Bayesian networks in R with the gRain package

Søren Højsgaard
Aalborg University, Denmark

Contents

1 Introduction 1

2 A worked example: chest clinic 2
 2.1 Building a network 2
 2.2 Queries to networks 3

3 A one-minute version of gRain 3
 3.1 Specifying a network 3
 3.2 Querying a network 4
 3.3 Conditioning on evidence with zero probability 5

4 Hard and virtual (likelihood) evidence 6
 4.1 An excerpt of the chest clinic network 7
 4.2 Specifying hard evidence 8
 4.3 What is virtual evidence (also called likelihood evidence)? 8
 4.4 Specifying virtual evidence 9
 4.5 A mixture of a discrete and a continuous variable 10

5 Building networks from data 10
 5.1 Extracting information from tables 11
 5.2 Using smooth .. 12
 5.3 Extracting tables 13

1 Introduction

The gRain package implements propagation in graphical independence networks (hereafter abbreviated gRain). Such networks are also known as probabilistic networks and Bayesian networks.

To cite gRain in publications, please use:

and possibly also

More information about the package, other graphical modelling packages and development versions is available from

http://people.math.aau.dk/~sorenh/software/gR

2 A worked example: chest clinic

This section reviews the chest clinic example of Lauritzen and Spiegelhalter (1988) (illustrated in Figure 1) and shows one way of specifying the model in \texttt{gRain}. Lauritzen and Spiegelhalter (1988) motivate the chest clinic example as follows:

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or none of them, or more than one of them. A recent visit to Asia increases the chances of tuberculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis. The results of a single chest X–ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea.”

![Figure 1: Chest clinic example from LS.](image)

2.1 Building a network

A Bayesian network is a special case of graphical independence networks. In this section we outline how to build a Bayesian network. The starting point is a probability distribution factorising accoring to a DAG with nodes V. Each node $v \in V$ has a set $pa(v)$ of parents and each node $v \in V$ has a finite set of states. A joint distribution over the variables V can be given as

$$p(V) = \prod_{v \in V} p(v|pa(v))$$

(1)

where $p(v|pa(v))$ is a function defined on $(v, pa(v))$. This function satisfies that $\sum_{v^*} p(v = v^*|pa(v)) = 1$, i.e. that for each configuration of the parents $pa(v)$, the sum over the levels of v equals one. Hence $p(v|pa(v))$ becomes the conditional distribution of v given $pa(v)$. In practice $p(v|pa(v))$ is specified as a table called a conditional probability table or a CPT for short. Thus, a Bayesian network can be regarded as a complex stochastic model built up by putting together simple components (conditional probability distributions).

Thus the DAG in Figure 1 dictates a factorization of the joint probability function as

$$p(V) = p(\alpha)p(\sigma)p(\tau|\alpha)p(\lambda|\sigma)p(\beta|\sigma)p(\epsilon|\tau, \lambda)p(\delta|\epsilon, \beta)p(\xi|\epsilon).$$

(2)
In (2) we have $\alpha = \text{asia}$, $\sigma = \text{smoker}$, $\tau = \text{tuberculosis}$, $\lambda = \text{lung cancer}$, $\beta = \text{bronchitis}$, $\epsilon = \text{either tuberculosis or lung cancer}$, $\delta = \text{dyspnoea}$ and $\xi = \text{xray}$. Note that ϵ is a logical variable which is true if either τ or λ are true and false otherwise.

2.2 Queries to networks

Suppose we are given the evidence (sometimes also called “finding”) that a set of variables $E \subset V$ have a specific value e^*. For example that a person has recently visited Asia and suffers from dyspnoea, i.e. $\alpha = \text{yes}$ and $\delta = \text{yes}$.

With this evidence, we are often interested in the conditional distribution $p(v|E = e^*)$ for some of the variables $v \in V \setminus E$ or in $p(U|E = e^*)$ for a set $U \subset V \setminus E$.

In the chest clinic example, interest might be in $p(\lambda|e^*)$, $p(\tau|e^*)$ and $p(\beta|e^*)$, or possibly in the joint (conditional) distribution $p(\lambda, \tau, \beta|e^*)$.

Interest might also be in calculating the probability of a specific event, e.g. the probability of seeing a specific evidence, i.e. $p(E = e^*)$.

3 A one–minute version of gRain

3.1 Specifying a network

A simple way of specifying the model for the chest clinic example is as follows.

1. Specify conditional probability tables (with values as given in Lauritzen and Spiegelhalter (1988)):
   ```r
   > yn <- c("yes","no")
   > a <- cptable(~asia, values=c(1,99),levels=yn)
   > t.a <- cptable(~tub|asia, values=c(5,95,1,99),levels=yn)
   > s <- cptable(~smoke, values=c(5,5), levels=yn)
   > l.s <- cptable(~lung|smoke, values=c(1,9,1,99), levels=yn)
   > b.s <- cptable(~bronc|smoke, values=c(6,4,3,7), levels=yn)
   > e.lt <- cptable(~either|lung:tub,values=c(1,0,1,0,1,0,0,1),levels=yn)
   > x.e <- cptable(~xray|either, values=c(98,2,5,95), levels=yn)
   > d.be <- cptable(~dysp|bronc:either, values=c(9,1,7,3,8,2,1,9), levels=yn)
   ```

2. Compile list of conditional probability tables and create the network:
   ```r
   > plist <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
   > plist
   CPTspec with probabilities:
   P( asia )
   P( tub | asia )
   P( smoke )
   P( lung | smoke )
   P( bronc | smoke )
   P( either | lung tub )
   P( xray | either )
   P( dysp | bronc either )
   ```

   ```r
   > plist$tub
   asia
   tub yes no
   yes 0.05 0.95
   no 0.95 0.01
   attr("class")
   [1] "parray" "array"
   ```
3.2 Querying a network

1. The network can be queried to give marginal probabilities:

```r
> querygrain(net1, nodes=c("lung","bronc"), type="marginal")
```

```r
data: lung
    yes no
  0.055 0.945
```

```r
data: bronc
    yes no
0.45 0.55
```

2. Likewise, a joint distribution can be obtained:

```r
> querygrain(net1,nodes=c("lung","bronc"), type="joint")
```

```r
data: bronc
    lung yes no
  yes 0.0315 0.0235
  no 0.4185 0.5265
```

3. Evidence can be entered in one of these two equivalent forms:

```r
> net12 <- setEvidence(net1, evidence=list(asia="yes", dysp="yes"))
> net12 <- setEvidence(net1,
+ nodes=c("asia", "dysp"), states=c("yes", "yes"))
```

4. The probability of observing this evidence under the model is

```r
> pEvidence( net12 )
[1] 0.004501375
```

5. The network can be queried again:

```r
> querygrain( net12, nodes=c("lung","bronc"))
```
$lung

lung
yes no 0.09952515 0.90047485

bronc

bronc
yes no 0.8114021 0.1885979

> querygrain(net12, nodes=c("lung","bronc"), type="joint")

bronc

lung yes no
yes 0.06298076 0.03654439
no 0.74842132 0.15205354

3.3 Conditioning on evidence with zero probability

Consider setting the evidence
> net13 <- setEvidence(net1, nodes=c("either", "tub"),
+ states=c("no","yes"))

Under the model, this finding has zero probability;
> pEvidence(net13)
[1] 0

Therefore, all conditional probabilities are (under the model) undefined;
> querygrain(net13, nodes=c("lung","bronc"), type="joint")

bronc

lung yes no
yes NaN NaN
no NaN NaN

We can look closer into this zero–probability issue. Because the node either is logical, half of the configurations will have zero probability:
> tt <- querygrain(net1, type="joint")
> sum(tt==0)/length(tt)
[1] 0.5

In particular the configuration above has zero probability
> sum(tableSlice(tt, c("either","tub"), c("no","yes")))
[1] 0

Zero probabilities (or almost zero probabilities) also arise in a different in a different setting. Consider this example
> yn <- c("yes","no")
> eps <- 1e-100
> a <- cptable(~a, values=c(1,eps), levels=yn)
> b.a <- cptable(~b+a, values=c(1,eps,eps,1), levels=yn)
> c.b <- cptable(~c+b, values=c(1,eps,eps,1), levels=yn)
> plist <- compileCPT(list(a, b.a, c.b))
> bn <- grain(plist)
> (tt <- querygrain(bn, type="joint"))

a b

, c = yes

b

a yes no
4 Hard and virtual (likelihood) evidence

Below we describe how to work with virtual evidence (also known as likelihood evidence) in gRain. This is done via the function `setEvidence()`.

The clique potential representation in a Bayesian network gives
\[
p(x) \propto \psi(x) = \prod_{C} \psi_C(x_C)
\]
where we recall that the whole idea in computations with Bayesian networks is to avoid calculation the product on the right hand side. Instead computations are based on propagation (multiplying, dividing and summing clique potentials \(\psi_C \) in an appropriate order, and such an appropriate order comes from a junction tree). The normalizing constant, say \(c = \sum_x \psi(x) \), comes out of propagation as a “by product”.

Suppose a set of nodes \(E \) are known to have a specific value, i.e. \(x_E = x^*_E \). This is called hard evidence. The probability of the event \(x_E = x^*_E \) is

\[p(x_E = x^*_E) = E_p\{ I(x_E = x^*_E) \} = \sum_x I(x_E = x^*_E) p(x) = \frac{1}{c} \sum_x I(x_E = x^*_E) \psi(x) \]

The computations are based on modifying the clique potentials \(\psi_C \) by giving value zero to states in \(\psi_C \) which are not consistent with \(x_E = x^*_E \). This can be achieved with an indicator function, say \(L_C(x_C) \) such that we obtain a set of new potentials \(\hat{\psi}_C = L_C(x_C) \psi_C(x_C) \). Propagation with these new potentials gives, as a by product, \(\hat{c} = \sum \psi(x) \) where \(\psi(x) = \prod_C \hat{\psi}_C(x_C) \). Consequently, we have \(p(x_E = x^*_E) = \hat{c}/c \).

In a more general setting we may have non-negative weights \(L(x) \) for each value of \(x \). We may calculate

\[E_p\{ L(X) \} = \sum_x L(x) p(x) \]

If \(L(X) \) factorizes as \(L(X) = L_C(X_C) \) then the computations are carried out as outlined above, i.e. by the message passing scheme.

4.1 An excerpt of the chest clinic network

Consider the following excerpt of the chest clinic network which is described in the paper mentioned above.

```r
> yn <- c("yes","no")
> a <- cptable(~asia, values=c(1,99),levels=yn)
> t.a <- cptable(~tub|asia, values=c(5,95,1,99),levels=yn)
> ( plist1 <- compileCPT( list( a, t.a ) ) )

CPTspec with probabilities:
P( asia )
P( tub | asia )

> plist1[[1]]

asia
yes no
0.01 0.99
attr("class")
[1] "parray" "array"

> plist1[[2]]

asia
tub yes no
yes 0.05 0.01
no 0.95 0.99
attr("class")
[1] "parray" "array"

> ( chest1 <- grain(plist1) )

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:2] "asia" "tub"

> querygrain( chest1 )
```
4.2 Specifying hard evidence

Suppose we want to make a diagnosis about tuberculosis given the evidence that a person has recently been to Asia. The functions `setFinding()` (which has been in `gRain` for years) and `setEvidence()` (which is a recent addition to `gRain`) can both be used for this purpose. The following forms are equivalent.

```r
> setFinding( chest1, nodes="asia", states="yes")
```

Independence network: Compiled: TRUE Propagated: TRUE

Nodes: chr [1:2] "asia" "tub"

Evidence:

<table>
<thead>
<tr>
<th>nodes</th>
<th>is.hard.evidence</th>
<th>hard.state</th>
</tr>
</thead>
<tbody>
<tr>
<td>asia</td>
<td>TRUE</td>
<td>yes</td>
</tr>
</tbody>
</table>

pEvidence: 0.010000

```r
> setEvidence( chest1, nodes="asia", states="yes")
```

Independence network: Compiled: TRUE Propagated: TRUE

Nodes: chr [1:2] "asia" "tub"

Evidence:

<table>
<thead>
<tr>
<th>nodes</th>
<th>is.hard.evidence</th>
<th>hard.state</th>
</tr>
</thead>
<tbody>
<tr>
<td>asia</td>
<td>TRUE</td>
<td>yes</td>
</tr>
</tbody>
</table>

pEvidence: 0.010000

```r
> setEvidence( chest1, evidence=list(asia="yes"))
```

Independence network: Compiled: TRUE Propagated: TRUE

Nodes: chr [1:2] "asia" "tub"

Evidence:

<table>
<thead>
<tr>
<th>nodes</th>
<th>is.hard.evidence</th>
<th>hard.state</th>
</tr>
</thead>
<tbody>
<tr>
<td>asia</td>
<td>TRUE</td>
<td>yes</td>
</tr>
</tbody>
</table>

pEvidence: 0.010000

```r
> querygrain( setEvidence( chest1, evidence=list(asia="yes")) )
```

tub

<table>
<thead>
<tr>
<th>tub</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
<td>0.95</td>
</tr>
</tbody>
</table>

4.3 What is virtual evidence (also called likelihood evidence) ?

Suppose we do not know with certainty whether a patient has recently been to Asia (perhaps the patient is too ill to tell). However the patient (if he/she is Caucasian) may be unusually tanned and this lends support to the hypothesis of a recent visit to Asia.

To accommodate we create an extended network with an extra node for which we enter evidence. However, it is NOT necessary to do so in practice, because we may equivalently enter the virtual evidence in the original network.

We can then introduce a new variable `guess.asia` with `asia` as its only parent.
This reflects the assumption that for patients who have recently been to Asia we would guess so in 80% of the cases, whereas for patients who have not recently been to Asia we would (erroneously) guess that they have recently been to Asia in 10% of the cases.

Specifying virtual evidence

The same guess or judgment can be specified as virtual evidence (also called likelihood evidence) for the original network:

```r
> g.a <- parray(c("guess.asia", "asia"), levels=list(yn, yn),
+                   values=c(.8,.2, .1,.9))

asia
guess.asia yes no
    yes 0.8 0.1
    no 0.2 0.9
attr("class")
[1] "parray" "array"

This reflects the assumption that for patients who have recently been to Asia we would guess so in 80% of the cases, whereas for patients who have not recently been to Asia we would (erroneously) guess that they have recently been to Asia in 10% of the cases.

> ( plist2 <- compileCPT( list( a, t.a, g.a ) ) )

CPTspec with probabilities:
P( asia )
P( tub | asia )
P( guess.asia | asia )

> ( chest2 <- grain(plist2) )

Independence network: Compiled: FALSE Propagated: FALSE

Now specify the guess or judgment, that the person has recently been to Asia:

```r
> querygrain(setEvidence(chest2, evidence=list(guess.asia="yes")))

$asia
asia
 yes no
0.07476636 0.92523364

$tub
tub
 yes no
0.01299065 0.98700935

4.4 Specifying virtual evidence

The same guess or judgment can be specified as virtual evidence (also called likelihood evidence) for the original network:

```r
> querygrain( setEvidence( chest1, evidence=list(asia=c(.8, .1))) )

9
This also means that specifying that specifying `asia='yes'` can be done as

```r
> querygrain(setEvidence(chest1, evidence=list(asia=c(1, 0))))
```

4.5 A mixture of a discrete and a continuous variable

`grain` only handles discrete variables with a finite state space, but using likelihood evidence it is possible to work with networks with both discrete and continuous variables (or other types of variables). This is possible only when the networks have a specific structure. This is possible when no discrete variable has non-discrete parents.

Take a simple example: $x$ is a discrete variable with levels 1 and 2; $y_1|x = k \sim N(\mu_k, \sigma_k^2)$ and $y_2|x = k \sim Poi(\lambda_k)$ where $k = 1, 2$. The joint distribution is

$$p(x, y_1, y_2) = p(x)p(y_1|x)p(y_2|x)$$

Suppose the interest is in the distribution of $x$ given $y_1 = y_1^*$ and $y_2 = y_2^*$. We then have

$$p(x|y_1^*, y_2^*) \propto p(x)p(y_1^*|x)p(y_2^*|x) = p(x)L_1(x)L_2(x)$$

5 Building networks from data

The following two graphs specify the same model:

```r
> dG <- dag(~A:B)
> uG <- ug(~A:B)
> par(mfrow=c(1,2)); plot(dG); plot(uG)
```

Suppose data is
> dat <- as.table(parray(c("A","B"), levels=c(2,2), values=c(0,0,2,3)))

B
A  B1  B2
A1 0  2
A2 0  3

> class( dat )
[1] "table"  "parray" "array"

A network can be built from data using:

> gr.dG <- compile( grain( dG, dat ) )

NAs found in conditional probability table(s) for nodes: A
... consider using the smooth argument
Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:2] "A" "B"

> gr.uG <- compile( grain( uG, dat ) )

Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:2] "A" "B"

However, when there are zeros in the table, care must be taken.

5.1 Extracting information from tables

In the process of creating networks, conditional probability tables are extracted when the graph is a dag and clique potentials are extracted when the graph is a chordal (i.e. triangulated) undirected graph. This takes place as follows (internally):

> extractCPT( dat, dG )

NAs found in conditional probability table(s) for nodes: A
... consider using the smooth argument

$A
B
A  B1  B2
A1 NaN 0.4
A2 NaN 0.6
attr(,"class")
[1] "parray" "array"

$B
B
B1 B2
0 1
attr(,"class")
[1] "parray" "array"

attr(,"class")
[1] "extractCPT" "list"

> c( extractPOT( dat, uG ) )

[[1]]
A  B1  B2
A1 0 0.4
A2 0 0.6

The conditional probability table $P(A|B)$ contains NaNs because

$$P(A|B = B1) = \frac{n(A, B = B1)}{\sum_A n(A, B = B1)} = \frac{0}{0} = \text{NaN}$$
For this reason the network \texttt{gr.dG} above will fail to compile whereas \texttt{gr.uG} will work, but it may not give the expected results.

### 5.2 Using smooth

To illustrate what goes on, we can extract the distributions from data as follows:

```r
> p.A.g.B <- tableDiv(dat, tableMargin(dat, "B"))

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>B2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

attr("class")
[1] "parray" "array"

> p.B <- tableMargin(dat, "B")/sum(dat)

<table>
<thead>
<tr>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1</td>
</tr>
<tr>
<td>B2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>B2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

attr("class")
[1] "parray" "array"

However, the result is slightly misleading because \texttt{tableDiv} sets 0/0 = 0.

In \texttt{grain} there is a \texttt{smooth} argument that will add a small number to the cell entries before extracting tables, i.e.

\[
P(A|B = B1) = \frac{n(A, B = B1) + \epsilon}{\sum_A(n(A, B = B1) + \epsilon)} = \frac{\epsilon}{2\epsilon} = 0.5
\]

and

\[
P(B) = \frac{\sum_A(n(A, B) + \epsilon)}{\sum_{AB}(n(A, B) + \epsilon)}
\]

We can mimic this as follows:

```r
> e <- 1e-2
> (dat.e <- dat + e)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.01 2.01</td>
</tr>
<tr>
<td>A2</td>
<td>0.01 3.01</td>
</tr>
</tbody>
</table>

> pe.A.g.B <- tableDiv(dat.e, tableMargin(dat, "B"))

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>B2</td>
<td>0.402</td>
<td>0.602</td>
</tr>
</tbody>
</table>

attr("class")
[1] "parray" "array"

> pe.B <- tableMargin(dat.e, "B")/sum(dat.e)

<table>
<thead>
<tr>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.003968254 0.996031746</td>
</tr>
</tbody>
</table>
```

12
> pe.AB <- tableMult(pe.A.g.B, pe.B)

 A
 B A1 A2
 B1 0.00000 0.00000
 B2 0.40040 0.59961
attr("class")
[1] "parray" "array"

However this resulting joint distribution is different from what is obtained from the adjusted table itself

> dat.e / sum(dat.e)

 B
 A B1 B2
 A1 0.00198 0.39881
 A2 0.00198 0.59722

This difference appears in the grain networks.

5.3 Extracting tables

One can do

> gr.dG <- compile(grain(dG, dat, smooth=e))

which (internally) corresponds to

> extractCPT(dat, dG, smooth=e)

$A

 B
 A B1 B2
 A1 0.5 0.40039
 A2 0.5 0.59960
attr("class")
[1] "parray" "array"

$B

 B1 B2
0.0019920 0.998007
attr("class")
[1] "parray" "array"

attr("class")
[1] "extractCPT" "list"

We get

> querygrain(gr.dG)

$A

 A
 A1 A2
 0.40059 0.59940

$B

 B1 B2
0.0019920 0.998007

> querygrain(gr.uG)

$A

 A
However, if we condition on $B = B_1$ we get:

```r
> querygrain(setFinding(gr.dG, nodes="B", states="B1"))
$A
A
A1 A2
0.5 0.5
```

```r
> querygrain(setFinding(gr.uG, nodes="B", states="B1"))
$A
A
A1 A2
NaN NaN
```

so the “problem” with zero entries shows up in a different place. However, the answer is not necessarily wrong; the answer simply states that $P(A|B = B_1)$ is undefined. To “remedy” we can use the `smooth` argument:

```r
> gr.uG <- compile( grain( uG, dat, smooth=e) )
which (internally) corresponds to
> c( extractPOT( dat, uG, smooth=e ) )
[[1]]
B
A B1 B2
A1 0.001984127 0.3988095
A2 0.001984127 0.5972222
```

Notice that the results are not exactly identical:

```r
> querygrain( gr.uG )
$A
A
A1 A2
0.4007937 0.5992063
```

```r
$B
B
B1 B2
0.003968254 0.996031746
```

```r
> querygrain( gr.dG )
$A
A
A1 A2
0.4005968 0.5994032
```

```r
$B
B
B1 B2
0.001992032 0.998007968
```

```r
> querygrain( setFinding(gr.uG, nodes="B", states="B1" ) )
$A
A
14
```
A1 A2
0.5 0.5

> querygrain(setFinding(gr.dG, nodes="B", states="B1"))

A
A
A1 A2
0.5 0.5

References