correct.

Author(s)

A. Marcia Barbosa

References

See Also

rangemapSim

| percentTestData | Percent test data |

Description

Based on the work of Schaafsma & van Vark (1979), Huberty (1994) provided a heuristic ("rule of thumb") for determining an adequate proportion of data to set aside for testing species presence/absence models, based on the number of predictor variables that are used (Fielding & Bell 1997). The 'percentTestData' function calculates this proportion as a percentage.

Usage

percentTestData(nvar)

Arguments

nvar the number of variables in the model.

Value

A numeric value of the percentage of data to leave out of the model for further model testing.
rangemapSim

Author(s)
A. Marcia Barbosa

References

See Also
multGLM

Examples
say you're building a model with 15 variables:
percentTestData(15)

the result tells you that 21% is an appropriate percentage of data
to set aside for testing your model, so train it with 79% of the data

rangemapSim
Pairwise similarity between rangemaps

Description
Calculate pairwise similarity among rangemaps from a matrix of their areas of intersection and union

Usage
rangemapSim(rangemap.matrix, total.area,
method = c("Jaccard", "Sorensen", "Simpson", "Baroni"),
diag = FALSE, upper = FALSE, verbosity = 2)

Arguments
rangemap.matrix
a matrix like the one produced by function pairwiseRangemaps, containing the areas of pairwise intersection among rangemaps in the lower triangle, individual rangemap areas in the diagonal, and pairwise union areas in the upper diagonal.
total.area
numeric value indicating the total size of the study area, in the same units as the areas in the rangemap.matrix. Used only if 'method' uses shared absences (as is the case of "Baroni")
method character value indicating the similarity index to use. Currently implemented indices are "Jaccard", "Sorensen", "Simpson" and "Baroni". The default is the first one.
diag logical value indicating if the diagonal of the resulting matrix should be filled
upper logical value indicating if the upper triangle of the resulting matrix should be filled (symmetrical to the lower triangle)
verbosity integer number indicating the amount of messages to display.

Details

Distributional relationships among species are commonly determined based on pair-wise (dis)similarities in species’ occurrence patterns. Some of the most commonly employed similarity indices are those of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-Urbani & Buser (1976), which are here implemented for comparing rangemaps based on their areas of intersection and union (Barbosa & Estrada, in press).

Value

This function returns a square matrix of pairwise similarities between the rangemaps in 'rangemap.matrix', calculated with the (first) similarity index specified in 'method'.

Author(s)

A. Marcia Barbosa

References

See Also

pairwiseRangemaps; simFromSetOps; simMat
Description

These data were extracted from a database of monogonont rotifer species presence records on the geographical units used by the Biodiversity Information Standards (formerly Taxonomic Database Working Group, TDWG: https://www.tdwg.org) and a few environmental (including human and spatial) variables on the same spatial units. The original data were compiled and published by Fontaneto et al. (2012) in long (narrow, stacked) format. Here they are presented in wide or unstacked format (presence-absence table, obtained with the splist2presabs function), reduced to the species recorded in at least 100 (roughly one third) different TDWG level 4 units, and with abbreviations of the species’ names (obtained with the spCodes function). Mind that this is not a complete picture of these species’ distributions, due to insufficient sampling in many regions.

Usage

data(rotif.env)

Format

A data frame with 291 observations on the following 47 variables.

- `TDWG4` a factor with 291 levels indicating the abbreviation code of each TDWG4 region
- `LEVEL_NAME` a factor with 291 levels indicating the name of each TDWG4 region
- `REGION_NAME` a factor with 47 levels indicating the name of the main geographical region to which each TDWG4 level belongs
- `CONTINENT` a factor with 9 levels indicating the continent to which each TDWG4 level belongs
- `Area` a numeric vector
- `Altitude` a numeric vector
- `AltitudeRange` a numeric vector
- `HabitatDiversity` a numeric vector
- `HumanPopulation` a numeric vector
- `Latitude` a numeric vector
- `Longitude` a numeric vector
- `Precipitation` a numeric vector
- `PrecipitationSeasonality` a numeric vector
- `TemperatureAnnualRange` a numeric vector
- `Temperature` a numeric vector
- `TemperatureSeasonality` a numeric vector
- `UrbanArea` a numeric vector
Source

Examples

```r
data(rotif.env)
head(rotif.env)
```
rotifers
Rotifer species on TDWG level 4 regions of the world

Description

These data were extracted from a database of monogonont rotifer species records on the geographical units used by the Biodiversity Information Standards (formerly Taxonomic Database Working Group, TDWG: https://www.tdwg.org). The original data were compiled and published by Fontaneto et al. (2012) for all TDWG levels. Here they are reduced to the TDWG - level 4 units and to the species recorded in at least 100 (roughly one third) of these units. Mind that this is not a complete picture of these species’ distributions, due to insufficient sampling in many regions.

Usage

```r
data("rotifers")
```

Format

A data frame with 3865 observations on the following 2 variables.

- **TDWG4**
 A factor with 274 levels corresponding to the code names of the TDWG level 4 regions in which the records were taken

- **species**
 A factor with 30 levels corresponding to the names of the (sub)species recorded in at least 100 different TDWG level 4 regions

Source

Examples

```r
data(rotifers)
head(rotifers, 10)
```

sharedFav
Shared favourability for two competing species

Description

This function implements the graphical analyses of Acevedo et al. (2010, 2012) on biogeographical interactions. It takes two vectors of favourability values at different localities for, respectively, a stronger and a weaker competing species (or two equally strong competitors), and plots their favourableness or shared favourability to assess potential competitive interactions.
Usage

sharedFav(strong_F, weak_F, conf = 0.95, main = "Shared favourability")

Arguments

- **strong_F**: a numeric vector of favourability values (obtained, e.g., with functions `Fav` or `multGLM`) for the stronger species.
- **weak_F**: a numeric vector of favourability values for the weaker species. Must be of the same length and in the same order as strong_F.
- **conf**: Confidence level for the confidence intervals in the plot. Defaults to 0.95.
- **main**: Character indicating a title for the plot.

Details

This function implements biogeographic analyses of Acevedo et al. (2010, 2012) assessing the trends of environmental favourability across a range of favourability intersection values between two competing species. It first calculates the fuzzy intersection (minimum value) between the two species’ favourability values at each locality (i.e., the favourability for occurrence of at least one of the species); it groups these values into 10 bins of width 0.1; and calculates the mean favourability (together with the confidence interval) within each interval for each of two species.

According to the notion of "favorableness" by Richerson & Lum (1980), competing species may or may not be able to coexist depending on their relative environmental fitnesses; competition between species increases and competitive exclusion decreases as their favourability intersection increases (Acevedo et al., 2010, 2012). The shaded area in the shared favourability plot, where at least one of the species is at intermediate favourability, is the area where competitive interactions may limit species occurrence. Outside this shaded area, where favourability is either very low for at least one of the species (left) or very high for both species (right side of the plot), competition is not limiting (see also `bioThreat` for details).

Value

This function provides the shared favourability plot, with circles and a continuous line representing favourability for the stronger species, and squares and a dashed line representing favourability for the weaker species; and it returns the numeric value of the fuzzy overlap index (Acevedo et al., 2010, 2012).

Author(s)

A. Marcia Barbosa

References

See Also

bioThreat, Fav

Examples

get favourability model predictions for two species:
data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 19:20, var.cols = 5:17)
head(mods$predictions)
favs <- mods$predictions[, 3:4]

get shared favourability:
sharedFav(strong_F = favs[,1], weak_F = favs[,2])

simFromSetOps

Calculate similarity from set operations

Description

This function calculates pair-wise similarity based on the results of set operations (intersection, union) among the subjects.

Usage

simFromSetOps(size1, size2, intersection, union, total.size = NULL, method = c("Jaccard", "Sorensen", "Simpson", "Baroni"), verbosity = 1)

Arguments

size1 size of subject 1 (e.g., area of the distribution range of a species, or its number of presences within a grid). Not needed if method = "Jaccard".
size2 the same for subject 2.
intersection size of the intersection among subjects 1 and 2 (area of the intersection among their distribution ranges, or number of grid cells in which they co-occur).
union size of the union of subjects 1 and 2.
total.size total size of the study area. Needed only when calculating a similarity index that takes shared absences into account (i.e., method = "Baroni").
method the similarity index to use. Currently implemented options are "Jaccard", "Sorensen", "Simpson" or "Baroni".
verbosity integer indicating whether to display messages.
Details

Similarities among ecological communities, beta diversity patterns, biotic regions, and distributional relationships among species are commonly determined based on pair-wise (dis)similarities in species’ occurrence patterns. This function implements some of the most commonly employed similarity indices, namely those of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-Urbani & Buser (1976), based on the amount of occupied and overlap area between two species.

Value

The numeric value of similarity among subjects 1 and 2.

Author(s)

A. Marcia Barbosa

References

See Also

fuzSim, simMat

Examples

take two species which occur in 22 and 35 area units, respectively
and which overlap in 8 of those units:

sp1 <- 22
sp2 <- 35
int <- 8
uni <- sp1 + sp2 - int

calculate similarity between their distributions based on
different indices:

simFromSetOps(intersection = int, union = uni, method = "Jaccard")
simFromSetOps(sp1, sp2, int, uni, method = "Sorensen")
simFromSetOps(sp1, sp2, int, uni, method = "Simpson")

if you want Baroni-Urbani & Buser's index
you need to provide also the total size of your study area:
simFromSetOps(sp1, sp2, int, uni, total = 100, method = "Baroni")

simMat

Pair-wise (fuzzy) similarity matrix

Description

simMat takes a matrix or data frame containing species occurrence data or regional species composition, either categorical (0 or 1) or fuzzy (between 0 and 1), and uses the fuzSim function to calculate a square matrix of pair-wise similarities between them, using a fuzzy logic version (Barbosa, 2015) of the specified similarity index.

Usage

simMat(data, method, diag = TRUE, upper = TRUE)

Arguments

- **data**: a matrix or data frame containing (optionally fuzzy) species presence-absence data (in wide format, i.e. one column per species), with 1 meaning presence, 0 meaning absence, and values in between for fuzzy presence (or the degree to which each locality belongs to the set of species presences; see Zadeh, 1965). Fuzzy presence-absence can be obtained, for example, with multGLM, distPres or multTSA. These data can also be transposed for comparing regional species compositions.
- **method**: the similarity index whose fuzzy version to use. See fuzSim for available options.
- **diag**: logical value indicating whether the diagonal of the matrix should be filled (with ones). Defaults to TRUE.
- **upper**: logical value indicating whether the upper triangle of the matrix (symmetric to the lower triangle) should be filled. Defaults to TRUE.

Details

The fuzzy versions of species occurrence data and of binary similarity indices introduce tolerance for small spatial differences in species' occurrence localities, allow for uncertainty about species occurrence, and may compensate for under-sampling and geo-referencing errors (Barbosa, 2015).
This function returns a square matrix of pair-wise similarities among the species distributions (columns) in data. Similarity is calculated with the fuzzy version of the index specified in method, which yields traditional binary similarity if the data are binary (0 or 1), or fuzzy similarity if the data are fuzzy (between 0 and 1) (Barbosa, 2015).

A. Marcia Barbosa

load and look at the rotif.env presence-absence data:
data(rotif.env)
head(rotif.env)
names(rotif.env)

build a matrix of similarity among these binary data
using e.g. Jaccard's index:
bin.sim.mat <- simMat(rotif.env[, 18:47], method = "Jaccard")
head(bin.sim.mat)

calculate a fuzzy version of the presence-absence data
based on inverse distance to presences:
rotifers.invd <- distPres(rotif.env, sp.cols = 18:47, coord.cols = c("Longitude", "Latitude"), id.col = 1, suffix = ".d", p = 1, inv = TRUE)
head(rotifers.invd)

build a matrix of fuzzy similarity among these fuzzy
distribution data, using the fuzzy version of Jaccard's index:
spCodes

Obtain unique abbreviations of species names

Description

This function takes a vector of species names and converts them to abbreviated species codes containing the specified numbers of characters from the genus, the specific and optionally also the subspecific name. Separators can be specified by the user. The function checks that the resulting codes are unique.
spCodes

Usage

spCodes(species, nchar.gen = 3, nchar.sp = 3, nchar.ssp = 0,
sep.species = " ", sep.spcode = "")

Arguments

species a character vector containing the species names to be abbreviated.
nchar.gen the number of characters from the genus name to be included in the resulting
 species code.
nchar.sp the number of characters from the specific name to be included in the resulting
 species code.
nchar.ssp optionally, the number of characters from the subspecific name to be included in
 the resulting species code. Set it to 0 if you have subspecific names in 'species'
 but do not want them included in the resulting species codes.
sep.species the character that separates genus, specific and subspecific names in 'species'.
 The default is a white space.
sep.spcode the character you want separating genus and species abbreviations in the resulting
 species codes. The default is an empty character (no separator).

Value

This function returns a character vector containing the species codes resulting from the abbreviation.
If the numbers of characters specified do not make for unique codes, an error message is displayed
showing which 'species' names caused it, so that you can try again with different 'nchar.gen',
'nchar.sp' and/or 'nchar.ssp'.

Author(s)

A. Marcia Barbosa

See Also

substr, strsplit

Examples

data(rotifers)

head(rotifers)

add a column to 'rotifers' with shorter versions of the species names:

Not run:
rotifers$spcode <- spCodes(rotifers$species, sep.species = "-_",
nchar.gen = 1, nchar.sp = 4, nchar.ssp = 0, sep.spcode = ".")

this produces an error due to resulting species codes not being unique

End(Not run)
rotifers$spcode <- spCodes(rotifers$species, sep.species = "_", nchar.gen = 1, nchar.sp = 5, nchar.ssp = 0, sep.spcode = ".")

with a larger number of characters from the specific name,
resulting codes are now unique

check out the result:
head(rotifers)

splist2presabs
Convert a species list to a presence-absence table

Description

This function takes a locality+species dataset in long (stacked) format, i.e., a matrix or data frame containing localities in one column and their recorded species in another column, and converts them to a presence-absence table (wide format) suitable for mapping and for computing distributional similarities (see e.g. `simMat`). Try out the Examples below for an illustration.

Usage

`splist2presabs(data, sites.col, sp.col, keep.n = FALSE)`

Arguments

- **data**: a matrix or data frame with localities in one column and species in another column. Type or paste `data(rotifers); head(rotifers)` (without the quote marks) in the R console for an example.
- **sites.col**: the name or index number of the column containing the localities in `data`.
- **sp.col**: the name or index number of the column containing the species names or codes in `data`.
- **keep.n**: logical value indicating whether to get in the resulting table the number of times each species appears in each locality; if FALSE (the default), only presence (1) or absence (0) is recorded.

Value

A data frame containing the localities in the first column and then one column per species indicating their presence or absence (or their number of records if keep.n = TRUE). Type `data(rotif.env); head(rotif.env[,18:47])` (without the quote marks) in the R console for an example.

Author(s)

A. Marcia Barbosa
stepByStep

See Also
table

Examples
data(rotifers)

head(rotifers)

rotifers.presabs <- splist2presabs(rotifers, sites.col = "TDWG4", sp.col = "species", keep.n = FALSE)

head(rotifers.presabs)

stepByStep

Analyse and compare stepwise model predictions

Description
This function builds a generalized linear model with forward stepwise inclusion of variables, using AIC as the selection criterion, and provides the values predicted at each step, as well as their correlation with the final model predictions.

Usage
stepByStep(data, sp.col, var.cols, family = binomial(link = "logit"), Favourability = FALSE, trace = 0, cor.method = "pearson")

Arguments
data a data frame containing your target and predictor variables.
sp.col index number of the column of 'data' that contains the target variable.
var.cols index numbers of the columns of 'data' that contain the predictor variables.
family argument to be passed to the glm function indicating the family (and error distribution) to use in modelling. The default is binomial distribution with logit link (for binary target variables).
Favourability logical, whether to apply the Favourability function to remove the effect of prevalence from predicted probability (Real et al. 2006). Applicable only to binomial GLMs. Defaults to FALSE.
trace argument to pass to the step function. If positive, information is printed during the stepwise procedure. Larger values may give more detailed information. The default is 0 (silent).
cor.method character string to pass to function cor indicating which coefficient should be used for correlating predictions at each step with those of the final model. Can be "pearson" (the default), "kendall", or "spearman".
Details

Stepwise variable selection often includes more variables than would a model selected after examining all possible combinations of the variables (e.g. with packages MuMIn and glmulti). The 'stepByStep' function can be useful to assess if a stepwise model with just the first few variables could already provide predictions very close to the final ones (see e.g. Fig. 3 in Munoz et al., 2005). It can also be useful to see which variables determine the more general trends in the model predictions, and which just add (local) additional nuances.

Value

This function returns a list of the following components:

- **predictions**: a data frame with the model’s fitted values at each step of the variable selection.
- **correlations**: a numeric vector of the correlation between the predictions at each step and those of the final model.
- **variables**: a character vector of the variables in the final model, named with the step at which each was included.
- **model**: the resulting model object.

Author(s)

A. Marcia Barbosa

References

See Also

step, glm, modelTrim

Examples

data(rotif.env)

stepByStep(data = rotif.env, sp.col = 18, var.cols = 5:17, cor.method = "spearman")

stepByStep(data = rotif.env, sp.col = 18, var.cols = 5:17, cor.method = "spearman", Favourability = TRUE)

stepByStep(data = rotif.env, sp.col = 9, var.cols = c(5:8, 10:17), family = poisson)
Description

Reporting of time elapsed since a given start time. This function is used internally by other functions in the package.

Usage

timer(start.time)

Arguments

start.time A date-time object of class POSIXct, e.g. as given by Sys.time.

Value

The function returns a message informing of the time elapsed since the input 'start.time'.

Author(s)

A. Marcia Barbosa

See Also

Sys.time, proc.time, difftime

Examples

get starting time:
start <- Sys.time()

do some random analysis:
sapply(rnorm(50000), function(x) x*5)

see how long it took:
timer(start)
transpose

Transpose (part of) a matrix or dataframe

Description

This function transposes (a specified part of) a matrix or data frame, optionally using one of its columns as column names for the transposed result. It can be useful for turning a species presence-absence table into a regional species composition table.

Usage

```r
transpose(data, sp.cols = 1:ncol(data), reg.names = NULL)
```

Arguments

- `data`: a matrix or data frame containing the species occurrence data to transpose.
- `sp.cols`: names or index numbers of the columns containing the species occurrences in 'data' which are meant to be transposed.
- `reg.names`: name or index number of the column in 'data' containing the region names, to be used as column names in the transposed result.

Value

This function returns the transposed 'sp.cols' of 'data', with the column specified in 'reg.names' as column names.

Author(s)

A. Marcia Barbosa

See Also

`t`

Examples

```r
data(rotif.env)
head(rotif.env)
names(rotif.env)

rotif.reg <- transpose(rotif.env, sp.cols = 18:47, reg.names = 1)
head(rotif.reg)
```
triMatInd

Triangular matrix indices

Description

This function outputs the indices of one triangle (the lower one by default) of an input square matrix. It is used by simMat and, for large matrices, makes it faster than e.g. with lower.tri or upper.tri.

Usage

triMatInd(mat, lower = TRUE, list = FALSE)

Arguments

mat a square matrix.
lower logical indicating whether the indices should correspond to the lower triangle. The default is TRUE; FALSE produces the upper triangle indices.
list logical indicating whether the results should be output as a list instead of a matrix. The default is FALSE.

Value

The indices (row, column) of the elements of the matrix that belong to the requested triangle.

Author(s)

A. Marcia Barbosa

References

See Also

lower.tri, upper.tri

Examples

mat <- matrix(nrow = 4, ncol = 4)
mat
triMatInd(mat)
triMatInd(mat, list = TRUE)
Index

*Topic character
 spCodes, 54
*Topic classes
 integerCols, 28
 multConvert, 33
*Topic datasets
 rotif.env, 46
 rotifers, 48
*Topic manip
 integerCols, 28
 multConvert, 33
 splist2presabs, 56
 transpose, 60
*Topic models
 distPres, 9
 Fav, 11
 modelTrim, 29
 multGLM, 34
 multTSA, 39
 percentTestData, 43
 stepByStep, 57
*Topic model
 getPreds, 24
*Topic multivariate
 corSelect, 7
 FDR, 15
 multGLM, 34
 multicol, 37
 multTSA, 39
 stepByStep, 57
*Topic package
 fuzzySim-package, 2
*Topic prediction
 getPreds, 24
*Topic regression
 multGLM, 34
 multTSA, 39
 stepByStep, 57
*Topic spatial
 distPres, 9
 multTSA, 39
 as.character, 33
 as.factor, 33
 as.integer, 28, 33
 barplot, 23
 bioThreat, 5, 14, 49, 50
 cor, 7, 9, 57
 corSelect, 7, 35, 37
 detectCores, 42
 difftime, 59
 dist, 10, 11
 distPres, 9, 18, 41, 52
 family, 16
 Fav, 5, 7, 11, 14, 15, 21, 24, 25, 35–37, 40, 49, 50, 57
 favClass, 5, 7, 14
 FDR, 8, 9, 15, 35, 36
 fuzSim, 10, 17, 21, 23, 32, 51–53
 fuzzyOverlay, 20, 23
 fuzzyRangeChange, 21, 22
 fuzzySim(fuzzySim-package), 2
 fuzzySim-package, 2
 getPreds, 24
 glm, 12, 13, 16, 25, 34, 37, 57, 58
 gridRecords, 26
 integerCols, 28
 is.integer, 28
 lower.tri, 61
 modelTrim, 29, 35–37, 40, 58
 modOverlap, 19, 21, 23, 31
 multConvert, 28, 33
INDEX

multGLM, 5, 13–15, 18, 24, 25, 34, 41, 44, 49, 52
multicol, 8, 9, 36, 37, 37
multTSA, 18, 35, 39, 52

p.adjust, 16, 17, 35
p.adjust.methods, 16
pairwiseRangemaps, 41, 44, 45
parallel, 42
percentTestData, 43
poly, 41
POSIXct, 59
predict, 25
predict.glm, 35
proc.time, 59

rangemapSim, 43, 44
rotif.env, 46
rotifers, 48

sharedFav, 7, 48
simFromSetOps, 45, 50
simMat, 10, 19, 45, 51, 52, 56, 61
spCodes, 36, 46, 54
splist2presabs, 34, 46, 56
step, 30, 35–37, 40, 57, 58
stepByStep, 57
strsplit, 55
substr, 55
Sys.time, 59

t, 60
table, 57
timer, 59
transpose, 52, 60
triMatInd, 61

upper.tri, 61