Package ‘gaiah’

April 27, 2023

Title Genetic and Isotopic Assignment Accounting for Habitat Suitability

Description Tools for using genetic markers, stable isotope data, and habitat suitability data to calculate posterior probabilities of breeding origin of migrating birds.

Version 0.0.5

Maintainer Eric C. Anderson <eric.anderson@noaa.gov>

Depends R (>= 3.5.0)

Imports dplyr, geosphere, magrittr, raster, rlang, sp

Suggests knitr, rmarkdown, ggplot2

License CC0

LazyData TRUE

RoxygenNote 7.2.1

Encoding UTF-8

NeedsCompilation no

Author Eric C. Anderson [cre, aut]

Repository CRAN

Date/Publication 2023-04-27 19:50:02 UTC

R topics documented:

breeding_wiwa_genetic_posteriors .. 2
breeding_wiwa_isotopes ... 3
comboize ... 3
comboize_and_fortify ... 4
example_isotope_posteriors ... 6
extract_isopredictions ... 6
gaiyah ... 7
genetic_posteriors2rasters ... 7
genetic_regions ... 8
get_wrld_simpl ... 9
breeding_wiwa_genetic_posteriors

Posterior probs of genetic region origin from Leave-one-out cross validation for breeding WIWAs

Description

A data frame of the same birds (roughly) that appear in breeding_wiwa_isotopes. A long format data frame with 2,358 rows and 5 columns

Usage

breeding_wiwa_genetic_posteriors

Format

A tibble with 2,358 rows and 5 variables. The variables are:

- **ID** unique identifier for each bird
- **Short_Name** another id for the bird
- **NumberOfLoci** Number of loci successfully typed
- **region** one of the genetic regions
- **posterior** the posterior prob of originating from that region

Source

Kristen Ruegg, Eric Anderson, Thomas Smith
breeding_wiwa_isotopes

Isotope values, latitude, longitude and more data from 357 breeding Wilson’s warblers

Description

A data frame containing hydrogen isotope values, lat, long, and IDs and some other columns of data for birds sampled on the breeding grounds. Notice that the latitude column is named "lat" and the longitude column is named "long". Those names are both all lowercase. That is the way we roll here. Make sure that you use "lat" and "long" instead of "Lat" and "Long".

Usage

breeding_wiwa_isotopes

Format

A tibble with 357 rows and 15 variables. The relevant variables for analyses here are:

- **ID** unique identifier for each bird
- **Isotope.Value** hydrogen isotope ratios measured in the bird’s feather
- **lat** latitude of the bird’s breeding/sampling location
- **long** longitude of the bird’s breeding/sampling location

Source

Kristen Ruegg, Jeff Kelly, Thomas Smith

comboize

combine genetics, isotopes, and habitat raster with exponents as given

Description

This just multiplies the rasters together, each raised to the appropriate exponent, normalizes and returns the result

Usage

comboize(Mgen, Miso, Mhab, beta_gen, beta_iso, beta_hab)
Arguments

- **Mgen**
 - the genetic posteriors rasterStack. Must be a rasterStack
- **Miso**
 - the isotope posteriors rasterStack.
- **Mhab**
 - a single layer raster with the habitat suitability measure as a normalized probability surface.
- **beta_gen**
 - the exponent to raise the habitat raster to
- **beta_iso**
 - the exponent to raise the isotope raster to
- **beta_hab**
 - the exponent to raise the genetic raster to

Examples

```r
# first, run through the example for isotope_posterior_probs() to get
# the rasters for two migrant birds. This gives us the list "birds2"
example(isotope_posterior_probs)

# extract the posterior probs rasters from that output into a raster stack
miso <- lapply(birds2$regular, function(x) x$posterior_probs) %>%
  raster::stack()

# see the names of the birds we are dealing with:
names(miso)

# get the genetic posteriors for those two birds
mig_gen2 <- migrant_wiwa_genetic_posteriors %>%
  dplyr::filter(ID %in% c(names(miso)))

# make genetic posterior rasters for those two birds, make sure they are
# sorted in the same order as miso, and make a raster stack of it
mgen <- genetic_posteriors2rasters(G = mig_gen2, R = genetic_regions)[names(miso)] %>%
  raster::stack()

# make a normalized prior from habitat quality that is zeros everywhere
# outside of the "known" range.
tmp <- wiwa_habitat_unclipped * wiwa_breed
mhab <- tmp / raster::cellStats(tmp, sum)

# combine genetics, isotopes and habitat with exponents of 1 on each
mcombo <- comboize(mgen, miso, mhab, 1, 1, 1)
```

comboize_and_fortify

Description

This takes Mgen, Miso, and Mhab for a single bird and, if available, the true breeding location. Then it computes the combo-ized raster at all the requested levels of the exponents, and creates a fortified data frame of the results suitable for plotting in ggplot.
comboize_and_fortify

Usage

comboize_and_fortify(
mgen,
miso,
mhab,
gen_beta_levels = 1,
iso_beta_levels = c(1),
hab_beta_levels = c(1)
)

Arguments

mgen genetics posterior raster
miso isotope posterior raster
mhab habitat suitability raster
gen_beta_levels vector of the desired values of gen_beta
iso_beta_levels vector of the desired values of iso_beta
hab_beta_levels vector of the desired values of hab_beta

Examples

run through the example for comboize to get the variables
mgen, miso, and mhab that we will use.
exmaple(comboize)

then run that on the first bird to get a data frame
that you can use with ggplot
ff <- comboize_and_fortify(mgen[[1]], miso[[1]], mhab)

this can be plotted with ggplot2
Not run:
library(ggplot2)
wmap <- get_wrl_simpl()
ggplot(mapping = aes(x=long, y = lat)) +
 coord_fixed(1.3, xlim = c(-170, -50), ylim = c(33, 70)) +
 geom_polygon(data = wmap, aes(group = group), fill = NA, color = "black", size = .05) +
 geom_raster(data = ff, mapping = aes(fill = prob), interpolate = TRUE) +
 scale_fill_gradientn(colours = c("#EBEBEB", rainbow(7)), na.value = NA) +
 theme_bw() +
 facet_wrap(~ beta_vals, ncol = 2) +
 theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

End(Not run)
extract_isopredictions

Output of isotope_posterior_probs for two migrant birds.

Description

Because it takes too long to generate this output for future examples, we just store it as a data object to use in examples. See the example in isotope_posterior_probs to see what this is.

Usage

```r
example_isotope_posteriors
```

Format

An object of class list of length 2.

Source

Ruegg et al 2014

extract_isopredictions

Add the isomap prediction and sd in columns attached to the feather isotope data frame

Description

Rasterizes the isomap predictions and standard deviation (using isomap2raster) and then extracts the values associated with each location from the raster and returns the full data frame with those values joined on in columns named iso_pred and iso_sd. It overwrites those columns with a warning if either of those columns already exists in the data.

Usage

```r
extract_isopredictions(isoscape, birds, pred = "predkrig", sd = "stdkrig")
```

Arguments

- `isoscape`: the data frame of prediction.txt from ISOMAP. The latitude column must be named "lat" and the longitude column must be named "long".
- `birds`: data frame of the individual isotope values for the birds/feathers. Should be something like `breeding_wiwa_isotopes`.
- `pred`: name of the column holding the prediction (like "predkrig") in the isoscape data frame
- `sd`: name of the column holding the standard deviation (like "stdkrig") in the isoscape data frame
Examples

Using the provided data from breeding Wilson's warblers and the provided predictions from isomap_job54152:
x <- extract_isopredictions(isoscape = isomap_job54152_prediction,
birds = breeding_wiwa_isotopes,
pred = "predkrig",
sd = "stdkrig")

gaih

gaih: Genetic and Isotopic Assignment Accounting for Habitat Suitability

Description

Tools for using genetic markers, stable isotope data, and habitat suitability data to calculate posterior probabilities of breeding origin of migrating birds.

Details

There is not a tutorial within the package, currently. The best place to find an example of how to use the functions in this package is at the GitHub repository: https://github.com/eriqande/gaih-wiwa. Go ahead and read the README there. It should provide you with everything you need to get up and running with the gaih package.

Finally, note that the development version of gaih is available at https://github.com/eriqande/gaih.

genetic_posteriors2rasters

Convert posteriors to particular genetic reporting groups into raster

Description

When birds have been assigned to breeding groups or "general areas" as in Ruegg et al. 2014 then the posterior probability with which the birds were assigned to the groups needs to be "smeared out" in a raster over the spatial extent of the groups.

Usage

genetic_posteriors2rasters(G, R)

Arguments

G long format data frame like breeding_wiwa_genetic_posteriors. Has to have columns of ID, region, and posterior

R a RasterStack like "genetic_regions". The sum of these should be the total known range. The names of the regions in R must be the same as the entries in the "region" column in G.
Value
This returns a list of rasters for each bird in G. The entries in the raster are the posterior probability of being from that cell. This assumes that birds are equally likely to come from any cell within the group's region. It doesn’t return a rasterStack because you can’t subset rasterStacks to change orders, etc., and it mangles names.

Examples
library(raster) # needed to deal with "genetic_regions" variable
get a small subset of individuals so it doesn't take too long
data(breeding_wiwa_genetic_posteriors)
data(genetic_regions)
BW <- breeding_wiwa_genetic_posteriors %>%
 dplyr::filter(Short_Name %in% c("eNBFR01", "wABCA05", "wGORHA21"))

run the function on those
GPRs <- genetic_posteriors2rasters(BW, genetic_regions)

genetic_regions

RasterStack showing the 6 genetic regions that Wilson's warblers may be assigned to

Description
The sum over layers gives the same as wiwa_breed

Usage
genetic_regions

Format
RasterStack with 6 layers. Each contains 1’s in the genetic region and 0’s elsewhere. The sum of these layers is the raster wiwa_breed.

class RasterStack
dimensions 80, 228, 18240, 6 (nrow, ncol, ncell, nlayers)
resolution 0.5, 0.5 (x, y)
extent -168.1, -54.1, 31.2, 71.2 (xmin, xmax, ymin, ymax)
coord. ref. +proj=longlat +ellps=WGS84 +datum=WGS84 +no_def +towgs84=0,0,0
data source in memory
names CalSierra, Basin.Rockies, Eastern, AK.EastBC.AB, Wa.To.NorCalCoast, CentCalCoast

Source
Ruegg et al 2014
get_wrld_simpl

get_wrld_simpl

return the wrld_simpl data set from maptools

Description

I define this as a function so that we don’t have to attach maptools, but we can just have it in the imports. Couldn’t figure out how to do it otherwise.

Usage

get_wrld_simpl()

Examples

ws <- get_wrld_simpl()
head(ws)
Not run: plot(ws)

great_circle_raster

return a raster of great circle distances (in km)

Description

Given an input raster R, this returns a raster of the same dimension where every cell is the great circle distance between lat, and long, and the center of every cell in R.

Usage

great_circle_raster(R, lat, long)

Arguments

R a raster
lat a latitude value (must be of length 1)
long a longitude value (must be of length 1)

Examples

We compute the great circle distance between the lat/long of my office in # California, to every cell in the raster denoting the breeding habitat # of Wilson's warbler:
gcr <- great_circle_raster(wiwa_breed, lat = 36.951564, long = -122.065116)

plot that if you want
Not run:
plot(gcr)
Description

This function takes as input a data frame of feather isotope data that also has the isoscape predictions attached to it, just like the data frame returned by `extract_isopredictions`. The data frame must have a column that gives the general location by which you will group birds for the rescaling function. The isoscape predictions by default should be in columns named `iso_pred` for the actual prediction, and `iso_sd` for the standard deviation, as produced by `extract_isopredictions`, but those are user configurable, as well.

Usage

```r
group_birds_by_location(
  D,
  feather_isotope_col,
  location_col,
  iso_pred_col = "iso_pred",
  iso_sd_col = "iso_sd"
)
```

Arguments

- **D**: the data frame of feather isotope data with the isoscape predictions extracted for each location, as well, and a column giving general grouping locations for the birds.
- **feather_isotope_col**: the string name of the column holding the feather isotope data.
- **location_col**: the string name of the column holding the locations to be used for grouping.
- **iso_pred_col**: name of the column holding the predicted values from the isoscape. Default is `iso_pred`.
- **iso_sd_col**: name of the column holding the standard deviations of the predicted values from the isoscape. Default is `iso_sd`.

Details

This function returns a data frame with columns for the mean and SD of feather/bird values, (meanH and sdH) and the mean predicted isotope value and the mean sd of the predicted isotope values (meaniso and sdiso) for all the samples within each location. It also returns the Location column itself and a column `cnt` that gives the number of bird/tissue samples from each location.

This function throws an error if any of the locations has only 1 sample. If that is the case, you may consider merging that sample with another location (or dropping it?).
Examples

first run the example for extract_isopredictions to get the variable "x"
example("extract_isopredictions")

If this were run it gives an error because there is only 1 bird at the
location "Charlevoix"
Not run:
group_birds_by_location(x, feather_isotope_col = "Isotope.Value", location_col = "Location")
End(Not run)

remove that one bird at Charlevoix and re-run
y <- x %>%
dplyr::filter(Location != "Charlevoix")

then group birds by location
gbl <- group_birds_by_location(D = y,
 feather_isotope_col = "Isotope.Value",
 location_col = "Location")

isomap2raster

convert columns of an ISOMAP isoscape to a raster object

Description

Just simple conversion, but nice to have this in a brief function

Usage

isomap2raster(isoscape, column, Proj = raster::projection(get_wrld_simpl()))

Arguments

- **isoscape**: the data frame of prediction.txt from ISOMAP. The latitude column must be named "lat" and the longitude column must be named "long".
- **column**: the name of the column to turn into a raster object. This should be a quoted string, like "predkrig".
- **Proj**: the desired projection. By default it is raster::projection(get_wrld_simpl()), i.e. the same projection as the wrld_simpl map.

Examples

isorast <- isomap2raster(isomap_job54152_prediction, "predreg")
isorast
isomap_job54152_prediction

Predicted isotope values from ISOMAP

Description

A data frame containing predicted hydrogen isotope values, lat, long, and IDs and some other columns of data predictions made by ISOMAP

Usage

isomap_job54152_prediction

Format

A tibble with 10,786 rows and 12 variables. The relevant variables for analyses here are:

- **lat** latitude of the predicted location
- **long** longitude of the predicted location
- **predreg** Fill in
- **stdreg** Fill in
- **predkrig** Fill in
- **stdkrig** Fill in

Source

Kristina Paxton and ISOMAP (http://isomap.rcac.purdue.edu:8080/gridsphere/gridsphere)

isotope_posterior_probs

compute posterior probabilities of origin given isotope values

Description

This function automates the whole process described in the appendix of Vander Zanden et al. (2014) for computing the posterior probability of origin of an individual (or group of individuals) given its stable isotope values, and those of a set of reference individuals, and an ISOMAP prediction of isotope values across a landscape.
isotope_posterior_probs

Usage

isotope_posterior_probs(
 isoscape,
 ref_birds,
 assign_birds = NULL,
 isoscape_pred_column = "predkrig",
 isoscape_sd_column = "stdkrig",
 self_assign = FALSE
)

Arguments

isoscape the data frame read in from "prediction.txt" from ISOMAP. The latitude column
 must be named "lat" and the longitude column must be named "long". You have
 to choose which columns to use with the parameters isoscape_pred_column
 and isoscape_sd_column.

ref_birds a data frame of reference birds. This should have (at least) columns of "ID" (for
 unique identifiers for each bird), "lat", "long", "Isotope.Value" and "Location".
 The "Location" column will be used to group samples for the Vander Zanden
 Rescaling.

assign_birds A data frame of birds whose breeding origins are to be inferred. These must
 have at a minimum the column "ID" (for unique identifiers for the birds) and
 the column "Isotope.Value". This can be left NULL if there are no birds of
 unknown origin to assign (for example if you are performing cross-validation
 on the ref_birds).

isoscape_pred_column the name of the column in isoscape to be used as the prediction (default is
 "predkrig").

isoscape_sd_column the name of the column in isoscape to be used as the standard deviation (default
 is "stdkrig").

self_assign if TRUE, then the birds in ref_birds will each have posterior surfaces com-
 puted for them using a leave one out procedure (i.e. each bird in turn is left out
 while rescaling the precip isomap to a tissue isomap). Should not be TRUE if
 assign_birds is non NULL.

Details

For details see:

Vander Zanden HB, Wunder MB, Hobson KA, Van Wilgenburg SL, Wassenaar LI, Welker JM,
Bowen GJ (2014) Contrasting assignment of migratory organisms to geographic origins using long-
term versus year-specific precipitation isotope maps. Methods in Ecology and Evolution, 5, 891-
900.

And the re-explanation of that method in Ruegg et al. (2017).
Examples
obtain posterior probability rasters for the first 2 birds in the migrant_wiwa_isotopes
data set. This takes about 15 seconds on my laptop (most of that time is preparatory---once
that is done, each bird goes much faster). So we don't run it here.
Not run:
birds2 <- isotope_posterior_probs(isoscape = isomap_job54152_prediction,
ref_birds = breeding_wiwa_isotopes,
assign_birds = migrant_wiwa_isotopes[1:2,]
)
End(Not run)

However, you can load the results as a saved data object to see what they look like:
birds2 <- example_isotope_posteriors

Since the ref_birds above were separate from the migrant birds, no leave-one-out was
performed. Hence birds2$loo_results is NULL, and all the results are in
birds2$regular.

Look at the names of the resulting output for the first bird:
names(birds2$regular[[1]])

names(birds2$regular[[1]]$assignment_parameters)

If you want to do self-assignment for a whole bunch of reference birds, it takes much longer.
It looks like this:
Not run:
self_ass <- isotope_posterior_probs(isoscape = isomap_job54152_prediction,
ref_birds = breeding_wiwa_isotopes,
self_assign = TRUE)
End(Not run)
migrant_wiwa_isotopes

Format
A tibble with 5,556 rows and 6 columns. The relevant variables for analyses here are:

- **ID** unique identifier for each bird
- **Short_Name** same id for the bird
- **Collection_Date** The date the bird was sampled.
- **NumberOfLoci** Number of loci successfully typed
- **region** one of the genetic regions
- **posterior** the posterior prob of originating from that region

Source
Kristina Paxton, Kristen Ruegg, Eric Anderson, Thomas Smith

migrant_wiwa_isotopes Isotope values and meta data for 688 migrating Wilson’s Warblers

Description
A data frame containing hydrogen isotope values, lat, long, and IDs and some other columns of data for birds sampled during migration from Arizona. 604 of the individuals in this data set also have values in migrant_wiwa_genetic_posteriors.

Usage
migrant_wiwa_isotopes

Format
A tibble with 688 rows and 14 variables. The relevant variables for analyses here are:

- **ID** unique identifier for each bird
- **Isotope.Value** hydrogen isotope ratios measured in the bird’s feather

Source
Kristina Paxton
wiwa_breed
a raster of the breeding range of Wilson’s warbler

Description

a raster of the breeding range of Wilson’s warbler

Usage

wiwa_breed

Format

This a rasterized version of the breeding range of Wilson’s warbler It contains 1’s in the breeding range and 0’s elsewhere.

- **class**: RasterLayer
- **dimensions**: 80, 228, 18240 (nrow, ncol, ncell)
- **resolution**: 0.5, 0.5 (x, y)
- **extent**: -168.1, -54.1, 31.2, 71.2 (xmin, xmax, ymin, ymax)
- **coord. ref.**: +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0
- **data source**: in memory
- **names**: layer
- **values**: 0, 1 (min, max)

Source

wiwa_habitat_unclipped
RasterLayer showing the MaxEnt habitat suitability model unclipped by the known breeding range
Description

- **class** RasterLayer
- **dimensions** 80, 228, 18240, 6 (nrow, ncol, ncell, nlayers)
- **resolution** 0.5, 0.5 (x, y)
- **extent** -168.1, -54.1, 31.2, 71.2 (xmin, xmax, ymin, ymax)
- **coord. ref.** +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0
- **data source** in memory
- **values** 0, 0.001093349 (min, max)

Usage

wiwa_habitat_unclipped

Format

An object of class RasterLayer of dimension 80 x 228 x 1.

Source

Ryan Harrigan

Description

This is wrld_simpl from the maptools package. It was all that I used from the maptools package which is going to be archived at the end of 2023. So, I just saved wrld_simpl as a data object in this package.

Usage

wrld_simpl

Format

a SpatialPolygonsDataFrame

Source

Got this from the old maptools package. See ?maptools::wrld_simpl
Index

* datasets
 - breeding_wiwa_genetic_posteriors, 2
 - breeding_wiwa_isotopes, 3
 - example_isotope_posteriors, 6
 - genetic_regions, 8
 - isomap_job54152_prediction, 12
 - migrant_wiwa_genetic_posteriors, 14
 - migrant_wiwa_isotopes, 15
 - wiwa_breed, 16
 - wiwa_habitat_unclipped, 16
 - wrld_simpl, 17

breeding_wiwa_genetic_posteriors, 2
breeding_wiwa_isotopes, 2, 3, 6
comboize, 3
comboize_and_fortify, 4
example_isotope_posteriors, 6
extract_isopredictions, 6, 10
gaiah, 7
genetic_posteriors2rasters, 7
genetic_regions, 8
get_wrld_simpl, 9
great_circle_raster, 9
group_birds_by_location, 10
isomap2raster, 11
isomap_job54152_prediction, 12
isotope_posterior_probs, 6, 12
migrant_wiwa_genetic_posteriors, 14, 15
migrant_wiwa_isotopes, 15

wiwa_breed, 8, 16
wiwa_habitat_unclipped, 16
wrld_simpl, 17