Array operations in the `gRbase` package

Søren Højsgaard

gRbase version 1.8-6.4 as of 2020-02-18

Contents

1 Introduction 2

2 Arrays/tables in R 2
 2.1 Cross classified data - contingency tables 2
 2.2 Defining arrays 3

3 Operations on arrays 3
 3.1 Normalizing an array 3
 3.2 Subsetting an array – slicing 4
 3.3 Collapsing and inflating arrays 5
 3.4 Permuting an array 6
 3.5 Equality 6
 3.6 Aligning 6
 3.7 Multiplication, addition etc: +, −, *, / 7
 3.8 An array as a probability density 8
 3.9 Miscellaneous 8

4 Examples 9
 4.1 A Bayesian network 9
 4.2 Iterative Proportional Scaling (IPS) 10

5 Some low level functions 12
 5.1 `cell2entry()`, `entry2cell()` and `next_cell()` 12
 5.2 `next_cell_slice()` and `slice2entry()` 13
 5.3 `fact_grid()` – Factorial grid 13

A More about slicing 14
1 Introduction

This note describes some operations on arrays in R. These operations have been implemented to facilitate implementation of graphical models and Bayesian networks in R.

2 Arrays/tables in R

The documentation of R states the following about arrays:

An array in R can have one, two or more dimensions. It is simply a vector which is stored with additional attributes giving the dimensions (attribute "dim") and optionally names for those dimensions (attribute "dimnames"). A two-dimensional array is the same thing as a matrix. One-dimensional arrays often look like vectors, but may be handled differently by some functions.

2.1 Cross classified data - contingency tables

Arrays appear for example in connection with cross classified data. The array hec below is an excerpt of the HairEyeColor array in R:

```r
hec <- c(32, 53, 11, 50, 10, 25, 36, 66, 9, 34, 5, 29)
dim(hec) <- c(2, 3, 2)
dimnames(hec) <- list(Hair = c("Black", "Brown"),
                      Eye = c("Brown", "Blue", "Hazel"),
                      Sex = c("Male", "Female"))
hec
## , , Sex = Male
##    Eye
## Hair Brown Blue Hazel
## Black 32 11 10
## Brown 53 50 25
## , , Sex = Female
##    Eye
## Hair Brown Blue Hazel
## Black 36 9 5
## Brown 66 34 29
```

Above, hec is an array because it has a dim attribute. Moreover, hec also has a dimnames attribute naming the levels of each dimension. Notice that each dimension is given a name.

Printing arrays can take up a lot of space. Alternative views on an array can be obtained with ftable() or by converting the array to a dataframe with as.data.frame.table(). We shall do so in the following.

```r
##flat <- function(x) {ftable(x, row.vars=1)}
flat <- function(x, n=4) {as.data.frame.table(x) %>% head(n)}
hec %>% flat
## Hair  Eye  Sex  Freq
## 1 Black Brown Male 32
## 2 Brown Brown Male 53
## 3 Black Blue Male 11
## 4 Brown Blue Male 50
```
An array with named dimensions is in this package called a named array. The functionality described below relies heavily on arrays having named dimensions. A check for an object being a named array is provided by \texttt{is.named.array()}.

\begin{verbatim}
is.named.array(hec)
[1] TRUE
\end{verbatim}

2.2 Defining arrays

Another way is to use \texttt{tabNew()} from \texttt{gRbase}. This function is flexible wrt the input; for example:

\begin{verbatim}
dn <- list(Hair=c("Black", "Brown"), Eye="Brown:Blue:Hazel", Sex="Male:Female")
counts <- c(32, 53, 11, 50, 10, 25, 36, 66, 9, 34, 5, 29)
z3 <- tabNew("Hair:Eye:Sex", levels=dn, value=counts)
z4 <- tabNew(c("Hair", "Eye", "Sex"), levels=dn, values=counts)
\end{verbatim}

Notice that the levels list (\texttt{dn above}) when used in \texttt{tabNew()} is allowed to contain superfluous elements. Default \texttt{dimnames} are generated with

\begin{verbatim}
z5 <- tabNew("Hair:Eye:Sex", levels=c(2, 3, 2), values = counts)
dimnames(z5) %>% str
List of 3
$ Hair: chr [1:2] "Hair1" "Hair2"
$ Eye : chr [1:3] "Eye1" "Eye2" "Eye3"
$ Sex : chr [1:2] "Sex1" "Sex2"
\end{verbatim}

Using \texttt{tabNew()}, arrays can be normalized to sum to one in two ways: 1) Normalization can be over the first variable for each configuration of all other variables and 2) over all configurations. For example:

\begin{verbatim}
z6 <- tabNew("Hair:Eye:Sex", levels=c(2, 3, 2), values=counts, normalize="first")
z6 %>% flat
Hair Eye Sex Freq
1 Hair1 Eye1 Sex1 0.3765
2 Hair2 Eye1 Sex1 0.6235
3 Hair1 Eye2 Sex1 0.1803
4 Hair2 Eye2 Sex1 0.8197
\end{verbatim}

3 Operations on arrays

In the following we shall denote the dimnames (or variables) of the array \texttt{hec} by \(H\), \(E\) and \(S\) and we let \((h, e, s)\) denote a configuration of these variables. The contingency table above shall be denoted by \(T_{HES}\) and we shall refer to the \((h, e, s)\)-entry of \(T_{HES}\) as \(T_{HES}(h, e, s)\).

3.1 Normalizing an array

Normalize an array with \texttt{tabNormalize()} \texttt{gRbase}. Entries of an array can be normalized to sum to one in two ways: 1) Normalization can be over the first variable for each configuration of all other variables and 2) over all configurations. For example:
3.2 Subsetting an array – slicing

We can subset arrays (this will also be called “slicing”) in different ways. Notice that the result is not necessarily an array. Slicing can be done using standard R code or using \texttt{tabSlice}[\texttt{gRbase}]. The virtue of \texttt{tabSlice}[\texttt{gRbase}] comes from the flexibility when specifying the slice:

The following leads from the original $2 \times 3 \times 2$ array to a 2×2 array by cutting away the Sex=Male and Eye=Brown slice of the array:

\[
\text{tabSlice(hec, slice=list(Eye=2:3, Sex="Female"))}
\]

We may also regard the result above as a $2 \times 2 \times 1$ array:

\[
\text{tabSlice(hec, slice=list(Eye=c("Blue", "Hazel"), Sex="Female"), drop=FALSE)}
\]

If slicing leads to a one dimensional array, the output will by default not be an array but a vector (without a \texttt{dim} attribute). However, the result can be forced to be a 1-dimensional array:

\[
\text{t2 %>% flat}
\]

The difference between the last two forms can be clarified:

\[
t2 \text{ %>% flat}
\]

\[
t3 \text{ %>% flat}
\]
3.3 Collapsing and inflating arrays

Collapsing: The HE–marginal array T_{HE} of T_{HES} is the array with values

$$T_{HE}(h,e) = \sum_s T_{HES}(h,e,s)$$

Inflating: The “opposite” operation is to extend an array. For example, we can extend T_{HE} to have a third dimension, e.g. Sex. That is

$$\tilde{T}_{SHE}(s,h,e) = T_{HE}(h,e)$$

so $\tilde{T}_{SHE}(s,h,e)$ is constant as a function of s.

With gRbase we can collapse arrays with¹:

```r
he <- tabMarg(hec, c("Hair", "Eye"))

``` # Eye  
Hair Brown Blue Hazel
Black 68 20 15
Brown 119 84 54

Alternatives

```r
tabMarg(hec, ~Hair:Eye)  
tabMarg(hec, c(1, 2))  
hec %a_% ~ Hair:Eye
```

Notice that collapsing is a projection in the sense that applying the operation again does not change anything:

```r
he1 <- tabMarg(hec, c("Hair", "Eye"))  
he2 <- tabMarg(he1, c("Hair", "Eye"))  
tabEqual(he1, he2)  
# [1] TRUE
```

Expand an array by adding additional dimensions with `tabExpand()`:

```r
extra.dim <- list(Sex=c("Male", "Female"))  
tabExpand(he, extra.dim)  
# , , Sex = Male  
## Eye  
## Hair Brown Blue Hazel  
## Black 68 20 15  
## Brown 119 84 54  
# , , Sex = Female  
## Eye  
## Hair Brown Blue Hazel  
## Black 0 0 0  
## Brown 0 0 0
```

¹FIXME: Should allow for abbreviations in formula and character vector specifications.
Alternatives

he %a-% extra.dim

Notice that expanding and collapsing brings us back to where we started:

\[
\text{(he %a-% extra.dim) %a_% c}("Hair", "Eye")
\]

3.4 Permuting an array

A reorganization of the table can be made with \texttt{tabPerm}[\texttt{gRbase}] (similar to \texttt{aperm()})
, but \texttt{tabPerm}[\texttt{gRbase}] allows for a formula and for variable abbreviation:

\[
\text{tabPerm(hec, ~Eye:Sex:Hair) %>% flat}
\]

Alternative forms (the first two also works for \texttt{aperm()}):

\[
\text{tabPerm(hec, c("Eye", "Sex", "Hair"))}
\]
\[
\text{tabPerm(hec, c(2, 3, 1))}
\]
\[
\text{tabPerm(hec, "Ey:Se:Ha")}
\]
\[
\text{tabPerm(hec, c("Ey", "Se", "Ha"))}
\]

3.5 Equality

Two arrays are defined to be identical 1) if they have the same dimnames and 2) if, possibly after a permutation, all values are identical (up to a small numerical difference):

\[
\text{hec2 <- tabPerm(hec, 3:1)}
\]
\[
\text{tabEqual(hec, hec2)}
\]

3.6 Aligning

We can align one array according to the ordering of another:

\[
\text{hec2 <- tabPerm(hec, 3:1)}
\]
\[
\text{tabAlign(hec2, hec)}
\]
Alternative:
```
```
```
```
, , Sex = Male
```
```
, , Sex = Female
```
```

3.7 Multiplication, addition etc: +, −, *, /

The product of two arrays T_{HE} and T_{HS} is defined to be the array \tilde{T}_{HES} with entries

$$
\tilde{T}_{HES}(h,e,s) = T_{HE}(h,e) + T_{HS}(h,s)
$$

The sum, difference and quotient is defined similarly: This is done with `tabProd()`\[gRbase\], `tabAdd()`\[gRbase\], `tabDiff()`\[gRbase\] and `tabDiv()`\[gRbase\]:

```r
hs <- tabMarg(hec, ~Hair:Eye)
tabMult(he, hs)
```

Available operations:

- `tabAdd(he, hs)`
- `tabSubt(he, hs)`
- `tabMult(he, hs)`
- `tabDiv(he, hs)`
- `tabDiv0(he, hs)` **## Convention 0/0 = 0**

Shortcuts:

```r
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
3.8 An array as a probability density

If an array consists of non-negative numbers then it may be regarded as an (unnormalized) discrete multivariate density. With this view, the following examples should be self explanatory:

```
# , , Sex = Male
##
## Eye
## Hair Brown Blue Hazel
## Black 221 75 73
## Brown 299 270 142
##
## , , Sex = Female
##
## Eye
## Hair Brown Blue Hazel
## Black 85 35 43
## Brown 61 102 34

## tabSum(list(he, hs, es))
```

3.9 Miscellaneous

Multiply values in a slice by some number and all other values by another number:

```
##
## tabDist(hec, marg="Hair:Eye")
##
## Hair Brown Blue Hazel
## Black 0.1889 0.05556 0.04167
## Brown 0.3306 0.23333 0.15000

## tabDist(hec, cond="Sex")
## , , Sex = Male
##
## Eye
## Hair Brown Blue Hazel
## Black 0.1768 0.06077 0.05525
## Brown 0.2928 0.27624 0.13812
##
## , , Sex = Female
##
## Eye
## Hair Brown Blue Hazel
## Black 0.2011 0.05028 0.02793
## Brown 0.3687 0.18994 0.16201

## tabDist(hec, marg="Hair, cond="Sex")
##
## Sex
## Hair Male Female
## Black 0.2028 0.2793
## Brown 0.7072 0.7207
```
Sex

<table>
<thead>
<tr>
<th>Eye</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>0</td>
<td>1020</td>
</tr>
<tr>
<td>Blue</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>Hazel</td>
<td>0</td>
<td>340</td>
</tr>
</tbody>
</table>

4 Examples

4.1 A Bayesian network

A classical example of a Bayesian network is the “sprinkler example”, see e.g. http://en.wikipedia.org/wiki/Bayesian_network:

> Suppose that there are two events which could cause grass to be wet: either the sprinkler is on or it is raining. Also, suppose that the rain has a direct effect on the use of the sprinkler (namely that when it rains, the sprinkler is usually not turned on). Then the situation can be modeled with a Bayesian network.

We specify conditional probabilities \(p(r), p(s|r) \) and \(p(w|s,r) \) as follows (notice that the vertical conditioning bar (|) is replaced by the horizontal underscore:

```
yn <- c("y","n")
lev <- list(rain=yn, sprinkler=yn, wet=yn)
r <- tabNew(~rain, levels=lev, values=c(.2,.8))
s_r <- tabNew(~sprinkler:rain, levels = lev, values = c(.01,.99,.4,.6))
w_sr <- tabNew(~wet:sprinkler:rain, levels=lev, values=c(.99,.01,.8,.2,.9,.1,0,1))
```

```
r
## rain
## y n
## 0.2 0.8
```

```
s_r %>% flat
## sprinkler rain Freq
## 1 y y 0.01
## 2 n y 0.99
## 3 y n 0.40
## 4 n n 0.60
```

```
w_sr %>% flat
## wet sprinkler rain Freq
## 1 y y y 0.99
## 2 n y y 0.01
## 3 y n y 0.80
## 4 n n y 0.20
```

The joint distribution \(p(r,s,w) = p(r)p(s|r)p(w|s,r) \) can be obtained with \texttt{tabProd()}\texttt{[gRbase]}:

```
joint <- tabProd(r, s_r, w_sr); joint %>% flat
## rain sprinkler wet Freq
## 1 y y y 0.00198
```
What is the probability that it rains given that the grass is wet? We find \(p(r, w) = \sum_s p(r, s, w) \) and then \(p(r \mid w) = p(r, w) / p(w) \). Can be done in various ways: with \texttt{tabDist()} [\texttt{gRbase}]

\begin{verbatim}
 tabDist(joint, marg="rain", cond="wet")
wet
rain y n
y 0.2 NaN
n 0.8 NaN
\end{verbatim}

\begin{verbatim}
 ## Alternative:
 rw <- tabMarg(joint, ~rain + wet)
tabDiv(rw, tabMarg(rw, ~wet))
or
 rw %a/% (rw %a_% ~wet)
\end{verbatim}

\begin{verbatim}
 ## Alternative:
 x <- tabSliceMult(rw, slice=list(wet="y")); x
wet
rain y n
y 0.00198 0
n 0.00792 0
 tabDist(x, marg="rain")
rain
y n
0.2 0.8
\end{verbatim}

4.2 Iterative Proportional Scaling (IPS)

We consider the 3-way \texttt{lizard} data from \texttt{gRbase}:

\begin{verbatim}
data(lizard, package="gRbase")
lizard %>% flat
diam height species Freq
1 <=4 >4.75 anoli 32
2 >4 >4.75 anoli 11
3 <=4 <=4.75 anoli 86
4 >4 <=4.75 anoli 35
\end{verbatim}

Consider the two factor log-linear model for the \texttt{lizard} data. Under the model the expected counts have the form

\[
\log m(d, h, s) = a_1(d, h) + a_2(d, s) + a_3(h, s)
\]

If we let \(n(d, h, s) \) denote the observed counts, the likelihood equations are: Find \(m(d, h, s) \) such that

\[
m(d, h) = n(d, h), \quad m(d, s) = n(d, s), \quad m(h, s) = n(h, s)
\]

where \(m(d, h) = \sum_s m(d, h, s) \) etc. The updates are as follows: For the first term we have
After iterating the updates will not change and we will have equality: \[m(d, h, s) = m(d, h, s) \frac{n(d, h)}{m(d, h)} \]
and summing over \(s \) shows that the equation \(m(d, h) = n(d, h) \) is satisfied.

A rudimentary implementation of iterative proportional scaling for log-linear models is straightforward:

```r
myips <- function(indata, glist){
  fit <- indata
  fit[] <- 1
  ## List of sufficient marginal tables
  md <- lapply(glist, function(g) tabMarg(indata, g))
  for (i in 1:4){
    for (j in seq_along(glist)){
      mf <- tabMarg(fit, glist[[j]])
      # adj <- tabDiv( md[[ j ]], mf)
      # fit <- tabMult( fit, adj )
      # or
      adj <- md[[ j ]] %a/% mf
      fit <- fit %a*% adj
    }
  }
  pearson <- sum((fit - indata)^2 / fit)
  list(pearson=pearson, fit=fit)
}

myips(lizard, glist)

fm1$pearson
## [1] 0.1506

fm1$fit %>% flat
## diam height species Freq
## 1 <=4 >4.75 anoli 32.8
## 2 >4 >4.75 anoli 10.2
## 3 <=4 <=4.75 anoli 85.2
## 4 >4 <=4.75 anoli 35.8

fm2 <- loglin(lizard, glist, fit=T)
## 4 iterations: deviation 0.009619

fm2$pearson
## [1] 0.1506

fm2$fit %>% flat
## diam height species Freq
## 1 <=4 >4.75 anoli 32.8
## 2 >4 >4.75 anoli 10.2
## 3 <=4 <=4.75 anoli 85.2
## 4 >4 <=4.75 anoli 35.8
```
5 Some low level functions

For e.g. a $2 \times 3 \times 2$ array, the entries are such that the first variable varies fastest so the ordering of the cells are $(1,1,1)$, $(2,1,1)$, $(1,2,1)$, $(2,2,1) , (1,3,1)$ and so on. To find the value of such a cell, say, (j,k,l) in the array (which is really just a vector), the cell is mapped into an entry of a vector.

For example, cell $(2,3,1)$ (Hair=Brown, Eye=Hazel, Sex=Male) must be mapped to entry 4 in

<table>
<thead>
<tr>
<th>Hair</th>
<th>Eye</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Hazel</td>
<td>Male</td>
</tr>
</tbody>
</table>

For illustration we do:

```r
cell2name <- function(cell, dimnames){
  unlist(lapply(1:length(cell), function(m) dimnames[[m]][cell[m]]))
}
cell2name(c(2,3,1), dimnames(hec))
## [1] "Brown" "Hazel" "Male"
```

5.1 `cell2entry()`, `entry2cell()` and `next_cell()`

The map from a cell to the corresponding entry is provided by `cell2entry()` in R. The reverse operation, going from an entry to a cell (which is much less needed) is provided by `entry2cell()` in R.

```r
cell2entry(c(2,3,1), dim=c(2, 3, 2))
## [1] 6

entry2cell(6, dim=c(2, 3, 2))
## [1] 2 3 1
```

Given a cell, say $i = (2,3,1)$ in a $2 \times 3 \times 2$ array we often want to find the next cell in the table following the convention that the first factor varies fastest, that is $(1,1,2)$. This is provided by `next_cell()` in R.

```r
next_cell(c(2,3,1), dim=c(2, 3, 2))
## [1] 1 1 2
```
5.2 next_cell_slice() and slice2entry()

Given that we look at cells for which the index in dimension 2 is at level 3 (that is Eye=Hazel), i.e. cells of the form \((j, 3, l)\). Given such a cell, what is then the next cell that also satisfies this constraint. This is provided by \texttt{next_cell_slice}()\[\text{at base}]^{2}.

```r
cnext_cell_slice(c(1,3,1), slice_marg=2, dim=c( 2, 3, 2 ))
## [1] 2 3 1
cnext_cell_slice(c(2,3,1), slice_marg=2, dim=c( 2, 3, 2 ))
## [1] 1 3 2
```

Given that in dimension 2 we look at level 3. We want to find entries for the cells of the form \((j, 3, l)\).^{3}

```r
cslice2entry(slice_cell=3, slice_marg=2, dim=c( 2, 3, 2 ))
## [1] 5 6 11 12
```

To verify that we indeed get the right cells:

```r
cr <- slice2entry(slice_cell=3, slice_marg=2, dim=c( 2, 3, 2 ))
clapply(lapply(cr, entry2cell, c( 2, 3, 2 ) ),
cell2name, dimnames(hec))
## [[1]]
## [1] "Black" "Hazel" "Male"
## [[2]]
## [1] "Brown" "Hazel" "Male"
## [[3]]
## [1] "Black" "Hazel" "Female"
## [[4]]
## [1] "Brown" "Hazel" "Female"
```

5.3 fact_grid() – Factorial grid

Using the operations above we can obtain the combinations of the factors as a matrix:

```r
chead( fact_grid( c(2, 3, 2 ), 6 )
## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 2 1 1
## [3,] 1 2 1
## [4,] 2 2 1
## [5,] 1 3 1
## [6,] 2 3 1
```

A similar dataframe can also be obtained with the standard R function \texttt{expand.grid} (but \texttt{factGrid} is faster)

^{2}\text{FIXME: sliceset should be called margin.}

^{3}\text{FIXME:slicecell and sliceset should be renamed}
head(expand.grid(list(1:2, 1:3, 1:2), 6)
Var1 Var2 Var3
1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 3 1
6 2 3 1

A More about slicing

Slicing using standard R code can be done as follows:

hec[, 2:3,] %>% flat ## A 2 x 2 x 2 array
Hair Eye Sex Freq
1 Black Blue Male 11
2 Brown Blue Male 50
3 Black Hazel Male 10
4 Brown Hazel Male 25

hec[1, , 1] ## A vector
Brown Blue Hazel
32 11 10

hec[1, , 1, drop=FALSE] ## A 1 x 3 x 1 array
, , Sex = Male
Eye
Brown Blue Hazel
Black 32 11 10

Programmatically we can do the above as

do.call("[", c(list(hec), list(TRUE, 2:3, TRUE))) %>% flat
do.call("[", c(list(hec), list(1, TRUE, 1)))
do.call("[", c(list(hec), list(1, TRUE, 1), drop=FALSE))

gRbase provides two alternatives for each of these three cases above:

tabSlicePrim(hec, slice=list(TRUE, 2:3, TRUE)) %>% flat
tabSlice(hec, slice=list(c(2, 3)), margin=2) %>% flat

tabSlicePrim(hec, slice=list(1, TRUE, 1))
tabSlice(hec, slice=list(1, 1), margin=c(1, 3))

tabSlicePrim(hec, slice=list(1, TRUE, 1), drop=FALSE)
tabSlice(hec, slice=list(1, 1), margin=c(1, 3), drop=FALSE)