Package ‘gTests’

December 6, 2017

Version 0.2
Date 2017-12-6
Title Graph-Based Two-Sample Tests
Author Hao Chen and Jingru Zhang
Maintainer Hao Chen <hxchen@ucdavis.edu>
Depends R (>= 3.0.1)
Imports ade4
Description Four graph-based tests are provided for testing whether two samples are from the same distribution. It works for both continuous data and discrete data.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2017-12-06 22:04:04 UTC

R topics documented:

- counts1 ... 2
- counts2 ... 2
- counts3 ... 2
- dfs ... 3
- ds1 ... 3
- ds2 ... 3
- ds3 ... 3
- E1 ... 4
- E2 ... 4
- E3 ... 4
- g.tests ... 4
- g.tests_discrete ... 6
- getComdist ... 8
- getGraph .. 9
- getMV_discrete .. 9
- getR1R2 .. 10
counts1

A matrix representing counts in the distinct values for the two samples

Description

This is a K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples. The data is generated from two samples with mean shift.

counts2

A matrix representing counts in the distinct values for the two samples

Description

This is a K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples. The data is generated from two samples with spread difference.

counts3

A matrix representing counts in the distinct values for the two samples

Description

This is a K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples. The data is generated from two samples with mean shift and spread difference.
dfs

Depth-first search

Description

One starts at the root and explores as far as possible along each branch before backtracking.

Usage

\[\text{dfs}(s, \text{visited}, \text{adj}) \]

Arguments

- **s**: The root node.
- **visited**: N by 1 vector, where N is the number of nodes. This vector records whether nodes have been visited or not with 1 if visited and 0 otherwise.
- **adj**: N by N adjacent matrix.

See Also

- **getGraph**

ds1

A distance matrix on the distinct values

Description

This is a K by K matrix, which is the distance matrix on the distinct values for counts1.

ds2

A distance matrix on the distinct values

Description

This is a K by K matrix, which is the distance matrix on the distinct values for counts2.

ds3

A distance matrix on the distinct values

Description

This is a K by K matrix, which is the distance matrix on the distinct values for counts3.
Description

This is a matrix with the number of rows the number of edges in the similarity graph and 2 columns. Each row records the subject indices of the two edges of in the similarity graph. The subject indices of sample 1 is 1:100, and the subject indices of sample 2 is 101:250.

g.tests

Graph-based two-sample tests

This function provides four graph-based two-sample tests.

Usage

```
g.tests(E, sample1ID, sample2ID, test.type="all", maxtype.kappa = 1.14, perm=0)
```
Arguments

E | An edge matrix representing a similarity graph with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.
sample1ID | The subject indices of sample 1.
sample2ID | The subject indices of sample 2.
test.type | The default value is "all", which means all four tests are performed: original edge-count test (Friedman and Rafsky (1979)), generalized edge-count test (Chen and Friedman (2016)), weighted edge-count test (Chen, Chen and Su (2016)) and maxtype edge-count tests (Zhang and Chen (2017)). Set this value to "original" or "o" to perform only the original edge-count test; set this value to "generalized" or "g" to perform only the generalized edge-count test; set this value to "weighted" or "w" to perform only the weighted edge-count test; and set this value to "maxtype" or "m" to perform only the maxtype edge-count tests.
maxtype.kappa | The value of parameter(kappa) in the maxtype edge-count tests. The default value is 1.14.
perm | The number of permutations performed to calculate the p-value of the test. The default value is 0, which means the permutation is not performed and only approximate p-value based on asymptotic theory is provided. Doing permutation could be time consuming, so be cautious if you want to set this value to be larger than 10,000.

Value

test.statistic | The test statistic.
pval.approx | The approximated p-value based on asymptotic theory.
pval.perm | The permutation p-value when argument 'perm' is positive.

References

Zhang, J. and Chen, H. Graph-based two-sample tests for discrete data.

Examples

the "example" data contains three similarity graphs represented in the matrix form: E1, E2, E3.
data(example)

E1 is an edge matrix representing a similarity graph.
It is constructed on two samples with mean difference.
Sample 1 indices: 1:100; sample 2 indices: 101:250.
g.tests_discrete

Description

This function provides four graph-based two-sample tests for discrete data.

Usage

g.tests_discrete(E, counts, test.type = "all", maxtype.kappa = 1.14, perm = 0)

Arguments

E
An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

counts
A K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples.

test.type
The default value is "all", which means all four tests are performed: the original edge-count test (Chen and Zhang (2013)), extension of the generalized edge-count test (Chen and Friedman (2016)), extension of the weighted edge-count test (Chen, Chen and Su (2016)) and extension of the maxtype edge-count tests (Zhang and Chen (2017)). Set this value to "original" or "o" to perform only the original edge-count test; set this value to "generalized" or "g" to perform only extension of the generalized edge-count test; set this value to "weighted" or "w" to perform only extension of the weighted edge-count test; and set this value to "maxtype" or "m" to perform only extension of the maxtype edge-count tests.

maxtype.kappa
The value of parameter(kappa) in the extension of the maxtype edge-count tests. The default value is 1.14.
perm

The number of permutations performed to calculate the p-value of the test. The default value is 0, which means the permutation is not performed and only approximate p-value based on asymptotic theory is provided. Doing permutation could be time consuming, so be cautious if you want to set this value to be larger than 10,000.

Value

test.statistic_a
The test statistic using ‘average’ method to construct the graph.
test.statistic_u
The test statistic using ‘union’ method to construct the graph.
pval.approx_a
Using ‘average’ method to construct the graph, the approximated p-value based on asymptotic theory.
pval.approx_u
Using ‘union’ method to construct the graph, the approximated p-value based on asymptotic theory.
pval.perm_a
Using ‘average’ method to construct the graph, the permutation p-value when argument ‘perm’ is positive.
pval.perm_u
Using ‘union’ method to construct the graph, the permutation p-value when argument ‘perm’ is positive.

References

Zhang, J. and Chen, H. Graph-based two-sample tests for discrete data.

Examples

the "example_discrete" data contains three two-sample counts data
represted in the matrix form: counts1, counts2, counts3
and the corresponding distance matrix on the distinct values: ds1, ds2, ds3.
data(example_discrete)

data(counts1 is a K by 2 matrix, where K is the number of distinct values.
It specifies the counts in the K distinct values for the two samples.
ds1 is the corresponding distance matrix on the distinct values.
The data is generated from two samples with mean shift.
Knl = 3
E1 = getGraph(counts1, ds1, Knl, graph = "nnlink")
g.tests_discrete(E1, counts1)
getComdist

Get distance between two components

Description

This function calculates the distance between two components.

Usage

getComdist(g1,g2,distance)

Arguments

- **g1**: The distinct values in Component 1.
- **g2**: The distinct values in Component 2.
- **distance**: A K by K matrix, which is the distance matrix on the distinct values and K is the number of distinct values with at least one observation in either group.

See Also

getGraph
getGraph

Construct similarity graph

Description

This function provides two methods to construct the similarity graph.

Usage

getGraph(counts, mydist, K, graph.type = "mstree")

Arguments

counts A K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples.

mydist A K by K matrix, which is the distance matrix on the distinct values.

K Set the value of k in "k-MST" or "k-NNL" to construct the similarity graph.

graph.type Specify the type of the constructing graph. The default value is "mstree", which means constructing the minimal spanning tree as the similarity graph. Set this value to "nnlink" to construct the similarity graph by the nearest neighbor link method.

Value

E An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

See Also

g.tests_discrete

gMV_discrete Get intermediate results for g.tests_discrete function

Description

This function calculates means and variances of R1 and R2 quantities using 'average' method and 'union' method to construct the graph.

Usage

gMV_discrete(E, vmat)
Arguments

E An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

vmat A K by 2 matrix, where K is the number of distinct values with at least one observation in either group. It specifies the counts in the K distinct values for the two samples.

See Also

g.tests_discrete

getR1R2 Get intermediate results for g.tests function

Description

This function calculates R1 and R2 quantities.

Usage

gR1R2(E, G1)

Arguments

E A matrix with the number of rows the number of edges in the similarity graph and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

G1 The subject indices of sample 1.

See Also

g.tests
getR1R2_discrete

Get intermediate results for g.tests_discrete function

Description

This function calculates R1 and R2 quantities using ‘average’ method and ‘union’ method to construct the graph.

Usage

`getR1R2_discrete(e, vmat)`

Arguments

- **E**
 An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

- **vmat**
 A K by 2 matrix, where K is the number of distinct values with at least one observation in either group. It specifies the counts in the K distinct values for the two samples.

See Also

- `g.tests_discrete`

gTests

Graph-Based Two-Sample Tests

Description

This package includes four graph-based two-sample tests under the continuous setting and the discrete setting.

Author(s)

Hao Chen and Jingru Zhang

Maintainer: Hao Chen (hxchen@ucdavis.edu)
References

See Also

g.tests g.tests_discrete getGraph

nnlink

Construct similarity graph by 1-NNL

Description

This function provides the edges of the similarity graph constructed by 1-NNL.

Usage

nnlink(distance)

Arguments

distance A K by K matrix, which is the distance matrix on the distinct values and K is the number of distinct values with at least one observation in either group.

Value

E An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

See Also

g.getGraph
nnlink_Com

Get components by nearest neighbor link algorithm

Description
This function obtains components based on the nearest neighbor link algorithm.

Usage
nnlink_Com(distance)

Arguments
distance A K by K matrix, which is the distance matrix on the distinct values and K is the number of distinct values with at least one observation in either group.

See Also
getGraph

nnlink_K
Construct similarity graph by k-NNL

Description
This function provides the edges of the similarity graph constructed by k-NNL.

Usage
nnlink_K(distance,K)

Arguments
distance A K by K matrix, which is the distance matrix on the distinct values and K is the number of distinct values with at least one observation in either group.
K Set the value of k in "k-NNL" to construct the similarity graph.

Value
E An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

See Also
getGraph
permute_discrete

Generate a permutation for two discrete data groups

Description

This function permutes the observations maintaining the two sample sizes unchanged.

Usage

permute_discrete(vmat)

Arguments

vmat

A K by 2 matrix, where K is the number of distinct values with at least one observation in either group. It specifies the counts in the K distinct values for the two samples.

See Also

g.tests_discrete
Index

counts1, 2
counts2, 2
counts3, 2
dfs, 3
ds1, 3
ds2, 3
ds3, 3
E1, 4
E2, 4
E3, 4
g.tests, 4, 10, 12
g.tests_discrete, 6, 9–12, 14
getComdist, 8
getGraph, 3, 8, 9, 12, 13
getMV_discrete, 9
getR1R2, 10
getR1R2_discrete, 11
gTests, 11

nnlink, 12
nnlink_Com, 13
nnlink_K, 13

permute_discrete, 14