Package ‘gWQS’

November 16, 2023

Type Package

Title Generalized Weighted Quantile Sum Regression

Version 3.0.5

License GPL (>= 2)

Imports ggplot2, stats, broom, rlist, MASS, reshape2, plotROC, knitr, kableExtra, nnet, future, future.apply, pscl, ggrepel, cowplot, Matrix, car, utils, bookdown

Suggests markdown

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Stefano Renzetti [aut, cre],
Paul Curtin [aut],
Allan C Just [ctb],
Ghalib Bello [ctb],
Chris Gennings [aut]

Maintainer Stefano Renzetti <stefano.renzetti88@gmail.com>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2023-11-16 22:20:06 UTC
R topics documented:

- gwqs ... 2
- gwqs_barplot 7
- summary.gwqs 9
- tiwqs_data 12
- wqs_data 12

Index 15

Fitting Weighted Quantile Sum regression models

Description

Usage

```r
# gwqs
gwqs(formula, data, na.action, weights, mix_name, stratified, rh = 1, b = 100,
     b1_pos = TRUE, bint_cont_pos = NULL, bint_cat_pos = NULL, b_constr = FALSE,
     zero_infl = FALSE, q = 4, validation = 0.6, validation_rows = NULL,
     family = gaussian, signal = c("t2", "t3", "one", "abst", "expt"),
     rs = FALSE, n_vars = NULL,
     zilink = c("logit", "probit", "cloglog", "cauchit", "log"), seed = NULL,
     wp = NULL, wn = NULL, plan_strategy = "sequential", lambda = 0,
     optim.method = c("BFGS", "Nelder-Mead", "CG", "SANN"),
     control = list(trace = FALSE, maxit = 2000, reltol = 1e-9),
     b1_constr = NULL, ...)

gwqs_multinom(formula, data, na.action, weights, mix_name, stratified, rh = 1, b = 100,
               b1_pos = c(TRUE, TRUE), b_constr = FALSE, q = 4,
               validation = 0.6, validation_rows = NULL,
               signal = c("t2", "t3", "one", "abst", "expt"),
               rs = FALSE, n_vars = NULL,
               zilink = c("logit", "probit", "cloglog", "cauchit", "log"),
               seed = NULL, wp = NULL, wn = NULL, plan_strategy = "sequential",
               lambda = 0, optim.method = c("BFGS", "Nelder-Mead", "CG", "SANN"),
               control = list(trace = FALSE, maxit = 2000, reltol = 1e-9),
               b1_constr = NULL, ...)

gwqsrh(formula, data, na.action, weights, mix_name, stratified, rh = 1, b = 100,
       b1_pos = TRUE, bint_cont_pos = NULL, bint_cat_pos = NULL, b_constr = FALSE,
       zero_infl = FALSE, q = 4, validation = 0.6, validation_rows = NULL,
       family = gaussian, signal = c("t2", "t3", "one", "abst", "expt"),
       rs = FALSE, n_vars = NULL,
       zilink = c("logit", "probit", "cloglog", "cauchit", "log"),
       seed = NULL, wp = NULL, wn = NULL, plan_strategy = "sequential",
       lambda = 0, optim.method = c("BFGS", "Nelder-Mead", "CG", "SANN"),
       control = list(trace = FALSE, maxit = 2000, reltol = 1e-9),
       b1_constr = NULL, ...)

```
family = gaussian, signal = c("t2", "t3", "one", "abst", "expt"),
rs = FALSE, n_vars = NULL,
zilink = c("logit", "probit", "cloglog", "cauchit", "log"), seed = NULL,
wp = NULL, wn = NULL, plan_strategy = "sequential", lambda = 0,
optim.method = c("BFGS", "Nelder-Mead", "CG", "SANN"),
control = list(trace = FALSE, maxit = 2000, reltol = 1e-9), ...

Arguments

formula
An object of class formula specifying the relationship to be tested. The wqs
term must be included in formula, e.g. y ~ wqs + ... To test for an interac-
tion term with a continuous variable a or for a quadratic term we can specify
the formula as below: y ~ wqs*a + ... and y ~ wqs + I(wqs^2) + ..., respec-
tively.

data
The data.frame containing the variables to be included in the model.

na.action
model.frame. na.omit is the default.

weights
An optional term containing the name of the variable in the dataset representing
the weights to be used in the fitting process. Should be NULL or the variable
name.

mix_name
A character vector listing the variables contributing to a mixture effect.

stratified
The character name of the variable for which you want to stratify for. It has to
be a factor.

rh
Number of repeated holdout validations.

b
Number of bootstrap samples used in parameter estimation. No bootstrap will
be performed if b = 1.

b1_pos
A logical value that determines whether weights are derived from models where
the beta values were positive (TRUE) or negative (FALSE).

bint_cont_pos
A logical value that determines whether weights are derived from models where
the beta parameter of the interaction term between the WQS index and a contin-
uous variable were positive (TRUE) or negative (FALSE).

bint_cat_pos
A logical value or a vector of logical values that determines whether weights
are derived from models where the slopes of the WQS index for each level
(other than the reference one) of the interacting categorical variable were posi-
tive (TRUE) or negative (FALSE).

b_constr
A logical value that determines whether to apply positive (if b1_pos = TRUE) or
negative (if b1_pos = FALSE) constraints in the optimization function for the
weight estimation.

zero_infl
A logical value (TRUE or FALSE) that allows to fit a zero inflated model in case
family = "poisson" or family = "negbin".

q
An integer to specify how mixture variables will be ranked, e.g. in quartiles (q
= 4), deciles (q = 10), or percentiles (q = 100). If q = NULL then the values of
the mixture variables are taken (these must be standardized).

validation
Percentage of the dataset to be used to validate the model. If validation = 0
then the test dataset is used as validation dataset too.
validation_rows

A list of a single (if rh=1) or multiple vectors containing the rows to be considered in the validation step. When "validation_rows=NULL" (default) the function randomly choose the observations to be considered in the validation step.

family

A character value that allows to decide for the glm: gaussian for linear regression, binomial for logistic regression, poisson for Poisson regression, quasipoisson for quasi-Poisson regression, "negbin" for negative binomial regression.

signal

Character identifying the signal function to be used when the average weights are estimated. It can take values from "one" to apply the identity, "abst" to apply the absolute value of the t-statistic, "t2" to apply the squared value of the t-statistic, "expt" to apply the exponential of the t-statistic as signal function.

rs

A logic value. If rs = FALSE then the bootstrap implementation of WQS is performed. If rs = TRUE then the random subset implementation of WQS is applied (see the "Details" and the vignette for further information).

n_vars

The number of mixture components to be included at each random subset step. If rs = TRUE and n_vars = NULL then the square root of the number of elements in the mixture is taken.

zilink

Character specification of link function in the binary zero-inflation model (you can choose among "logit", "probit", "cloglog", "cauchit", "log").

seed

An integer value to fix the seed, if it is equal to NULL no seed is chosen.

wp, wn

An optional set of starting weights for the positive (wp) and negative (wn) directions to be passed to the optimization function. The default is wp = NULL, wn = NULL to let the gwqs function set the starting values.

plan_strategy

A character value that allows to choose the evaluation strategies for the plan function. You can choose among "sequential", "transparent", "multisession", "multicore", "multiprocess", "cluster" and "remote" (see plan help page for more details).

lambda

The value of the penalization term used to shrink towards 0 the weights that are not truly associated with the outcome (see the "Details" and the vignette for further information).

optim.method

A character identifying the method to be used by the optim function (you can choose among "BFGS", "Nelder-Mead", "CG", "SANN", "BFGS" is the default). See optim for details.

control

The control list of optimization parameters. See optim for details.

b1_constr

The argument is deprecated, use 'b_constr' instead.

...

Additional arguments to be passed to the function

Details

gwqs uses the glm function in the stats package to fit the linear, logistic, the Poisson and the quasi-Poisson regression, while the glm.nb function from the MASS package is used to fit the negative binomial regression respectively. The nlm function from the stats package was used to optimize the log-likelihood of the multinomial regression.
The `optim` optimization function is used to estimate the weights at each bootstrap step.

The seed argument specifies a fixed seed through the `set.seed` function.

The `rs` term allows to choose the type of methodology between the bootstrap implementation (WQSBS) or the random subset implementation (WQSRS) of the WQS. The first method performs b bootstrapped samples to estimate the weights while the second creates b randomly-selected subset of the total predictor set. For further details please see the vignette (“How to use gWQS package”) and the references below.

Value

`gwqs` return the results of the WQS regression as well as many other objects and datasets.

- `fit` The object that summarizes the output of the WQS model, reflecting a linear, logistic, multinomial, Poisson, quasi-Poisson or negative binomial regression depending on how the `family` parameter was specified. The summary function can be used to call and print fit data (not for multinomial regression).
- `final_weights` data.frame containing the final weights associated to each chemical.
- `conv` Indicates whether the solver has converged (0) or not (1 or 2).
- `bres` Matrix of estimated weights, mixture effect parameter estimates and the associated standard errors, statistics and p-values estimated for each bootstrap iteration.
- `wqs` Vector containing the wqs index for each subject.
- `pwqs` Vector containing the positive wqs index for each subject.
- `nwqs` Vector containing the negative wqs index for each subject.
- `qi` List of the cutoffs used to divide in quantiles the variables in the mixture.
- `bindex` List of vectors containing the rownames of the subjects included in each bootstrap dataset.
- `y_wqs_df` data.frame containing the dependent variable values adjusted for the residuals of a fitted model adjusted for covariates (original values when `family = binomial` or “multinomial”) and the wqs index estimated values.
- `family` The family specified.
- `call` The matched call.
- `formula` The formula supplied.
- `mix_name` The vector of variable names used to identify the elements in the mixture.
- `q` The method used to rank variables included in the mixture.
- `n_levels` The number of levels of the of the dependent variable when a multinomial regression is ran.
- `zero_infl` If a zero inflated model was ran (TRUE) or not (FALSE)
- `zilink` The chosen link function when a zero inflated model was ran.
- `dwqs` A logical value whether two indices were included (TRUE) in the model or not (FALSE).
levelnames | The name of each level when a multinomial regression is ran.
data | The data used in the WQS analysis.
objfn_values | The vector of the b values of the objective function corresponding to the optima values
optim_messages | The vector of character strings giving any additional information returned by the optimizer, or NULL.
gwqslist | List of the output from the rh WQS models.
coefmat | Matrix containing the parameter estimates from each repeated holdout WQS model.
wmat | Matrix containing the weight estimates from each repeated holdout WQS model.
rh | The number of repeated holdout performed.

Author(s)
Stefano Renzetti, Paul Curtin, Allan C Just, Ghalib Bello, Chris Gennings

References

See Also
glm, glm.nb, multinom, zeroinfl.

Examples

```
# we save the names of the mixture variables in the variable "toxic_chems"
toxic_chems = names(wqs_data)[1:34]

# To run a linear model and save the results in the variable "results". This linear model
# (family = gaussian) will rank/standardize variables in quartiles (q = 4), perform a
# 40/60 split of the data for training/validation (validation = 0.6), and estimate weights
# over 2 bootstrap samples (b = 2; in practical applications at least 100 bootstraps
```
should be used). Weights will be derived from mixture effect parameters that are positive
(b_l_pos = TRUE). A unique seed was specified (seed = 2016) so this model will be
reproducible, and plots describing the variable weights and linear relationship will be
generated as output (plots = TRUE). In the end tables describing the weights values and
the model parameters with the respectively statistics are generated in the plots window
(tables = TRUE):

results = gwqs(yLBX ~ wqs, mix_name = toxic_chems, data = wqs_data, q = 4, validation = 0.6,
 b = 2, b_l_pos = TRUE, b_constr = FALSE, family = gaussian, seed = 2016)

to test the significance of the covariates
summary(results)

Description

Functions that allow to generate plots and tables helping in visualizing and summarise Weighted
Quantile Sum (WQS) regression results.

Usage

- `gwqs_barplot(object, tau, ...)`
- `gwqs_scatterplot(object, ...)`
- `gwqs_fitted_vs_resid(object, sumtype = c("norm", "perc"), ...)`
- `gwqs_levels_scatterplot(object, ...)`
- `gwqs_ROC(object, newdata, sumtype = c("norm", "perc"), ...)`
- `gwqs_boxplot(object, tau, ...)`
- `gwqs_summary_tab(object, sumtype = c("norm", "perc"), ...)`
- `gwqs_weights_tab(object, ...)`
- `selectdatavars(data, na.action, formula, mix_name, ...)`
- `gwqs_rank(data, mix_name, q)`

Arguments

- `object`: An object of class "gwqs" as returned by `gwqs`.
- `tau`: A number identifying the cutoff for the significant weights. Is tau is missing
 then reciprocal of the number of elements in the mixture is considered. To avoid
 printing the threshold line set tau = NULL.
Further arguments to be passed.

sumtype
Type of summary statistic to be used: "norm" takes the mean of the estimated parameters on the validation sets and the 95 as the parameters estimates and the 2.5, 97.5 percentiles as CI. This option is only available for objects of class `gwqsrh`.

newdata
A data frame in which to look for variables with which to predict and generate the ROC curve.

data
Dataset from which you want to select the variables you are interested in.

na.action
Allows to choose what action has to be taken to deal with NAs.

formula
Formula used in the model to specify the dependent and independent variables.

mix_name
Vector containing element names included in the mixture.

q
An integer to specify how mixture variables will be ranked, e.g. in quartiles (q = 4), deciles (q = 10), or percentiles (q = 100).

Details
The `gwqs_barplot`, `gwqs_scatterplot`, `gwqs_fitted_vs_resid`, `gwqs_levels_scatterplot`, `gwqs_ROC` and `gwqs_boxplot` functions produce five figures through the `ggplot` function.

The `gwqs_summary_tab` and `gwqs_weights_tab` functions produce two tables in the viewer pane through the use of the `kable` and `kable_styling` functions.

The `gwqs_barplot`, `gwqs_scatterplot` plots are available for all family types while `gwqs_fitted_vs_resid` is not available when family = `binomial` or "multinomial". `gwqs_levels_scatterplot` plot is only available when family = "multinomial" and `gwqs_ROC` when family = `binomial`. The `gwqs_boxplot` can be used when the parameter `rh` within the `gwqs` function is set greater than 1.

The `gwqs_rank` function allows to split the variables selected through the vector `mix_name` in quantiles (depending by the value assigned to q).

Value
All the plot functions print the output in the Plots pane while the table functions print the output in the Viewer pane.

Qm
The matrix containing the quantiled variables of the elements included in the mixture.

qi
A list of vectors containing the cut points used to determine the quantiled variables.

Author(s)
Stefano Renzetti, Paul Curtin, Allan C Just, Ghalib Bello, Chris Gennings

Examples
```r
toxic_chems = names(wqs_data)[1:34]
results = gwqs(yLBX ~ wqs, mix_name = toxic_chems, data = wqs_data, q = 4, validation = 0.6, b = 2, b1_pos = TRUE, b_constr = FALSE, family = gaussian)
```
barplot
gwqs_barplot(results)

scatterplot
gwqs_scatterplot(results)

fitted values vs rediduals scatterplot
gwqs_fitted_vs_resid(results)

Methods for gwqs objects

Description

Methods for extracting information from fitted Weighted Quantile Sum (WQS) regression model objects of class "gwqs".

Usage

S3 method for class 'gwqs'
summary(object, sumtype = c("norm", "perc"), ...)

S3 method for class 'gwqs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'summary.gwqs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'gwqs'
predict(
 object,
 newdata,
 sumtype = c("norm", "perc"),
 type = c("link", "response", "prob", "count", "zero", "class", "probs", "terms"),
 ...)

S3 method for class 'gwqs'
coef(object, sumtype = c("norm", "perc"), ...)

S3 method for class 'gwqs'
vcov(object, model = c("full", "count", "zero"), ...)

S3 method for class 'gwqs'
fitted(
 object,
Arguments

object, x
An object of class "gwqs" as returned by gwqs.

sumtype
Type of summary statistic to be used: "norm" takes the mean of the estimated parameters on the validation sets and the 95 as the parameters estimates and the 2.5, 97.5 percentiles as CI. This option is only available for objects of class gwqsrh.

... Further arguments to be passed.

digits
The number of significant digits to use when printing.

newdata
Optionally, a data frame in which to look for variables with which to predict. If omitted, the original observations are used.

type
Character specifying the type of predictions, fitted values or residuals, respectively. For details see below.

model
Character specifying for which component of the model the variance-covariance matrix should be extracted when zero_infl = TRUE.

Details

A set of standard extractor functions for fitted model objects is available for objects of class "gwqs", including methods to the generic functions print and summary which print the estimated coefficients along with some further information. As usual, the summary method returns an object of class "summary.gwqs" containing the relevant summary statistics which can subsequently be printed using the associated print method.

The methods for coef and vcov by default return a single vector of coefficients (a matrix when family = "multinomial") and their associated covariance matrix, respectively. By setting the model argument, the estimates for the corresponding model components can be extracted.

Both the fitted and predict methods can compute fitted responses. The latter sets the default on the scale of the linear predictors; the alternative "response" is on the scale of the response variable. Thus for a default binomial model the default predictions are of log-odds (probabilities on logit scale) and type = "response" gives the predicted probabilities. Type can be equal to "prob", "count" or "zero" when zero_infl = T to estimate the predicted density (i.e., probabilities for the observed counts), the predicted mean from the count component (without zero inflation) and the predicted probability for the zero component. Type = "class" allow to predict the dependent variable categories when family
= "multinomial". The "terms" option returns a matrix giving the fitted values of each term in the model formula on the linear predictor scale.

The residuals method allows to extracts model residuals from the objects of class "gwqs".

Value

All these methods return the classic output as for the corresponding glm, glm.nb, multinom and zeroinfl classes. Only the predict method gives a different output made of the following values.

df_pred A data.frame containing the dependent variable and the predicted values.
Q The matrix containing the new dataset quantiled variables of the elements included in the mixture.
qi A list of vectors containing the cut points used to determine the quantiled variables.
wqs The vector containing the wqs index built on the new dataset.

Author(s)

Stefano Renzetti, Paul Curtin, Allan C Just, Ghalib Bello, Chris Gennings

Examples

toxic_chems = names(wqs_data)[1:34]
set.seed(1234)
rws <- sample(1:500, 150)
results = gwqs(yLBX ~ wqs, mix_name = toxic_chems, data = wqs_data[-rws,], q = 4, validation = 0.6,
b = 2, b1_pos = TRUE, b_constr = FALSE, family = gaussian)

to test the significance of the covariates
summary(results)

extract regression coefficients
coeff(results)

estimate variance-covariance matrix
vcov(results)

estimate fitted values
fitted(results)

estimate regression residuals
residuals(results)

estimate predicted values on the left part of wqs_data
pred_res <- predict(results, wqs_data[rws,])
pred_res$df_pred
tiwqs_data Measurement of 38 nutrients (NHANES dataset)

Description

We created the 'tiwqs_data' dataset to show how to apply the two-indices WQS (2iWQS). These data reflect 38 nutrients measured in 5960 subjects participating in the NHANES study (2011-2012, 2013-2014, 2015-2016 cycles). Nutrients were estimated from the dietary intake data that considered the types and amounts of foods and beverages consumed during the 24-hour period prior to the interview. Two interviews were performed: the first one was collected in-person while the second interview was collected by telephone 3 to 10 days later. In this study we averaged the two nutrients when both evaluations were considered as usual food consumption (only one measurement was included in the analysis if the other one was not usual while the observation was dropped if both evaluations were not usual) and we added the dietary supplement intake when applicable. Additionally, BMI as both a continuous variable ('bmxbmi') and categorical variable ('bmi_cat') was included as outcome variable. A total of 10 covariates can also be found in the dataset.

Usage

data(tiwqs_data)

Format

A data frame with 5960 rows and 50 variables

wqs_data Exposure concentrations of 34 PCB (simulated dataset)

Description

We created the ‘wqs_data’ dataset to show how to use this function. These data reflect 59 exposure concentrations simulated from a distribution of 34 PCB exposures and 25 phthalate biomarkers measured in subjects participating in the NHANES study (2001-2002). Additionally, 8 outcome measures were simulated applying different distributions and fixed beta coefficients to the predictors. In particular ‘y’ and ‘yLBX’ were simulated from a normal distribution, ‘ybin’ and ‘ybinLBX’ from a binomial distribution, ‘ymultinom’ and ‘ymultinomLBX’ from a multinomial distribution and ‘ycount’ and ‘ycountLBX’ from a Poisson distribution. The regression coefficients used to generate the outcomes ‘yLBX’, ‘ybinLBX’ and ‘ycountLBX’ were set to:

- LBX105LA = 0.3
- LBX138LA = 0.6
- LBX157LA = 0.2
- LBXD02LA = 0.45
- LBXD04LA = 0.15
- LBXF06LA = 0.3
- LBXF07LA = 0.45
then the following terms were added to generate the variables ‘y’, ‘ybin’ and ‘ycount’:

\[
\begin{align*}
URXMC1 &= 0.15 \\
URXMOH &= 0.45 \\
URXP02 &= 0.2 \\
URXP10 &= 0.3 \\
URXUCR &= 0.2 \\
\end{align*}
\]

All the remaining coefficients were set to 0.

The coefficients to generate ‘ymultinomLBX’ were set as below:

level B:

\[
\begin{align*}
LBX138LA &= 0.8 \\
LBXD04LA &= 0.2 \\
\end{align*}
\]

level C:

\[
\begin{align*}
LBX105LA &= 0.4 \\
LBX157LA &= 0.3 \\
LBXD02LA &= 0.6 \\
LBXF06LA &= 0.4 \\
LBXF07LA &= 0.6 \\
\end{align*}
\]

and the following terms were added for ‘ymultinom’:

level B:

\[
\begin{align*}
URXMC1 &= 0.2 \\
URXP02 &= 0.3 \\
URXP10 &= 0.4 \\
URXUCR &= 0.3 \\
\end{align*}
\]

level C:

\[
\begin{align*}
URXMOH &= 0.6 \\
\end{align*}
\]

The ‘sex’ variable was also simulated to allow to adjust for a covariate in the model. This dataset can thus be used to test the ‘gWQS’ package by analyzing the mixed effect of the 59 simulated PCBs on the continuous, binary or count outcomes, with adjustments for covariates.

Usage

\texttt{wqs_data}

Format

A data frame with 500 rows and 68 variables

Details

\texttt{y} continuous outcome generated considering all the predictors
\texttt{yLBX} continuous outcome generated considering only PCBs
\texttt{ybin} binary outcome generated considering all the predictors
\texttt{ybinLBX} binary outcome generated considering only PCBs
\texttt{ymultinom} multinomial outcome generated considering all the predictors
\texttt{ymultinomLBX} multinomial outcome generated considering only PCBs
\texttt{ycount} count outcome generated considering all the predictors
\texttt{ycountLBX} count outcome generated considering only PCBs
sex covariate, gender of the subject
LBX 34 exposure concentrations of PCB
URX 25 exposure concentrations of phthalates ...
Index

* datasets
 * tiwqs_data, 12
 * wqs_data, 12

 * coef, 10
 * coef.gwqs (summary.gwqs), 9

 * fitted, 10
 * fitted.gwqs (summary.gwqs), 9

 * ggplot, 8
 * glm, 6
 * glm.nb, 6
 * gwqs, 2, 7, 10
 * gwqs_barplot, 7
 * gwqs_boxplot (gwqs_barplot), 7
 * gwqs_fitted_vs_resid (gwqs_barplot), 7
 * gwqs_levels_scatterplot (gwqs_barplot), 7
 * gwqs_multinom (gwqs), 2
 * gwqs_rank (gwqs_barplot), 7
 * gwqs_ROC (gwqs_barplot), 7
 * gwqs_scatterplot (gwqs_barplot), 7
 * gwqs_summary_tab (gwqs_barplot), 7
 * gwqs_weights_tab (gwqs_barplot), 7
 * gwqsrh (gwqs), 2

 * kable, 8
 * kable_styling, 8

 * model.frame, 3
 * multinom, 6

 * optim, 4, 5

 * plan, 4
 * predict, 10
 * predict.gwqs (summary.gwqs), 9
 * print.gwqs (summary.gwqs), 9
 * print.summary.gwqs (summary.gwqs), 9

residuals, 11
residuals.gwqs (summary.gwqs), 9
selectdatavars (gwqs_barplot), 7
set.seed, 5
summary.gwqs, 9
tiwqs_data, 12
vcov, 10
vcov.gwqs (summary.gwqs), 9
wqs_data, 12
zeroinfl, 6