8: Tree-based regression

John H Maindonald

August 20, 2015

Ideas and issues illustrated by the graphs in this vignette

The fitting of a tree proceeds by making a succession of splits on the x-variable or variables. For tree-based regression, the splitting criterion is named \texttt{Anova}. (To explicitly request use of this criterion, specify \texttt{method="anova"} in the call to \texttt{rpart()}.)

1 Code for the Figures

```r
fig8.1A <- function()
{
  if(!exists('car90.rpart'))
    car90.rpart <- rpart(Mileage ~ tonsWt, data=Car90)
  plot(car90.rpart)
  text(car90.rpart, xpd=TRUE, digits=3)
  mtext(side=3, line=1.25, "A: Regression tree", adj=0)
}

fig8.1B <- function()
{
  if(!exists('car90.rpart'))
    car90.rpart <- rpart(Mileage ~ tonsWt, data=Car90)
  plot(Mileage ~ tonsWt, data=Car90)
  wt <- with(Car90, tonsWt)
  hat <- predict(car90.rpart)
  addhlines(wt, hat, lwd=2, col="gray")
  mtext(side=3, line=1.25, "B: Predicted values from tree", adj=0)
}

fig8.2 <- function()
{
  BSS <- bssBYcut(tonsWt, Mileage, Car90)
  with(BSS, plot(xOrd, bss, xlab="Cutpoint",
                   ylab="Between groups sum of squares"))
}
```
abline(v=1.218, lty=2)

fig8.3A <- function(){
opar <- par(mar=c(4,4,2.6,1.6))
if(!exists('car90x.rpart'))
 car90x.rpart <- rpart(Mileage ~ tonsWt, data=Car90,
 minbucket=5, minsplit=10,
 cp=0.001)
plot(car90x.rpart, uniform=TRUE)
text(car90x.rpart, digits=3, xpd=TRUE)
mtext(side=3, line=0.75, "A: Decision tree", adj=0)
par(opar)
}

fig8.3B <- function(){
if(!exists('car90x.rpart'))
 car90x.rpart <- rpart(Mileage ~ tonsWt, data=Car90,
 minbucket=5, minsplit=10,
 cp=0.001)
plot(Mileage ~ tonsWt, data=Car90)
hat <- predict(car90x.rpart)
wt <- with(Car90, tonsWt)
addhlines(wt, hat, lwd=2, col="gray")
mtext(side=3, line=0.75, "B: Mileage vs tonsWt", adj=0)
par(opar)
}

fig8.4 <- function(){
if(!exists('car90x.rpart'))
 car90x.rpart <- rpart(Mileage ~ tonsWt, data=Car90,
 minbucket=5, minsplit=10,
 cp=0.001)
plotcp(car90x.rpart)
}

fig8.5 <- function(){
if(!exists('car90.rf'))
 car90.rf <- randomForest(Mileage ~ tonsWt, data=Car90)
plot(Mileage ~ tonsWt, data=Car90, type="n")
with(Car90, points(Mileage ~ tonsWt, cex=0.8))
hat <- predict(car90.rf)
with(Car90, points(hat ~ tonsWt, pch="-"))
}

fig8.6 <- function(){
ran <- range(errsmat)
at <- round(ran+c(0.02,-0.02)*diff(ran),2)
lis <- list(limits=ran, at=at, labels=format(at, digits=2))
lims=list(lis,lis,lis,lis,lis,lis)
library(lattice)
splom(errsmat,
pscales=lims,
par.settings=simpleTheme(cex=0.75),
col=adjustcolor("black", alpha=0.5),
panel=function(x,y,...){lpoints(x,y,...)
panel.abline(0,1,col="gray")}
)
}

2 Show the Figures

pkgs <- c("rpart", "mgcv", "randomForest", "gamclass")
z <- sapply(pkgs, require, character.only=TRUE, warn.conflicts=FALSE)
if(any(!z)){
notAvail <- paste(names(z)[!z], collapse="",)
print(paste("The following packages should be installed:\n", notAvail))
}

if(!exists('Car90'))
Car90 <- na.omit(car90[, c("Mileage","Weight")])
Express weight in metric tonnes
Car90 <- within(Car90, tonsWt <- Weight/2240)

gtmeuse <- function(){
if(require('sp', quietly=TRUE)){
data("meuse", package="sp", envir = environment())
meuse <- within(meuse, {levels(soil) <- c("1","2","2")
}}
ffreq <- as.numeric(ffreq)
loglead <- log(lead)
}
invisible(meuse)
} else if(!exists("meuse"))
 print("Dataset 'meuse' was not found, get from package 'sp'")

cfRF <- function(nrep=50)
{
form1 <- ~ dist + elev + soil + ffreq
form3 <- ~ s(dist, k=3) + s(elev,k=3) + soil +ffreq
form3x <- ~ s(dist, k=3) + s(elev,k=3) + s(x, k=3) + soil+ffreq
form8x <- ~ s(dist, k=8) + s(elev,k=8) + s(x, k=8) + soil+ffreq
formlist <- list("Hybrid1"=form1, "Hybrid3"=form3,
 "Hybrid3x"=form3x, "Hybrid8x"=form8x)
----rfgam-setup----
rfVars <- c("dist", "elev", "soil", "ffreq", "x", "y")
errsmat <- matrix(0, nrep, length(formlist)+2)
dimnames(errsmat)[[2]] <- c(names(formlist), "rfTest", "rfOOB")
n <- 95
for(i in 1:nrep){
 sub <- sample(1:nrow(meuse), n)
 meuseOut <- meuse[-sub,]
 meuseIn <- meuse[sub,]
 errsmat[i,] <- gamRF(formlist=formlist, yvar="loglead",
 rfVars=rfVars,
 data=meuseIn, newdata=meuseOut,
 printit=FALSE)
}
invisible(errsmat)
}
Figure 1: Regression tree for predicting Mileage given Weight. At each node, observations for which the criterion is satisfied take the branch to the left. Thus at the first node, $\text{tonsWt} \geq 1.218$ chooses the branch to the left, while $\text{tonsWt} < 1.218$ chooses the branch to the right. Panel B plots Mileage versus tonsWt, with fitted values from the rpart model shown as horizontal grey lines.

Figure 2: Between group sum of squares for Mileage, as a function of the value of tonsWt at which the split is made. The choice $c = 1.218$ maximizes the between groups sum of squares.
Figure 3: For the decision tree to which these panels relate, the minimum number at each terminal leaf (minbucket) has been reduced (from 10) to 5, the minimum number to allow further splitting (minsplit) has been reduced (from 20) to 10, and the complexity parameter has been reduced to \(cp = 0.001 \).

Figure 4: Change in cross-validated error rate, relative to baseline error, with successive splits. Because of the randomness that arises from the cross-validation, the tree that is fitted and the pattern of change of cross-validated error will commonly change from one run to the next.
Figure 5: Plot of Mileage versus tonsWt, with fitted values from a randomForest regression shown as horizontal bars.

Figure 6: Scatterplot matrix of accuracies for the several models. Each panel shows the line $y = x$. The label rfOOB is out-of-bag accuracy for the 95 training set observations, while rfTest is test data accuracy, for a random forest model. Other results are test set accuracy from fitting a random forest model to residuals from a preliminary smooth. Labels are the name of the formula for the smooth. Random forest fits were from 25 bootstrap samples.