Package ‘gPCA’

February 19, 2015

Type Package

Title Batch Effect Detection via Guided Principal Components Analysis

Version 1.0

Date 2013-07-25

Author Sarah Reese

Maintainer Sarah Reese <reesese@vcu.edu>

Description This package implements guided principal components analysis for the detection of batch effects in high-throughput data.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2013-07-31 17:55:22

R topics documented:

 gPCA-package .. 1
caseDat .. 2
CumulativeVarPlot ... 3
gDist ... 4
gPCA.batchdetect .. 5
PCplot ... 7

Index

gPCA-package Batch Effect Detection via Guided Principal Components Analysis

Description

This package implements guided principal components analysis for the detection of batch effects in high-throughput data.

Details
The function `gPCA.batchdetect()` is used to perform the batch detection test and outputs the resulting δ statistic and corresponding p-value, along with other useful measures for visualization.

Author(s)

Sarah Reese

Maintainer: Sarah Reese <reesese@vcu.edu>

References

See Also

`gPCA.batchdetect`

caseDat

Case study copy number variation data

Description

This is a data set of copy number variation data with $n = 500$ observations and $p = 1000$ features. The length n batch vector (first column of `caseDat`) indicates the batch for each sample.

Usage

`data(caseDat)`

Format

A list with two objects:

- `batch` A numeric vector indicating batch for the $n = 500$ samples.
- `data` A matrix of $n = 500$ samples and $p = 1000$ features.
CumulativeVarPlot

References

Examples

data(caseDat)

cumulativevarplot

Plot of the Cumulative Variance due to the Principal Components

Description

The function plots the cumulative variance of the principal components.

Usage

CumulativeVarPlot(out, ug = "unguided", ...)

Arguments

out object resulting from gPCA.batchdetect() call.
ug "guided" or "unguided". Do you want the cumulative variance from guided or unguided PCA plotted.
... any other plot calls.

Details

This function plots the cumulative variance of the principal components from guided or unguided PCA calculated as (for the unguided case)

\[Var_l = \frac{\sum_{i=1}^{l} (PC_u)_i}{\sum_{i=1}^{n} (PC_u)_i} \]

for the lth principal component \((l = 1, \ldots, n)\).

Author(s)

Sarah Reese <reesese@vcu.edu>

References

gDist

See Also

`gPCA.batchdetect, gDist, PCplot`

Examples

```r
# CumulativeVarPlot(out, ug="unguided", col="blue")
```

Description

This function produces a density plot of the permutation δ_p values.

Usage

```r
gDist(out)
```

Arguments

- `out` object resulting from `gPCA.batchdetect()` call.

Author(s)

Sarah Reese <reesese@vcu.edu>

References

See Also

`gPCA.batchdetect, PCplot, CumulativeVarPlot`

Examples

```r
# gDist(out)
```
Description

Tests for batch effects an $n \times p$ data set with batch vector given by batch using the δ statistic resulting from guided principal components analysis (gPCA).

Usage

```R
gpca.batchdetect(x, batch, filt = NULL, nperm = 1000, center = FALSE, scaleY=FALSE, seed = NULL)
```

Arguments

- `x`: an $n \times p$ matrix of data where n denotes observations and p denotes the number of features (e.g. probe, gene, SNP, etc.).
- `batch`: a length n vector that indicates batch (group or class) for each observation.
- `filt`: (optional) the number of features to retain after applying a variance filter. If NULL, no filter is applied. Filtering can significantly reduce the processing time in the case of very large data sets.
- `nperm`: the number of permutations to perform for the permutation test, default is 1000.
- `center`: (logical) Is your data x centered? If not, then `center=FALSE` and `gpca.batchdetect` will center it for you.
- `scaleY`: (logical) Do you want to scale the Y matrix by the number of samples in each batch? If not, then `center=FALSE` (default), otherwise, `center=TRUE`.
- `seed`: the seed number for `set.seed()`. Default is NULL.

Details

Guided principal components analysis (gPCA) is an extension of principal components analysis (PCA) that guides the singular value decomposition (SVD) of PCA by applying SVD to $Y'X$ where Y is a $n \times b$ batch indicator matrix of ones when an observation $i (i = 1, \ldots, n)$ is in batch b and zeros otherwise.

The test statistic δ along with a one-sided p-value results from a `gpca.batchdetect()` call, along with the values of δ_p from the permutation test. The δ_p values can be used to visualize the permutation distribution of your test using the `gDist` function. For more information on gPCA, please see `reese`.

Value

- `delta`: test statistic δ from gPCA.
- `p.val`: p-value associated with δ resulting from gPCA.
- `delta.p`: `nperm` length vector of delta values resulting from the permutation test.
batch returns your length n batch vector.
filt returns the number of features the variance filter retained.
n the number of observations
p the number of features
b the number of batches
PCu principal component matrix from unguided PCA.
PCg principal component matrix from gPCA.
varPCu1 the proportion out of the total variance associated with the first principal component of unguided PCA.
varPCg1 the proportion out of the total variance associated with the first principal component of gPCA.
cumulative.var.u length n vector of the cumulative variance of the $i = 1, \ldots, n$ principal components from unguided PCA.
cumulative.var.g length b vector of the cumulative variance of the $k = 1, \ldots, b$ principal components from gPCA.

Author(s)
Sarah Reese <reesese@vcu.edu>

References

See Also
gDist, PCplot, CumulativeVarPlot.

Examples
data(caseDat)
batch<-caseDat$batch
data<-caseDat$data
out<-gPCA.batchdetect(x=data,batch=batch,center=FALSE,nperm=250)
out$delta ; out$p.val

Plots:
gDist(out)
CumulativeVarPlot(out,ug="unguided",col="blue")
PCplot(out,ug="unguided",type="1v2")
PCplot(out,ug="unguided",type="comp",npcs=4)
Description

Produces principal component plots from either unguided or guided PCA.

Usage

```
PCplot(out, ug = "unguided", type = "1v2",npcs, ...)
```

Arguments

- `out` object resulting from `gPCA.batchdetect()` call.
- `ug` "guided" or "unguided". Do you want the cumulative variance from guided or unguided PCA plotted.
- `type` type of plot. Either "1v2" to plot the first two principal components, or "comp" to compare all principal component up to the level of `npcs`.
- `npcs` Number of principal components to plot when "comp" type is chosen.
- `...` any other plot calls.

Details

This function plots either the first principal component versus the second principal component (type="1v2") from guided or unguided PCA, or compares (type="comp") all combinations of the principal components up to the value of `npcs`.

Author(s)

Sarah Reese <reesese@vcu.edu>

References

See Also

`gPCA.batchdetect, gDist, CumulativeVarPlot`

Examples

```r
# PCplot(out, ug="unguided", type="1v2")
# PCplot(out, ug="unguided", type="comp",npcs=4)
```
Index

*Topic \textit{kwd1}
 CumulativeVarPlot, 3
 gDist, 4
 gPCA.batchdetect, 5
 PCplot, 7
*Topic \textit{kwd2}
 CumulativeVarPlot, 3
 gDist, 4
 gPCA.batchdetect, 5
 PCplot, 7
*Topic \textit{datasets}
 caseDat, 2
*Topic \textit{package}
 gPCA-package, 1

caseDat, 2
CumulativeVarPlot, 3, 4, 6, 7

gDist, 4, 4, 5–7
gPCA (gPCA-package), 1
gPCA-package, 1
gPCA.batchdetect, 2, 4, 5, 7

PCplot, 4, 6, 7