Package ‘gamlss.dist’

December 8, 2018

Type Package
Title Distributions for Generalized Additive Models for Location Scale and Shape
Version 5.1-1
Date 2018-12-06
Description A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a "log" or a "logit" transformation respectively.
License GPL-2 | GPL-3
URL http://www.gamlss.org/
Depends R (>= 2.15.0), MASS, graphics, stats, methods
Repository CRAN
Author Mikis Stasinopoulos [aut, cre, cph],
Robert Rigby [aut],
Calliope Akantziliotou [ctb],
Vlasios Voudouris [ctb],
Gillian Heller [ctb],
Fernanda De Bastiani [ctb],
Raydonal Ospina [ctb],
Nicoletta Motpan [ctb],
Fiona Mc Elduff [ctb],
Majid Djennad [ctb],
Marco Enea [ctb],
Alexios Ghalanos [ctb],
Christos Argyropoulos [ctb],
Almond Stocker [ctb],
Jens Lichter [ctb],
Stanislaus Stadlmann [ctb]
Maintainer Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
NeedsCompilation yes
R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamlss.dist-package</td>
<td>4</td>
</tr>
<tr>
<td>BB</td>
<td>8</td>
</tr>
<tr>
<td>BCCG</td>
<td>10</td>
</tr>
<tr>
<td>BCPE</td>
<td>13</td>
</tr>
<tr>
<td>BCT</td>
<td>16</td>
</tr>
<tr>
<td>BE</td>
<td>18</td>
</tr>
<tr>
<td>BEINF</td>
<td>20</td>
</tr>
<tr>
<td>BEOI</td>
<td>24</td>
</tr>
<tr>
<td>BEZI</td>
<td>27</td>
</tr>
<tr>
<td>B1</td>
<td>29</td>
</tr>
<tr>
<td>BNB</td>
<td>31</td>
</tr>
<tr>
<td>checklink</td>
<td>34</td>
</tr>
<tr>
<td>count_1_31</td>
<td>35</td>
</tr>
<tr>
<td>DBI</td>
<td>38</td>
</tr>
<tr>
<td>DBURR12</td>
<td>40</td>
</tr>
<tr>
<td>DEL</td>
<td>42</td>
</tr>
<tr>
<td>DPO</td>
<td>44</td>
</tr>
<tr>
<td>EGB2</td>
<td>46</td>
</tr>
<tr>
<td>exGAUS</td>
<td>48</td>
</tr>
<tr>
<td>EXP</td>
<td>50</td>
</tr>
<tr>
<td>flexDist</td>
<td>51</td>
</tr>
<tr>
<td>GA</td>
<td>53</td>
</tr>
<tr>
<td>GAF</td>
<td>55</td>
</tr>
<tr>
<td>gamlss.family</td>
<td>57</td>
</tr>
<tr>
<td>GB1</td>
<td>60</td>
</tr>
<tr>
<td>GB2</td>
<td>62</td>
</tr>
<tr>
<td>gen.Family</td>
<td>65</td>
</tr>
<tr>
<td>GEOM</td>
<td>67</td>
</tr>
<tr>
<td>GG</td>
<td>69</td>
</tr>
<tr>
<td>GIG</td>
<td>71</td>
</tr>
<tr>
<td>GPO</td>
<td>73</td>
</tr>
<tr>
<td>GT</td>
<td>75</td>
</tr>
<tr>
<td>GU</td>
<td>77</td>
</tr>
<tr>
<td>hazardFun</td>
<td>78</td>
</tr>
<tr>
<td>IG</td>
<td>80</td>
</tr>
<tr>
<td>IGAMMA</td>
<td>81</td>
</tr>
<tr>
<td>JSU</td>
<td>83</td>
</tr>
<tr>
<td>JSUo</td>
<td>85</td>
</tr>
<tr>
<td>LG</td>
<td>88</td>
</tr>
<tr>
<td>LNO</td>
<td>90</td>
</tr>
<tr>
<td>LO</td>
<td>93</td>
</tr>
<tr>
<td>LOGITNO</td>
<td>94</td>
</tr>
<tr>
<td>LQNO</td>
<td>96</td>
</tr>
<tr>
<td>make.link.gamlss</td>
<td>98</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>MN3</td>
<td>102</td>
</tr>
<tr>
<td>NBF</td>
<td>104</td>
</tr>
<tr>
<td>NBI</td>
<td>106</td>
</tr>
<tr>
<td>NBII</td>
<td>108</td>
</tr>
<tr>
<td>NET</td>
<td>110</td>
</tr>
<tr>
<td>NO</td>
<td>112</td>
</tr>
<tr>
<td>NO2</td>
<td>114</td>
</tr>
<tr>
<td>NOF</td>
<td>116</td>
</tr>
<tr>
<td>PARETO2</td>
<td>118</td>
</tr>
<tr>
<td>PE</td>
<td>120</td>
</tr>
<tr>
<td>PIG</td>
<td>122</td>
</tr>
<tr>
<td>PO</td>
<td>125</td>
</tr>
<tr>
<td>RG</td>
<td>126</td>
</tr>
<tr>
<td>RGE</td>
<td>128</td>
</tr>
<tr>
<td>SEP</td>
<td>131</td>
</tr>
<tr>
<td>SEP1</td>
<td>133</td>
</tr>
<tr>
<td>SHASH</td>
<td>135</td>
</tr>
<tr>
<td>SI</td>
<td>139</td>
</tr>
<tr>
<td>SICHEL</td>
<td>141</td>
</tr>
<tr>
<td>SIMPLEX</td>
<td>144</td>
</tr>
<tr>
<td>SN1</td>
<td>145</td>
</tr>
<tr>
<td>SN2</td>
<td>147</td>
</tr>
<tr>
<td>ST1</td>
<td>149</td>
</tr>
<tr>
<td>TF</td>
<td>152</td>
</tr>
<tr>
<td>WARING</td>
<td>154</td>
</tr>
<tr>
<td>WEI</td>
<td>156</td>
</tr>
<tr>
<td>WEI2</td>
<td>158</td>
</tr>
<tr>
<td>WEI3</td>
<td>160</td>
</tr>
<tr>
<td>YULE</td>
<td>162</td>
</tr>
<tr>
<td>ZABB</td>
<td>163</td>
</tr>
<tr>
<td>ZABI</td>
<td>165</td>
</tr>
<tr>
<td>ZAGA</td>
<td>167</td>
</tr>
<tr>
<td>ZAIG</td>
<td>169</td>
</tr>
<tr>
<td>ZANBI</td>
<td>172</td>
</tr>
<tr>
<td>ZAP</td>
<td>174</td>
</tr>
<tr>
<td>ZIP</td>
<td>175</td>
</tr>
<tr>
<td>ZIP2</td>
<td>177</td>
</tr>
<tr>
<td>ZIPF</td>
<td>179</td>
</tr>
</tbody>
</table>

Index 182
gamlss.dist-package

Distributions for Generalized Additive Models for Location Scale and Shape

Description

A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a "log" or "logit" transformation respectively.

Details

The DESCRIPTION file:

- **Package**: gamlss.dist
- **Type**: Package
- **Title**: Distributions for Generalized Additive Models for Location Scale and Shape
- **Version**: 5.1-1
- **Date**: 2018-12-06
- **Authors@R**: c(person("Mikis", "Stasinopoulos", role = c("aut", "cre", "cph"), email = "d.stasinopoulos@londonmet.ac.uk"),..."Stocker", role = "ctb"), person("Jens", "Lichter", role = "ctb"), person("Stanislaus", "Stadlmann", role = "ctb")
- **Description**: A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a "log" or "logit" transformation respectively.
- **License**: GPL-2 | GPL-3
- **URL**: http://www.gamlss.org/
- **Depends**: R (>= 2.15.0), MASS, graphics, stats, methods
- **Repository**: CRAN
- **Author**: Mikis Stasinopoulos [aut, cre, cph], Robert Rigby [aut], Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Christos Argyropoulos [ctb], Almond Stocker [ctb], Jens Lichter [ctb], Stanislaus Stadlmann [ctb]
- **Maintainer**: Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

Index of help topics:

- **BB**: Beta Binomial Distribution For Fitting a GAMLSS Model
- **BCCG**: Box-Cox Cole and Green distribution (or Box-Cox normal) for fitting a GAMLSS
- **BCPE**: Box-Cox Power Exponential distribution for fitting a GAMLSS
- **BCT**: Box-Cox t distribution for fitting a GAMLSS
- **BE**: The beta distribution for fitting a GAMLSS
- **BEINF**: The beta inflated distribution for fitting a GAMLSS
- **BEOI**: The one-inflated beta distribution for fitting a GAMLSS
- **BEZI**: The zero-inflated beta distribution for fitting a GAMLSS
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>Binomial distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>BNB</td>
<td>Beta Negative Binomial distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>DBI</td>
<td>The Double binomial distribution</td>
</tr>
<tr>
<td>DBURR12</td>
<td>The Discrete Burr type XII distribution for fitting a GAMLSS model</td>
</tr>
<tr>
<td>DEL</td>
<td>The Delaporte distribution for fitting a GAMLSS model</td>
</tr>
<tr>
<td>DPO</td>
<td>The Double Poisson distribution</td>
</tr>
<tr>
<td>EGB2</td>
<td>The exponential generalized Beta type 2 distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>EXP</td>
<td>Exponential distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>GA</td>
<td>Gamma distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>GAF</td>
<td>The Gamma distribution family</td>
</tr>
<tr>
<td>GB1</td>
<td>The generalized Beta type 1 distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>GB2</td>
<td>The generalized Beta type 2 and generalized Pareto distributions for fitting a GAMLSS</td>
</tr>
<tr>
<td>GEOM</td>
<td>Geometric distribution for fitting a GAMLSS model</td>
</tr>
<tr>
<td>GG</td>
<td>Generalized Gamma distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>GIG</td>
<td>Generalized Inverse Gaussian distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>GPO</td>
<td>The generalised Poisson distribution</td>
</tr>
<tr>
<td>GT</td>
<td>The generalized t distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>GU</td>
<td>The Gumbel distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>IG</td>
<td>Inverse Gaussian distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>IGAMMA</td>
<td>Inverse Gamma distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>JSU</td>
<td>The Johnson's Su distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>JSUO</td>
<td>The original Johnson's Su distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>LG</td>
<td>Logarithmic and zero adjusted logarithmic distributions for fitting a GAMLSS model</td>
</tr>
<tr>
<td>LNO</td>
<td>Log Normal distribution for fitting in GAMLSS</td>
</tr>
<tr>
<td>LO</td>
<td>Logistic distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>LOGITNO</td>
<td>Logit Normal distribution for fitting in GAMLSS</td>
</tr>
<tr>
<td>LQNO</td>
<td>Normal distribution with a specific mean and variance relationship for fitting a GAMLSS model</td>
</tr>
<tr>
<td>MN3</td>
<td>Multinomial distribution in GAMLSS</td>
</tr>
<tr>
<td>NBF</td>
<td>Negative Binomial Family distribution for fitting a GAMLSS</td>
</tr>
<tr>
<td>NBI</td>
<td>Negative Binomial type I distribution for</td>
</tr>
</tbody>
</table>
fpting a GAMLSS

NBII Negative Binomial type II distribution for fitting a GAMLSS

NET Normal Exponential t distribution (NET) for fitting a GAMLSS

NO Normal distribution for fitting a GAMLSS

NO2 Normal distribution (with variance as sigma parameter) for fitting a GAMLSS

NOF Normal distribution family for fitting a GAMLSS

PARETO2 Pareto Type 2 distribution for fitting a GAMLSS

PE Power Exponential distribution for fitting a GAMLSS

PIG The Poisson-inverse Gaussian distribution for fitting a GAMLSS model

PO Poisson distribution for fitting a GAMLSS model

RG The Reverse Gumbel distribution for fitting a GAMLSS

RGE Reverse generalized extreme family distribution for fitting a GAMLSS

SEP The Skew Power exponential (SEP) distribution for fitting a GAMLSS

SEP1 The Skew Power exponential type 1-4 distribution for fitting a GAMLSS

SHASH The Sinh-Arcsinh (SHASH) distribution for fitting a GAMLSS

SI The Sichel distribution for fitting a GAMLSS model

SICHEL The Sichel distribution for fitting a GAMLSS model

SIMPLEX The simplex distribution for fitting a GAMLSS

SN1 Skew Normal Type 1 distribution for fitting a GAMLSS

SN2 Skew Normal Type 2 distribution for fitting a GAMLSS

ST1 The skew t distributions, type 1 to 5

TF t family distribution for fitting a GAMLSS

WARING Waring distribution for fitting a GAMLSS model

WEI Weibull distribution for fitting a GAMLSS

WEI2 A specific parameterization of the Weibull distribution for fitting a GAMLSS

WEI3 A specific parameterization of the Weibull distribution for fitting a GAMLSS

YULE Yule distribution for fitting a GAMLSS model

ZABB Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS

ZABI Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS

ZAGA The zero adjusted Gamma distribution for
fitting a GAMLSS model

ZAIG
The zero adjusted Inverse Gaussian distribution for fitting a GAMLSS model

ZANBI
Zero inflated and zero adjusted negative binomial distributions for fitting a GAMLSS model

ZAP
Zero adjusted poisson distribution for fitting a GAMLSS model

ZIP
Zero inflated poisson distribution for fitting a GAMLSS model

ZIP2
Zero inflated poisson distribution for fitting a GAMLSS model

ZIPF
The zipf and zero adjusted zipf distributions for fitting a GAMLSS model

checklink
Set the Right Link Function for Specified Parameter and Distribution

count_1_31
A set of functions to plot gamlss.family distributions

exGAUS
The ex-Gaussian distribution

flexDist
Non-parametric pdf from limited information data

gamlss.dist-package
Distributions for Generalized Additive Models for Location Scale and Shape

gamlss.family
Family Objects for fitting a GAMLSS model

gen.Family
Functions to generate log and logit distributions from existing continuous gamlss.family distributions

hazardFun
Hazard functions for gamlss.family distributions

make.link.gamlss
Create a Link for GAMLSS families

Author(s)
Mikis Stasinopoulos [aut, cre, cph], Robert Rigby [aut], Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb], Fernanda De Bastiani [ctb], Raydonal Ospina [ctb], Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stocker [ctb], Jens Lichter [ctb], Stanislaus Stadlmann [ctb]

Maintainer: Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

BB Beta Binomial Distribution For Fitting a GAMLSS Model

Description
This function defines the beta binomial distribution, a two parameter distribution, for a `gamlss.family` object to be used in a GAMLSS fitting using the function `gamlss()`

Usage
```r
BB(mu.link = "logit", sigma.link = "log")
dBB(x, mu = 0.5, sigma = 1, bd = 10, log = FALSE)
pBB(q, mu = 0.5, sigma = 1, bd = 10, lower.tail = TRUE, log.p = FALSE)
qBB(p, mu = 0.5, sigma = 1, bd = 10, lower.tail = TRUE, log.p = FALSE, fast = FALSE)
rBB(n, mu = 0.5, sigma = 1, bd = 10, fast = FALSE)
```

Arguments
- `mu.link`: Defines the `mu.link`, with "logit" link as the default for the `mu` parameter. Other links are "probit" and "cloglog" (complementary log-log).
- `sigma.link`: Defines the `sigma.link`, with "log" link as the default for the `sigma` parameter. Other links are "inverse", "identity" and "sqrt".
- `mu`: vector of positive probabilities
- `sigma`: the dispersion parameter
bd vector of binomial denominators
p vector of probabilities
x, q vector of quantiles
n number of random values to return
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
fast a logical variable if fast=TRUE the dBB function is used in the calculation of the inverse c.d.f function. This is faster to the default fast=FALSE, where the pBB() is used, but not always consistent with the results obtained from pBB(), for example if p <- pBB(c(0,1,2,3,4,5), mu=.5, sigma=1, bd=5) do not ensure that qBB(p, mu=.5, sigma=1, bd=5) will be c(0,1,2,3,4,5)

Details

Definition file for beta binomial distribution.

\[
f(y|\mu, \sigma) = \frac{\Gamma(n + 1)}{\Gamma(y + 1)\Gamma(n - y + 1)} \frac{\Gamma(\frac{1}{2})\Gamma(y + \frac{\mu}{\sigma})\Gamma[n + \frac{(1-\mu)}{\sigma} - y]}{\Gamma(n + \frac{1}{2})\Gamma(\frac{1}{2})\Gamma(\frac{1-\mu}{\sigma})}
\]

for \(y = 0, 1, 2, \ldots, n, 0 < \mu < 1 \) and \(\sigma > 0 \). For \(\mu = 0.5 \) and \(\sigma = 0.5 \) the distribution is uniform.

Value

Returns a gamlss.family object which can be used to fit a Beta Binomial distribution in the gamlss() function.

Warning

The functions pBB and qBB are calculated using a laborious procedure so they are relatively slow.

Note

The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures. The parameter mu represents a probability parameter with limits \(0 < \mu < 1 \). \(n\mu \) is the mean of the distribution where n is the binomial denominator. \[\{n\mu(1-\mu)[1+(n-1)\sigma/(\sigma+1)]\}^{0.5}\] is the standard deviation of the Beta Binomial distribution. Hence \(\sigma \) is a dispersion type parameter

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Kalliope Akantziliotou
References

See Also

gamlss.family.BI,

Examples

```r
# BB() # gives information about the default links for the Beta Binomial distribution
# plot the pdf
plot(function(y) dBH(y, mu = .5, sigma = 1, bd = 40), from=0, to=40, n=40+1, type="h")
# calculate the cdf and plotting it
ppBH <- pBH(seq(from=0, to=40), mu=.2, sigma=3, bd=40)
plot(ppBH, type="h")
# calculating quantiles and plotting them
qqBH <- qBH(ppBH, mu=.2, sigma=3, bd=40)
plot(qqBH, ppBH)
# when the argument fast is useful
p <- pBH(c(0,1,2,3,4,5), mu=.01, sigma=1, bd=5)
qBH(p, mu=.01, sigma=1, bd=5, fast=TRUE)
# 0 1 2 3 5
qBH(p, mu=.01, sigma=1, bd=5, fast=FALSE)
# 0 1 2 3 4 5
# generate random sample
tBH <- table(Ni <- rBH(1000, mu=.2, sigma=1, bd=20))
r <- barplot(tBH, col='lightblue')
# fitting a model
# library(gamlss)
data(aep)
# fits a Beta-Binomial model
# h <- gamlss(y~ward+loglos+year, sigma.formula=~year+ward, family=BB, data=aep)
```

BCCG

Box-Cox Cole and Green distribution (or Box-Cox normal) for fitting a GAMLSS
Description

The function BCCG defines the Box-Cox Cole and Green distribution (Box-Cox normal), a three-parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dBCCG, pBCCG, qBCCG and rBCCG define the density, distribution function, quantile function and random generation for the specific parameterization of the Box-Cox Cole and Green distribution. [The function BCCGuntr() is the original version of the function suitable only for the untruncated Box-Cox Cole and Green distribution See Cole and Green (1992) and Rigby and Stasinopoulos (2003a,2003b) for details. The function BCCGo is identical to BCCG but with log link for mu.

Usage

BCCG(mu.link = "identity", sigma.link = "log", nu.link = "identity")
BCCGo(mu.link = "log", sigma.link = "log", nu.link = "identity")
BCCGuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity")
dBCCG(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pBCCG(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBCCG(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rBCCG(n, mu = 1, sigma = 0.1, nu = 1)
dBCCGo(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pBCCGo(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBCCGo(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rBCCGo(n, mu = 1, sigma = 0.1, nu = 1)

Arguments

mu.link

Defines the mu.link, with "identity" link as the default for the mu parameter, other links are "inverse", "log" and "own"

sigma.link

Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are "inverse", "identity" and "own"

nu.link

Defines the nu.link, with "identity" link as the default for the nu parameter, other links are "inverse", "log" and "own"

x, q

vector of quantiles

mu

vector of location parameter values

sigma

vector of scale parameter values

nu

vector of skewness parameter values

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required
Details

The probability distribution function of the untruncated Box-Cox Cole and Green distribution, BCCGuntr, is defined as

\[f(y|\mu, \sigma, \nu) = \frac{1}{\sqrt{2\pi} \sigma} \frac{y^{\nu-1}}{\mu^\nu} \exp\left(-\frac{z^2}{2}\right) \]

where if \(\nu \neq 0 \) then \(z = \left(\frac{(y/\mu)^\nu - 1}{\nu \sigma}\right) \) else \(z = \log(y/\mu)/\sigma \), for \(y > 0, \mu > 0, \sigma > 0 \) and \(\nu = (-\infty, +\infty) \).

The Box-Cox Cole and Green distribution, BCCG, adjusts the above density \(f(y|\mu, \sigma, \nu) \) for the truncation resulting from the condition \(y > 0 \). See Rigby and Stasinopoulos (2003a,2003b) for details.

Value

BCCG() returns a gamlss.family object which can be used to fit a Cole and Green distribution in the gamlss() function. dBCCG() gives the density, pBCCG() gives the distribution function, qBCCG() gives the quantile function, and rBCCG() generates random deviates.

Warning

The BCCGuntr distribution may be unsuitable for some combinations of the parameters (mainly for large \(\sigma \)) where the integrating constant is less than 0.99. A warning will be given if this is the case. The BCCG distribution is suitable for all combinations of the distributional parameters within their range [i.e. \(\mu > 0, \sigma > 0, \nu = (-\infty, +\infty) \)]

Note

\(\mu \) is the median of the distribution \(\sigma \) is approximately the coefficient of variation (for small values of \(\sigma \)), and \(\nu \) controls the skewness.

The BCCG distribution is suitable for all combinations of the parameters within their ranges [i.e. \(\mu > 0, \sigma > 0, \text{and} \nu = (-\infty, \infty) \)]

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Kalliope Akantziliotou

References

See Also
gamlss.family, BCPE, BCT

Examples

```r
BCCG()  # gives information about the default links for the Cole and Green distribution
# library(gamlss)
# data(abdom)
# h<-gamlss(y=cs(x,df=3), sigma.formula=-cs(x,1), family=BCCG, data=abdom)
# plot(h)
plot(function(x) dBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20,
     main = "The BCCG density mu=5,sigma=.5,nu=-1")
plot(function(x) pBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20,
     main = "The BCCG cdf mu=5, sigma=.5, nu=-1")
```

BCPE

Box-Cox Power Exponential distribution for fitting a GAMLSS

Description

This function defines the Box-Cox Power Exponential distribution, a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dBPE, pBPE, qBPE and rBPE define the density, distribution function, quantile function and random generation for the Box-Cox Power Exponential distribution. The function checkBCPE can be used, typically when a BCPE model is fitted, to check whether there exit a turning point of the distribution close to zero. It give the number of values of the response below their minimum turning point and also the maximum probability of the lower tail below minimum turning point. [The function Biventer() is the original version of the function suitable only for the untruncated BCPE distribution.] See Rigby and Stasinopoulos (2003) for details. The function BCPEo is identical to BCPE but with log link for mu.

Usage

```r
BCPE(mu.link = "identity", sigma.link = "log", nu.link = "identity",
     tau.link = "log")
BCPEo(mu.link = "log", sigma.link = "log", nu.link = "identity",
     tau.link = "log")
```
BCPEuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dBCPE(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCPE(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCPE(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCPE(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
dBCPEo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCPEo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCPEo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCPEo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
checkBCPE(obj = NULL, mu = 10, sigma = 0.1, nu = 0.5, tau = 2,...)

Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" and "own"
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" and "own"
u.link
Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "inverse", "log" and "own"
tau.link
Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "logshifted", "identity" and "own"
x, q
vector of quantiles
mu
vector of location parameter values
sigma
vector of scale parameter values
nu
vector of nu parameter values
tau
vector of tau parameter values
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p
vector of probabilities
n
number of observations. If length(n) > 1, the length is taken to be the number required
obj
a gamlss BCPE family object
...
for extra arguments

Details

The probability density function of the untruncated Box Cox Power Exponential distribution, (BCPE.untr), is defined as

\[
f(y|\mu, \sigma, \nu, \tau) = \frac{y^{\nu-1} \exp\left(-\frac{1}{2} \frac{|z|^{\tau}}{\sigma}\right)}{\mu^{\nu} \sigma \Gamma\left(\frac{1}{\tau}\right)}
\]
where \(c = [2^{(-2/\tau)} \Gamma(1/\tau)/\Gamma(3/\tau)]^{0.5} \), where if \(\nu \neq 0 \) then
\[
 z = [(y/\mu)^\nu - 1]/(\nu \sigma)
\]
else
\[
 z = \log(y/\mu)/\sigma,
\]
for \(y > 0, \mu > 0, \sigma > 0, \nu = (-\infty, +\infty) \) and \(\tau > 0 \).

The Box-Cox Power Exponential, BCPE, adjusts the above density \(f(y|\mu, \sigma, \nu, \tau) \) for the truncation resulting from the condition \(y > 0 \). See Rigby and Stasinopoulos (2003) for details.

Value

BCPE() returns a gamlss.family object which can be used to fit a Box Cox Power Exponential distribution in the gamlss() function. dBCE() gives the density, pBCPE() gives the distribution function, qBCPE() gives the quantile function, and rBCPE() generates random deviates.

Warning

The BCPE.untr distribution may be unsuitable for some combinations of the parameters (mainly for large \(\sigma \)) where the integrating constant is less than 0.99. A warning will be given if this is the case.

The BCPE distribution is suitable for all combinations of the parameters within their ranges [i.e. \(\mu > 0, \sigma > 0, \nu = (-\infty, +\infty) \) and \(\tau > 0 \)]

Note

\(\mu \), is the median of the distribution, \(\sigma \) is approximately the coefficient of variation (for small \(\sigma \) and moderate \(\nu > 0 \)), \(\nu \) controls the skewness and \(\tau \) the kurtosis of the distribution

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

See Also

gamlss.family, BCT
Examples

```r
# BCT()
# library(gamlss)
# data(abdom)
# h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCPE, data=abdom)
# plot(h)
plot(function(x)dBCT(x, mu=5,sigma=.5,nu=1, tau=3), 0.0, 15,
  main = "The BCPE density mu=5,sigma=.5,nu=1, tau=3")
plot(function(x) pBCPEn(x, mu=5,sigma=.5,nu=1, tau=3), 0.0, 15,
  main = "The BCPE cdf mu=5, sigma=.5, nu=1, tau=3")
```

BCT

Box-Cox t distribution for fitting a GAMLSS

Description

The function BCT() defines the Box-Cox t distribution, a four parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dBCT, pBCPEn, qBCPEn and rBCPEn define the density, distribution function, quantile function and random generation for the Box-Cox t distribution. [The function BCTuntr() is the original version of the function suitable only for the untruncated BCT distribution]. See Rigby and Stasinopoulos (2003) for details. The function BCT is identical to BCT but with log link for mu.

Usage

```r
BCT(mu.link = "identity", sigma.link = "log", nu.link = "identity",
   tau.link = "log")
BCTo(mu.link = "log", sigma.link = "log", nu.link = "identity",
   tau.link = "log")
BCTuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity",
   tau.link = "log")
dBCT(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCPEn(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCPEn(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCPEn(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
dBCTo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCTo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCTo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCTo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
```

Arguments

- **mu.link**
 - Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" and "own"

- **sigma.link**
 - Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity", "own"
nu.link | Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "inverse", "log", "own"

tau.link | Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "inverse", "identity" and "own"

x, q | vector of quantiles
mu | vector of location parameter values
sigma | vector of scale parameter values
nu | vector of nu parameter values
tau | vector of tau parameter values
log, log.p | logical; if TRUE, probabilities p are given as log(p).
lower.tail | logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p | vector of probabilities.
n | number of observations. If length(n) > 1, the length is taken to be the number required

Details

The probability density function of the untruncated Box-Cox t distribution, BCTuntr, is given by

\[
f(y|\mu, \sigma, \nu, \tau) = \frac{y^{\nu-1}}{\mu^\nu \sigma} \frac{\Gamma((\tau + 1)/2)}{\Gamma(1/2)\Gamma(\tau/2)\tau^{0.5}} \left[1 + \frac{1}{\tau}z^2\right]^{-(\tau+1)/2}
\]

where if \(\nu \neq 0 \) then \(z = \frac{(y/\mu)^\nu - 1}{\nu\sigma} \) else \(z = \log(y/\mu)/\sigma \), for \(y > 0 \), \(\mu > 0 \), \(\sigma > 0 \), \(\nu = (-\infty, +\infty) \) and \(\tau > 0 \).

The Box-Cox t distribution, BCT, adjusts the above density \(f(y|\mu, \sigma, \nu, \tau) \) for the truncation resulting from the condition \(y > 0 \). See Rigby and Stasinopoulos (2003) for details.

Value

BCT() returns a gamlss.family object which can be used to fit a Box Cox-t distribution in the gamlss() function. dBCT() gives the density, pBCT() gives the distribution function, qBCT() gives the quantile function, and rBCT() generates random deviates.

Warning

The use BCTuntr distribution may be unsuitable for some combinations of the parameters (mainly for large \(\sigma \)) where the integrating constant is less than 0.99. A warning will be given if this is the case.

The BCT distribution is suitable for all combinations of the parameters within their ranges [i.e. \(\mu > 0, \sigma > 0, \nu = (-\infty, \infty) \) and \(\tau > 0 \)].

Note

\(\mu \) is the median of the distribution, \(\sigma(\frac{\tau}{\tau-2})^{0.5} \) is approximate the coefficient of variation (for small \(\sigma \) and moderate \(\nu \) and moderate or large \(\tau \)), \(\nu \) controls the skewness and \(\tau \) the kurtosis of the distribution.
Author(s)
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

See Also
gamlss.family, BCPE, BCG

Examples
BCT() # gives information about the default links for the Box Cox t distribution
library(gamlss)
data(abdom)
h<-gamlss(y~cs(x,df=3), sigma.formula=-cs(x,1), family=BCT, data=abdom)
plot(h)
plot(function(x)dBCT(x, mu=5, sigma=.5, nu=1, tau=2), 0, 10, 0, 0, 20,
main = "The BCT density mu=5, sigma=.5, nu=1, tau=2")
plot(function(x) pBCT(x, mu=5, sigma=.5, nu=1, tau=2), 0, 0, 20,
main = "The BCT cdf mu=5, sigma=.5, nu=1, tau=2")

BE The beta distribution for fitting a GAMLSS

Description
The functions BE() and BEo() define the beta distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). BE() has mean equal to the parameter mu and sigma as scale parameter, see below. BEo() is the original parameterizations of the beta distribution as in dbeta() with shape1=mu and shape2=sigma. The functions dB and dBEo, pBE and pBEO, qBE and qBEo and finally rBE and rBEo define the density, distribution function, quantile function and random generation for the BE and BEo parameterizations respectively of the beta distribution.
Usage

BE(mu.link = "logit", sigma.link = "logit")
dBE(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
rBE(n, mu = 0.5, sigma = 0.2)
BEO(mu.link = "log", sigma.link = "log")
dBEO(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBEO(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBEO(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)

Arguments

mu.link the mu link function with default logit
sigma.link the sigma link function with default logit
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The original beta distribution is given as

\[f(y|\alpha, \beta) = \frac{1}{B(\alpha, \beta)} y^{\alpha-1}(1 - y)^{\beta-1} \]

for \(y = (0, 1), \alpha > 0 \) and \(\beta > 0 \). In the gamlss implementation of BEO, \(\alpha = \mu \) and \(\beta > \sigma \).
The reparametrization in the function BE() is \(\mu = \frac{\alpha}{\alpha + \beta} \) and \(\sigma = \frac{1}{(\alpha + \beta + 1)^{1/2}} \) for \(\mu = (0, 1) \) and \(\sigma = (0, 1) \). The expected value of y is \(\mu \) and the variance is \(\sigma^2 \mu \times (1 - \mu) \).

Value

BE() and BEO() return a gamlss.family object which can be used to fit a beta distribution in the gamlss() function.

Note

Note that for BE, mu is the mean and sigma a scale parameter contributing to the variance of y

Author(s)

Bob Rigby and Mikis Stasinopoulos
The beta inflated distribution for fitting a GAMLSS

Description

The function \texttt{BEINF()} defines the beta inflated distribution, a four parameter distribution, for a \texttt{gamlss.family} object to be used in GAMLSS fitting using the function \texttt{gamlss()}. The beta inflated is similar to the beta but allows zeros and ones as values for the response variable. The two extra parameters model the probabilities at zero and one.

The functions \texttt{BEINF0()} and \texttt{BEINF1()} are three parameter beta inflated distributions allowing zeros or ones only at the response respectively. \texttt{BEINF0()} and \texttt{BEINF1()} are re-parameterize versions of the distributions \texttt{BEZI} and \texttt{BE0I} contributed to gamlss by Raydonal Ospina (see Ospina and Ferrari (2010)).
The functions dBEINF, pBEINF, qBEINF and rBEINF define the density, distribution function, quantile function and random generation for the BEINF parametrization of the beta inflated distribution.

The functions dBEINF0, pBEINF0, qBEINF0 and rBEINF0 define the density, distribution function, quantile function and random generation for the BEINF0 parametrization of the beta inflated distribution.

The functions dBEINF1, pBEINF1, qBEINF1 and rBEINF1 define the density, distribution function, quantile function and random generation for the BEINF1 parametrization of the beta inflated at zero distribution.

plotBEINF, plotBEINF0 and plotBEINF1 can be used to plot the distributions. meanBEINF, meanBEINF0 and meanBEINF1 calculates the expected value of the response for a fitted model.

Usage

BEINF(mu.link = "logit", sigma.link = "logit", nu.link = "log",
 tau.link = "log")
BEINF0(mu.link = "logit", sigma.link = "logit", nu.link = "log")
BEINF1(mu.link = "logit", sigma.link = "logit", nu.link = "log")

dBEINF(x, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
 log = FALSE)
dBEINF0(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE)
dBEINF1(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE)

pBEINF(q, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
 lower.tail = TRUE, log.p = FALSE)
pBEINF0(q, mu = 0.5, sigma = 0.1, nu = 0.1,
 lower.tail = TRUE, log.p = FALSE)
pBEINF1(q, mu = 0.5, sigma = 0.1, nu = 0.1,
 lower.tail = TRUE, log.p = FALSE)

qBEINF(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
 lower.tail = TRUE, log.p = FALSE)
qBEINF0(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
 lower.tail = TRUE, log.p = FALSE)
qBEINF1(p, mu = 0.5, sigma = 0.1, nu = 0.1,
 lower.tail = TRUE, log.p = FALSE)

rBEINF(n, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1)
rBEINF0(n, mu = 0.5, sigma = 0.1)
rBEINF1(n, mu = 0.5, sigma = 0.1)

plotBEINF(mu = 0.5, sigma = 0.5, nu = 0.5, tau = 0.5,
 from = 0.001, to = 0.999, n = 101, ...)
plotBEINF0(mu = 0.5, sigma = 0.5, nu = 0.5,
 from = 1e-04, to = 0.9999, n = 101, ...)
plotBEINF1(mu = 0.5, sigma = 0.5, nu = 0.5,
 from = 1e-04, to = 0.9999, n = 101, ...)
Arguments

- **mu.link**: the mu link function with default logit
- **sigma.link**: the sigma link function with default logit
- **nu.link**: the nu link function with default log
- **tau.link**: the tau link function with default log
- **x, q**: vector of quantiles
- **mu**: vector of location parameter values
- **sigma**: vector of scale parameter values
- **nu**: vector of parameter values modelling the probability at zero
- **tau**: vector of parameter values modelling the probability at one
- **log, log.p**: logical; if TRUE, probabilities p are given as log(p).
- **lower.tail**: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- **p**: vector of probabilities.
- **n**: number of observations. If length(n) > 1, the length is taken to be the number required
- **from**: where to start plotting the distribution from
- **to**: up to where to plot the distribution
- **obj**: a fitted BEINF object
- ... other graphical parameters for plotting

Details

The beta inflated distribution is given as

\[f(y) = \begin{cases}
 p_0 & \text{if } y = 0 \\
 p_1 & \text{if } y = 1 \\
 \frac{1}{B(\alpha, \beta)} y^{\alpha-1} (1 - y)^{\beta-1} & \text{otherwise}
\end{cases} \]

for \(y = (0, 1), \alpha > 0 \) and \(\beta > 0 \). The parametrization in the function BEINF() is \(\mu = \frac{\alpha}{\alpha + \beta} \) and \(\sigma = \frac{1}{\alpha + \beta + 1} \) for \(\mu = (0, 1) \) and \(\sigma = (0, 1) \) and \(\nu = \frac{p_0}{p_2}, \tau = \frac{p_1}{p_2} \) where \(p_2 = 1 - p_0 - p_1 \).

Value

returns a gamlss.family object which can be used to fit a beta inflated distribution in the gamlss() function. ...
Author(s)

Bob Rigby and Mikis Stasinopoulos

References

See Also

gamlss.family, BE,BEo,BEZI,BEOI

Examples

BEINF()# gives information about the default links for the beta inflated distribution
BEINF0()
BEINF1()
plotting the distributions
op<-par(mfrow=c(2,2))
plotBEINF(mu = .5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101)
plotBEINF0(mu = .5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101)
plotBEINF1(mu = .5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101)
curve(dbE(x, mu = .5, sigma=.5), 0.01, 0.999)
par(op)
plotting the cdf
op<-par(mfrow=c(2,2))
plotBEINF(mu = .5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF")
plotBEINF0(mu = .5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0")
plotBEINF1(mu = .5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1")
curve(dbE(x, mu = .5, sigma=.5), 0.01, 0.999, main="BE")
par(op)
#---
op<-par(mfrow=c(2,2))
plotBEINF(mu = .5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF")
plotBEINF0(mu = .5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0")
plotBEINF1(mu = .5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1")
curve(dbE(x, mu = .5, sigma=.5), 0.01, 0.999, main="BE")
par(op)
#---
op<-par(mfrow=c(2,2))
curve(pBEINF(x, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5),, 0.1, ylim=c(0,1), main="BEINF ")
The one-inflated beta distribution for fitting a GAMLSS

Description

The function `BEOI()` defines the one-inflated beta distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The one-inflated beta is similar to the beta distribution but allows ones as y values. This distribution is an extension of the beta distribution using a parameterization of the beta law that is indexed by mean and precision parameters (Ferrari and Cribari-Neto, 2004). The extra parameter models the probability at one. The functions `dBEOI`, `pBEOI`, `qBEOI` and `rBEOI` define the density, distribution function, quantile function and random generation for the `BEOI` parameterization of the one-inflated beta distribution. `plotBEOI` can be used to plot the distribution. `meanBEOI` calculates the expected value of the response for a fitted model.

Usage

```r
BEOI(mu.link = "logit", sigma.link = "log", nu.link = "logit")
```

dBEOI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE)

```r
pBEOI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
```

```r
qBEOI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE,
      log.p = FALSE)
```
rBEOI(n, mu = 0.5, sigma = 1, nu = 0.1)

plotBEOI(mu = .5, sigma = 1, nu = 0.1, from = 0.001, to = 1, n = 101,
...)

meanBEOI(obj)

Arguments

mu.link, sigma.link, nu.link: the link functions with default logit, log, logit

x, q: vector of quantiles

mu: vector of location parameter values

sigma: vector of precision parameter values

nu: vector of parameter values modelling the probability at one

log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p: vector of probabilities.

n: number of observations. If length(n) > 1, the length is taken to be the number
required

from, to: where to start plotting the distribution from

to: up to where to plot the distribution

obj: a fitted BEOI object

... other graphical parameters for plotting

Details

The one-inflated beta distribution is given as

\[f(y) = \nu \]

if \(y = 1 \)

\[f(y|\mu, \sigma) = (1 - \nu) \frac{\Gamma(\sigma)}{\Gamma(\mu\sigma)\Gamma((1 - \mu)\sigma)} y^{\mu\sigma} (1 - y)^{(1 - \mu)\sigma - 1} \]

if \(y \in (0, 1) \). The parameters satisfy \(0 < \mu < 0, \sigma > 0 \) and \(0 < \nu < 1 \).

Here \(E(y) = \nu + (1 - \nu)\mu \) and \(Var(y) = (1 - \nu) \frac{\mu(1 - \mu)}{\sigma^2 + 1} + \nu(1 - \nu)(1 - \mu)^2 \).

Value

returns a gamlss.family object which can be used to fit a one-inflated beta distribution in the gamlss() function.
Note

This work is part of my PhD project at the University of Sao Paulo under the supervision of Professor Silvia Ferrari. My thesis is concerned with regression modelling of rates and proportions with excess of zeros and/or ones.

Author(s)

Raydonal Ospina, Department of Statistics, University of Sao Paulo, Brazil.

<rospina@ime.usp.br>

References

See Also

gamlss.family, BEOI

Examples

```r
BEOI() # gives information about the default links for the BEOI distribution
plotBEOI( mu =0.5 , sigma=5, nu = 0.1, from = 0.001, to=1, n = 101)
plot(function(y) pBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999)
plot(function(y) qBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 0.999)
dat<-rBEOI(100, mu=.5, sigma=5, nu=0.1)
fit <- gamlss(dat~1, family=BEOI)
summary(fit)
```
The function `BEZI()` defines the zero-inflated beta distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The zero-inflated beta is similar to the beta distribution but allows zeros as y values. This distribution is an extension of the beta distribution using a parameterization of the beta law that is indexed by mean and precision parameters (Ferrari and Cribari-Neto, 2004). The extra parameter models the probability at zero. The functions `dbezi`, `pbezi`, `qbezi` and `rbezi` define the density, distribution function, quantile function and random generation for the BEZI parameterization of the zero-inflated beta distribution. `plotBEZI` can be used to plot the distribution. `meanBEZI` calculates the expected value of the response for a fitted model.

Usage

```r
BEZI(mu.link = "logit", sigma.link = "log", nu.link = "logit")

dBEZI(x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE)
pBEZI(q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
qBEZI(p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
rBEZI(n, mu = 0.5, sigma = 1, nu = 0.1)
plotBEZI(mu = .5, sigma = 1, nu = 0.1, from = 0, to = 0.999, n = 101, ...)

meanBEZI(obj)
```

Arguments

- `mu.link` the mu link function with default logit
- `sigma.link` the sigma link function with default log
- `nu.link` the nu link function with default logit
- `x,q` vector of quantiles
- `mu` vector of location parameter values
- `sigma` vector of precision parameter values
- `nu` vector of parameter values modelling the probability at zero
log, log.p logical; if TRUE, probabilities p are given as \log(p).
lower.tail logical; if TRUE (default), probabilities are \Pr[X <= x], otherwise, \Pr[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
from where to start plotting the distribution from
to up to where to plot the distribution
obj a fitted BEZI object
... other graphical parameters for plotting

Details

The zero-inflated beta distribution is given as

\[
f(y) = \nu
\]

if \(y = 0 \)

\[
f(y | \mu, \sigma) = (1 - \nu) \frac{\Gamma(\sigma)}{\Gamma(\mu \sigma) \Gamma((1 - \mu) \sigma)} y^{\mu \sigma} (1 - y)^{(1 - \nu) \sigma - 1}
\]

if \(y = (0, 1) \). The parameters satisfy \(0 < \mu < 0, \sigma > 0 \) and \(0 < \nu < 1 \).

Here \(E(y) = (1 - \nu) \mu \) and \(\text{Var}(y) = (1 - \nu) \frac{\mu (1 - \mu)}{\sigma + 1} + \nu (1 - \nu) \mu^2 \).

Value

returns a gamlss.family object which can be used to fit a zero-inflated beta distribution in the
gamlss() function.

Note

This work is part of my PhD project at the University of Sao Paulo under the supervision of Professor
Silvia Ferrari. My thesis is concerned with regression modelling of rates and proportions with
excess of zeros and/or ones

Author(s)

Raydonal Ospina, Department of Statistics, University of Sao Paulo, Brazil.
<rospina@ime.usp.br>

References

See Also
gamlss.family, BEZI

Examples

BEZI() # gives information about the default links for the BEZI distribution
plotting the distribution
plotBEZI(mu =0.5 , sigma=5, nu = 0.1, from = 0, to=0.99, n = 101)
plotting the cdf
plot(function(y) pBEZI(y, mu=.5 ,sigma=5, nu=0.1), 0, 0.999)
plotting the inverse cdf
plot(function(y) qBEZI(y, mu=.5 ,sigma=5, nu=0.1), 0, 0.999)
generate random numbers
data<-rBEZI(100, mu=.5, sigma=5, nu=0.1)
fit a model to the data. Fits a constant for mu, sigma and nu
library(gamlss)
#modl<-gamlss(dat~1,sigma.formula=1, nu.formula=1, family=BEZI)
#fitted(modl)[1]
#summary(modl)
#fitted(modl,"mu")[1] #fitted mu
#fitted(modl,"sigma")[1] #fitted sigma
#fitted(modl,"nu")[1] #fitted nu
#meanBEZI(modl)[1] # expected value of the response

| BI | Binomial distribution for fitting a GAMLSS |

Description

The BI() function defines the binomial distribution, a one parameter family distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dB1, pBI, qBI and rBI define the density, distribution function, quantile function and random generation for the binomial, BI(), distribution.
 BI

Usage

BI(mu.link = "logit")
dBI(x, bd = 1, mu = 0.5, log = FALSE)
pBI(q, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qBI(p, bd = 1, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
rBI(n, bd = 1, mu = 0.5)

Arguments

mu.link Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
x vector of (non-negative integer) quantiles
mu vector of positive probabilities
bd vector of binomial denominators
p vector of probabilities
q vector of quantiles
n number of random values to return
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

Definition file for binomial distribution.

\[f(y|\mu) = \frac{\Gamma(n + 1)}{\Gamma(y + 1)\Gamma(n - y + 1)} \mu^y(1 - \mu)^{(n-y)} \]

for \(y = 0, 1, 2, ..., n \) and \(0 < \mu < 1 \).

Value

returns a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Note

The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures. The parameter mu represents a probability parameter with limits \(0 < \mu < 1 \). \(n\mu \) is the mean of the distribution where \(n \) is the binomial denominator.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
References

See Also

gamlss.family, ZABI, ZIBI

Examples

```r
# BI()# gives information about the default links for the Binomial distribution
# data(aep)
# library(gamlss)
# h<-gamlss(y=ward+loglos+year, family=BI, data=aep)
# plot of the binomial distribution
curve(dBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rBI(1000, mu=.2, bd=10))
r <- barplot(tN, col='lightblue')
```

Description

The BNB() function defines the beta negative binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss().

The functions dBIB, pBIB, qBIB and rBIB define the density, distribution function, quantile function and random generation for the beta negative binomial distribution, BNB().

The functions ZABNB() and ZIBNB() are the zero adjusted (hurdle) and zero inflated versions of the beta negative binomial distribution, respectively. That is four parameter distributions.

The functions dZABNB, dZIBNB, pZABNB, pZIBNB, qZABNB qZIBNB rZABNB and rZIBNB define the probability, cumulative, quantile and random generation functions for the zero adjusted and zero inflated beta negative binomial distributions, ZABNB(), ZIBNB(), respectively.
Usage

\text{BNB}(\text{mu.link} = \text{"log"}, \text{sigma.link} = \text{"log"}, \text{nu.link} = \text{"log"})
\text{dBNB}(x, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{log} = \text{FALSE})
\text{pBNB}(q, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{lower.tail} = \text{TRUE, log.p} = \text{FALSE})
\text{qBNB}(p, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{lower.tail} = \text{TRUE, log.p} = \text{FALSE, max.value} = 10000)
\text{rBNB}(n, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{max.value} = 10000)

\text{ZABNB}(\text{mu.link} = \text{"log"}, \text{sigma.link} = \text{"log"}, \text{nu.link} = \text{"log"}, \\
\text{tau.link} = \text{"logit"})
\text{dZABNB}(x, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{tau} = 0.1, \text{log} = \text{FALSE})
\text{pZABNB}(q, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{tau} = 0.1, \text{lower.tail} = \text{TRUE, log.p} = \text{FALSE})
\text{qZABNB}(p, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{tau} = 0.1, \text{lower.tail} = \text{TRUE, log.p} = \text{FALSE, max.value} = 10000)
\text{rZABNB}(n, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{tau} = 0.1, \text{max.value} = 10000)

\text{ZIBNB}(\text{mu.link} = \text{"log"}, \text{sigma.link} = \text{"log"}, \text{nu.link} = \text{"log"}, \\
\text{tau.link} = \text{"logit"})
\text{dZIBNB}(x, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{tau} = 0.1, \text{log} = \text{FALSE})
\text{pZIBNB}(q, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{tau} = 0.1, \text{lower.tail} = \text{TRUE, log.p} = \text{FALSE})
\text{qZIBNB}(p, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{tau} = 0.1, \text{lower.tail} = \text{TRUE, log.p} = \text{FALSE, max.value} = 10000)
\text{rZIBNB}(n, \text{mu} = 1, \text{sigma} = 1, \text{nu} = 1, \text{tau} = 0.1, \text{max.value} = 10000)

Arguments

\text{mu.link} \quad \text{The link function for mu}
\text{sigma.link} \quad \text{The link function for sigma}
\text{nu.link} \quad \text{The link function for nu}
\text{tau.link} \quad \text{The link function for tau}
\text{x} \quad \text{vector of (non-negative integer)}
\text{mu} \quad \text{vector of positive means}
\text{sigma} \quad \text{vector of positive dispersion parameter}
\text{nu} \quad \text{vector of a positive parameter}
\text{tau} \quad \text{vector of probabilities}
\text{log, log.p} \quad \text{logical; if TRUE, probabilities p are given as log(p)}
\text{lower.tail} \quad \text{logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]}
\text{p} \quad \text{vector of probabilities}
\text{q} \quad \text{vector of quantiles}
\text{n} \quad \text{number of random values to return}
\text{max.value} \quad \text{a constant, set to the default value of 10000 for how far the algorithm should look for q}
Details

The probability function of the BNB is

\[
P(Y = y | \mu, \sigma, \nu) = \frac{\Gamma(y + \nu^{-1}) \ B(y + \mu \sigma^{-1} \nu, \sigma^{-1} + \nu^{-1} + 1)}{\Gamma(y + 1) \ \Gamma(\nu^{-1}) \ B(\mu \sigma^{-1} \nu, \sigma^{-1} + 1)}
\]

for \(y = 0, 1, 2, 3, \ldots, \mu > 0, \sigma > 0 \) and \(\nu > 0 \).

The distribution has mean \(\mu \).

Value

returns a `gamlss.family` object which can be used to fit a Poisson distribution in the `gamlss()` function.

Author(s)

Bob Rigby and Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

See Also

`nbi`, `nbii`

Examples

```r
BNB()  # gives information about the default links for the beta negative binomial  
# plotting the distribution
plot(function(y) dBNB(y, mu = 10, sigma = 0.5, nu=2), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
r <- table(Ni <- rBNB(1000, mu=5, sigma=0.5, nu=2))
plot(r, col='lightblue')
```

```r
ZABNB()
ZIBNB()
# plotting the distribution
plot(function(y) dZABNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1),
    from=0, to=40, n=40+1, type="h")
```
checklink

Set the Right Link Function for Specified Parameter and Distribution

Description
This function is used within the distribution family specification of a GAMLSS model to define the right link for each of the parameters of the distribution. This function should not be called by the user unless he/she specify a new distribution family or wishes to change existing link functions in the parameters.

Usage
checklink(which.link = NULL, which.dist = NULL, link = NULL, link.List = NULL)

Arguments
- which.link: which parameter link e.g. which.link="mu.link"
- which.dist: which distribution family e.g. which.dist="Cole.Green"
- link: a repetition of which.link e.g. link=substitute(mu.link)
- link.List: what link function are required e.g. link.List=c("inverse", "log", "identity")

Value
Defines the right link for each parameter

Author(s)
Calliope Akantziliotou

References

See Also

gamlss.family

Description

Those functions are used in the distribution book of gamlss, see Rigby et. al 2019.

Usage

- `binom_1_31(family = BI, mu = c(0.1, 0.5, 0.7), bd = NULL, miny = 0, maxy = 20, cex.y.axis = 1.2, cex.all = 1.5)`
- `binom_2_33(family = BB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2), bd = NULL, miny = 0, maxy = 10, cex.y.axis = 1.5, cex.all = 1.5)`
- `binom_3_33(family = ZIBB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2), nu = c(0.01, 0.3), bd = NULL, miny = 0, maxy = 10, cex.y.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3)`
- `contr_R_2_12(family = "NO", mu = c(0, -1, 1), sigma = c(1, 0.5, 2), cols = c(1, 2, 3), ltype = c(1, 2, 3), maxy = 7, no.points = 201, y.axis.lim = 1.1)`
- `contr_R_3_11(family = "PE", mu = 0, sigma = 1, nu = c(1, 2, 3), cols = c(1, 2, 3), maxy = 7, no.points = 201, ltype = c(1, 2, 3), y.axis.lim = 1.1)`
- `contr_R_4_13(family = "SEP3", mu = 0, sigma = 1, nu = c(0.5, 1, 2), tau = c(1, 2, 5), cols = c(1, 2, 3), maxy = 7, no.points = 201, ltype = c(1, 2, 3), y.axis.lim = 1.1)`
- `contrplus_R_2_11(family = GA, mu = 1, sigma = c(0.1, 0.6, 1), cols = c(1, 2, 3), maxy = 4, no.points = 201, y.axis.lim = 1.1, ltype = c(1, 2, 3))`
contRplus_3_13(family = "BCCG", mu = 1, sigma = c(0.15, 0.2, 0.5),
 nu = c(-2, 0, 4), cols = c(1, 2, 3), maxy = 4,
 ltype = c(1, 2, 3), no.points = 201, y.axis.lim = 1.1)

contRplus_4_33(family = BCT, mu = 1, sigma = c(0.15, 0.2, 0.5),
 nu = c(-4, 0, 2), tau = c(100, 5, 1), cols = c(1, 2, 3),
 maxy = 4, ltype = c(1, 2, 3), no.points = 201,
 y.axis.lim = 1.1)

contR01_2_13(family = "BE", mu = c(0.2, 0.5, 0.8),
 sigma = c(0.2, 0.5, 0.8), cols = c(1, 2, 3),
 ltype = c(1, 2, 3), maxy = 7, no.points = 201,
 y.axis.lim = 1.1, maxYlim = 10, cex.axis = 1.2)

contR01_4_33(family = GB1, mu = c(0.5), sigma = c(0.2, 0.5, 0.7),
 nu = c(1, 2, 5), tau = c(0.5, 1, 2),
 cols = c(1, 2, 3, 4, 5, 6), maxy = 0.999,
 ltype = c(1, 2, 3), no.points = 201,
 y.axis.lim = 1.1, maxYlim = 10)

count_1_31(family = PO, mu = c(1, 2, 5), miny = 0, maxy = 10,
 cex.y.axis = 1.2, cex.all = 1.5)

count_1_22(family = PO, mu = c(1, 2, 5, 10), miny = 0,
 maxy = 20, cex.y.axis = 1.2, cex.all = 1.5)

count_2_32(family = NBI, mu = c(0.5, 1, 5), sigma = c(0.1, 2),
 miny = 0, maxy = 10, cex.y.axis = 1.5, cex.all = 1.5)

count_2_32R(family = NBI, mu = c(1, 2), sigma = c(0.1, 1, 2),
 miny = 0, maxy = 10, cex.y.axis = 1.5, cex.all = 1.5)

count_2_33(family = NBI, mu = c(0.1, 1, 2), sigma = c(0.5, 1, 2),
 miny = 0, maxy = 10, cex.y.axis = 1.5, cex.all = 1.5)

count_3_32(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1),
 nu = c(-0.5, 0.5), miny = 0, maxy = 10, cex.y.axis = 1.5,
 cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.2)

count_3_33(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1, 2),
 nu = c(-0.5, 0.5, 1), miny = 0, maxy = 10, cex.y.axis = 1.5,
 cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3)

Arguments

family a gamlss family distribution
Details

The function plot different types of continuous and discrete distributions: i) contR: continuous distribution defined on minus infinity to plus infinity, ii) contRplus: continuous distribution defined from zero to plus infinity, iii) contR01: continuous distribution defined from zero to 1, iv) bimom: binomial type discrete distributions, v) count: count type discrete distributions.

The first number after the first underline in the name of the function indicates the number of parameters in the distribution. The two numbers after the second underline indicate how many rows and columns are in the plot.

Value

The result is a plot

Note

more notes

Author(s)

Mikis Stasinopoulos, Robert Rigby, Gillian Heller, Fernada De Bastiani
References

See Also

`gamlss.family`

Examples

```r
count_1_31()
```

DBI

The Double binomial distribution

Description

The function `DBI()` defines the double binomial distribution, a two parameters distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dDBI`, `pDBI`, `qDBI` and `rDBI` define the density, distribution function, quantile function and random generation for the double binomial, `DBI()`, distribution. The function `GetBI.C` calculates numerically the constant of proportionality needed for the pdf to sum up to 1.

Usage

```r
dBI(mu.link = "log", sigma.link = "log")
dDBI(x, mu = 0.5, sigma = 1, bd = 2, log = FALSE)
pDBI(q, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE, log.p = FALSE)
qDBI(p, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE, log.p = FALSE)
rDBI(n, mu = 0.5, sigma = 1, bd = 2)
GetBI.C(mu, sigma, bd)
```
Arguments

mu.link the link function for mu with default log
sigma.link the link function for sigma with default log
x, q vector of (non-negative integer) quantiles
bd vector of binomial denominator
p vector of probabilities
mu the mu parameter
sigma the sigma parameter
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
log, log.p logical; if TRUE, probabilities p are given as log(p)
n how many random values to generate

Details

The definition for the Double Poisson distribution first introduced by Efron (1986) is:

\[p_Y(y|n, \mu, \sigma) = \frac{1}{C(n, \mu, \sigma)} \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} y^n (n-y)^{n-y} \frac{n^{n/\sigma} \mu^{y/\sigma} (1-\mu)^{(n-y)/\sigma}}{n!} \]

for \(y = 0, 1, 2, \ldots, \infty \), \(\mu > 0 \) and \(\sigma > 0 \) where \(C \) is the constant of proportionality which is calculated numerically using the function \(\text{getBI.C}() \).

Value

The function DBI returns a gamlss.family object which can be used to fit a double binomial distribution in the \(\text{gamlss()} \) function.

Author(s)

Mikis Stasinopoulos, Bob Rigby, Marco Enea and Fernanda de Bastiani

References

See Also

BI, BB
Examples

```r
dBI()
x <- 0:20
# underdispersed DBI
plot(x, dDBI(x, mu=0.5, sigma=0.2, bd=20), type="h", col="green", lwd=2)
# binomial
lines(x+0.1, dDBI(x, mu=0.5, sigma=1, bd=20), type="h", col="black", lwd=2)
# overdispersed DBI
lines(x+0.2, dDBI(x, mu=0.5, sigma=2, bd=20), type="h", col="red",lwd=2)
```

The Discrete Burr type XII distribution for fitting a GAMLSS model

Description

The `DBURR12()` function defines the discrete Burr type XII distribution, a three parameter discrete distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dDBURR12()`, `pDBURR12()`, `qDBURR12()` and `rDBURR12()` define the density, distribution function, quantile function and random generation for the discrete Burr type XII distribution.

Usage

```r
DBURR12(mu.link = "log", sigma.link = "log", nu.link = "log")
dDBURR12(x, mu = 5, sigma = 2, nu = 2, log = FALSE)
pDBURR12(q, mu = 5, sigma = 2, nu = 2, lower.tail = TRUE, 
  log.p = FALSE)
qDBURR12(p, mu = 5, sigma = 2, nu = 2, lower.tail = TRUE, 
  log.p = FALSE)
rDBURR12(n, mu = 5, sigma = 2, nu = 2)
```

Arguments

- `mu.link`: Defines the `mu.link`, with "log" link as the default for the `mu` parameter
- `sigma.link`: Defines the `sigma.link`, with "log" link as the default for the `sigma` parameter
- `nu.link`: Defines the `nu.link`, with "log" link as the default for the `nu` parameter
- `x`: vector of (non-negative integer) quantiles
- `p`: vector of probabilities
- `q`: vector of quantiles
- `mu`: vector of positive `mu`
- `sigma`: vector of positive dispersion parameter `sigma`
- `nu`: vector of `nu`
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p)
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- `n`: number of random values to return
Details

The probability function of the discrete Burr XII distribution is given by
\[
f(y|\mu, \sigma, \nu) = (1 + (y/\mu)^\sigma)^{-\nu} - (1 + ((y + 1)/\mu)^\sigma)^{-\nu}
\]
for \(y = 0, 1, 2, ..., \infty, \mu > 0, \sigma > 0 \) and \(\mu > 0 \).

Note that the above parametrization is different from Para and Jan (2016).

Value

The function `DBURR12()` Returns a `gamlss.family` object which can be used to fit a discrete Burr XII distribution in the `gamlss()` function.

Note

The parameters of the distribution are highly correlated so the argument of `gamlass method=mixed(10, 100)` may have to be used.

The distribution can be under/over dispersed and also with long tails.

Author(s)

References

See Also

`gamlss.family`, `DPO`

Examples

```r
DBURR12()
# plot the pdf using plot
plot(function(y) dDBURR12(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0, to=100), pDBURR12(seq(from=0, to=100), mu=10, sigma=1, nu=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rDBURR12(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
```
Description

The `DEL()` function defines the Delaporte distribution, a three parameter discrete distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `ddel`, `pdel`, `qdel` and `rdel` define the density, distribution function, quantile function and random generation for the Delaporte `DEL()`, distribution.

Usage

```r
DEL(mu.link = "log", sigma.link = "log", nu.link = "logit")
```

```r
dDEL(x, mu=1, sigma=1, nu=0.5, log=FALSE)
pDEL(q, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE)
qDEL(p, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
```

```r
rdel(n, mu=1, sigma=1, nu=0.5, max.value = 10000)
```

Arguments

- `mu.link` - Defines the `mu.link`, with "log" link as the default for the `mu` parameter
- `sigma.link` - Defines the `sigma.link`, with "log" link as the default for the `sigma` parameter
- `nu.link` - Defines the `nu.link`, with "logit" link as the default for the `nu` parameter
- `x` - vector of (non-negative integer) quantiles
- `mu` - vector of positive `mu`
- `sigma` - vector of positive dispersion parameter
- `nu` - vector of `nu`
- `p` - vector of probabilities
- `q` - vector of quantiles
- `n` - number of random values to return
- `log, log.p` - logical; if TRUE, probabilities p are given as log(p)
- `lower.tail` - logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- `max.value` - a constant, set to the default value of 10000 for how far the algorithm should look for `q`

Details

The probability function of the Delaporte distribution is given by

\[
 f(y|\mu, \sigma, \nu) = \frac{e^{-\mu\nu}}{\Gamma(1/\sigma)} \left[1 + \mu\sigma(1-\nu)\right]^{-1/\sigma} S
\]
where
\[S = \sum_{j=0}^{\infty} \binom{y}{j} \frac{\mu^j \nu^{y-j}}{y!} \left[\frac{1}{\sigma(1-\nu)} \right]^{-j} \Gamma \left(\frac{1}{\sigma} + j \right) \]
for \(y = 0, 1, 2, \ldots, \infty \) where \(\mu > 0, \sigma > 0 \) and \(0 < \nu < 1 \). This distribution is a parametrization of the distribution given by Wimmer and Altmann (1999) p 515-516 where \(\alpha = \mu \nu, k = 1/\sigma \) and \(\rho = [1 + \mu \sigma (1 - \nu)]^{-1} \).

Value

Returns a `gamlss.family` object which can be used to fit a Delaporte distribution in the `gamlss()` function.

Note

The mean of \(Y \) is given by \(E(Y) = \mu \) and the variance by \(V(Y) = \mu + \mu^2 \sigma (1 - \nu)^2 \).

Author(s)

Rigby, R. A., Stasinopoulos D. M. and Marco Enea

References

Wimmer, G. and Altmann, G (1999). *Thesaurus of univariate discrete probability distributions*. Stamm Verlag, Essen, Germany

See Also

`gamlss.family`, `SI`, `Sichel`

Examples

```r
DEL()# gives information about the default links for the Delaporte distribution

# plot the pdf using plot
plot(function(y) dDEL(y, mu=10, sigma=1, nu=.5), from=0, to=100, n=100+1, type="h") # pdf

# plot the cdf
plot(seq(from=0, to=100), pDEL(seq(from=0, to=100), mu=10, sigma=1, nu=0.5), type="h") # cdf
```
generate random sample
tN <- table(Ni <- rDEL(100, mu=10, sigma=1, nu=0.5))
r <- barplot(tN, col='lightblue')
fit a model to the data
library(gamlss)
gamlss(Ni~1,family=DEL, control=gamlss.control(n.cyc=50))

DPO

The Double Poisson distribution

Description
The function DPO() defines the double Poisson distribution, a two parameters distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dDPO, pDPO, qDPO and rDPO define the density, distribution function, quantile function and random generation for the double Poisson, DPO(), distribution. The function get.C() calculates numerically the constant of proportionality needed for the pdf to sum up to 1.

Usage
DPO(mu.link = "log", sigma.link = "log")
dDPO(x, mu = 1, sigma = 1, log = FALSE)
pDPO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qDPO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE,
 max.value = 10000)
rDPO(n, mu = 1, sigma = 1, max.value = 10000)
get.C(x, mu, sigma)

Arguments
mu.link the link function for mu with default log
sigma.link the link function for sigma with default log
x, q vector of (non-negative integer) quantiles
p vector of probabilities
mu the mu parameter
sigma the sigma parameter
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
log, log.p logical; if TRUE, probabilities p are given as log(p)
max.value a constant, set to the default value of 10000 for how far the algorithm should look for q
n how many random values to generate
Details

The definition for the Double Poisson distribution first introduced by Efron (1986) is:

\[
f(y|\mu, \sigma) = \left(\frac{1}{\sigma} \right)^{1/2} e^{-\mu/\sigma} \left(e^{y - y' \sigma} \right) \left(\frac{e\mu}{y} \right)^{y/\sigma} C
\]

for \(y = 0, 1, 2, \ldots, \infty \), \(\mu > 0 \) and \(\sigma > 0 \) where \(C \) is the constant of proportionality which is calculated numerically using the function get_C.

Value

The function DPO returns a gamlss.family object which can be used to fit a double Poisson distribution in the gamlss() function.

Note

The distributions calculates the constant of proportionality numerically therefore it can be slow for large data.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Marco Enea

References

See Also

PO

Examples

DPO()
overdisperse DPO
x <- 0:20
plot(x, dDPO(x, mu=5, sigma=3), type="h", col="red")
underdisperse DPO
plot(x, dDPO(x, mu=5, sigma=.3), type="h", col="red")
generate random sample
Y <- rDPO(100,5,.5)
EGB2

The exponential generalized Beta type 2 distribution for fitting a GAMLSS

Description

This function defines the generalized t distribution, a four parameter distribution. The response variable is in the range from minus infinity to plus infinity. The functions dEGB2, pEGB2, qEGB2 and rEGB2 define the density, distribution function, quantile function and random generation for the generalized beta type 2 distribution.

Usage

EGB2(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dEGB2(x, mu = 0, sigma = 1, nu = 1, tau = 0.5, log = FALSE)
pEGB2(q, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qEGB2(p, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
rEGB2(n, mu = 0, sigma = 1, nu = 1, tau = 0.5)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter.
nu.link Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link Defines the tau.link, with "log" link as the default for the tau parameter.
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of skewness nu parameter values
tau vector of kurtosis tau parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required
Details

The probability density function of the Generalized Beta type 2, (GB2), is defined as

\[f(y|\mu, \sigma, \nu, \tau) = e^{\nu z} \left[\frac{1}{\sigma} B(\nu, \tau) \left[1 + e^{z} \right]^{\nu+\tau} \right]^{-1} \]

for \(-\infty < y < \infty\), where \(z = (y - \mu)/\sigma\) and \(-\infty < \mu < \infty, -\infty < \sigma < \infty, \nu > 0\) and \(\tau > 0\), McDonald and Xu (1995).

Value

EGB2() returns a gamlss.family object which can be used to fit the EGB2 distribution in the gamlss() function. dEGB2() gives the density, pEGB2() gives the distribution function, qEGB2() gives the quantile function, and rEGB2() generates random deviates.

Author(s)

Bob Rigby and Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

See Also

gamlss.family, JSU, BCT

Examples

```r
EGB2()  #
y<- rEGB2(200, mu=5, sigma=2, nu=1, tau=4)
library(MASS)
truehist(y)
fx<-dEGB2(seq(min(y)), 20, length=200), mu=5 ,sigma=2, nu=1, tau=4)
lines(seq(min(y),20,length=200),fx)
# something funny here
# library(gamlss)
# histDist(y, family=EGB2, n.cyc=60)
integrate(function(x) x*dEGB2(x=x, mu=5, sigma=2, nu=1, tau=4), -Inf, Inf)
curve(dEGB2(x, mu=5 ,sigma=2, nu=1, tau=4), -10, 10, main = "The EGB2 density
mu=5, sigma=2, nu=1, tau=4")
```
The ex-Gaussian distribution

Description

The ex-Gaussian distribution is often used by psychologists to model response time (RT). It is defined by adding two random variables, one from a normal distribution and the other from an exponential. The parameters \(\mu \) and \(\sigma \) are the mean and standard deviation from the normal distribution variable while the parameter \(\nu \) is the mean of the exponential variable. The functions \(\text{dexGauss} \), \(\text{pexGauss} \), \(\text{qexGauss} \) and \(\text{rexGauss} \) define the density, distribution function, quantile function and random generation for the ex-Gaussian distribution.

Usage

\[
\begin{align*}
\text{exGauss}(\mu, \text{link} = "identity", \sigma, \nu) \\
\text{dexGauss}(x, \mu = 5, \sigma = 1, \nu = 1, \log = \text{FALSE}) \\
\text{pexGauss}(q, \mu = 5, \sigma = 1, \nu = 1, \text{lower.tail} = \text{TRUE}, \log.p = \text{FALSE}) \\
\text{qexGauss}(p, \mu = 5, \sigma = 1, \nu = 1, \text{lower.tail} = \text{TRUE}, \log.p = \text{FALSE}) \\
\text{rexGauss}(n, \mu = 5, \sigma = 1, \nu = 1, \ldots)
\end{align*}
\]

Arguments

- \(\mu \): vector of \(\mu \) parameter values
- \(\sigma \): vector of scale parameter values
- \(\nu \): vector of \(\nu \) parameter values
- \(\log, \log.p \): logical; if \(\text{TRUE} \), probabilities \(p \) are given as \(\log(p) \).
- \(\text{lower.tail} \): logical; if \(\text{TRUE} \) (default), probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \)
- \(p \): vector of probabilities.
- \(n \): number of observations. If \(\text{length}(n) > 1 \), the length is taken to be the number required
- \(\ldots \): for extra arguments

Details

The probability density function of the ex-Gaussian distribution, \(\text{exGauss} \), is defined as

\[
f(y|\mu, \sigma, \nu) = \frac{1}{\nu} e^{\frac{\mu - y}{\nu}} + \frac{\sigma^2}{\sigma^2 \Phi\left(\frac{y - \mu}{\sigma} - \frac{\sigma}{\nu}\right)}
\]

where \(\Phi \) is the cdf of the standard normal distribution, for \(-\infty < y < \infty, -\infty < \mu < \infty, \sigma > 0 \) and \(\nu > 0 \).
Value

`exGAUS()` returns a `gamlss.family` object which can be used to fit ex-Gaussian distribution in the `gamlss()` function. `dexGAUS()` gives the density, `pexGAUS()` gives the distribution function, `qexGAUS()` gives the quantile function, and `rexGAUS()` generates random deviates.

Note

The mean of the ex-Gaussian is $\mu + \nu$ and the variance is $\sigma^2 + \nu^2$.

Author(s)

Mikis Stasinopoulos and Bob Rigby

References

See Also

`gamlss.family`, `BCCG`, `GA`, `IG LNO`

Examples

```r
exGAUS() #
y<- rexGAUS(100, mu=300, nu=100, sigma=35)
hist(y)
# library(gamlss)
# m1<-gamlss(y~1, family=exGAUS)
# plot(m1)
curve(dexGAUS(x, mu=300 ,sigma=35,nu=100), 100, 600,
     main = "The ex-GAUS density mu=300 ,sigma=35,nu=100")
plot(function(x) pexGAUS(x, mu=300,sigma=35,nu=100), 100, 600,
     main = "The ex-GAUS cdf mu=300, sigma=35, nu=100")
```
EXP

Description

The function EXP defines the exponential distribution, a one parameter distribution for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The mu parameter represents the mean of the distribution. The functions dEXP, pEXP, qEXP and rEXP define the density, distribution function, quantile function and random generation for the specific parameterization of the exponential distribution defined by function EXP.

Usage

EXP(mu.link = "log")
dEXP(x, mu = 1, log = FALSE)
pEXP(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qEXP(p, mu = 1, lower.tail = TRUE, log.p = FALSE)
reXP(n, mu = 1)

Arguments

mu.link Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"

x,q vector of quantiles

mu vector of location parameter values

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p vector of probabilities

n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The specific parameterization of the exponential distribution used in EXP is

\[f(y|\mu) = \frac{1}{\mu} \exp \left\{ -\frac{y}{\mu} \right\} \]

, for y>0, \(\mu > 0 \).

Value

EXP() returns a gamlss.family object which can be used to fit an exponential distribution in the gamlss() function. dEXP() gives the density, pEXP() gives the distribution function, qEXP() gives the quantile function, and rEXP() generates random deviates.
Author(s)
Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Nicoleta Motpan

References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and
GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see
also http://www.gamlss.org/).
org/v23/i07.
Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

See Also

gamlss.family

Examples

```r
y<-rEXP(1000,mu=1) # generates 1000 random observations
hist(y)
# library(gamlss)
# histDist(y, family=EXP)
```

Description

This is an attempt to create a distribution function if the only existing information is the quantiles
or expectiles of the distribution.

Usage

```r
flexDist(quantiles = list(values=c(-1.96,0,1.96), prob=c(0.05, .50, 0.95)),
expectiles = list(), lambda = 10,
kappa = 10, delta = 1e-07, order = 3, n.iter = 200,
plot = TRUE, no.inter = 100, lower = NULL,
upper = NULL, perc.quant = 0.3, ...)
```
Arguments

quantiles a list with components values and prob
expectiles a list with components values and prob
lambda smoothing parameter for the log-pdf
kappa smoothing parameter for log concavity
delta smoothing parameter for ridge penalty
order the order of the penalty for log-pdf
n.iter maximum number of iterations
plot whether to plot the result
no.inter How many discrete probabilities to evaluate
lower the lower value of the x
upper the upper value of the x
perc.quant how far from the quantile should go out to define the limit of x if not set by lower or upper
... additional arguments

Value

Returns a list with components

pdf the heights of the fitted pdf, the sum of it multiplied by the Dx should add up to 1 i.e. sum(object$pdf*diff(object$x))[1]
cdf the fitted cdf
x the values of x where the discretise distribution is defined
pFun the cdf of the fitted non-parametric distribution
qFun the inverse cdf function of the fitted non-parametric distribution
rFun a function to generate a random sample from the fitted non-parametric distribution

Author(s)

Mikis Stasinopoulos, Paul Eilers, Bob Rigby and Vlasios Voudouris

References

See Also

histSmo

Examples

Normal
r1<-flexDist(quantiles=list(values=qNO(c(0.05, 0.25, 0.5,0.75, 0.95), mu=0, sigma=1), prob=c(0.05, 0.25, 0.5,0.75,0.95))), no.inter=200, lambda=10, kappa=10, perc.quant=0.3)

GAMMA
r1<-flexDist(quantiles=list(values=qGA(c(0.05,0.25, 0.5,0.75,0.95), mu=1, sigma=0), prob=c(0.05,0.25, 0.5,0.75,0.95)), expectiles=list(values=1, prob=0.5), lambda=10, kappa=10, lower=0, upper=5)#

GA

Gamma distribution for fitting a GAMLSS

Description

The function GA defines the gamma distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The parameterization used has the mean of the distribution equal to μ and the variance equal to $\sigma^2\mu^2$. The functions dGA, pGA, qGA and rGA define the density, distribution function, quantile function and random generation for the specific parameterization of the gamma distribution defined by function GA.

Usage

GA(mu.link = "log", sigma.link ="log")
dGA(x, mu = 1, sigma = 1, log = FALSE)
pGA(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qGA(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rGA(n, mu = 1, sigma = 1)

Arguments

mu.link Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse", "identity" ans "own"
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter, other link is the "inverse", "identity" and "own"
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are $P[X <= x]$, otherwise, $P[X > x]$
\(p \) vector of probabilities.
\(n \) number of observations. If \(\text{length}(n) > 1 \), the length is taken to be the number required

Details

The specific parameterization of the gamma distribution used in GA is

\[
f(y|\mu, \sigma) = \frac{y^{(1/\sigma^2-1)} \exp[-y/(\sigma^2 \mu)]}{(\sigma^2 \mu)^{(1/\sigma^2)} \Gamma(1/\sigma^2)}
\]

for \(y > 0, \mu > 0 \) and \(\sigma > 0 \).

Value

GA() returns a gamlss.family object which can be used to fit a gamma distribution in the gamlss() function. dGA() gives the density, pGA() gives the distribution function, qGA() gives the quantile function, and rGA() generates random deviates. The latest functions are based on the equivalent R functions for gamma distribution.

Note

\(\mu \) is the mean of the distribution in GA. In the function GA, \(\sigma \) is the square root of the usual dispersion parameter for a GLM gamma model. Hence \(\sigma \mu \) is the standard deviation of the distribution defined in GA.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Calliope Akantziliotou

References

See Also

gamlss.family
Examples

GAF()# gives information about the default links for the gamma distribution
dat<-rgamma(100, shape=1, scale=10) # generates 100 random observations
fit a gamlss model
gamlss(dat~1,family=GA)
fits a constant for each parameter mu and sigma of the gamma distribution
newdata<-rGAM(1000,mu=1,sigma=1) # generates 1000 random observations
hist(newdata)
rm(dat,newdata)

GAF

The Gamma distribution family

Description

The function GAF() defines a gamma distribution family, which has three parameters. This is not the generalised gamma distribution which is called Gg. The third parameter here is to model the mean and variance relationship. The distribution can be fitted using the function gamlss(). The mean of GAF is equal to mu. The variance is equal to sigma^2*mu^nu so the standard deviation is sigma*mu^(nu/2). The function is design for cases where the variance is proportional to a power of the mean. This is an instance of the Taylor’s power low, see Enki et al. (2017). The functions dGAF, pGAF, qGAF and rGAF define the density, distribution function, quantile function and random generation for the GAF parametrization of the gamma family.

Usage

GAF(mu.link = "log", sigma.link = "log", nu.link = "identity")
dGAF(x, mu = 1, sigma = 1, nu = 2, log = FALSE)
pGAF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE,
 log.p = FALSE)
qGAF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE,
 log.p = FALSE)
rGAF(n, mu = 1, sigma = 1, nu = 2)

Arguments

mu.link Defines the mu.link, with “identity” link as the default for the mu parameter
sigma.link Defines the sigma.link, with “log” link as the default for the sigma parameter
nu.link Defines the nu.link with “identity” link as the default for the nu parameter
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of power parameter values
\texttt{log, log.p} logical; if \texttt{TRUE}, probabilities \texttt{p} are given as \texttt{log(p)}.

\texttt{lower.tail} logical; if \texttt{TRUE} (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X > x]\)

\texttt{p} vector of probabilities.

\texttt{n} number of observations. If \texttt{length(n)} > 1, the length is taken to be the number required.

Details

The parametrization of the gamma family given in the function \texttt{GAF()} is:

\[
f(y|\mu, \sigma_1) = \frac{y^{(1/\sigma_1^2-1)} \exp[-y/(\sigma_1^2\mu)]}{(\sigma_1^2\mu)^{(1/\sigma_1^2)}} \Gamma(1/\sigma_1^2)
\]

for \(y > 0, \mu > 0\) where \(\sigma_1 = \sigma \mu^{\nu/(1-\nu)}\).

Value

\texttt{GAF()} returns a \texttt{gamlss.family} object which can be used to fit the gamma family in the \texttt{gamlss()} function.

Note

For the function \texttt{GAF()}, \(\mu\) is the mean and \(\sigma \mu^{\nu/2}\) is the standard deviation of the gamma family. The \texttt{GAF} is design for fitting regression type models where the variance is proportional to a power of the mean.

Note that because the high correlation between the \texttt{sigma} and the \texttt{nu} parameter the \texttt{mixed()}{method should be used in the fitting.

Author(s)

Mikis Stasinopoulos, Robert Rigby and Fernanda De Bastiani

References

See Also

\texttt{gamlss.family}, \texttt{GA}, \texttt{GG}
Examples

GAF()

Not run:
m1 <- gamlss(y = poly(x, 2), data = abdom, family = GAF, method = mixed(1, 100),
 c.crit = 0.00001)
using R5()
m2 <- gamlss(y = poly(x, 2), data = abdom, family = GAF, n.cyc = 5000, c.crit = 0.00001)
the estimates of nu slightly different
fitted(m1, "nu")[[1]]
fitted(m2, "nu")[[1]]
global deviance almost identical
AIC(m1, m2)

End(Not run)

gamlss.family Family Objects for fitting a GAMLSS model

Description

GAMLSS families are the current available distributions that can be fitted using the \texttt{gamlss()} function.

Usage

\texttt{gamlss.family(object,...)}

\texttt{as.gamlss.family(object)}

\texttt{as.family(object)}

S3 method for class 'gamlss.family'

\texttt{print(x,...)}

Arguments

- \texttt{object}: a \texttt{gamlss} family object e.g. \texttt{BCT}

- \texttt{x}: a \texttt{gamlss} family object e.g. \texttt{BCT}

- ...: further arguments passed to or from other methods.

Details

There are several distributions available for the response variable in the \texttt{gamlss} function. The following table displays their names and their abbreviations in R. Note that the different distributions can be fitted using their R abbreviations (and optionally excluding the brackets) i.e. \texttt{family=BI()}, \texttt{family=BI} are equivalent.

<table>
<thead>
<tr>
<th>Distributions</th>
<th>R names</th>
<th>No of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>BE()</td>
<td>2</td>
</tr>
<tr>
<td>Beta Binomial</td>
<td>BB()</td>
<td>2</td>
</tr>
<tr>
<td>Distribution</td>
<td>Function</td>
<td>Version</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Beta negative binomial</td>
<td>BNB()</td>
<td>3</td>
</tr>
<tr>
<td>Beta one inflated</td>
<td>BEOI()</td>
<td>3</td>
</tr>
<tr>
<td>Beta zero inflated</td>
<td>BEZI()</td>
<td>3</td>
</tr>
<tr>
<td>Beta inflated</td>
<td>BEINF()</td>
<td>4</td>
</tr>
<tr>
<td>Binomial</td>
<td>BI()</td>
<td>1</td>
</tr>
<tr>
<td>Box-Cox Cole and Green</td>
<td>BCCG()</td>
<td>3</td>
</tr>
<tr>
<td>Box-Cox Power Exponential</td>
<td>BCPE()</td>
<td>4</td>
</tr>
<tr>
<td>Box-Cox-t</td>
<td>BCT()</td>
<td>4</td>
</tr>
<tr>
<td>Delaport</td>
<td>DEL()</td>
<td>3</td>
</tr>
<tr>
<td>Discrete Burr XII</td>
<td>DBURR12()</td>
<td>3</td>
</tr>
<tr>
<td>Double Poisson</td>
<td>DPO()</td>
<td>2</td>
</tr>
<tr>
<td>Double binomial</td>
<td>DBI()</td>
<td>2</td>
</tr>
<tr>
<td>Exponential</td>
<td>EXP()</td>
<td>1</td>
</tr>
<tr>
<td>Exponential Gaussian</td>
<td>exGAUS()</td>
<td>3</td>
</tr>
<tr>
<td>Exponential generalized Beta type 2</td>
<td>EGB2()</td>
<td>4</td>
</tr>
<tr>
<td>Gamma</td>
<td>GA()</td>
<td>2</td>
</tr>
<tr>
<td>Generalized Beta type 1</td>
<td>GB1()</td>
<td>4</td>
</tr>
<tr>
<td>Generalized Beta type 2</td>
<td>GB2()</td>
<td>4</td>
</tr>
<tr>
<td>Generalized Gamma</td>
<td>GG()</td>
<td>3</td>
</tr>
<tr>
<td>Generalized Inverse Gaussian</td>
<td>GIG()</td>
<td>3</td>
</tr>
<tr>
<td>Generalized t</td>
<td>GT()</td>
<td>4</td>
</tr>
<tr>
<td>Geometric</td>
<td>GEOM()</td>
<td>1</td>
</tr>
<tr>
<td>Geometric (original)</td>
<td>GEOMo()</td>
<td>1</td>
</tr>
<tr>
<td>Gumbel</td>
<td>GU()</td>
<td>2</td>
</tr>
<tr>
<td>Inverse Gamma</td>
<td>IGAMMA()</td>
<td>2</td>
</tr>
<tr>
<td>Inverse Gaussian</td>
<td>IG()</td>
<td>2</td>
</tr>
<tr>
<td>Johnson’s SU</td>
<td>JSU()</td>
<td>4</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>LG()</td>
<td>1</td>
</tr>
<tr>
<td>Logistic</td>
<td>LO()</td>
<td>2</td>
</tr>
<tr>
<td>Logit-Normal</td>
<td>LOGITNO()</td>
<td>2</td>
</tr>
<tr>
<td>log-Normal</td>
<td>LOGN()</td>
<td>2</td>
</tr>
<tr>
<td>log-Normal (Box-Cox)</td>
<td>LNO()</td>
<td>3 (1 fixed)</td>
</tr>
<tr>
<td>Negative Binomial type I</td>
<td>NBI()</td>
<td>2</td>
</tr>
<tr>
<td>Negative Binomial type II</td>
<td>NBII()</td>
<td>2</td>
</tr>
<tr>
<td>Negative Binomial family</td>
<td>NBF()</td>
<td>3</td>
</tr>
<tr>
<td>Normal Exponential t</td>
<td>NET()</td>
<td>4 (2 fixed)</td>
</tr>
<tr>
<td>Normal</td>
<td>NO()</td>
<td>2</td>
</tr>
<tr>
<td>Normal Family</td>
<td>NOF()</td>
<td>3 (1 fixed)</td>
</tr>
<tr>
<td>Normal Linear Quadratic</td>
<td>LQNO()</td>
<td>2</td>
</tr>
<tr>
<td>Pareto type 2</td>
<td>PARETO2()</td>
<td>2</td>
</tr>
<tr>
<td>Pareto type 2 original</td>
<td>PARETO2o()</td>
<td>2</td>
</tr>
<tr>
<td>Power Exponential</td>
<td>PE()</td>
<td>3</td>
</tr>
<tr>
<td>Power Exponential type 2</td>
<td>PE2()</td>
<td>3</td>
</tr>
<tr>
<td>Poison</td>
<td>PO()</td>
<td>1</td>
</tr>
<tr>
<td>Poisson inverse Gaussian</td>
<td>PIG()</td>
<td>2</td>
</tr>
<tr>
<td>Reverse generalized extreme</td>
<td>RGE()</td>
<td>3</td>
</tr>
<tr>
<td>Reverse Gumbel</td>
<td>RG()</td>
<td>2</td>
</tr>
<tr>
<td>Skew Power Exponential type 1</td>
<td>SEP1()</td>
<td>4</td>
</tr>
<tr>
<td>Distribution</td>
<td>Function</td>
<td>Parameter(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Skew Power Exponential type 2</td>
<td>SE2()</td>
<td>4</td>
</tr>
<tr>
<td>Skew Power Exponential type 3</td>
<td>SE3()</td>
<td>4</td>
</tr>
<tr>
<td>Skew Power Exponential type 4</td>
<td>SE4()</td>
<td>4</td>
</tr>
<tr>
<td>Skew Original</td>
<td>SH()</td>
<td>4</td>
</tr>
<tr>
<td>Skew Original 2</td>
<td>SH()</td>
<td>4</td>
</tr>
<tr>
<td>Sichel (original)</td>
<td>SI()</td>
<td>3</td>
</tr>
<tr>
<td>Sichel (mu as mean)</td>
<td>SI()</td>
<td>3</td>
</tr>
<tr>
<td>Simplex</td>
<td>SIMPLEX()</td>
<td>2</td>
</tr>
<tr>
<td>Skew t type 1</td>
<td>ST1()</td>
<td>3</td>
</tr>
<tr>
<td>Skew t type 2</td>
<td>ST2()</td>
<td>3</td>
</tr>
<tr>
<td>Skew t type 3</td>
<td>ST3()</td>
<td>3</td>
</tr>
<tr>
<td>Skew t type 4</td>
<td>ST4()</td>
<td>3</td>
</tr>
<tr>
<td>Skew t type 5</td>
<td>ST5()</td>
<td>3</td>
</tr>
<tr>
<td>t-distribution</td>
<td>TF()</td>
<td>3</td>
</tr>
<tr>
<td>Waring</td>
<td>WARING()</td>
<td>1</td>
</tr>
<tr>
<td>Weibull</td>
<td>WEI()</td>
<td>2</td>
</tr>
<tr>
<td>Weibull (PH parameterization)</td>
<td>WEI2()</td>
<td>2</td>
</tr>
<tr>
<td>Weibull (mu as mean)</td>
<td>WEI3()</td>
<td>2</td>
</tr>
<tr>
<td>Yule</td>
<td>YULE()</td>
<td>1</td>
</tr>
<tr>
<td>Zero adjusted binomial</td>
<td>ZABI()</td>
<td>2</td>
</tr>
<tr>
<td>Zero adjusted beta neg. bin.</td>
<td>ZABNB()</td>
<td>4</td>
</tr>
<tr>
<td>Zero adjusted IG</td>
<td>ZAIG()</td>
<td>2</td>
</tr>
<tr>
<td>Zero adjusted logistic</td>
<td>ZALG()</td>
<td>2</td>
</tr>
<tr>
<td>Zero adjusted neg. bin.</td>
<td>ZANBI()</td>
<td>3</td>
</tr>
<tr>
<td>Zero adjusted poisson</td>
<td>ZAP()</td>
<td>2</td>
</tr>
<tr>
<td>Zero adjusted Sichel</td>
<td>ZASICH()</td>
<td>4</td>
</tr>
<tr>
<td>Zero adjusted Zipf</td>
<td>ZAZIPF()</td>
<td>2</td>
</tr>
<tr>
<td>Zero inflated binomial</td>
<td>ZIBI()</td>
<td>2</td>
</tr>
<tr>
<td>Zero inflated beta neg. bin.</td>
<td>ZIBNB()</td>
<td>4</td>
</tr>
<tr>
<td>Zero inflated neg. bin.</td>
<td>ZINBI()</td>
<td>3</td>
</tr>
<tr>
<td>Zero inflated poisson</td>
<td>ZIP()</td>
<td>2</td>
</tr>
<tr>
<td>Zero inflated Poisson</td>
<td>ZIP2()</td>
<td>2</td>
</tr>
<tr>
<td>Zero inflated PIG</td>
<td>ZIPIG()</td>
<td>3</td>
</tr>
<tr>
<td>Zero inflated Sichel</td>
<td>ZISIC()</td>
<td>4</td>
</tr>
<tr>
<td>Zipf</td>
<td>ZIPF()</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that some of the distributions are in the package `gamlss.dist`. The parameters of the distributions are in order, mu for location, sigma for scale (or dispersion), and nu and tau for shape. More specifically for the BCCG family mu is the median, sigma approximately the coefficient of variation, and nu the skewness parameter. The parameters for BCPE distribution have the same interpretation with the extra fourth parameter tau modelling the kurtosis of the distribution. The parameters for BCT have the same interpretation except that $\sigma[(\tau/(\tau - 2))^{0.5}]$ is approximately the coefficient of variation.

All of the distribution in the above list are also provided with the corresponding d, p, q and r functions for density (pdf), distribution function (cdf), quantile function and random generation function respectively, (see individual distribution for details).
Value

The above GAMLSS families return an object which is of type \texttt{gamlss.family}. This object is used to define the family in the \texttt{gamlss()} fit.

Note

More distributions will be documented in later GAMLSS releases. Further user defined distributions can be incorporate relatively easy, see, for example, the help documentation accompanying the \texttt{gamlss} library.

Author(s)

Mikis Stasinopoulos \texttt{<mikis.stasinopoulos@gamlss.org>}, Bob Rigby and Calliope Akantziliotou

References

See Also

BE, BB, BEINF, BI, LNO, BCT, BCPE, BCG, GA, GU, JSU, IG, LO, NBI, NBII, NPO, PO, RG, PIG, TF, WEI, WEI2, ZIP

Examples

\begin{verbatim}
normal<-NO(mu.link="log", sigma.link="log")
normal
\end{verbatim}

\begin{verbatim}
GB1
\end{verbatim}

The generalized Beta type 1 distribution for fitting a GAMLSS

Description

This function defines the generalized beta type 1 distribution, a four parameter distribution. The function \texttt{GB1} creates a \texttt{gamlss.family} object which can be used to fit the distribution using the function \texttt{gamlss()}. Note the range of the response variable is from zero to one. The functions \texttt{dGB1}, \texttt{GB1}, \texttt{qGB1} and \texttt{rGB1} define the density, distribution function, quantile function and random generation for the generalized beta type 1 distribution.
Usage

GB1(mu.link = "logit", sigma.link = "log", nu.link = "log",
 tau.link = "log")
dGB1(x, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, log = FALSE)
pGB1(q, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE,
 log.p = FALSE)
qGB1(p, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE,
 log.p = FALSE)
rGB1(n, mu = 0.5, sigma = 0.4, nu = 1, tau = 1)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter.
nu.link Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link Defines the tau.link, with "log" link as the default for the tau parameter.
x, q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of skewness nu parameter values
tau vector of kurtosis tau parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The probability density function of the Generalized Beta type 1, (GB1), is defined as

\[f(y|\mu, \sigma, \nu, \tau) = \frac{\tau \nu^\beta y^{\alpha-1}(1 - y^\tau)^{\beta-1}}{B(\alpha, \beta)(\nu + (1 - \nu)y^\tau)^{\alpha+\beta}} \]

where 0 < y < 1, \(\alpha = \mu(1 - \sigma^2)/\sigma^2 \) and \(\beta = (1 - \mu)(1 - \sigma^2)/\sigma^2 \), and \(\alpha > 0, \beta > 0 \). Note the \(\mu = \alpha/(\alpha + \beta), \sigma = (\alpha + \beta + 1)^{-1/2} \).

Value

GB1() returns a gamlss.family object which can be used to fit the GB1 distribution in the gamlss() function. dGB1() gives the density, pGB1() gives the distribution function, qGB1() gives the quantile function, and rGB1() generates random deviates.
Warning

The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles.

Author(s)

Bob Rigby and Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

See Also

gamlss.family, JSU, BCT

Examples

```r
GB1()  #
y<- rGB1(200, mu=.1, sigma=.6, nu=1, tau=4)  
hist(y)  
# library(gamlss)
# histDist(y, family=GB1, n.cyc=60)
curve(dGB1(x, mu=.1 ,sigma=.6, nu=1, tau=4), 0.01, 0.99, main = "The GB1  
density mu=0.1, sigma=.6, nu=1, tau=4")
```

GB2

The generalized Beta type 2 and generalized Pareto distributions for fitting a GAMLSS

Description

This function defines the generalized beta type 2 distribution, a four parameter distribution. The function GB2 creates a gamlss.family object which can be used to fit the distribution using the function gamlss(). The response variable is in the range from zero to infinity. The functions dGB2, GB2, qGB2 and rGB2 define the density, distribution function, quantile function and random generation for the generalized beta type 2 distribution. The generalised Pareto GP distribution is defined by setting the parameters sigma and nu of the GB2 distribution to 1.
Usage

GB2(mu.link = "log", sigma.link = "log", nu.link = "log",
 tau.link = "log")
dGB2(x, mu = 1, sigma = 1, nu = 1, tau = 0.5, log = FALSE)
pGB2(q, mu = 1, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE,
 log.p = FALSE)
qGB2(p, mu = 1, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE,
 log.p = FALSE)
rGB2(n, mu = 1, sigma = 1, nu = 1, tau = 0.5)

GP(mu.link = "log", sigma.link = "log")
dGP(x, mu = 1, sigma = 1, log = FALSE)
pGP(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qGP(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rGP(n, mu = 1, sigma = 1)

Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter.
u.link
Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link
Defines the tau.link, with "log" link as the default for the tau parameter.
x,q
vector of quantiles
mu
vector of location parameter values
sigma
vector of scale parameter values
nu
vector of skewness nu parameter values
tau
vector of kurtosis tau parameter values
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required

Details

The probability density function of the Generalized Beta type 2, (GB2), is defined as

\[
f(y|\mu, \sigma, \nu, \tau) = |\sigma|y^{\nu-1}\{\mu^{\sigma\nu} B(\nu, \tau)[1 + (y/\mu)^{\sigma}]^{\nu + \tau}\}^{-1}
\]

where \(y > 0, \mu > 0, -\infty < \sigma < \infty, \nu > 0 \) and \(\tau > 0 \).
Value

`gbR()` returns a `gamlss.family` object which can be used to fit the GB2 distribution in the `gamlss()` function. `dgbR()` gives the density, `pgbR()` gives the distribution function, `qgbR()` gives the quantile function, and `rgbR()` generates random deviates.

Warning

The `qSHASH` and `rSHASH` are slow since they are relying on golden section for finding the quantiles.

Author(s)

Bob Rigby and Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

See Also

`gamlss.family`, `JSU`, `BCT`

Examples

```r
GB2() #
y<‐rGB2(200, mu=5, sigma=2, nu=1, tau=1)
library(MASS)
truehist(y)
fx<‐dGB2(seq(0.01, 20, length=200), mu=5, sigma=2, nu=1, tau=1)
lines(seq(0.01, 20, length=200), fx)
integrate(function(x) x*dGB2(x=x, mu=5, sigma=2, nu=1, tau=1), 0, Inf)
mean(y)
curve(dGB2(x, mu=5, sigma=2, nu=1, tau=1), 0.01, 20,
      main = “The GB2 density mu=5, sigma=2, nu=1, tau=4”)
```
Functions to generate log and logit distributions from existing continuous gamlss.family distributions

Description

There are five functions here. Only the functions `Family` and `gen.Family` should be used (see details).

Usage

```r
Family.d(family = "NO", type = c("log", "logit"), ...)  
Family.p(family = "NO", type = c("log", "logit"), ...)  
Family.q(family = "NO", type = c("log", "logit"), ...)  
Family.r(family = "NO", type = c("log", "logit"), ...)  
Family(family = "NO", type = c("log", "logit"), local = TRUE, ...)  
gen.Family(family = "NO", type = c("log", "logit"), ...)  
```

Arguments

- `family`: a continuous gamlss.family distribution
- `type`: the type of transformation only "log" and "logit" are allowed
- `local`: It is TRUE if is called within `gamlss()` otherwise is FALSE
- ... for passing extra arguments

Details

The function `gen.Family` creates the standard `d,p,q,r` functions for the distribution plus the fitting `gamlss.family`. For example `gen.Family("NO", "logit")` will generate the functions `dlogitNO()`, `plogitNO()`, `qlogitNO()`, `rlogitNO()` and `dlogitNO()`. The latest function can be used in the `family` argument of `gamlss()` to fit a logic-Normal distribution i.e. `family=logitNO`. The same fitting can be achieved by using `family=Family("NO", "logit")`. Here the required `dlogitNO()`, `plogitNO()` and `qlogitNO()` functions are generated locally within the `gamlss()` environment.

Value

The function `gen.Family` returns the `d, p, q, r` functions plus the fitting function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org> and Bob Rigby
References

Examples

```r
# generating a log t distribution
gen.Family("TF")
# plotting the d, p, q, and r functions
op<-.par(mfrow=c(2,2))
curve(dlogTF(x, mu=0), 0, 10)
curve(plogTF(x, mu=0), 0, 10)
curve(qlogTF(x, mu=0), 0, 1)
y<- rlogTF(200)
hist(y)
par(op)

# different mu
curve(dlogTF(x, mu=1, sigma=1, nu=10), 0, 5, ylim=c(0,1))
curve(dlogTF(x, mu=0, sigma=1, nu=10), 0, 5, add=TRUE, col="red", lty=2)
curve(dlogTF(x, mu=1, sigma=1, nu=10), 0, 5, add=TRUE, col="blue", lty=3)

# different sigma
curve(dlogTF(x, mu=0, sigma=5, nu=10), 0, 5, ylim=c(0,1))
curve(dlogTF(x, mu=0, sigma=1, nu=10), 0, 5, add=TRUE, col="red", lty=2)
curve(dlogTF(x, mu=0, sigma=2, nu=10), 0, 5, add=TRUE, col="blue", lty=3)

# different degrees of freedom nu
curve(dlogTF(x, mu=0, sigma=1, nu=1), 0, 5, ylim=c(0,.8), n = 1001)
curve(dlogTF(x, mu=0, sigma=1, nu=2), 0, 5, add=TRUE, col="red", lty=2)
curve(dlogTF(x, mu=0, sigma=1, nu=5), 0, 5, add=TRUE, col="blue", lty=3)

# generating a logit t distribution
gen.Family("TF", "logit")
# plotting the d, p, q, and r functions
op<-.par(mfrow=c(2,2))
curve(dlogitTF(x, mu=0), 0, 1)
curve(plogitTF(x, mu=0), 0, 1)
curve(qlogitTF(x, mu=0), 0, 1)
abline(v=1)
```
Y <- rlogitTF(200)
hist(Y)
par(op)

different mu
curve(dlogitTF(x, mu=-2, sigma=1, nu=10), 0, 1, ylim=c(0, 5))
curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0, 1, add=TRUE, col="red", lty=2)
curve(dlogitTF(x, mu=2, sigma=1, nu=10), 0, 1, add=TRUE, col="blue", lty=3)

different sigma
curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0, 1, ylim=c(0, 2.5))
curve(dlogitTF(x, mu=0, sigma=2, nu=10), 0, 1, add=TRUE, col="red", lty=2)
curve(dlogitTF(x, mu=0, sigma=.7, nu=10), 0, 1, add=TRUE, col="blue", lty=3)

different degrees of freedom nu
curve(dlogitTF(x, mu=0, sigma=1, nu=1), 0, 1, ylim=c(0, 1.6))
curve(dlogitTF(x, mu=0, sigma=1, nu=2), 0, 1, add=TRUE, col="red", lty=2)
curve(dlogitTF(x, mu=0, sigma=1, nu=5), 0, 1, add=TRUE, col="blue", lty=3)

GEOM

Geometric distribution for fitting a GAMLSS model

Description

The functions GEOMo() and GEOM() define two parametrizations of the geometric distribution. The geometric distribution is a one parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The mean of GEOM() is equal to the parameter mu. The functions dGEOM, pGEOM, qGEOM and rGEOM define the density, distribution function, quantile function and random generation for the GEOM parameterization of the Geometric distribution.

Usage

```r
GEOM(mu.link = "log")
dGEOM(x, mu = 2, log = FALSE)
pGEOM(q, mu = 2, lower.tail = TRUE, log.p = FALSE)
qGEOM(p, mu = 2, lower.tail = TRUE, log.p = FALSE)
rGEOM(n, mu = 2)
```

```r
GEOMo(mu.link = "logit")
dGEOMo(x, mu = 0.5, log = FALSE)
pGEOMo(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qGEOMo(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
rGEOMo(n, mu = 0.5)
```

Arguments

- **mu.link**: Defines the mu.link, with log link as the default for the mu parameter
- **x, q**: vector of quantiles
mu vector of location parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x]
p vector of probabilities
n number of observations. If length(n) > 1, the length is taken to be the number required

Details
The parameterization of the original geometric distribution in the function GE is
\[f(y|\mu) = (1 - \mu)^y \mu \]
for \(y \geq 0 \) and \(\mu > 0 \).

The parameterization of the geometric distribution in the function GEOM is
\[f(y|\mu) = \mu^y / (\mu + 1)^{y+1} \]
where for \(y \geq 0 \) and \(\mu > 0 \).

Value
returns a gamlss.family object which can be used to fit a Geometric distribution in the gamlss() function.

Author(s)
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.

References

See Also
gamlss.family
Examples

```r
par(mfrow=c(2,2))
y<seq(0,20,1)
plot(y, dGEOG(y), type="h")
q <- seq(0, 20, 1)
plot(q, pGEOG(q), type="h")
p<seq(0.0001, 0.999, 0.05)
plot(p, qGEOG(p), type="s")
dat <- rGEOG(100)
hist(dat)
#summary(gamlss(dat-1, family=GEOG))
par(mfrow=c(2,2))
y<seq(0,20,1)
plot(y, dGEOG(y), type="h")
q <- seq(0, 20, 1)
plot(q, pGEOG(q), type="h")
p<seq(0.0001, 0.999, 0.05)
plot(p, qGEOG(p), type="s")
dat <- rGEOG(100)
hist(dat)
#summary(gamlss(dat-1, family="GE"))
```

Description

The function `GG` defines the generalized gamma distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The parameterization used has the mean of the distribution equal to `mu` and the variance equal to \((\sigma^2)(\mu^2)\). The functions `dGG`, `pGG`, `qGG` and `rGG` define the density, distribution function, quantile function and random generation for the specific parameterization of the generalized gamma distribution defined by function `GG`.

Usage

```r
GG(mu.link = "log", sigma.link = "log",
    nu.link = "identity")
dGG(x, mu=1, sigma=0.5, nu=1,
    log = FALSE)
pGG(q, mu=1, sigma=0.5, nu=1, lower.tail = TRUE,
    log.p = FALSE)
qGG(p, mu=1, sigma=0.5, nu=1, lower.tail = TRUE,
    log.p = FALSE)
rGG(n, mu=1, sigma=0.5, nu=1)
```
Arguments

mu.link
Defines the mu.link, with "log" link as the default for the mu parameter, other
links are "inverse" and "identity"

sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter,
other links are "inverse" and "identity"

nu.link
Defines the nu.link, with "identity" link as the default for the sigma parameter,
other links are 1/nu^2 and "log"

x,q
vector of quantiles

mu
vector of location parameter values

sigma
vector of scale parameter values

nu
vector of shape parameter values

log, log.p
logical; if TRUE, probabilities p are given as log(p).

lower.tail
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p
vector of probabilities

n
number of observations. If length(n) > 1, the length is taken to be the number
required

Details

The specific parameterization of the generalized gamma distribution used in GG is

\[f(y|\mu, \sigma, \nu) = \frac{\theta^\nu z^\nu e^{(-\theta z)}}{(\Gamma(\theta)y)} \]

where \(z = (y/\mu)^\nu, \theta = 1/(\sigma^2|\nu|^2) \) for \(y > 0, \mu > 0, \sigma > 0 \) and \(-\infty < \nu < +\infty\). Note that for \(\nu = 0 \) the distribution is log normal.

Value

GG() returns a gamlss.family object which can be used to fit a generalized gamma distribution in the gamlss() function. dGG() gives the density, pGG() gives the distribution function, qGG() gives the quantile function, and rGG() generates random deviates.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan

References

See Also
gamlss.family, GA

Examples

```r
y <- rGIG(100, mu=1, sigma=0.1, nu=-.5) # generates 100 random observations
hist(y)
# library(gamlss)
# histDist(y, family=GIG)
# m1 <- gamlss(y~1, family=GIG)
# prof.dev(m1, "nu", min=-2, max=2, step=0.2)
```

GIG

Generalized Inverse Gaussian distribution for fitting a GAMLSS

Description

The function GIG defines the generalized inverse gaussian distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dGIG`, `pGIG`, `GIG` and `rGIG` define the density, distribution function, quantile function and random generation for the specific parameterization of the generalized inverse gaussian distribution defined by function GIG.

Usage

```r
GIG(mu.link = "log", sigma.link = "log",
    nu.link = "identity")
dGIG(x, mu=1, sigma=1, nu=1,
    log = FALSE)
pGIG(q, mu=1, sigma=1, nu=1, lower.tail = TRUE,
    log.p = FALSE)
qGIG(p, mu=1, sigma=1, nu=1, lower.tail = TRUE,
    log.p = FALSE)
rGIG(n, mu=1, sigma=1, nu=1, ...)
```

Arguments

- **mu.link**: Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"
- **sigma.link**: Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are "inverse" and "identity"
nu.link Defines the nu.link, with "identity" link as the default for the nu parameter, other
links are "inverse" and "log"

x, q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of shape parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities
n number of observations. If length(n) > 1, the length is taken to be the number
required
... for extra arguments

Details

The specific parameterization of the generalized inverse gaussian distribution used in GIG is
\(f(y | \mu, \sigma, \nu) = \frac{c^\nu}{\nu^\nu (2\nu\sigma^2)} \exp \left(\frac{1}{2\sigma^2} \left(\frac{\nu y^2}{\nu} + \frac{2\nu \mu}{\nu^2} \right) \right) \) where
\(c = \frac{K(\frac{1}{2},\nu+1)}{K(\frac{1}{2},\nu)} \), for \(y > 0 \), \(\mu > 0 \), \(\sigma > 0 \) and \(-\infty < \nu < +\infty \).

Value

GIG() returns a gamlss.family object which can be used to fit a generalized inverse gaussian distri-
bution in the gamlss() function. DIG() gives the density, pGIG() gives the distribution function,
GIG() gives the quantile function, and rGIG() generates random deviates.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Nicoleta Motpan

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and

GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see
also http://www.gamlss.org/).

org/v23/i07.

Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

Jorgensen B. (1982) Statistical properties of the generalized inverse Gaussian distribution, Series:
Lecture notes in statistics; 9, New York : Springer-Verlag.
See Also

`gamlss.family.IG`

Examples

```r
y <- rGIG(100, mu = 1, sigma = 1, nu = -0.5) # generates 1000 random observations
hist(y)
# library(gamlss)
# histDist(y, family=GIG)
```

The generalised Poisson distribution

Description

The `gpo()` function defines the generalised Poisson distribution, a two parameter discrete distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dGPO`, `pGPO`, `qGPO` and `rGPO` define the density, distribution function, quantile function and random generation for the Delaporte `GPO()` distribution.

Usage

```r
GPO(mu.link = "log", sigma.link = "log")
dGPO(x, mu = 1, sigma = 1, log = FALSE)
pGPO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qGPO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rGPO(n, mu = 1, sigma = 1, max.value = 10000)
```

Arguments

- `mu.link`: Defines the `mu.link`, with "log" link as the default for the `mu` parameter
- `sigma.link`: Defines the `sigma.link`, with "log" link as the default for the `sigma` parameter
- `x`: vector of (non-negative integer) quantiles
- `mu`: vector of positive `mu`
- `sigma`: vector of positive dispersion parameter `sigma`
- `p`: vector of probabilities
- `q`: vector of quantiles
- `n`: number of random values to return
- `log`, `log.p`: logical; if `TRUE`, probabilities `p` are given as `log(p)`
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \)

max.value a constant, set to the default value of 10000 for how far the algorithm should look for \(q \)

Details

The probability function of the Generalised Poisson distribution is given by

\[
P(Y = y | \mu, \sigma) = \left(\frac{\mu}{1 + \sigma \mu} \right)^y \frac{(1 + \sigma y)^{y-1}}{y!} \exp \left[-\mu \frac{1 + \sigma y}{1 + \sigma \mu} \right]
\]

for \(y = 0, 1, 2, \ldots, \infty \) where \(\mu > 0 \) and \(\sigma > 0 \).

Value

Returns a `gamlss.family` object which can be used to fit a Generalised Poisson distribution in the `gamlss()` function.

Author(s)

Rigby, R. A., Stasinopoulos D. M.

References

(see also http://www.gamlss.org/).

See Also

`gamlss.family`, `PO`, `DPO`

Examples

```r
GPO() # gives information about the default links for the
# plot the pdf using plot
plot(function(y) dGPO(y, mu=10, sigma=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0, to=100), pGPO(seq(from=0, to=100), mu=10, sigma=1), type="h") # cdf
# generate random sample
rN <- table(N <- rGPO(100, mu=5, sigma=1))
r <- barplot(rN, col='lightblue')
```
The generalized t distribution for fitting a GAMLSS

Description

This function defines the generalized t distribution, a four parameter distribution, for a `gamlss.family` object to be used for a GAMLSS fitting using the function `gamlss()`. The functions `dgt`, `pgt`, `qgt` and `rgt` define the density, distribution function, quantile function and random generation for the generalized t distribution.

Usage

```r
GT(mu.link = "identity", sigma.link = "log", nu.link = "log",
    tau.link = "log")
dGT(x, mu = 0, sigma = 1, nu = 3, tau = 1.5, log = FALSE)
pGT(q, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
    log.p = FALSE)
qGT(p, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
    log.p = FALSE)
rgt(n, mu = 0, sigma = 1, nu = 3, tau = 1.5)
```

Arguments

- `mu.link`: Defines the `mu.link`, with "identity" link as the default for the `mu` parameter.
- `sigma.link`: Defines the `sigma.link`, with "log" link as the default for the `sigma` parameter.
- `nu.link`: Defines the `nu.link`, with "log" link as the default for the `nu` parameter.
- `tau.link`: Defines the `tau.link`, with "log" link as the default for the `tau` parameter.
- `x, q`: vector of quantiles
- `mu`: vector of location parameter values
- `sigma`: vector of scale parameter values
- `nu`: vector of skewness `nu` parameter values
- `tau`: vector of kurtosis `tau` parameter values
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p).
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- `p`: vector of probabilities.
- `n`: number of observations. If `length(n) > 1`, the length is taken to be the number required

Details

The probability density function of the generalized t distribution, \(\text{GT} \), is defined as

\[
f(y|\mu, \sigma, \nu, \tau) = \tau \left\{ 2\sigma \nu^{1/\tau} B \left(\frac{1}{\tau}, \nu \right) \left[1 + \frac{|z|^{\tau/\nu}}{\nu^{1/\tau}} \right]^{\nu+1/\tau} \right\}^{-1}
\]

where \(-\infty < y < \infty, z = (y - \mu)/\sigma, \mu = (-\infty, +\infty), \sigma > 0, \nu > 0\) and \(\tau > 0\).
Value

`GT()` returns a `gamlss.family` object which can be used to fit the GT distribution in the `gamlss()` function. `dGT()` gives the density, `pGT()` gives the distribution function, `qGT()` gives the quantile function, and `rGT()` generates random deviates.

Warning

The `qGT` and `rGT` are slow since they are relying on optimization for finding the quantiles

Author(s)

Bob Rigby and Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

See Also

`gamlss.family, JSU, BCT`

Examples

```r
GT()  #
y<- rGT(200, mu=5, sigma=1, nu=1, tau=4)
hist(y)
curve(dGT(x, mu=5 ,sigma=2,nu=1, tau=4), -2, 11,
     main = "The GT density mu=5 ,sigma=1, nu=1, tau=4")
# library(gamlss)
# m1<-gamlss(y~1, family=GT)
```
The Gumbel distribution for fitting a GAMLSS

Description
The function GU defines the Gumbel distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dGU, pGU, qGU and rGU define the density, distribution function, quantile function and random generation for the specific parameterization of the Gumbel distribution.

Usage
GU(mu.link = "identity", sigma.link = "log")
dGU(x, mu = 0, sigma = 1, log = FALSE)
pGU(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qGU(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rgU(n, mu = 0, sigma = 1)

Arguments
mu.link Defines the mu.link, with "identity" link as the default for the mu parameter. other available link is "inverse", "log" and "own")
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are the "inverse", "identity" and "own"
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details
The specific parameterization of the Gumbel distribution used in GU is

\[f(y|\mu, \sigma) = \frac{1}{\sigma} \exp \left\{ \left(\frac{y - \mu}{\sigma} \right) - \exp \left(\frac{y - \mu}{\sigma} \right) \right\} \]

for \(y = (-\infty, \infty) \), \(\mu = (-\infty, +\infty) \) and \(\sigma > 0 \).

Value
GU() returns a gamlss.family object which can be used to fit a Gumbel distribution in the gamlss() function. dGU() gives the density, pGU() gives the distribution function, qGU() gives the quantile function, and rGU() generates random deviates.
Note

The mean of the distribution is $\mu - 0.57722\sigma$ and the variance is $\pi^2\sigma^2/6$.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Calliope Akantziliotou

References

See Also

gamlss.family. RG

Examples

\begin{verbatim}
plot(function(x) dGU(x, mu=0,sigma=1), -6, 3,
 main = "(Gumbel density mu=0,sigma=1)"
GU()# gives information about the default links for the Gumbel distribution
dat<-rGU(100, mu=10, sigma=2) # generates 100 random observations
hist(dat)
library(gamlss)
gamlss(dat~1,family=GU) # fits a constant for each parameter mu and sigma
\end{verbatim}

Description

The function `hazardFun()` takes as an argument a `gamlss.family` object and creates the hazard function for it. The function `gen.hazard()` generates a hazard function called `hNAME` where `NAME` is a `gamlss.family` i.e. `hGA()`.
hazardFun

Usage

hazardFun(family = "NO", ...)
gen.hazard(family = "NO", ...)

Arguments

family a gamlss.family object

... for passing extra arguments

Value

A hazard function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Vlasios Voudouris

References

See Also

gamlss.family

Examples

gen.hazard("WEI2")
y<-seq(0,10,by=0.01)
plot(hWEI2(y, mu=1, sigma=1)-y, type="l", col="black", ylab="h(y)", ylim=c(0,2.5))
lines(hWEI2(y, mu=1, sigma=1.2)-y, col="red",lt=2,lw=2)
lines(hWEI2(y, mu=1, sigma=0.5)-y, col="blue",lt=3,lw=2)
Inverse Gaussian distribution for fitting a GAMLSS

Description

The function \texttt{IG()}, or equivalently \texttt{Inverse.Gaussian()}, defines the inverse Gaussian distribution, a two parameter distribution, for a \texttt{gamlss.family} object to be used in GAMLSS fitting using the function \texttt{gamlss()}. The functions \texttt{dIG}, \texttt{pIG}, \texttt{qIG} and \texttt{rIG} define the density, distribution function, quantile function and random generation for the specific parameterization of the Inverse Gaussian distribution defined by function \texttt{IG}.

Usage

\begin{verbatim}
IG(mu.link = "log", sigma.link = "log")
dIG(x, mu = 1, sigma = 1, log = FALSE)
pIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rIG(n, mu = 1, sigma = 1, ...)
\end{verbatim}

Arguments

- \texttt{mu.link}: Defines the \texttt{mu.link}, with "log" link as the default for the \texttt{mu} parameter
- \texttt{sigma.link}: Defines the \texttt{sigma.link}, with "log" link as the default for the \texttt{sigma} parameter
- \texttt{x,q}: vector of quantiles
- \texttt{mu}: vector of location parameter values
- \texttt{sigma}: vector of scale parameter values
- \texttt{log, log.p}: logical; if TRUE, probabilities \texttt{p} are given as \texttt{log(p)}.
- \texttt{lower.tail}: logical; if TRUE (default), probabilities are \texttt{P[X <= x]}, otherwise, \texttt{P[X > x]}
- \texttt{p}: vector of probabilities.
- \texttt{n}: number of observations. If \texttt{length(n) > 1}, the length is taken to be the number required
- ...: ... can be used to pass the \texttt{uppr.limit} argument to \texttt{qIG}

Details

Definition file for inverse Gaussian distribution.

\[
f(y | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2y}} \exp\left\{-\frac{1}{2\mu^2\sigma^2y} (y - \mu)^2\right\}
\]

for \(y > 0, \mu > 0\) and \(\sigma > 0\).

Value

returns a \texttt{gamlss.family} object which can be used to fit a inverse Gaussian distribution in the \texttt{gamlss()} function.
Note

\(\mu \) is the mean and \(\sigma^2 \mu^3 \) is the variance of the inverse Gaussian

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

See Also

gamlss.family, GA, GIG

Examples

IG()
gives information about the default links for the normal distribution
library(gamlss)
data(rent)
gamlss(R~cs(F1),family=IG, data=rent)
plot(function(x)dIG(x, mu=1, sigma=.5), 0.01, 6,
 main = "(Inverse Gaussian density mu=1, sigma=0.5")")
plot(function(x)pIG(x, mu=1, sigma=.5), 0.01, 6,
 main = "(Inverse Gaussian cdf mu=1, sigma=0.5")")

Description

The function IGAMMA() defines the Inverse Gamma distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with parameters mu (the mode) and sigma. The functions dIGamma, pIGamma, qIGamma and rIGamma define the density, distribution function, quantile function and random generation for the IGAMMA parameterization of the Inverse Gamma distribution.
Usage

```r
IGAMMA(mu.link = "log", sigma.link="log")
dIGAMMA(x, mu = 1, sigma = .5, log = FALSE)
pIGAMMA(q, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE)
qIGAMMA(p, mu = 1, sigma = .5, lower.tail = TRUE, log.p = FALSE)
rIGAMMA(n, mu = 1, sigma = .5)
```

Arguments

- **mu.link**: Defines the mu.link, with log link as the default for the mu parameter
- **sigma.link**: Defines the sigma.link, with log as the default for the sigma parameter
- **x, q**: vector of quantiles
- **mu**: vector of location parameter values
- **sigma**: vector of scale parameter values
- **log, log.p**: logical; if TRUE, probabilities p are given as log(p)
- **lower.tail**: logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x]
- **p**: vector of probabilities
- **n**: number of observations. If length(n) > 1, the length is taken to be the number required

Details

The parameterization of the Inverse Gamma distribution in the function IGAMMA is

\[f(y|\mu,\sigma) = \frac{\mu (\alpha + 1)^\alpha}{\Gamma(\alpha)} y^{-(\alpha + 1)} \exp \left[-\frac{\mu (\alpha + 1)}{y} \right] \]

where \(alpha = 1/(sigma^2) \) for \(y > 0, \mu > 0 \) and \(sigma > 0 \).

Value

returns a gamlss.family object which can be used to fit an Inverse Gamma distribution in the `gamlss()` function.

Note

For the function IGAMMA(), \(mu \) is the mode of the Inverse Gamma distribution.

Author(s)

Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.
References

See Also

gamlss.family, GA

Examples

```r
par(mfrow=c(2,2))
y<-.seq(0.2, 20, 0.2)
plot(y, dIGAMMA(y), type="l")
q <- seq(0.2, 20, 0.2)
plot(q, pIGAMMA(q), type="l")
p<-.seq(0.0001, 0.999, 0.05)
plot(p, qIGAMMA(p), type="l")
dat <- rIGAMMA(50)
hist(dat)
#summary(gamlss(dat~1, family="IGAMMA"))
```

JSU

The Johnson’s Su distribution for fitting a GAMLSS

Description

This function defines the , a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dJSU, pJSU, qJSU and rJSU define the density, distribution function, quantile function and random generation for the the Johnson’s Su distribution.

Usage

```r
JSU(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dJSU(x, mu = 0, sigma = 1, nu = 1, tau = 1, log = FALSE)
pJSU(q, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE)
qJSU(p, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE)
rJSU(n, mu = 0, sigma = 1, nu = 1, tau = 1)
```
Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" ans "own"

sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" ans "own"

nu.link
Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "inverse", "log" and "own"

tau.link
Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "onverse", "identity" ans "own"

x, q
vector of quantiles

mu
vector of location parameter values

sigma
vector of scale parameter values

nu
vector of skewness nu parameter values

tau
vector of kurtosis tau parameter values

log, log.p
logical; if TRUE, probabilities p are given as log(p).

lower.tail
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p
vector of probabilities.

n
number of observations. If length(n) > 1, the length is taken to be the number required

Details

The probability density function of the Jonhson’s SU distribution, (JSU), is defined as

\[
f(y|n, \mu, \sigma, \nu, \tau) = \frac{1}{c\sigma} \frac{1}{\tau(z^2 + 1)^{\frac{1}{2}}} \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2} r^2 \right]
\]

for \(-\infty < y < \infty, \mu = (-\infty, +\infty), \sigma > 0, \nu = (-\infty, +\infty)\) and \(\tau > 0\). where \(r = -\nu + \frac{1}{2} \sinh^{-1}(z), z = \frac{y - (\mu + c\sigma\frac{1}{2} \sinh \Omega)}{c\sigma}, c = \left[\frac{1}{2} (w - 1)(w \cosh 2\Omega + 1) \right]^{\frac{1}{2}}, w = e^{r^2} \) and \(\Omega = -\nu \tau\).

This is a reparameterization of the original Johnson Su distribution, Johnson (1954), so the parameters mu and sigma are the mean and the standard deviation of the distribution. The parameter nu determines the skewness of the distribution with nu>0 indicating positive skewness and nu<0 negative. The parameter tau determines the kurtosis of the distribution. tau should be positive and most likely in the region from zero to 1. As tau goes to 0 (and for nu=0) the distribution approaches the Normal density function. The distribution is appropriate for leptokurtic data that is data with kurtosis larger that the Normal distribution one.

Value

JSU() returns a gamlss.family object which can be used to fit a Johnson’s Su distribution in the gamlss() function. dJSU() gives the density, pJSU() gives the distribution function, qJSU() gives the quantile function, and rJSU() generates random deviates.
Warning

The function JSU uses first derivatives square in the fitting procedure so standard errors should be interpreted with caution.

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

See Also

gamlss.family, JSUo, BCT

Examples

```r
JSU()
plot(function(x)dJSU(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 4,
main = "The JSU density mu=0, sigma=1, nu=-1, tau=.5")
plot(function(x) pJSU(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 4,
main = "The JSU cdf mu=0, sigma=1, nu=-1, tau=.5")
# library(gamlss)
# data(abdom)
# h<-gamlss(y~cs(x,df=3), sigma.formula~cs(x,1), family=JSU, data=abdom)
```

The original Johnson’s Su distribution for fitting a GAMLSS

Description

This function defines the JSU, a four parameter distribution, for a `gamlss.family` object to be used for a GAMLSS fitting using the function `gamlss()`. The functions `dJSU`, `pJSU`, `qJSUo` and `rJSUo` define the density, distribution function, quantile function and random generation for the the Johnson’s Su distribution.
Usage

JSUo(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dJSUo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pJSUo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
qJSUo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
rJSUo(n, mu = 0, sigma = 1, nu = 0, tau = 1)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" and "own"
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" and "own"
uu.link Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "inverse", "log" ans "own"
tau.link Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "inverse", "identity" and "own"
x, q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of skewness nu parameter values
tau vector of kurtosis tau parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The probability density function of the orininal Jonhson's SU distribution, (JSU), is defined as

\[f(y|n, \mu, \sigma, \nu, \tau) = \frac{\tau}{\sigma (z^2 + 1)^{\frac{3}{2}}} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} r^2\right] \]

for \(-\infty < y < \infty, \mu = (-\infty, +\infty), \sigma > 0, \nu = (-\infty, +\infty)\) and \(\tau > 0\). where \(z = \frac{(y-\mu)}{\sigma}, r = \nu + \tau sinh^{-1}(z)\).

Value

JSUo() returns a gamlss.family object which can be used to fit a Johnson’s Su distribution in the gamlss() function. dJSUo() gives the density, pJSUo() gives the distribution function, qJSUo() gives the quantile function, and rJSUo() generates random deviates.
Warning

The function JSU uses first derivatives square in the fitting procedure so standard errors should be interpreted with caution. It is recomended to be used only with method=mixed(2,20)

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org> and Bob Rigby

References

See Also

`gamlss.family, JSU, BCT`

Examples

```r
JSU()
plot(function(x)dJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15,
    main = "The JSUo density mu=0,sigma=1,nu=-1, tau=.5")
plot(function(x) pJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15,
    main = "The JSUo cdf mu=0, sigma=1, nu=-1, tau=.5")
# library(gamlss)
# data(abdom)
# h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=JSUo,
#     data=abdom, method=mixed(2,20))
# plot(h)
```
LG

Logarithmic and zero adjusted logarithmic distributions for fitting a GAMLSS model

Description

The function `LG` defines the logarithmic distribution, a one parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dLg`, `pLg`, `qLg` and `rLg` define the density, distribution function, quantile function and random generation for the logarithmic, LG(\(\mu\)) distribution.

The function `ZALG` defines the zero adjusted logarithmic distribution, a two parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dZALG`, `pZALG`, `qZALG` and `rZALG` define the density, distribution function, quantile function and random generation for the inflated logarithmic, ZALG(\(\mu, \sigma\)) distribution.

Usage

```r
LG(mu.link = "logit")
dLG(x, mu = 0.5, log = FALSE)
pLG(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qLG(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rLG(n, mu = 0.5)
ZALG(mu.link = "logit", sigma.link = "logit")
dZALG(x, mu = 0.5, sigma = 0.1, log = FALSE)
pZALG(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZALG(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZALG(n, mu = 0.5, sigma = 0.1)
```

Arguments

- `mu.link`: defines the mu.link, with logit link as the default for the mu parameter
- `sigma.link`: defines the sigma.link, with logit link as the default for the sigma parameter which in this case is the probability at zero.
- `x`: vector of (non-negative integer)
- `mu`: vector of positive means
- `sigma`: vector of probabilities at zero
- `p`: vector of probabilities
- `q`: vector of quantiles
- `n`: number of random values to return
- `log`, `log.p`: logical; if TRUE, probabilities p are given as log(p)
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- `max.value`: valued needed for the numerical calculation of the q-function
Details

For the definition of the distributions see Rigby and Stasinopoulos (2010) below.

The parameterization of the logarithmic distribution in the function \texttt{lg} is

\[f(y|\mu) = \alpha \mu^y / y \]

where for \(y \geq 1 \) and \(\mu > 0 \) and

\[\alpha = -[\log(1 - \mu)]^{-1} \]

Value

The function \texttt{LG} and \texttt{ZALG} return a \texttt{gamlss.family} object which can be used to fit a logarithmic and a zero inflated logarithmic distributions respectively in the \texttt{gamlss()} function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby

References

See Also

\texttt{gamlss.family}, \texttt{PO}, \texttt{ZAP}

Examples

\begin{verbatim}
LG()
ZAP()
creating data and plotting them
dat <- rLG(1000, mu=.3)
r <- barplot(table(dat), col='lightblue')
dat1 <- rZALG(1000, mu=.3, sigma=1)
r1 <- barplot(table(dat1), col='lightblue')
\end{verbatim}
Log Normal distribution for fitting in GAMLSS

Description

The functions LOGNO and LOGN02 define a gamlss.family distribution to fits the log-Normal distribution. The difference between them is that while LOGNO retains the original parametrization for mu, (identical to the normal distribution NO) and therefore $\mu = (-\infty, +\infty)$, the function LOGN02 use mu as the median, so $\mu = (0, +\infty)$.

The function LNO is more general and can fit a Box-Cox transformation to data using the gamlss() function. In the LOGNO (and LOGN02) there are two parameters involved mu sigma, while in the LNO there are three parameters mu sigma and the transformation parameter nu. The transformation parameter nu in LNO is a 'fixed' parameter (not estimated) and it has its default value equal to zero allowing the fitting of the log-normal distribution as in LOGNO. See the example below on how to fix nu to be a particular value. In order to estimate (or model) the parameter nu, use the gamlss.family BCCG distribution which uses a reparameterized version of the the Box-Cox transformation. The functions dLOGNO, pLOGNO, qLOGNO and rLOGNO define the density, distribution function, quantile function and random generation for the specific parameterization of the log-normal distribution.

The functions dLOGNO2, pLOGNO2, qLOGNO2 and rLOGNO2 define the density, distribution function, quantile function and random generation when mu is the median of the log-normal distribution.

The functions dLNO, pLNO, qLNO and rLNO define the density, distribution function, quantile function and random generation for the specific parameterization of the log-normal distribution and more generally a Box-Cox transformation.

Usage

```R
LNO(mu.link = "identity", sigma.link = "log")
LOGNO(mu.link = "identity", sigma.link = "log")
LOGN02(mu.link = "log", sigma.link = "log")
dLNO(x, mu = 1, sigma = 0.1, nu = 0, log = FALSE)
dLOGNO(x, mu = 0, sigma = 1, log = FALSE)
dLOGN02(x, mu = 1, sigma = 1, log = FALSE)
pLNO(q, mu = 1, sigma = 0.1, nu = 0, lower.tail = TRUE, log.p = FALSE)
pLOGNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
pLOGN02(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qLNO(p, mu = 1, sigma = 0.1, nu = 0, lower.tail = TRUE, log.p = FALSE)
qLOGNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qLOGN02(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rLNO(n, mu = 1, sigma = 0.1, nu = 0)
rLOGNO(n, mu = 0, sigma = 1)
rLOGN02(n, mu = 1, sigma = 1)
```
Arguments

mu.link Defines the mu.link, with "identity" or "log" link depending on the parametrization.

sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" and "own".

x, q vector of quantiles

mu vector of location parameter values

sigma vector of scale parameter values

nu vector of shape parameter values

log, log.p logical; if TRUE, probabilities p are given as \(\log(p) \).

lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \)

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The probability density function in \(\text{LOGNO} \) is defined as

\[
f(y|\mu, \sigma) = \frac{1}{y\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} (\log(y) - \mu)^2 \right]
\]

for \(y > 0 \), \(\mu = (-\infty, +\infty) \) and \(\sigma > 0 \).

The probability density function in \(\text{LNO} \) is defined as

\[
f(y|\mu, \sigma, \nu) = \frac{1}{\sqrt{2\pi}\sigma} y^{\nu-1} \exp\left[-\frac{1}{2\sigma^2} (z - \mu)^2 \right]
\]

where if \(\nu \neq 0 \) \(z = (y^\nu - 1)/\nu \) else \(z = \log(y) \) and \(z \sim N(0, \sigma^2) \), for \(y > 0 \), \(\mu > 0 \), \(\sigma > 0 \) and \(\nu = (-\infty, +\infty) \).

Value

\(\text{LNO()} \) returns a \text{gamlss.family} object which can be used to fit a log-normal distribution in the \text{gamlss()} function. \(\text{dLNO()} \) gives the density, \(\text{pLNO()} \) gives the distribution function, \(\text{qLNO()} \) gives the quantile function, and \(\text{rLNO()} \) generates random deviates.

Warning

This is a two parameter fit for \(\mu \) and \(\sigma \) while \(\nu \) is fixed. If you wish to model \(\nu \) use the \text{gamlss} family \text{BCCG}.

Note

\(\mu \) is the mean of \(z \) (and also the median of \(y \)), the Box-Cox transformed variable and \(\sigma \) is the standard deviation of \(z \) and approximate the coefficient of variation of \(y \)
Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

See Also

gamlss.family, BCGG

Examples

LOGNO() # gives information about the default links for the log normal distribution
LOGNO2()
LNO() # gives information about the default links for the Box Cox distribution

plotting the d, p, q, and r functions
op<-par(mfrow=c(2,2))
curve(dLOGNO(x, mu=0), 0, 10)
curve(pLOGNO(x, mu=0), 0, 10)
curve(qLOGNO(x, mu=0), 0, 1)
Y<- rLOGNO(200)
hist(Y)
par(op)

plotting the d, p, q, and r functions
op<-par(mfrow=c(2,2))
curve(dLOGNO2(x, mu=1), 0, 10)
curve(pLOGNO2(x, mu=1), 0, 10)
curve(qLOGNO2(x, mu=1), 0, 1)
Y<- rLOGNO2(200)
hist(Y)
par(op)

library(gamlss)
data(abdom)
h1<-gamlss(y~cs(x), family=LOGNO, data=abdom)#fits the log-Normal distribution
Logistic distribution for fitting a GAMLSS

Description

The function \(\log \), or equivalently \(\texttt{logistic} \), defines the logistic distribution, a two parameter distribution, for a \texttt{gamlss} family object to be used in GAMLSS fitting using the function \texttt{gamlss()}

Usage

\[
\log(\mu, \sigma) \quad \text{with "identity" link as the default for the \mu parameter}
\]
\[
\texttt{dlo(x, mu = 0, sigma = 1, log = FALSE)}
\]
\[
\texttt{plo(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)}
\]
\[
\texttt{qlo(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)}
\]
\[
\texttt{rlo(n, mu = 0, sigma = 1)}
\]

Arguments

- \(\mu \) link
- \(\sigma \) link
- \(x, q \)
- \(\mu \)
- \(\sigma \)
- \(\log, \log.p \)
- \(\text{lower.tail} \)
- \(p \)
- \(n \)

Details

Definition file for Logistic distribution.

\[
f(y|\mu, \sigma) = \frac{1}{\sigma} e^{-\frac{y-\mu}{\sigma}} [1 + e^{-\frac{y-\mu}{\sigma}}]^{-2}
\]

for \(y = (-\infty, \infty), \mu = (-\infty, \infty) \) and \(\sigma > 0 \).

Value

\(\log() \) returns a \texttt{gamlss} family object which can be used to fit a logistic distribution in the \texttt{gamlss()} function. \(\texttt{dlo()} \) gives the density, \(\texttt{plo()} \) gives the distribution function, \(\texttt{qlo()} \) gives the quantile function, and \(\texttt{rlo()} \) generates random deviates for the logistic distribution. The latest functions are based on the equivalent \texttt{R} functions for logistic distribution.
Note

μ is the mean and $\sigma \pi / \sqrt{3}$ is the standard deviation for the logistic distribution

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Calliope Akantziliotou

References

See Also

`gamlss.family`, NO, TF

Examples

```r
LO() # gives information about the default links for the Logistic distribution
plot(function(y) dLO(y, mu=10, sigma=2), 0, 20)
plot(function(y) pLO(y, mu=10, sigma=2), 0, 20)
plot(function(y) qLO(y, mu=10, sigma=2), 0, 1)
  # library(gamlss)
  # data(abdom)
  # h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=L0, data=abdom) # fits
  # plot(h)
```

LOGITNO

Logit Normal distribution for fitting in GAMLSS

Description

The functions `dLOGITNO`, `pLOGITNO`, `qLOGITNO` and `rLOGITNO` define the density, distribution function, quantile function and random generation for the logit-normal distribution. The function LOGITNO can be used for fitting the distribution in `gamlss()`.
Usage

\texttt{LOGITNO(mu.link = "logit", sigma.link = "log")}
\texttt{dLOGITNO(x, mu = 0.5, sigma = 1, log = FALSE)}
\texttt{pLOGITNO(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)}
\texttt{qLOGITNO(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)}
\texttt{rLOGITNO(n, mu = 0.5, sigma = 1)}

Arguments

- \texttt{mu.link}\: the link function for \texttt{mu}
- \texttt{sigma.link}\: the link function for \texttt{sigma}
- \texttt{x, q}\: vector of quantiles
- \texttt{mu}\: vector of location parameter values
- \texttt{sigma}\: vector of scale parameter values
- \texttt{log, log.p}\: logical; if \texttt{TRUE}, probabilities \texttt{p} are given as \texttt{log(p)}.
- \texttt{lower.tail}\: logical; if \texttt{TRUE} (default), probabilities are \texttt{P[X <= x]}, otherwise, \texttt{P[X > x]}
- \texttt{p}\: vector of probabilities.
- \texttt{n}\: number of observations. If \texttt{length(n) > 1}, the length is taken to be the number required

Details

The probability density function in \texttt{LOGITNO} is defined as

\[
f(y|\mu, \sigma) = \frac{1}{y(1-y)\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2\sigma^2}\left(\log(y/(1-y)) - \log(\mu/(1-\mu))\right)^2\right]
\]

for \(0 < y < 1\), \(\mu = (0,1)\) and \(\sigma > 0\).

Value

\texttt{LOGITNO()} returns a \texttt{gamlss.family} object which can be used to fit a logit-normal distribution in the \texttt{gamlss()} function.

Author(s)

Mikis Stasinopoulos, Bob Rigby

References

See Also

gamlss.family, LOGNO

Examples

plotting the d, p, q, and r functions
op<-par(mfrow=c(2,2))
curve(dLQNO(x), 0, 1)
curve(pLQNO(x), 0, 1)
curve(qLQNO(x), 0, 1)
Y<- rLQNO(200)
hist(Y)
par(op)

plotting the d, p, q, and r functions
sigma 3
op<-par(mfrow=c(2,2))
curve(dLQNO(x, sigma=3), 0, 1)
curve(pLQNO(x, sigma=3), 0, 1)
curve(qLQNO(x, sigma=3), 0, 1)
Y<- rLQNO(200, sigma=3)
hist(Y)
par(op)

LQNO

Normal distribution with a specific mean and variance relationship for fitting a GAMLSS model

Description

The function LQNO() defines a normal distribution family, which has a specific mean and variance relationship. The distribution can be used in a GAMLSS fitting using the function gamlss(). The mean of LQNO is equal to \(\mu \). The variance is equal to \(\mu(1+\sigma^2\mu) \) so the standard deviation is \(\sqrt{\mu(1+\sigma^2\mu)} \). The function is found useful in modelling small RNA sequencing experiments. The functions dLQNO, pLQNO, qLQNO and rLQNO define the density, distribution function, quantile function (inverse cdf) and random generation for the LQNO() parametrization of the normal distribution.
Usage

LQNO(mu.link = "log", sigma.link = "log")
dLQNO(x, mu = 1, sigma = 1, log = FALSE)
pLQNO(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qLQNO(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rLQNO(n, mu = 1, sigma = 1)

Arguments

mu.link mu link function with "log" as default
sigma.link mu link function with "log" as default
x, q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
p vector of probabilities
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

LQNO stands for Linear Quadratic Normal Family, in which the variance is a linear quadratic function of the mean: \(\text{Var}(Y) = \mu^2(1+\sigma^2) \). This is created to facilitate the analysis of data coming from small RNA sequencing experiments, basically counts of short RNAs that one isolates from cells or biofluids such as urine, plasma or cerebrospinal fluid. Argyropoulos et al. (2017) showing that the LQNO distribution (and the Negative Binomial which implements the same mean-variance relationship) are highly accurate approximations to the generative models of the signals in these experiments.

Value

The function LQNO returns a gamlss.family object which can be used to fit this specific form of the normal distribution family in the gamlss() function.

Note

The mu parameters must be positive so for the relationship \(\text{Var}(Y) = \mu^2(1+\sigma^2) \) to be valid.

Author(s)

Christos Argyropoulos

References

make.link.gamlss

Create a Link for GAMLLS families

Description

The function make.link.gamlss() is used with gamlss.family distributions in package gamlss(). Given a link, it returns a link function, an inverse link function, the derivative dpar/deta where 'par' is the appropriate distribution parameter and a function for checking the domain. It differs from the usual make.link of glm() by having extra links as the logshift01 and the own. For the use of the own link see the example bellow. show.link provides a way in which the user can identify the link functions available for each gamlss distribution. If your required link function is not available for any of the gamlss distributions you can add it in.

Usage

make.link.gamlss(link)
show.link(family = "NO")

Arguments

link character or numeric; one of "logit", "probit", "cloglog", "identity", "log", "sqrt", "1/mu^2", "inverse", "logshifted", "logitshifted", or number, say lambda resulting in power link \(\mu^\lambda \).

family a gamlss distribution family

Details

The own link function is added to allow the user greater flexibility. In order to used the own link function for any of the parameters of the distribution the own link should appear in the available links for this parameter. You can check this using the function show.link. If the own do not appear in the list you can create a new function for the distribution in which own is added in the list. For example the first line of the code of the binomial distribution, bi, has change from

"mstats <- checklink("mu.link", "Binomial", substitute(mu.link), c("logit", "probit", "cloglog", "log")),
in version 1.0-0 of gamlss, to
"mstats <- checklink("mu.link", "Binomial", substitute(mu.link), c("logit", "probit", "cloglog", "log", "own"))

in version 1.0-1. Given that the parameter has own as an option the user needs also to define the following four new functions in order to used an own link.

i) own.linkfun
ii) own.linkinv
iii) own.mu.eta and
iv) own.valideta.

An example is given below.

Only one parameter of the distribution at a time is allowed to have its own link, (unless the same four own functions above are suitable for more that one parameter of the distribution).

Note that from gamlss version 1.9-0 the user can introduce its own link function by define an appropriate function, (see the example below).

Value

For the make.link.gamlss a list with components

 linkfun: Link function function(paramater)
 linkinv: Inverse link function function(eta)
 mu.eta: Derivative function(eta) dparameter/eta
 valideta: function(eta) TRUE if all of eta is in the domain of linkinv.

For the show.link a list with components the available links for the distribution parameters

Note

For the links involving parameters as in logshifted and logitshifted the parameters can be passed in the definition of the distribution by calling the checklink function, for example in the definition of the tau parameter in BCPE distribution the following call is made: tstats <- checklink("tau.link", "Box")

Author(s)

Mikis Stasinopoulos and Bob Rigby

References

See Also

gamlss.family

Examples

str(make.link.gamlss("logshifttoI"))
l2<-make.link.gamlss("logshifttoI")
l2$linkfun(2) # should close to zero (Note that 0.00001 is added)
l2$linkfun(1-0.00001) # should be -Inf but it is large negative

now use the own link function
first if the distribution allows you
show.link(BI)
seems OK now define the four own functions
First try the probit link using the own link function
1: the linkfun function
own.linkfun <- function(mu) { qNO(p=mu)}
2: the inverse link function
own.linkinv <- function(eta) {
 thresh <- -qNO(.Machine$double.eps)
 eta <- pmin(thresh, pmax(eta, -thresh))
 pNO(eta)}
3: the dmu/deta function
own.mu.eta <- function(eta) pmax(dNO(eta), .Machine$double.eps)
4: the valideta function
own.valideta <- function(eta) TRUE

bring the data
library(gamlss)
#data(aep)
fitting the model using "own"
h1<-gamlss(y~ward+loglos+year, family=BI(mu.link="own"), data=aep)
model h1 should be identical to the probit
h2<-gamlss(y~ward+loglos+year, family=BI(mu.link="probit"), data=aep)
now using a function instead of "own"
probittest <- function()
{
 linkfun <- function(mu) { qNO(p=mu)}
 linkinv <- function(eta) {
 thresh <- -qNO(.Machine$double.eps)
 eta <- pmin(thresh, pmax(eta, -thresh))
 pNO(eta)}
 mu.eta <- function(eta) pmax(dNO(eta), .Machine$double.eps)
 valideta <- function(eta) TRUE
 link <- "probitTest"
 structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta,
 valideta = valideta, name = link), class = "link-gamlss")
}
h3<-gamlss(y~ward+loglos+year, family=BI(mu.link=probittest()), data=aep)
Second try the complementary log-log
using the Gumbel distribution

own.linkfun <- function(mu) { qGU(p=mu)}
own.linkinv <- function(eta) {
 thresh <- -qGU(.Machine$double.eps)
 eta <- pmin(thresh, pmax(eta, -thresh))
 pGU(eta)}

own.mu.eta <- function(eta) pmax(dGU(eta), .Machine$double.eps)
own.valideta <- function(eta) TRUE

h1 and h2 should be identical to cloglog
h1<gamlss(y=ward+loglos+year, family=B1(mu.link="own"), data=aep)
h2<gamlss(y=ward+loglos+year, family=B1(mu.link="cloglog"), data=aep)
note that the Gumbel distribution is negatively skew
for a positively skew link function we can used the Reverse Gumbel

revloglog <- function() {
 linkfun <- function(mu) { qRG(p=mu)}
 linkinv <- function(eta) {
 thresh <- -qRG(.Machine$double.eps)
 eta <- pmin(thresh, pmax(eta, -thresh))
 pRG(eta)}
 mu.eta <- function(eta) pmax(dRG(eta), .Machine$double.eps)
 valideta <- function(eta) TRUE
 link <- "revloglog"
 structure(list(linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta, valideta = valideta, name = "link"), class = "link-gamlss")
}

h1<gamlss(y=ward+loglos+year, family=B1(mu.link=revloglog()), data=aep)
a considerable improvement in the deviance
try a shifted logit link function from -1, 1

own.linkfun <- function(mu) {
 shift = c(-1,1)
 log((mu-shift[1])/(shift[2]-mu))
}

own.linkinv <- function(eta) {
 shift = c(-1,1)
 thresh <- -log(.Machine$double.eps)
 eta <- pmin(thresh, pmax(eta, -thresh))
 shift[2]-(shift[2]-shift[1])/(1 + exp(eta))
}

own.mu.eta <- function(eta) {
 shift = c(-1,1)
 thresh <- -log(.Machine$double.eps)
 res <- rep(.Machine$double.eps, length(eta))
 res[abs(eta) < thresh] <- ((shift[2]-shift[1])*exp(eta)/(1 + exp(eta))^2)[abs(eta) < thresh]
 res
}

own.valideta <- function(eta) TRUE

str(make.link.gamlss("own"))
l2<make.link.gamlss("own")

make.link.gamlss
Multinomial distribution in GAMLSS

Description

The set of function presented here is useful for fitting multinomial regression within gamlss.

Usage

MN3(mu.link = "log", sigma.link = "log")
MN4(mu.link = "log", sigma.link = "log", nu.link = "log")
MN5(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")
MULTIN(type = "3")
fittedMN(model)

dMN3(x, mu = 1, sigma = 1, log = FALSE)
dMN4(x, mu = 1, sigma = 1, nu = 1, log = FALSE)
dMN5(x, mu = 1, sigma = 1, nu = 1, tau = 1, log = FALSE)

pMN3(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
pMN4(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
pMN5(q, mu = 1, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE)

qMN3(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qMN4(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qMN5(p, mu = 1, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE)

rMN3(n, mu = 1, sigma = 1)
rMN4(n, mu = 1, sigma = 1, nu = 1)
rMN5(n, mu = 1, sigma = 1, nu = 1, tau = 1)

Arguments

mu.link the link function for mu
sigma.link the link function for sigma
nu.link the link function for nu
tau.link the link function for tau
x the x variable
q vector of quantiles
p vector of probabilities
lower.tail logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x].
log.p logical; if TRUE, probabilities p are given as log(p).
log logical; if TRUE, probabilities p are given as log(p).
n the number of observations
mu the mu parameter
sigma the sigma parameter
nu the nu parameter
tau the tau parameter
type permitted values are 2 (Binomial), 3, 4, and 5
model a gamlss multinomial fitted model

Details

GAMLSS is in general not suitable for multinomial regression. Nevertheless multinomial regression can be fitted within GAMLSS if the response variable y has less than five categories. The function here provide the facilities to do so. The functions MN3(), MN4() and MN5() fit multinomial responses with 3, 4 and 5 categories respectively. The function MULTIN() can be used instead of codeMN3(), MN4() and MN5() by specifying the number of levels of the response. Note that MULTIN(2) will produce a binomial fit.

Value

returns a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Vlasios Voudouris

References

See Also

gamlss.family, BI
Examples

dMN3(3)
pMN3(2)
qMN3(.6)
rMN3(10)

Negativa Binomial Family distribution for fitting a GAMLSS

Description

The nbf() function defines the Negative Binomial family distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dNBF, pNBF, qNBF and rNBF define the density, distribution function, quantile function and random generation for the negative binomial family, NBF(), distribution.

The functions dZINBF, pZINBF, qZINBF and rZINBF define the density, distribution function, quantile function and random generation for the zero inflated negative binomial family, ZINBF(), distribution a four parameter distribution.

Usage

NBF(mu.link = "log", sigma.link = "log", nu.link = "log")
dNBF(x, mu = 1, sigma = 1, nu = 2, log = FALSE)
pNBF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qNBF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rNBF(n, mu = 1, sigma = 1, nu = 2)
ZINBF(mu.link = "log", sigma.link = "log", nu.link = "log",
tau.link = "logit")
dZINBF(x, mu = 1, sigma = 1, nu = 2, tau = 0.1, log = FALSE)
pZINBF(q, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE)
qZINBF(p, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE, log.p = FALSE)
rZINBF(n, mu = 1, sigma = 1, nu = 2, tau = 0.1)
Arguments

- mu.link: The link function for \(\mu \)
- sigma.link: The link function for \(\sigma \)
- nu.link: The link function for \(\nu \)
- tau.link: The link function for \(\tau \)
- x: vector of (non-negative integer)
- mu: vector of positive means
- sigma: vector of positive dispersion parameter
- nu: vector of power parameter
- tau: vector of inflation parameter
- log, log.p: logical; if TRUE, probabilities \(p \) are given as \(\log(p) \)
- lower.tail: logical; if TRUE (default), probabilities are \(P[X <= x] \), otherwise, \(P[X > x] \)
- p: vector of probabilities
- q: vector of quantiles
- n: number of random values to return

Details

The definition for Negative Binomial Family distribution, \(\text{NBF} \), is similar to the Negative Binomial type I. The probability function of the \(\text{NBF} \) can be obtained by replacing \(\sigma \) with \(\sigma \mu^{\nu-2} \) where \(\nu \) is a power parameter. The distribution has mean \(\mu \) and variance \(\mu + \sigma \mu^{\nu} \).

Value

returns a \(\text{gamlss.family} \) object which can be used to fit a Negative Binomial Family distribution in the \(\text{gamlss()} \) function.

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Anscombe, F. J. (1950) Sampling theory of the negative binomial and logarithmic distributions, \(\text{Biometrika} \), 37, 358-382.

See Also

NBI, NBII

Examples

NBI() # default link functions for the Negative Binomial Family
plotting the distribution
plot(function(y) dNBI(y, mu = 10, sigma = 0.5, nu=2), from=0,
 to=40, n=40+1, type="h")
creating random variables and plot them
TN <- table(Ni <- rNBI(1000, mu=5, sigma=0.5, nu=2))
r <- barplot(TN, col='lightblue')

zero inflated NBI
ZINBI() # default link functions for the zero inflated NBI
plotting the distribution
plot(function(y) dZINBI(y, mu = 10, sigma = 0.5, nu=2, tau=.1),
 from=0, to=40, n=40+1, type="h")
creating random variables and plot them
TN <- table(Ni <- rZINBI(1000, mu=5, sigma=0.5, nu=2, tau=0.1))
r <- barplot(TN, col='lightblue')

Not run:
library(gamlss)
data(species)
species <- transform(species, x=log(lake))
m6 <- gamlss(fish~poly(x,2), sigma.fo=-1, data=species, family=NBI,
 n.cyc=200)
fitted(m6, "nu")[1]

End(Not run)

NBI

Negative Binomial type I distribution for fitting a GAMLSS

Description

The NBI() function defines the Negative Binomial type I distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dNBI, pNBI, qNBI and rNBI define the density, distribution function, quantile function and random generation for the Negative Binomial type I, NBI(), distribution.
Usage

NBI(mu.link = "log", sigma.link = "log")
dNBI(x, mu = 1, sigma = 1, log = FALSE)
pNBI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNBI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNBI(n, mu = 1, sigma = 1)

Arguments

mu.link Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter
x vector of (non-negative integer) quantiles
mu vector of positive means
sigma vector of positive dispersion parameter
p vector of probabilities
q vector of quantiles
n number of random values to return
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

Definition file for Negative Binomial type I distribution.

\[P(Y = y | \mu, \sigma) = \frac{\Gamma(y + \frac{1}{\sigma})}{\Gamma(\frac{1}{\sigma})\Gamma(y + 1)} \left(\frac{\sigma \mu}{1 + \sigma \mu} \right)^y \left(\frac{1}{1 + \sigma \mu} \right)^{1/\sigma} \]

for \(y = 0, 1, 2, \ldots, \infty \), \(\mu > 0 \) and \(\sigma > 0 \). This parameterization is equivalent to that used by Anscombe (1950) except he used \(\alpha = 1/\sigma \) instead of \(\sigma \).

Value

returns a `gamlss.family` object which can be used to fit a Negative Binomial type I distribution in the `gamlss()` function.

Warning

For values of \(\sigma < 0.0001 \) the d,p,q,r functions switch to the Poisson distribution

Note

\(\mu \) is the mean and \((\mu + \sigma \mu^2)^{0.5} \) is the standard deviation of the Negative Binomial type I distribution (so \(\sigma \) is the dispersion parameter in the usual GLM for the negative binomial type I distribution)

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Calliope Akantziliotou
References

See Also

gamlss.family, NBII, PIG, SI

Examples

```r
NBII()  # gives information about the default links for the Negative Binomial type I distribution
# plotting the distribution
plot(function(y) dNBII(y, mu = 10, sigma = 0.5, from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rNBII(1000, mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=NBII, data=aids) # fits the model
# plot(h)
# pdf.plot(family=NBII, mu=10, sigma=0.5, min=0, max=40, step=1)
```

NBII
Negative Binomial type II distribution for fitting a GAMLSS

Description

The NBII() function defines the Negative Binomial type II distribution, a two parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions dNBII, pNBII, qNBII and rNBII define the density, distribution function, quantile function and random generation for the Negative Binomial type II, NBII(), distribution.
Usage

```r
NBII(mu.link = "log", sigma.link = "log")
dNBII(x, mu = 1, sigma = 1, log = FALSE)
pNBII(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNBII(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNBII(n, mu = 1, sigma = 1)
```

Arguments

- `mu.link`: Defines the mu.link, with "log" link as the default for the mu parameter
- `sigma.link`: Defines the sigma.link, with "log" link as the default for the sigma parameter
- `x`: vector of (non-negative integer) quantiles
- `mu`: vector of positive means
- `sigma`: vector of positive dispersion parameter
- `p`: vector of probabilities
- `q`: vector of quantiles
- `n`: number of random values to return
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p)
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

Definition file for Negative Binomial type II distribution.

\[
P(Y = y | \mu, \sigma) = \frac{\Gamma(y + \frac{\mu}{\sigma})\sigma^y}{\Gamma(\frac{\mu}{\sigma})\Gamma(y + 1)(1 + \sigma)^{y + \mu/\sigma}}
\]

for \(y = 0, 1, 2, ..., \infty\), \(\mu > 0\) and \(\sigma > 0\). This parameterization was used by Evans (1953) and also by Johnson et al. (1993) p 200.

Value

returns a `gamlss.family` object which can be used to fit a Negative Binomial type II distribution in the `gamlss()` function.

Note

\(\mu\) is the mean and \([(1 + \sigma)\mu]^{0.5}\) is the standard deviation of the Negative Binomial type II distribution, so \(\sigma\) is a dispersion parameter

Author(s)

Mikis Stasinopoulos \(<\text{mikis.stasinopoulos@gamlss.org}>\), Bob Rigby and Calliope Akantziliotou
References

See Also

`gamlss.family`, `NBI`, `PIG`, `SI`

Examples

```r
NBII()  # gives information about the default links for the Negative Binomial type II distribution
# plotting the distribution
plot(function(y) dNBII(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rNBII(1000, mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=NBII, data=aids) # fits a model
# plot(h)
# pdf.plot(family=NBII, mu=10, sigma=0.5, min=0, max=40, step=1)
```

NET
Normal Exponential t distribution (NET) for fitting a GAMLSS

Description

This function defines the Power Exponential t distribution (NET), a four parameter distribution, for a `gamlss.family` object to be used for a GAMLSS fitting using the function `gamlss()`. The functions `dNET`, `pNET` define the density and distribution function the NET distribution.
Usage

NET(mu.link = "identity", sigma.link = "log", nu.link = "identity",
 tau.link = "identity")

pNET(q, mu=0, sigma=1, nu=1.5, tau=2, lower.tail = TRUE, log.p = FALSE)
dNET(x, mu=0, sigma=1, nu=1.5, tau=2, log=FALSE)
qNET(p, mu=0, sigma=1, nu=1.5, tau=2, lower.tail = TRUE, log.p = FALSE)
rNET(n, mu=0, sigma=1, nu=1.5, tau=2)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter.
 Other links are "inverse", "log" and "own"

sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter.
 Other links are "inverse", "identity" and "own"

nu.link Defines the nu.link, and because nu is fixed we use "identity" link

tau.link Defines the tau.link, and because tau is fixed we use "identity" link

x, q vector of quantiles

p vector of probabilities

n number of observations.

mu vector of location parameter values

sigma vector of scale parameter values

nu vector of nu parameter values

tau vector of tau parameter values

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

The NET distribution was introduced by Rigby and Stasinopoulos (1994) as a robust distribution for
a response variable with heavier tails than the normal. The NET distribution is the abbreviation
of the Normal Exponential Student t distribution. The NET distribution is a four parameter continuous
distribution, although in the GAMLSS implementation only the two parameters, mu and sigma, of
the distribution are modelled with nu and tau fixed. The distribution takes its names because it
is normal up to nu, Exponential from nu to tau (hence abs(nu)<=abs(tau)) and Student-t with
nu+tau-1 degrees of freedom after tau. Maximum likelihood estimator of the third and fourth
parameter can be obtained, using the GAMLSS functions, find.hyper or prof.dev.

Value

NET() returns a gamlss.family object which can be used to fit a Box Cox Power Exponential
distribution in the gamlss() function. dNET() gives the density, pNET() gives the distribution
function.
Author(s)
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

See Also

`gamlss.family`, `BCPE`

Examples
```r
NET()  #
data(abdom)
plot(function(x)dNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5)
plot(function(x)pNET(x, mu=0,sigma=1,nu=2, tau=3), -5, 5)
# fit NET with nu=1 and tau=3
# library(gamlss)
#h=gamlss(y~cs(x,df=3), sigma.formula=-cs(x,1), family=NET,
 #       data=abdom, nu.start=2, tau.start=3)
#plot(h)
```

Normal distribution for fitting a GAMLSS

Description

The function `NET()` defines the normal distribution, a two parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`, with mean equal to the parameter `mu` and `sigma` equal the standard deviation. The functions `dNET`, `pNET`, `qNET` and `rNET` define the density, distribution function, quantile function and random generation for the NET parameterization of the normal distribution. [A alternative parameterization with `sigma` equal to the variance is given in the function `N02()`]
Usage

NO(mu.link = "identity", sigma.link = "log")
dNO(x, mu = 0, sigma = 1, log = FALSE)
pNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNO(n, mu = 0, sigma = 1)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter
x, q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The parametrization of the normal distribution given in the function NO() is

\[f(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{1}{2} \left(\frac{y - \mu}{\sigma} \right)^2 \right] \]

for \(y = (-\infty, \infty), \mu = (-\infty, +\infty) \) and \(\sigma > 0 \).

Value

returns a gamlss.family object which can be used to fit a normal distribution in the gamlss() function.

Note

For the function NO(), \(\mu \) is the mean and \(\sigma \) is the standard deviation (not the variance) of the normal distribution.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
References

See Also
gamlss.family, NO2

Examples

NO()# gives information about the default links for the normal distribution
plot(function(y) dNO(y, mu=10,sigma=2), 0, 20)
plot(function(y) pNO(y, mu=10,sigma=2), 0, 20)
plot(function(y) qNO(y, mu=10,sigma=2), 0, 1)
dat<-rNO(100)
hist(dat)
library(gamlss)
gamlss(dat~1,family=NO) # fits a constant for mu and sigma

Usage

NO2(mu.link = "identity", sigma.link = "log")
dNO2(x, mu = 0, sigma = 1, log = FALSE)
pNO2(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qNO2(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rNO2(n, mu = 0, sigma = 1)
Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter

sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter

x, q
vector of quantiles

mu
vector of location parameter values

sigma
vector of scale parameter values

log, log.p
logical; if TRUE, probabilities p are given as log(p).

lower.tail
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p
vector of probabilities.

n
number of observations. If length(n) > 1, the length is taken to be the number required

Details

The parametrization of the normal distribution given in the function NO2() is

\[f(y|\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2} \frac{(y - \mu)^2}{\sigma}\right) \]

for \(y = (-\infty, \infty), \mu = (-\infty, +\infty) \) and \(\sigma > 0 \).

Value

returns a gamlss.family object which can be used to fit a normal distribution in the gamlss() function.

Note

For the function NO(), \(\mu \) is the mean and \(\sigma \) is the standard deviation (not the variance) of the normal distribution. [The function NO2() defines the normal distribution with \(\sigma \) as the variance.]

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

See Also
gamlss.family.NO

Examples

NO(#) gives information about the default links for the normal distribution
dat<-rNO(100)
hist(dat)
plot(function(y) dNO(y, mu=10, sigma=2), 0, 20)
plot(function(y) pNO(y, mu=10, sigma=2), 0, 20)
plot(function(y) qNO(y, mu=10, sigma=2), 0, 1)
library(gamlss)
gamlss(dat, family=NO) # fits a constant for mu and sigma

Description

The function NOF() defines a normal distribution family, which has three parameters. The distribution can be used using the function gamlss(). The mean of NOF is equal to mu. The variance is equal to sigma^2*mu*nu so the standard deviation is sigma*mu^(nu/2). The function is design for cases where the variance is proportional to a power of the mean. This is an instance of the Taylor's power low, see Enki et al. (2017). The functions dNOF, pNOF, qNOF and rNOF define the density, distribution function, quantile function and random generation for the NOF parametrization of the normal distribution family.

Usage

NOF(mu.link = "identity", sigma.link = "log", nu.link = "identity")
dNOF(x, mu = 0, sigma = 1, nu = 0, log = FALSE)
pNOF(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
qNOF(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
rNOF(n, mu = 0, sigma = 1, nu = 0)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link Defines the nu.link with "identity" link as the default for the nu parameter
x, q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of power parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \)

\(p \) vector of probabilities.

\(n \) number of observations. If length(n) > 1, the length is taken to be the number required

Details

The parametrization of the normal distribution given in the function \(\text{NOF}() \) is

\[
f(y|\mu, \sigma, \nu) = \frac{1}{\sqrt{2\pi}\sigma^{\nu/2}} \exp\left[-\frac{1}{2} \left(\frac{y - \mu}{\sigma^2\mu^\nu}\right)^2\right]
\]

for \(y = (-\infty, \infty) \), \(\mu = (-\infty, \infty) \), \(\sigma > 0 \) and \(\nu = (-\infty, +\infty) \).

Value

returns a \text{gamlss.family} object which can be used to fit a normal distribution family in the \text{gamlss()} function.

Note

For the function \(\text{NOF}() \), \(\mu \) is the mean and \(\sigma^{\nu/2} \) is the standard deviation of the normal distribution family. The NOF is design for fitting regression type models where the variance is proportional to a power of the mean. Models of this type are also related to the ”pseudo likelihood” models of Carroll and Rubert (1987) but here a proper likelihood is maximised.

Note that because the high correlation between the sigma and the nu parameter the mixed() method should be used in the fitting.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou

References

See Also

gamlss.family, NO, NO2

Examples

NOF()
gives information about the default links for the normal distribution family
Not run:
the normal distribution, fitting a constant sigma
m1<-gamlss(y=poly(x,2), sigma.f=1, family=NO, data=abdom)
the normal family, fitting a variance proportional to the mean (mu)
m2<-gamlss(y=poly(x,2), sigma.f=1, family=NOF, data=abdom, method=mixed(1,20))
the normal distribution fitting the variance as a function of x
m3 <-gamlss(y=poly(x,2), sigma.f=-x, family=NO, data=abdom, method=mixed(1,20))
GAIC(m1,m2,m3)
End(Not run)

PARETO2

Pareto Type 2 distribution for fitting a GAMLSS

Description

The functions PARETO2() and PARETO2o() define the Pareto Type 2 distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The parameters are mu and sigma in both functions but the parameterisation different. The mu is identical for both PARETO2() and PARETO2o(). The sigma in PARETO2o() is the inverse of the sigma in codePARETO2() and corespond to the usual parameter alpha of the Patreto distribution. The functions dPARETO2, pPARETO2, qPARETO2 and rPARETO2 define the density, distribution function, quantile function and random generation for the PARETO2 parameterization of the Pareto type 2 distribution while the functions dPARETO2o, pPARETO2o, qPARETO2o and rPARETO2o define the density, distribution function, quantile function and random generation for the original PARETO2o parameterization of the Pareto type 2 distribution.

Usage

PARETO2(mu.link = "log", sigma.link = "log")
dPARETO2(x, mu = 1, sigma = 0.5, log = FALSE)
pPARETO2(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
qPARETO2(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
rPARETO2(n, mu = 1, sigma = 0.5)
PARETO2o(mu.link = "log", sigma.link = "log")
dPARETO2o(x, mu = 1, sigma = 0.5, log = FALSE)
pPARETO2o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
qPARETO2o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE)
rPARETO2o(n, mu = 1, sigma = 0.5)
Arguments

- mu.link: Defines the mu.link, with """" link sa the default for the mu parameter.
- sigma.link: Defines the sigma.link, with ""log"" as the default for the sigma parameter.
- x, q: vector of quantiles.
- mu: vector of location parameter values.
- sigma: vector of scale parameter values.
- log, log.p: logical; if TRUE, probabilities p are given as log(p).
- lower.tail: logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x].
- p: vector of probabilities.
- n: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The parameterization of the Pareto Type 2 distribution in the function PA2 is:

\[f(y|\mu, \sigma) = \frac{1}{\sigma} \mu \left(\frac{y + \mu}{\sigma}\right)^{-\frac{1}{\sigma+1}} \]

for \(y \geq 0, \mu > 0 \) and \(\sigma > 0 \).

Value

returns a gamlss.family object which can be used to fit a Pareto type 2 distribution in the gamlss() function.

Author(s)

Fiona McElduff, Bob Rigby and Mikis Stasinopoulos

References

Power Exponential distribution for fitting a GAMLSS

Description

The functions define the Power Exponential distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions dPE, pPE, qPE and rPE define the density, distribution function, quantile function and random generation for the specific parameterization of the power exponential distribution showing below. The functions dPE2, pPE2, qPE2 and rPE2 define the density, distribution function, quantile function and random generation of a standard parameterization of the power exponential distribution.

Usage

```r
PE(mu.link = "identity", sigma.link = "log", nu.link = "log")
dPE(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pPE(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qPE(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rPE(n, mu = 0, sigma = 1, nu = 2)
```

```r
PE2(mu.link = "identity", sigma.link = "log", nu.link = "log")
dPE2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pPE2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qPE2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rPE2(n, mu = 0, sigma = 1, nu = 2)
```

Arguments

- **mu.link**
 - Defines the mu.link, with "identity" link as the default for the mu parameter
- **sigma.link**
 - Defines the sigma.link, with "log" link as the default for the sigma parameter
- **nu.link**
 - Defines the nu.link, with "log" link as the default for the nu parameter
- **x, q**
 - vector of quantiles
vector of location parameter values

vector of scale parameter values

vector of kurtosis parameter

logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number required

Power Exponential distribution (PE) is defined as

\[f(y|\mu,\sigma,\nu) = \frac{\nu \exp[-\left(\frac{1}{2}\right)\frac{|z|^{\nu}}{\sigma}] \Gamma\left(\frac{1}{\nu}\right)}{\sigma c^2(1+1/\nu)\Gamma\left(\frac{1}{\nu}\right)} \]

where \(c = [2^{-2/\nu}\Gamma(1/\nu)/\Gamma(3/\nu)]^{\nu/2}\), for \(y = (-\infty, +\infty), \mu = (-\infty, +\infty), \sigma > 0\) and \(\nu > 0\). This parametrization was used by Nelson (1991) and ensures \(\mu\) is the mean and \(\sigma\) is the standard deviation of \(y\) (for all parameter values of \(\mu, \sigma\) and \(\nu\) within the range above).

The Power Exponential distribution (PE2) is defined as

\[f(y|\mu,\sigma,\nu) = \frac{\nu \exp[-|z|^{\nu}] }{2\sigma \Gamma\left(\frac{1}{\nu}\right)} \]

returns a `gamlss.family` object which can be used to fit a Power Exponential distribution in the `gamlss()` function.

\(\mu\) is the mean and \(\sigma\) is the standard deviation of the Power Exponential distribution

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby

See Also
gamlss.family, BCPE

Examples

```r
# gives information about the default links for the Power Exponential distribution
# library(gamlss)
# data(abdom)
# h1<-gamlss(y~cs(x,df=3), sigma.formula=-cs(x,1), family=PE, data=abdom) # fit
# h2<-gamlss(y~cs(x,df=3), sigma.formula=-cs(x,1), family=PE2, data=abdom) # fit
# plot(h1)
# plot(h2)
# leptokurtotic
plot(function(x) dPE(x, mu=10,sigma=2,nu=1), 0.0, 20,
     main = "The PE density mu=10,sigma=2,nu=1")
# platykurtotic
plot(function(x) dPE(x, mu=10,sigma=2,nu=4), 0.0, 20,
     main = "The PE density mu=10,sigma=2,nu=4")
```

The Poisson-inverse Gaussian distribution for fitting a GAMLSS model

Description

The PIG() function defines the Poisson-inverse Gaussian distribution, a two parameter distribution, for a *gamlss.family* object to be used in GAMLSS fitting using the function *gamlss()*. The functions dPIG, pPIG, qPIG and rPIG define the density, distribution function, quantile function and random generation for the Poisson-inverse Gaussian PIG(), distribution.

The functions zAPIG() and ZIPIG() are the zero adjusted (hurdle) and zero inflated versions of the Poisson-inverse Gaussian distribution, respectively. That is three parameter distributions.

The functions dZAPIG, dZIPIG, pZAPIG,pZIPIG, qZAPIG qZIPIG rZAPIG and rZIPIG define the probability, cumulative, quantile and random generation functions for the zero adjusted and zero inflated beta negative binomial distributions, ZAPIG(), ZIPIG(), respectively.

Usage

```r
PIG(mu.link = "log", sigma.link = "log")
dPIG(x, mu = 1, sigma = 1, log = FALSE)
pPIG(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qPIG(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE,
```


\[
\text{max.value} = 10000
\]
\[
r\text{PIG}(n, \mu = 1, \sigma = 1, \text{max.value} = 10000)
\]
\[
\text{ZIPIG}(\mu.\text{link} = "\text{log}", \sigma.\text{link} = "\text{log}", \nu.\text{link} = "\text{logit}")
\]
\[
d\text{ZIPIG}(x, \mu = 1, \sigma = 1, \nu = 0.3, \log = \text{FALSE})
\]
\[
p\text{ZIPIG}(q, \mu = 1, \sigma = 1, \nu = 0.3, \text{lower.tail} = \text{TRUE}, \log.p = \text{FALSE})
\]
\[
q\text{ZIPIG}(p, \mu = 1, \sigma = 1, \nu = 0.3, \text{lower.tail} = \text{TRUE}, \log.p = \text{FALSE}, \\
\quad \text{max.value} = 10000)
\]
\[
r\text{ZIPIG}(n, \mu = 1, \sigma = 1, \nu = 0.3, \text{max.value} = 10000)
\]
\[
\text{ZIPIG}(\mu.\text{link} = "\text{log}", \sigma.\text{link} = "\text{log}", \nu.\text{link} = "\text{logit}")
\]
\[
d\text{ZIPIG}(x, \mu = 1, \sigma = 1, \nu = 0.3, \log = \text{FALSE})
\]
\[
p\text{ZIPIG}(q, \mu = 1, \sigma = 1, \nu = 0.3, \text{lower.tail} = \text{TRUE}, \log.p = \text{FALSE})
\]
\[
q\text{ZIPIG}(p, \mu = 1, \sigma = 1, \nu = 0.3, \text{lower.tail} = \text{TRUE}, \log.p = \text{FALSE}, \\
\quad \text{max.value} = 10000)
\]
\[
r\text{ZIPIG}(n, \mu = 1, \sigma = 1, \nu = 0.3, \text{max.value} = 10000)
\]

Arguments

- **mu.link**
 Defines the mu.link, with "log" link as the default for the mu parameter

- **sigma.link**
 Defines the sigma.link, with "log" link as the default for the sigma parameter

- **nu.link**
 Defines the mu.link, with "logit" link as the default for the nu parameter

- **x**
 Vector of (non-negative integer) quantiles

- **mu**
 Vector of positive means

- **sigma**
 Vector of positive dispersion parameter

- **nu**
 Vector of zero probability parameter

- **p**
 Vector of probabilities

- **q**
 Vector of quantiles

- **n**
 Number of random values to return

- **log, log.p**
 Logical; if TRUE, probabilities p are given as log(p)

- **lower.tail**
 Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

- **max.value**
 A constant, set to the default value of 10000 for how far the algorithm should look for q

Details

The probability function of the Poisson-inverse Gaussian distribution, is given by

\[
f(y|\mu, \sigma) = \left(\frac{2\alpha^{\frac{1}{2}}}{\pi}\right) \frac{\mu^\nu e^{-\frac{\tau}{2}} K_{\nu-\frac{1}{2}}(\alpha)}{(\alpha\sigma)^\nu y!}
\]

where \(\alpha = \frac{1}{\sigma} + \frac{2\mu}{\sigma}\), for \(y = 0, 1, 2, \ldots, \infty\) where \(\mu > 0\) and \(\sigma > 0\) and \(K_\nu(t) = \frac{1}{2} \int_0^\infty x^{\nu-1} \exp\{-\frac{1}{2}t(x+x^{-1})\} dx\) is the modified Bessel function of the third kind. [Note that the above parameterization was used by Dean, Lawless and Willmot(1989). It is also a special case of the Sichel distribution SI() when \(\nu = -\frac{1}{2}\).]
Value

Returns a `gamlss.family` object which can be used to fit a Poisson-inverse Gaussian distribution in the `gamlss()` function.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Marco Enea

References

See Also

`gamlss.family`, `NBI`, `NBII`, `SI`, `SICHEL`

Examples

```r
PIG() # gives information about the default links for the Poisson-inverse Gaussian distribution
# plot the pdf using plot
plot(function(y) dPIG(y, mu=10, sigma = 1 ), from=0, to=50, n=50+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=50),pPIG(seq(from=0,to=50), mu=10, sigma=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rPIG(100, mu=5, sigma=1))
r <- barplot(tN, col='lightblue')
# fit a model to the data
# library(gamlss)
# gamlss(Ni~1,family=PIG)
ZIPIG()
ZAPIG()
```
Description

This function P0 defines the Poisson distribution, an one parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dP0, pP0, qP0 and rP0 define the density, distribution function, quantile function and random generation for the Poisson, P0(), distribution.

Usage

```r
P0(mu.link = "log")
dP0(x, mu = 1, log = FALSE)
pP0(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qP0(p, mu = 1, lower.tail = TRUE, log.p = FALSE)
rP0(n, mu = 1)
```

Arguments

- `mu.link`: Defines the `mu.link`, with "log" link as the default for the `mu` parameter
- `x`: vector of (non-negative integer) quantiles
- `mu`: vector of positive means
- `p`: vector of probabilities
- `q`: vector of quantiles
- `n`: number of random values to return
- `log`, `log.p`: logical; if TRUE, probabilities `p` are given as log(p)
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

Definition file for Poisson distribution.

\[
f(y|\mu) = \frac{e^{-\mu} \mu^y}{\Gamma(y + 1)}
\]

for \(y = 0, 1, 2, ... \) and \(\mu > 0 \).

Value

returns a gamlss.family object which can be used to fit a Poisson distribution in the gamlss() function.

Note

\(\mu \) is the mean of the Poisson distribution
The Reverse Gumbel distribution for fitting a GAMLSS

Description

The function RG defines the reverse Gumbel distribution, a two parameter distribution, for a \texttt{gamlss.family} object to be used in GAMLSS fitting using the function \texttt{gamlss()}. The functions \texttt{dRG}, \texttt{pRG}, \texttt{qRG} and \texttt{rRG} define the density, distribution function, quantile function and random generation for the specific parameterization of the reverse Gumbel distribution.
Usage

RG(mu.link = "identity", sigma.link = "log")
dRG(x, mu = 0, sigma = 1, log = FALSE)
pRG(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qRG(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rRG(n, mu = 0, sigma = 1)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter. Other available link is "inverse", "log" and "own"
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are the "inverse", "identity" and "own"
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The specific parameterization of the reverse Gumbel distribution used in RG is

\[f(y|\mu, \sigma) = \frac{1}{\sigma} \exp \left\{ - \left(\frac{y - \mu}{\sigma} \right) - \exp \left[- \left(\frac{y - \mu}{\sigma} \right) \right] \right\} \]

for \(y = (-\infty, \infty), \mu = (-\infty, +\infty) \) and \(\sigma > 0 \).

Value

RG() returns a gamlss.family object which can be used to fit a Gumbel distribution in the gamlss() function. dRG() gives the density, pGU() gives the distribution function, qRG() gives the quantile function, and rRG() generates random deviates.

Note

The mean of the distribution is \(\mu + 0.57722\sigma \) and the variance is \(\pi^2\sigma^2/6 \).

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Calliope Akantziliotou
References

See Also
gamlss.family

Examples

plot(function(x) dRGE(x, mu=0,sigma=1), -3, 6,
 main = "(Reverse Gumbel density mu=0,sigma=1)"
RG())# gives information about the default links for the Gumbel distribution
dat<-rRGE(100, mu=10, sigma=2) # generates 100 random observations
library(gamlss)
gamlss(dat=1,family=RGE) # fits a constant for each parameter mu and sigma

RGE Reverse generalized extreme family distribution for fitting a GAMLSS

Description

The function RGE defines the reverse generalized extreme family distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dRGE, pRGE, qRGE and rRGE define the density, distribution function, quantile function and random generation for the specific parameterization of the reverse generalized extreme distribution given in details below.

Usage

RGE(mu.link = "identity", sigma.link = "log", nu.link = "log")
dRGE(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pRGE(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qRGE(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rRGE(n, mu = 1, sigma = 0.1, nu = 1)
Arguments

- **mu.link**: Defines the mu.link, with "identity" link as the default for the mu parameter.
- **sigma.link**: Defines the sigma.link, with "log" link as the default for the sigma parameter.
- **nu.link**: Defines the nu.link, with "log" link as the default for the nu parameter.
- **x, q**: vector of quantiles.
- **mu**: vector of location parameter values.
- **sigma**: vector of scale parameter values.
- **nu**: vector of the shape parameter values.
- **log, log.p**: logical; if TRUE, probabilities p are given as log(p).
- **lower.tail**: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
- **p**: vector of probabilities.
- **n**: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Definition file for reverse generalized extreme family distribution.

The probability density function of the generalized extreme value distribution is obtained from Johnson et al. (1995), Volume 2, p76, equation (22.184) [where $(\xi, \theta, \gamma) \rightarrow (\mu, \sigma, \nu)$].

The probability density function of the reverse generalized extreme value distribution is then obtained by replacing y by $-y$ and μ by $-\mu$.

Hence the probability density function of the reverse generalized extreme value distribution with $\nu > 0$ is given by

$$f(y|\mu, \sigma, \nu) = \frac{1}{\sigma} \left[1 + \nu \frac{(y - \mu)}{\sigma} \right]^{\frac{1}{\nu} - 1} S_1(y|\mu, \sigma, \nu)$$

for

$$\mu - \frac{\sigma}{\nu} < y < \infty$$

where

$$S_1(y|\mu, \sigma, \nu) = \exp \left\{ - \left[1 + \nu \frac{(y - \mu)}{\sigma} \right]^{\frac{1}{\nu}} \right\}$$

and where $-\infty < \mu < y + \frac{\sigma}{\nu}$, $\sigma > 0$ and $\nu > 0$. Note that only the case $\nu > 0$ is allowed here. The reverse generalized extreme value distribution is denoted as RGE(\mu, \sigma, \nu) or as Reverse Generalized Extreme Family(\mu, \sigma, \nu).

Note the the above distribution is a reparameterization of the three parameter Weibull distribution given by

$$f(y|\alpha_1, \alpha_2, \alpha_3) = \frac{\alpha_3}{\alpha_2} \left[\frac{y - \alpha_1}{\alpha_2} \right]^{\alpha_3 - 1} \exp \left[- \left(\frac{y - \alpha_1}{\alpha_2} \right)^{\alpha_3} \right]$$

given by setting $\alpha_1 = \mu - \sigma/\nu$, $\alpha_2 = \sigma/\nu$, $\alpha_3 = 1/\nu$.

Value

RGE() returns a gamlss.family object which can be used to fit a reverse generalized extreme distribution in the gamlss() function. dRGE() gives the density, pRGE() gives the distribution function, qRGE() gives the quantile function, and rRGE() generates random deviates.

Note

This distribution is very difficult to fit because the y values depends on the parameter values. The RS() and CG() algorithms are not appropriate for this type of problem.

Author(s)

Bob Rigby, Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org> and Kalliope Akantziliotou

References

See Also

gamlss.family

Examples

RGE()# default links for the reverse generalized extreme family distribution newdata<-rRGE(100, mu=0, sigma=1, nu=5) # generates 100 random observations # library(gamlss) # gamlss(newdata~1, family=RGE, method=mixed(5,50)) # difficult to converse
The Skew Power exponential (SEP) distribution for fitting a GAMLSS

Description

This function defines the Skew Power exponential (SEP) distribution, a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dsep, psep, qsep and rsep define the density, distribution function, quantile function and random generation for the Skew Power exponential (SEP) distribution.

Usage

```r
SEP(mu.link = "identity", sigma.link = "log", nu.link = "identity",
    tau.link = "log")
dSEP(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pSEP(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
    log.p = FALSE)
qSEP(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
    log.p = FALSE, lower.limit = mu - 5 * sigma,
    upper.limit = mu + 5 * sigma)
rSEP(n, mu = 0, sigma = 1, nu = 0, tau = 2)
```

Arguments

- `mu.link`: Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "1/mu^2" and "log".
- `sigma.link`: Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity".
- `nu.link`: Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "1/nu^2" and "log".
- `tau.link`: Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "1/tau^2", and "identity".
- `x,q`: vector of quantiles.
- `mu`: vector of location parameter values.
- `sigma`: vector of scale parameter values.
- `nu`: vector of skewness nu parameter values.
- `tau`: vector of kurtosis tau parameter values.
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p).
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
- `p`: vector of probabilities.
- `n`: number of observations. If length(n) > 1, the length is taken to be the number required.
- `lower.limit`: lower limit for the golden search to find quantiles from probabilities.
- `upper.limit`: upper limit for the golden search to find quantiles from probabilities.
Details

The probability density function of the Skew Power exponential distribution, (SEP), is defined as

\[f(y|\eta, \mu, \sigma, \nu, \tau) = \frac{z}{\sigma} \Phi(\omega) f_{EP}(z, 0, 1, \tau) \]

for \(-\infty < y < \infty\), \(\mu = (-\infty, +\infty)\), \(\sigma > 0\), \(\nu = (-\infty, +\infty)\) and \(\tau > 0\). where \(z = \frac{y-\mu}{\sigma}\), \(\omega = \text{sign}(z)|z|^\nu\frac{2}{\tau}\) and \(f_{EP}(z, 0, 1, \tau)\) is the pdf of an Exponential Power distribution.

Value

SEP() returns a gamlss.family object which can be used to fit the SEP distribution in the gamlss() function. dSEP() gives the density, pSEP() gives the distribution function, qSEP() gives the quantile function, and rSEP() generates random deviates.

Warning

The qSEP and rSEP are slow since they are relying on golden section for finding the quantiles

Author(s)

Bob Rigby and Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

See Also

gamlss.family, JSU, BCT

Examples

SEP()
plot(function(x)dSEP(x, mu=0, sigma=1, nu=1, tau=2), -5, 5, main = "The SEP density mu=0,sigma=1,nu=1, tau=2")
plot(function(x) pSEP(x, mu=0, sigma=1,nu=1, tau=2), -5, 5,
The Skew Power exponential type 1-4 distribution for fitting a GAMLSS

Description

These functions define the Skew Power exponential type 1 to 4 distributions. All of them are four parameter distributions and can be used to fit a GAMLSS model. The functions dSEP1, dSEP2, dSEP3 and dSEP4 define the probability distribution functions, the functions pSEP1, pSEP2, pSEP3 and pSEP4 define the cumulative distribution functions the functions qSEP1, qSEP2, qSEP3 and qSEP4 define the inverse cumulative distribution functions and the functions rSEP1, rSEP2, rSEP3 and rSEP4 define the random generation for the Skew exponential power distributions.

Usage

```r
dSEP1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pSEP1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qSEP1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rSEP1(n, mu = 0, sigma = 1, nu = 0, tau = 2)
dSEP2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pSEP2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qSEP2(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rSEP2(n, mu = 0, sigma = 1, nu = 0, tau = 2)
dSEP3(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE)
pSEP3(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE)
qSEP3(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE)
rSEP3(n, mu = 0, sigma = 1, nu = 2, tau = 2)
dSEP4(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE)
pSEP4(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE)
qSEP4(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE)
rSEP4(n, mu = 0, sigma = 1, nu = 2, tau = 2)
```

```r
main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2")
dat <- rSEP(100, mu=0, sigma=1, nu=1, tau=1.5)
# library(gamlss)
# gamlss(dat=1,family=SEP, control=gamlss.control(n.cyc=30))
```
tau.link = "log")
dSEP4(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE)
pSEP4(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE,
 log.p = FALSE)
qSEP4(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE,
 log.p = FALSE)
rSEP4(n, mu = 0, sigma = 1, nu = 2, tau = 2)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse" and "log"
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity"
uu.link Defines the nu.link, with "log" link as the default for the nu parameter. Other links are "identity" and "inverse"
tau.link Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "inverse", and "identity"
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of skewness nu parameter values
tau vector of kurtosis tau parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The probability density function of the Skew Power exponential distribution type 2, (SEP2), is defined as

$$f_Y(y|\mu, \sigma, \nu, \tau) = \frac{\nu}{\sigma(1+\nu^2)^{1/\tau} \Gamma(1+1/\tau)} \left\{ \exp \left(-\frac{1}{2} \left\| \frac{\nu(y-\mu)}{\sigma} \right\| \right)^\tau \right\} I(y < \mu) + \exp \left(-\frac{1}{2} \left\| \frac{(y-\mu)}{\sigma\nu} \right\| \right)^\tau \right\} I(y \geq \mu)$$

for $-\infty < y < \infty$, $\mu = (-\infty, +\infty)$, $\sigma > 0$, $\nu > 0$ and $\tau > 0$.

Value

SEP2() returns a gamlss.family object which can be used to fit the SEP2 distribution in the gamlss() function. dSEP2() gives the density, pSEP2() gives the distribution function, qSEP2() gives the quantile function, and rSEP2() generates random deviates.
SHASH

Author(s)
Bob Rigby and Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

See Also
gamlss.family, SEP

Examples
SEP1()
curve(dSEP4(x, mu=5 ,sigma=1, nu=2, tau=1.5), -2, 10,
 main = "The SEP4 density mu=5 ,sigma=1, nu=1, tau=1.5")
library(gamlss)
#y<- rSEP4(100, mu=5, sigma=1, nu=2, tau=1.5);hist(y)
#m1<-gamlss(y~1, family=SEP1, n.cyc=50)
#m2<-gamlss(y~1, family=SEP2, n.cyc=50)
#m3<-gamlss(y~1, family=SEP3, n.cyc=50)
#m4<-gamlss(y~1, family=SEP4, n.cyc=50)
#GAIC(m1,m2,m3,m4)

SHASH

The Sinh-Arcsinh (SHASH) distribution for fitting a GAMLSS

Description
The Sinh-Arcsinh (SHASH) distribution is a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dSHASH, pSHASH, qSHASH and rSHASH define the density, distribution function, quantile function and random generation for the Sinh-Arcsinh (SHASH) distribution.

There are 3 different SHASH distributions implemented in GAMLSS.
Usage

SHASH(mu.link = "identity", sigma.link = "log", nu.link = "log",
 tau.link = "log")
dSHASH(x, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, log = FALSE)
pSHASH(q, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, lower.tail = TRUE,
 log.p = FALSE)
qSHASH(p, mu = 0, sigma = 1, nu = 0.5, tau = 0.5, lower.tail = TRUE,
 log.p = FALSE)
rSHASH(n, mu = 0, sigma = 1, nu = 0.5, tau = 0.5)

SHASHo(mu.link = "identity", sigma.link = "log", nu.link = "identity",
 tau.link = "log")
dSHASHo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pSHASHo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE,
 log.p = FALSE)
qSHASHo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE,
 log.p = FALSE)
rSHASHo(n, mu = 0, sigma = 1, nu = 0, tau = 1)

SHASHo2(mu.link = "identity", sigma.link = "log", nu.link = "identity",
 tau.link = "log")
dSHASHo2(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pSHASHo2(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE,
 log.p = FALSE)
qSHASHo2(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE,
 log.p = FALSE)
rSHASHo2(n, mu = 0, sigma = 1, nu = 0, tau = 1)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter.
nu.link Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link Defines the tau.link, with "log" link as the default for the tau parameter.
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of skewness nu parameter values
tau vector of kurtosis tau parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required
Details

The probability density function of the Sinh-Arcsinh distribution, (SHASH), Jones(2005), is defined as

\[f(y|\mu, \sigma, \nu, \tau) = \frac{c}{\sqrt{2\pi} \sigma (1 + z^2)^{1/2}} e^{-r^2/2} \]

where

\[r = \frac{1}{2} \left\{ \exp [\tau \sinh^{-1}(z)] - \exp [-\nu \sinh^{-1}(z)] \right\} \]

and

\[c = \frac{1}{2} \left\{ \tau \exp [\tau \sinh^{-1}(z)] + \nu \exp [-\nu \sinh^{-1}(z)] \right\} \]

and \(z = (y - \mu)/\sigma \) for \(-\infty < y < \infty, \mu = (-\infty, +\infty), \sigma > 0, \nu > 0 \) and \(\tau > 0 \).

The parameters \(\mu \) and \(\sigma \) are the location and scale of the distribution. The parameter \(\nu \) determines the left hand tail of the distribution with \(\nu > 1 \) indicating a lighter tail than the normal and \(\nu < 1 \) heavier tail than the normal. The parameter \(\tau \) determines the right hand tail of the distribution in the same way.

The second form of the Sinh-Arcsinh distribution can be found in Jones and Pewsey (2009, p.2) denoted by SHASH0 and the probability density function is defined as,

\[f(y|\mu, \sigma, \nu, \tau) = \frac{\tau}{\sigma} c \frac{1}{\sqrt{2\pi}} \frac{1}{2 \sqrt{1 + z^2}} \exp \left(-\frac{r^2}{2} \right) \]

where

\[r = \sinh(\tau \arcsin(z) - \nu) \]

and

\[c = \cosh(\tau \arcsin(z) - \nu) \]

and \(z = (y - \mu)/\sigma \) for \(-\infty < y < \infty, \mu = (-\infty, +\infty), \sigma > 0, \nu = (-\infty, +\infty) \) and \(\tau > 0 \).

The third form of the Sinh-Arcsinh distribution (Jones and Pewsey, 2009, p.8) divides the distribution by sigma for the density of the unstandardized variable. This distribution is denoted by SHASH02 and has pdf

\[f(y|\mu, \sigma, \nu, \tau) = \frac{\tau}{\sigma} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1 + z^2}} - \exp \left(-\frac{r^2}{2} \right) \]

where \(z = (y - \mu)/(\sigma \tau) \), with \(r \) and \(c \) as for the pdf of the SHASH0 distribution, for \(-\infty < y < \infty, \mu = (-\infty, +\infty), \sigma > 0, \nu = (-\infty, +\infty) \) and \(\tau > 0 \).
Value

`SHASH()` returns a `gamlss.family` object which can be used to fit the SHASH distribution in the `gamlss()` function. `dSHASH()` gives the density, `pSHASH()` gives the distribution function, `qSHASH()` gives the quantile function, and `rSHASH()` generates random deviates.

Warning

The `qSHASH` and `rSHASH` are slow since they are relying on golden section for finding the quantiles.

Author(s)

Bob Rigby, Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org> and Fiona McElduff

References

See Also

`gamlss.family`, `JSU`, `BCT`

Examples

```r
SHASH()  #
plot(function(x)dSHASH(x, mu=0,sigma=1, nu=1, tau=2), -5, 5,
     main = "The SHASH density mu=0,sigma=1,nu=1, tau=2")
plot(function(x) pSHASH(x, mu=0,sigma=1,nu=1, tau=2), -5, 5,
     main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2")
dat<-rSHASH(100,mu=10, sigma=1,nu=1,tau=1.5)
hist(dat)
# library(gamlss)
# gamlss(dat~1,family=SHASH, control=gamlss.control(n.cyc=30))
```
The Sichel distribution for fitting a GAMLSS model

Description

The `si()` function defines the Sichel distribution, a three parameter discrete distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dsi`, `psi`, `qsi` and `rsi` define the density, distribution function, quantile function and random generation for the Sichel `si()` distribution.

Usage

```r
SI(mu.link = "log", sigma.link = "log", nu.link = "identity")
dSI(x, mu = 0.5, sigma = 0.02, nu = -0.5, log = FALSE)
psi(q, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, log.p = FALSE)
qsi(p, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rsi(n, mu = 0.5, sigma = 0.02, nu = -0.5)
tofys(y, mu, sigma, nu, what = 1)
```

Arguments

- `mu.link` Defines the `mu.link`, with "log" link as the default for the mu parameter
- `sigma.link` Defines the `sigma.link`, with "log" link as the default for the sigma parameter
- `nu.link` Defines the `nu.link`, with "identity" link as the default for the nu parameter
- `x` vector of (non-negative integer) quantiles
- `mu` vector of positive mu
- `sigma` vector of positive dispersion parameter
- `nu` vector of nu
- `p` vector of probabilities
- `q` vector of quantiles
- `n` number of random values to return
- `log`, `log.p` logical; if TRUE, probabilities p are given as log(p)
- `lower.tail` logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- `max.value` a constant, set to the default value of 10000 for how far the algorithm should look for q
- `y` the y variable. The function `tofys()` should be not used on its own.
- `what` take values 1 or 2, for function `tofys()`.
Details

The probability function of the Sichel distribution is given by

\[f(y|\mu,\sigma,\nu) = \frac{\mu^n K_{y+\nu}(\alpha)}{(\alpha\sigma)^{y+\nu}y!K_{\nu}(\frac{1}{\sigma})} \]

where \(\alpha^2 = \frac{1}{\sigma^2} + \frac{2\mu}{\sigma} \), for \(y = 0, 1, 2, \ldots, \infty \) where \(\mu > 0, \sigma > 0 \) and \(-\infty < \nu < \infty \) and \(K_{\lambda}(t) = \frac{1}{2} \int_0^\infty x^{\lambda-1} \exp\{-\frac{1}{2} t(x + x^{-1})\} \, dx \) is the modified Bessel function of the third kind. Note that the above parameterization is different from Stein, Zucchini and Juritz (1988) who use the above probability function but treat \(\mu, \alpha \) and \(\nu \) as the parameters. Note that \(\sigma = \left[(\mu^2 + \alpha^2)^{\frac{1}{2}} - \mu\right]^{-1} \).

Value

Returns a `gamlss.family` object which can be used to fit a Sichel distribution in the `gamlss()` function.

Author(s)

Akantziliotou C., Rigby, R. A., Stasinopoulos D. M. and Marco Enea

References

See Also

gamlss.family, PIG, NBI, NBII

Examples

SI()# gives information about the default links for the Sichel distribution
plot the pdf using plot
plot(function(y) dSI(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
plot the cdf
plot(seq(from=0, to=100), pSI(seq(from=0, to=100), mu=10, sigma=1, nu=1), type="h") # cdf
generate random sample
tN <- table(Ni <- rSI(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
SICHEL

The Sichel distribution for fitting a GAMLSS model

Description

The SICHEL() function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dSICHEL, pSICHEL, qSICHEL and rSICHEL define the density, distribution function, quantile function and random generation for the Sichel SICHEL() distribution. The function VSICHEL gives the variance of a fitted Sichel model.

The functions ZASICHEL() and ZISICHEL() are the zero adjusted (hurdle) and zero inflated versions of the Sichel distribution, respectively. That is four parameter distributions.

The functions dZASICHEL, dZISICHEL, pZASICHEL, pZISICHEL, qZASICHEL qZISICHEL rZASICHEL and rZISICHEL define the probability, cumulative, quantile and random generation functions for the zero adjusted and zero inflated Sichel distributions, ZASICHEL(), ZISICHEL(), respectively.

Usage

```r
SICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity")
dSICHEL(x, mu=1, sigma=1, nu=-0.5, log=FALSE)
pSICHEL(q, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE, log.p = FALSE)
qSICHEL(p, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rSICHEL(n, mu=1, sigma=1, nu=-0.5, max.value = 10000)
VSICHEL(obj)
tofySICHEL(y, mu, sigma, nu)

ZASICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "logit")
dZASICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE)
pZASICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
qZASICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rZASICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
max.value = 10000)

ZISICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity", tau.link = "logit")
dZISICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE)
pZISICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
```

fit a model to the data
library(gamlss)
gamlss(Ni-1,family=SI, control=gamlss.control(n.cyc=50))
Arguments

mu.link Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link Defines the nu.link, with "identity" link as the default for the nu parameter
tau.link Defines the tau.link, with "logit" link as the default for the tau parameter
x vector of (non-negative integer) quantiles
mu vector of positive mu
sigma vector of positive dispersion parameter sigma
nu vector of nu
tau vector of probabilities tau
p vector of probabilities
q vector of quantiles
n number of random values to return
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
max.value a constant, set to the default value of 10000 for how far the algorithm should look for q
obj a fitted Sichel gamlss model
y the y variable, the tofySICHEL() should not be used on its own.

Details

The probability function of the Sichel distribution is given by

\[f(y|\mu, \sigma, \nu) = \frac{\mu^n K_{y+\nu}(\alpha)}{y!(\alpha\sigma)^{y+\nu} K_\nu(1/\sigma)} \]

for \(y = 0, 1, 2, ..., \infty, \mu > 0, \sigma > 0 \) and \(-\infty < \nu < \infty \) where

\[\alpha^2 = \frac{1}{\sigma^2} + \frac{2\mu}{\sigma} \]

\[c = K_{\nu+1}(1/\sigma)/K_\nu(1/\sigma) \]

and \(K_\lambda(t) \) is the modified Bessel function of the third kind. Note that the above parametrization is different from Stein, Zucchini and Juritz (1988) who use the above probability function but treat \(\mu, \alpha \) and \(\nu \) as the parameters.
Value

Returns a `gamlss.family` object which can be used to fit a Sichel distribution in the `gamlss()` function.

Note

The mean of the above Sichel distribution is μ and the variance is $\mu^2 \left[\frac{2\sigma^2(\nu+1)}{\nu} + \frac{1}{\nu} - 1 \right]$.

Author(s)

References

See Also

gamlss.family, PIG, SI

Examples

```r
SICHEL() # gives information about the default links for the Sichel distribution
# plot the pdf using plot
plot(function(y) dSICHEL(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0, to=100), pSICHEL(seq(from=0, to=100), mu=10, sigma=1, nu=1), type="h") # cdf
# generate random sample
TN <- table(Ni <- rSICHEL(100, mu=5, sigma=1, nu=1))
r <- barplot(TN, col='lightblue')
# fit a model to the data
# library(gamlss)
# gamlss(Ni~1, family=SICHEL, control=gamlss.control(n.cyc=50))
```
SIMPLEX

The simplex distribution for fitting a GAMLSS

Description

The functions SIMPLEX() define the simplex distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). SIMPLEX() has mean equal to the parameter mu and sigma as scale parameter, see below. The functions dSIMPLEX, pSIMPLEX qSIMPLEX and rSIMPLEX define the density, cumulative distribution function, quantile function and random generation for the simplex distribution.

Usage

SIMPLEX(mu.link = "logit", sigma.link = "log")
dSIMPLEX(x, mu = 0.5, sigma = 1, log = FALSE)
pSIMPLEX(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qSIMPLEX(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rsIMPLEX(n = 1, mu = 0.5, sigma = 1)

Arguments

mu.link the mu link function with default logit
sigma.link the sigma link function with default log
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The simplex distribution is given as

\[f(y|\mu, \sigma) = \frac{1}{(2\pi\sigma^2(y(1-y))^3)^{1/2}} \exp\left(-\frac{1}{2\sigma^2 y(1-y)}\frac{(y-\mu)^2}{\mu^2(1-\mu)^2}\right) \]

for y in (0,1), 0 < \mu < 1 and \sigma > 0.

Value

SIMPLEX() returns a gamlss.family object which can be used to fit a simplex distribution in the gamlss() function.
Author(s)

Bob Rigby, Mikis Stasinopoulos and Fernanda De Bastiani

References

Examples

```r
SIMPLEX() # default links for the simplex distribution
plot(function(y) dSIMPLEX(y, mu=.5, sigma=1), 0.001, 0.99)
plot(function(y) pSIMPLEX(y, mu=.5, sigma=1), 0.001, 0.999)
plot(function(y) qSIMPLEX(y, mu=.5, sigma=1), 0.001, 0.999)
plot(function(y) qSIMPLEX(y, mu=.5, sigma=1, lower.tail=FALSE), 0.001, 0.99)
```

SN1

Skew Normal Type 1 distribution for fitting a GAMLSS

Description

The function SN1() defines the Skew Normal Type 1 distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with parameters mu, sigma and nu. The functions dSN1, pSN1, qSN1 and rSN1 define the density, distribution function, quantile function and random generation for the SN1 parameterization of the Skew Normal Type 1 distribution.

Usage

```r
SN1(mu.link = "identity", sigma.link = "log", nu.link="identity")
dSN1(x, mu = 0, sigma = 1, nu = 0, log = FALSE)
pSN1(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
qSN1(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
rSN1(n, mu = 0, sigma = 1, nu = 0)
```

Arguments

- `mu.link`: Defines the mu.link, with "identity" links the default for the mu parameter
- `sigma.link`: Defines the sigma.link, with "log" as the default for the sigma parameter
- `nu.link`: Defines the nu.link, with "identity" as the default for the sigma parameter
x, q
mu
sigma
nu
log, log.p
lower.tail
p
n

Details

The parameterization of the Skew Normal Type 1 distribution in the function SN1 is ...

Value

returns a gamlss.family object which can be used to fit a Skew Normal Type 1 distribution in the gamlss() function.

Note

This is a special case of the Skew Exponential Power type 1 distribution (SEP1) where \(\tau = 2 \).

Author(s)

Mikis Stasinopoulos, Bob Rigby and Fiona McElduff

References

See Also

gamlss.family
Examples

```r
par(mfrow=c(2,2))
y<-seq(-3,3,0.2)
plot(y, dSN1(y), type="l", lwd=2)
q<-seq(-3,3,0.2)
plot(q, pSN1(q), ylim=c(0,1), type="l", lwd=2)
p<-seq(0.0001,0.999,0.05)
plot(p, qSN1(p), type="l", lwd=2)
dat <- rSN1(100)
hist(rSN1(100), nclass=30)
```

Description

The function `SN2()` defines the Skew Normal Type 2 distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`, with parameters `mu`, `sigma` and `nu`. The functions `dsn2`, `psn2`, `qsn2` and `rsn2` define the density, distribution function, quantile function and random generation for the `SN2` parameterization of the Skew Normal Type 2 distribution.

Usage

```r
SN2(mu.link = "identity", sigma.link = "log", nu.link = "log")
dSN2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
pSN2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qSN2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rsn2(n, mu = 0, sigma = 1, nu = 2)
```

Arguments

- `mu.link`: Defines the mu.link, with "identity" links the default for the mu parameter
- `sigma.link`: Defines the sigma.link, with "log" as the default for the sigma parameter
- `nu.link`: Defines the nu.link, with "log" as the default for the sigma parameter
- `x`, `q`: vector of quantiles
- `mu`: vector of location parameter values
- `sigma`: vector of scale parameter values
- `nu`: vector of scale parameter values
- `log`, `log.p`: logical; if TRUE, probabilities p are given as log(p)
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x]
- `p`: vector of probabilities
- `n`: number of observations. If length(n) > 1, the length is taken to be the number required
Details

The parameterization of the Skew Normal Type 2 distribution in the function SN2 is ...

Value

returns a gamlss.family object which can be used to fit a Skew Normal Type 2 distribution in the gamlss() function.

Note

This is a special case of the Skew Exponential Power type 3 distribution (SEP3) where \(\tau = 2 \).

Author(s)

Mikis Stasinopoulos, Bob Rigby and Fiona McElduff.

References

See Also

gamlss.family

Examples

```r
par(mfrow=c(2,2))
y<-seq(-3,3,0.2)
plot(y, dSN2(y), type="l", lwd=2)
q<-seq(-3,3,0.2)
plot(q, pSN2(q), ylim=c(0,1), type="l", lwd=2)
p<-seq(0.0001, 0.999, 0.05)
plot(p, qSN2(p), type="l", lwd=2)
dat <- rSN2(100)
hist(rSN2(100), nclass=30)
```
Description

There are 5 different skew t distributions implemented in GAMLSS.

The Skew t type 1 distribution, ST1, is based on Azzalini (1986).
The skew t type 2 distribution, ST2, is based on Azzalini and Capitanio (2003).
The skew t type 3, ST3 and ST3C, distribution is based Fernande and Steel (1998). The difference between the ST3 and ST3C is that the first is written entirely in R while the second is in C.
The skew t type 4 distribution, ST4, is a spliced-shape distribution.
The skew t type 5 distribution, ST5, is Jones and Faddy (2003).
The SST is a reparametrised version of dst3 where sigma is the standard deviation of the distribution.

Usage

ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log")
dST1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2)

ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2)

ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST3(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10)

ST3C(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST3C(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST3C(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST3C(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST3C(n, mu = 0, sigma = 1, nu = 1, tau = 10)

SST(mu.link = "identity", sigma.link = "log", nu.link = "log",
tau.link = "logshiftto2")
dSST(x, mu = 0, sigma = 1, nu = 0.8, tau = 7, log = FALSE)
pSST(q, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE)
qSST(p, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE)
rSST(n, mu = 0, sigma = 1, nu = 0.8, tau = 7)

ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST4(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10)

ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST5(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1)

Arguments

- **mu.link**: Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "1/mu^2" and "log".
- **sigma.link**: Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity".
- **nu.link**: Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "1/mu^2" and "log".
- **tau.link**: Defines the nu.link, with "log" link as the default for the nu parameter. Other links are "inverse", "identity".
- **x, q**: vector of quantiles
- **mu**: vector of mu parameter values
- **sigma**: vector of scale parameter values
- **nu**: vector of nu parameter values
- **tau**: vector of tau parameter values
- **log, log.p**: logical; if TRUE, probabilities p are given as log(p).
- **lower.tail**: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- **p**: vector of probabilities.
- **n**: number of observations. If length(n) > 1, the length is taken to be the number required
- **...**: for extra arguments

Details

\[f(y|\mu, \sigma, \nu, \frac{z}{\sigma} f_{z_1}(z) F_{z_2}(w)\tau) = \]

for \(-\infty < y < \infty\), where \(z = (y - \mu)/\sigma, w = \nu\lambda^{1/2}z, \lambda = (\tau + 1)/(\tau + z^2)\) and \(z_1 \sim TF(0, 1, \tau)\) and \(z_2 \sim TF(0, 1, \tau + 1)\).
The probability density function of the skew t distribution type q, \((ST3)\), is defined in Chapter 10 of the GAMLSS manual.

The probability density function of the skew t distribution type q, \((ST4)\), is defined in Chapter of the GAMLSS manual.

The probability density function of the skew t distribution type 5, \((ST5)\), is defined as

\[
f(y|\mu, \sigma, \nu, \tau) = \frac{1}{c} \left[1 + \frac{z}{(a + b + z^2)^{1/2}} \right]^{a+1/2} \left[1 - \frac{z}{(a + b + z^2)^{1/2}} \right]^{b+1/2}
\]

where \(c = \frac{2^{a+b-1}(a + b)^{1/2}}{B(a, b)}\), and \(B(a, b) = \Gamma(a)\Gamma(b)/\Gamma(a + b)\) and \(z = (y - \mu)/\sigma\) and \(\nu = (a - b)/(ab(a + b))^{1/2}\) and \(\tau = 2/(a + b)\) for \(-\infty < y < \infty, -\infty < \mu < \infty, \sigma > 0, -\infty < \nu > \infty\) and \(\tau > 0\).

Value

\(ST1()\), \(ST2()\), \(ST3()\), \(ST4()\) and \(ST5()\) return a \(\text{gamlss.family}\) object which can be used to fit the skew t type 1-5 distribution in the \(\text{gamlss()}\) function. \(dST1()\), \(dST2()\), \(dST3()\), \(dST4()\) and \(dST5()\) give the density functions, \(pST1()\), \(pST2()\), \(pST3()\), \(pST4()\) and \(pST5()\) give the cumulative distribution functions, \(qST1()\), \(qST2()\), \(qST3()\), \(qST4()\) and \(qST5()\) give the quantile function, and \(rST1()\), \(rST2()\), \(rST3()\), \(rST4()\) and \(rST5()\) generates random deviates.

Note

The mean of the ex-Gaussian is \(\mu + \nu\) and the variance is \(\sigma^2 + \nu^2\).

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

Azzalini A. (1986) Further results on a class of distributions which includes the normal ones, Statistical, 46, pp. 199-208.

The function `tf` defines the t-family distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dtf`, `ptf`, `qtf` and `rtf` define the density, distribution function, quantile function and random generation for the specific parameterization of the t distribution given in details below, with mean equal to μ and standard deviation equal to $\sigma\left(\frac{\nu}{\nu-2}\right)^{0.5}$ with the degrees of freedom ν The function `TF2` is a different parametrization where σ is the standard deviation.

Usage

```r
TF(mu.link = "identity", sigma.link = "log", nu.link = "log")
dTF(x, mu = 0, sigma = 1, nu = 10, log = FALSE)
pTF(q, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE)
qTF(p, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE)
rtF(n, mu = 0, sigma = 1, nu = 10)
```

```r
TF2(mu.link = "identity", sigma.link = "log", nu.link = "logshiftto2")
dTF2(x, mu = 0, sigma = 1, nu = 10, log = FALSE)
pTF2(q, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE)
qTF2(p, mu = 0, sigma = 1, nu = 10, lower.tail = TRUE, log.p = FALSE)
rtF2(n, mu = 0, sigma = 1, nu = 10)
```

Arguments

- `mu.link` Defines the mu.link, with "identity" link as the default for the mu parameter
- `sigma.link` Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link Defines the nu.link, with "log" link as the default for the nu parameter
x, q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of the degrees of freedom parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

Definition file for t family distribution.

\[
f(y|\mu, \sigma, \nu) = \frac{\Gamma((\nu + 1)/2)}{\sigma \Gamma(\nu/2) \Gamma(1/2)} \left[1 + \frac{(y - \mu)^2}{\nu \sigma^2} \right]^{-(\nu+1)/2}
\]

\(y = (-\infty, +\infty), \mu = (-\infty, +\infty), \sigma > 0\) and \(\nu > 0\). Note that \(z = (y - \mu)/\sigma\) has a standard t distribution with degrees of freedom \(\nu\).

Value

\(tf()\) returns a \texttt{gamlss.family} object which can be used to fit a t distribution in the \texttt{gamlss()} function. \texttt{dtf()} gives the density, \texttt{ptf()} gives the distribution function, \texttt{qtf()} gives the quantile function, and \texttt{rtf()} generates random deviates. The latest functions are based on the equivalent \texttt{R} functions for gamma distribution.

Note

\(\mu\) is the mean and \(\sigma[\nu/(\nu - 2)]^{0.5}\) is the standard deviation of the t family distribution. \(\nu > 0\) is a positive real valued parameter.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Kalliope Akantziliotou

References

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in \texttt{R}. Accompanying documentation in the current GAMLSS help files, (see also \url{http://www.gamlss.org/}).

See Also
gamlss.family

Examples

```r
TF()# gives information about the default links for the t-family distribution
# library(gamlss)
#data(abdom)
#h<-gamlss(y=cs(x,df=3), sigma.formula=-cs(x,1), family=TF, data=abdom) # fits
#plot(h)
#newdata<-rTF(1000,mu=0,sigma=1,nu=5) # generates 1000 random observations
#hist(newdata)
```

Description

The function `waring()` defines the Waring distribution, a two parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`, with mean equal to the parameter `mu` and scale parameter `sigma`. The functions `dwaring`, `pwaring`, `qwaring` and `rwaring` define the density, distribution function, quantile function and random generation for the Waring parameterization of the Waring distribution.

Usage

```r
waring(mu.link = "log", sigma.link = "log")
dwaring(x, mu = 2, sigma = 2, log = FALSE)
pwaring(q, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE)
qwaring(p, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE,
       max.value = 100000)
rwaring(n, mu = 2, sigma = 2)
```

Arguments

- `mu.link` Defines the `mu.link`, with "log" link as the default for the `mu` parameter
- `sigma.link` Defines the `sigma.link`, with "log" link as the default for the `sigma` parameter
- `x` vector of (non-negative integer) quantiles.
- `q` vector of quantiles.
- `p` vector of probabilities.
n number of random values to return.
mu vector of positive mu values.
sigma vector of positive sigma values.
lower.tail logical; if TRUE (default) probabilities are $P[Y \leq y]$, otherwise, $P[Y > y]$.
log, log.p logical; if TRUE probabilities p are given as log(p).
max.value constant; generates a sequence of values for the cdf function.

Details
The Waring distribution has density,

$$f(y|\mu, \sigma) = \frac{(1 + \sigma) \Gamma(y + \frac{\mu}{\sigma}) \Gamma\left(\frac{\mu + \sigma + 1}{\sigma}\right)}{\sigma \Gamma\left(y + \frac{\mu + 1}{\sigma} + 2\right) \Gamma\left(\frac{\mu}{\sigma}\right)}$$

for $y = 0, 1, 2, \ldots$, $mu > 0$ and $sigma > 0$.

Value
Returns a `gamlss.family` object which can be used to fit a Waring distribution in the `gamlss()` function.

Author(s)
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos. <f.mcelduff@ich.ucl.ac.uk>

References

See Also
`gamlss.family`

Examples
```r
par(mfrow=c(2,2))
y<-seq(0,20,1)
plot(y, dWARING(y), type="h")
q <- seq(0, 20, 1)
plot(q, pWARING(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p, qWARING(p), type="s")
dat <- rWARING(100)
hist(dat)
#summary(gamlss(dat-1, family=WARING))
```
Description

The function `wei` can be used to define the Weibull distribution, a two parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. [Note that the GAMLSS function `wei2` uses a different parameterization for fitting the Weibull distribution.] The functions `dwei`, `pwei`, `qwei` and `rwei` define the density, distribution function, quantile function and random generation for the specific parameterization of the Weibull distribution.

Usage

```r
wei(mu.link = "log", sigma.link = "log")
dwei(x, mu = 1, sigma = 1, log = FALSE)
pwei(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qwei(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rwei(n, mu = 1, sigma = 1)
```

Arguments

- `mu.link`: Defines the `mu.link`, with "log" link as the default for the `mu` parameter, other links are "inverse", "identity" and "own"
- `sigma.link`: Defines the `sigma.link`, with "log" link as the default for the `sigma` parameter, other link is the "inverse", "identity" and "own"
- `x,q`: vector of quantiles
- `mu`: vector of the `mu` parameter
- `sigma`: vector of `sigma` parameter
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p).
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- `p`: vector of probabilities.
- `n`: number of observations. If `length(n) > 1`, the length is taken to be the number required

Details

The parameterization of the function `wei` is given by

\[
f(y|\mu, \sigma) = \frac{\sigma y^{\sigma-1}}{\mu^\sigma} \exp \left[- \left(\frac{y}{\mu} \right)^\sigma \right]
\]

for \(y > 0, \mu > 0 \) and \(\sigma > 0 \). The GAMLSS functions `dwei`, `pwei`, `qwei`, and `rwei` can be used to provide the pdf, the cdf, the quantiles and random generated numbers for the Weibull distribution with argument `mu`, and `sigma`. [See the GAMLSS function `wei2` for a different parameterization of the Weibull.]
Value

WEI() returns a gamlss.family object which can be used to fit a Weibull distribution in the gamlss() function. dWEI() gives the density, pWEI() gives the distribution function, qWEI() gives the quantile function, and rWEI() generates random deviates. The latest functions are based on the equivalent R functions for Weibull distribution.

Note

The mean in WEI is given by \(\mu \Gamma \left(\frac{1}{\sigma} + 1 \right) \) and the variance \(\mu^2 \left[\Gamma \left(\frac{2}{\sigma} + 1 \right) - \left(\Gamma \left(\frac{1}{\sigma} + 1 \right) \right)^2 \right] \)

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Calliope Akantziliotou

References

See Also

gamlss.family, WEI2, WEI3

Examples

```r
WEI()
dat<-rWEI(100, mu=10, sigma=2)
# library(gamlss)
# gamlss(dat=1, family=WEI)
```
Description

The function WEI2 can be used to define the Weibull distribution, a two parameter distribution, for a gamlss.fam object to be used in GAMLSS fitting using the function gamlss(). This is the parameterization of the Weibull distribution usually used in proportional hazard models and is defined in details below. [Note that the GAMLSS function WEI uses a different parameterization for fitting the Weibull distribution.] The functions dWEI2, pWEI2, qWEI2 and rWEI2 define the density, distribution function, quantile function and random generation for the specific parameterization of the Weibull distribution.

Usage

WEI2(mu.link = "log", sigma.link = "log")
dWEI2(x, mu = 1, sigma = 1, log = FALSE)
pWEI2(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qWEI2(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rWEI2(n, mu = 1, sigma = 1)

Arguments

mu.link Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter, other link is the "inverse" and "identity"
x,q vector of quantiles
mu vector of the mu parameter values
sigma vector of sigma parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The parameterization of the function WEI2 is given by

\[f(y|\mu, \sigma) = \sigma \mu y^{\sigma-1} e^{-\mu y^\sigma} \]

for \(y > 0, \mu > 0 \) and \(\sigma > 0 \). The GAMLSS functions dWEI2, pWEI2, qWEI2, and rWEI2 can be used to provide the pdf, the cdf, the quantiles and random generated numbers for the Weibull distribution with argument mu, and sigma. [See the GAMLSS function WEI for a different parameterization of the Weibull.]
Value

`WEI2()` returns a `gamlss.family` object which can be used to fit a Weibull distribution in the `gamlss()` function. `dWEI2()` gives the density, `pWEI2()` gives the distribution function, `qWEI2()` gives the quantile function, and `rWEI2()` generates random deviates. The latest functions are based on the equivalent R functions for Weibull distribution.

Warning

In `WEI2` the estimated parameters `mu` and `sigma` can be highly correlated so it is advisable to use the `CG()` method for fitting [as the RS() method can be very slow in this situation.]

Note

The mean in `WEI2` is given by $\mu^{1/\sigma}\Gamma(\frac{1}{\sigma} + 1)$ and the variance $\mu^{-2/\sigma}(\Gamma(\frac{2}{\sigma} + 1) - \left[\Gamma(\frac{1}{\sigma} + 1)\right]^2)$

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby and Calliope Akantziliotou

References

See Also

`gamlss.family.WEI,WEI3`,

Examples

```r
WEI2()
dat<rwei(100, mu=.1, sigma=2)
hist(dat)
# library(gamlss)
# gamlss(dat-1, family=WEI2, method=CG())
```
A specific parameterization of the Weibull distribution for fitting a GAMLSS

Description

The function WEI3 can be used to define the Weibull distribution, a two parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. This is a parameterization of the Weibull distribution where \(\mu \) is the mean of the distribution. [Note that the GAMLSS functions WEI and WEI2 use different parameterizations for fitting the Weibull distribution.] The functions dWEI3, pWEI3, qWEI3 and rWEI3 define the density, distribution function, quantile function and random generation for the specific parameterization of the Weibull distribution.

Usage

```r
WEI3(mu.link = "log", sigma.link = "log")
dWEI3(x, mu = 1, sigma = 1, log = FALSE)
pWEI3(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qWEI3(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rWEI3(n, mu = 1, sigma = 1)
```

Arguments

- `mu.link`: Defines the `mu.link`, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"
- `sigma.link`: Defines the `sigma.link`, with "log" link as the default for the sigma parameter, other link is the "inverse" and "identity"
- `x, q`: vector of quantiles
- `mu`: vector of the mu parameter values
- `sigma`: vector of sigma parameter values
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p).
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- `p`: vector of probabilities.
- `n`: number of observations. If `length(n) > 1`, the length is taken to be the number required

Details

The parameterization of the function `WEI3` is given by

\[
 f(y|\mu, \sigma) = \frac{\sigma}{\beta} \left(\frac{y}{\beta} \right)^{\sigma-1} e^{-\left(\frac{y}{\beta} \right)^\sigma}
\]

where \(\beta = \frac{\mu}{\Gamma(\frac{1}{\sigma}+1)} \) for \(y > 0, \mu > 0 \) and \(\sigma > 0 \). The GAMLSS functions dWEI3, pWEI3, qWEI3, and rWEI3 can be used to provide the pdf, the cdf, the quantiles and random generated numbers.
for the Weibull distribution with argument mu, and sigma. [See the GAMLSS function WEI for a different parameterization of the Weibull.]

Value

WEI3() returns a `gamlss.family` object which can be used to fit a Weibull distribution in the `gamlss()` function. dWEI3() gives the density, pWEI3() gives the distribution function, qWEI3() gives the quantile function, and rWEI3() generates random deviates. The latest functions are based on the equivalent R functions for Weibull distribution.

Warning

In WEI3 the estimated parameters mu and sigma can be highly correlated so it is advisable to use the CG() method for fitting [as the RS() method can be very slow in this situation.]

Note

The mean in WEI3 is given by \(\mu \) and the variance \(\mu^2 \left\{ \Gamma\left(\frac{2}{\sigma} + 1\right) / \left[\Gamma\left(\frac{1}{\sigma} + 1\right) \right]^2 - 1 \right\} \)

Author(s)

Bob Rigby and Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>

References

See Also

`gamlss.family`, WEI, WEI2

Examples

```r
WEI3()
dat=rWEI(100, mu=.1, sigma=2)
# library(gamlss)
# gamlss(dat=1, family=WEI3, method=CG())
```
YULE

Yule distribution for fitting a GAMLSS model

Description

The function YULE defines the Yule distribution, a one parameter distribution, for a \texttt{gamlss.family} object to be used in GAMLSS fitting using the function \texttt{gamlss()}, with mean equal to the parameter \texttt{mu}. The functions \texttt{dYULE}, \texttt{pYULE}, \texttt{qYULE} and \texttt{rYULE} define the density, distribution function, quantile function and random generation for the YULE parameterization of the Yule distribution.

Usage

\begin{verbatim}
YULE(mu.link = "log")
dYULE(x, mu = 2, log = FALSE)
pYULE(q, mu = 2, lower.tail = TRUE, log.p = FALSE)
qYULE(p, mu = 2, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rYULE(n, mu = 2)
\end{verbatim}

Arguments

- \texttt{mu.link}: Defines the \texttt{mu.link}, with "log" link as the default for the \texttt{mu} parameter.
- \texttt{x}: vector of (non-negative integer) quantiles.
- \texttt{q}: vector of quantiles.
- \texttt{p}: vector of probabilities.
- \texttt{n}: number of random values to return.
- \texttt{mu}: vector of positive \texttt{mu} values.
- \texttt{lower.tail}: logical; if \texttt{TRUE} (default) probabilities are \(P[Y \leq y]\), otherwise, \(P[Y > y]\).
- \texttt{log}, \texttt{log.p}: logical; if \texttt{TRUE} probabilities \texttt{p} are given as \(\log(p)\).
- \texttt{max.value}: constant; generates a sequence of values for the cdf function.

Details

The Yule distribution has density

\[
P(Y = y | \mu) = (\mu^{-1} + 1)B(y + 1, \mu^{-1} + 2)
\]

for \(y = 0, 1, 2, \ldots \) and \(\mu > 0\).

Value

Returns a \texttt{gamlss.family} object which can be used to fit a Yule distribution in the \texttt{gamlss()} function.
Author(s)
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos.

References

See Also
gamlss.family

Examples
par(mfrow=c(2,2))
y <- seq(0, 20, 1)
plot(y, dYULE(y), type="h")
q <- seq(0, 20, 1)
plot(q, pYULE(q), type="h")
p <- seq(0.0001, 0.999, 0.05)
plot(p, qYULE(p), type="s")
dat <- rYULE(100)
hist(dat)
#summary(gamlss(dat=1, family=YULE))

ZABB
Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS

Description
The function ZIBB defines the zero inflated beta binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIBB, pZIBB, qZIBB and rZINN define the density, distribution function, quantile function and random generation for the zero inflated beta binomial, ZIBB, distribution.

The function ZABB defines the zero adjusted beta binomial distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZABB, pZABB, qZABB and rZABB define the density, distribution function, quantile function and random generation for the zero inflated beta binomial, ZABB(), distribution.
Usage

ZABB(mu.link = "logit", sigma.link = "log", nu.link = "logit")
ZABB(mu.link = "logit", sigma.link = "log", nu.link = "logit")

dZABB(x, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, log = FALSE)
dZABB(x, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, log = FALSE)

pZABB(q, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)
pZABB(q, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)

qZABB(p, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)
qZABB(p, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1, lower.tail = TRUE, log.p = FALSE)

rZABB(n, mu = 0.5, sigma = 0.5, nu = 0.1, bd = 1)
rZABB(n, mu = 0.5, sigma = 0.1, nu = 0.1, bd = 1)

Arguments

mu.link Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter.
uu.link Defines the sigma.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
x vector of (non-negative integer) quantiles
mu vector of positive probabilities
sigma vector of positive dispersion parameter
nu vector of positive probabilities
bd vector of binomial denominators
p vector of probabilities
q vector of quantiles
n number of random values to return
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

For the definition of the distributions see Rigby and Stasinopoulos (2010) below.

Value

The functions ZIBB and ZABB return a gamlss.family object which can be used to fit a zero inflated or zero adjusted beta binomial distribution respectively in the gamlss() function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby
ZABI

References

See Also

`gamlss.family, NBI, NBII`

Examples

```r
ZIBB()
ZABB()
# creating data and plotting them
dat <- rZIBB(1000, mu=.5, sigma=.5, nu=0.1, bd=10)
r <- barplot(table(dat), col='lightblue')
dat1 <- rZABB(1000, mu=.5, sigma=.2, nu=0.1, bd=10)
r1 <- barplot(table(dat1), col='lightblue')
```

ZABI

Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS

Description

The `ZABI()` function defines the zero adjusted binomial distribution, a two parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dZABI`, `pZABI`, `qZABI` and `rZABI` define the density, distribution function, quantile function and random generation for the zero adjusted binomial, `ZABI()`, distribution.

The `ZIBI()` function defines the zero inflated binomial distribution, a two parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dZIBI`, `pZIBI`, `qZIBI` and `rZIBI` define the density, distribution function, quantile function and random generation for the zero inflated binomial, `ZIBI()`, distribution.
Usage

ZABI(mu.link = "logit", sigma.link = "logit")
dZABI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE)
pZABI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZABI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rzabi(n, bd = 1, mu = 0.5, sigma = 0.1)

ZIBI(mu.link = "logit", sigma.link = "logit")
dZIBI(x, bd = 1, mu = 0.5, sigma = 0.1, log = FALSE)
pZIBI(q, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIBI(p, bd = 1, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIBI(n, bd = 1, mu = 0.5, sigma = 0.1)

Arguments

mu.link Defines the mu.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
sigma.link Defines the sigma.link, with "logit" link as the default for the mu parameter. Other links are "probit" and "cloglog" (complementary log-log)
x vector of (non-negative integer) quantiles
mu vector of positive probabilities
sigma vector of positive probabilities
bd vector of binomial denominators
p vector of probabilities
q vector of quantiles
n number of random values to return
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

For the definition of the distributions see Rigby and Stasinopoulos (2010) below.

Value

The functions ZABI and ZIBI return a gamlss.family object which can be used to fit a binomial distribution in the gamlss() function.

Note

The response variable should be a matrix containing two columns, the first with the count of successes and the second with the count of failures.

Author(s)

Mikis Stasinopoulos, Bob Rigby
References

See Also

gamlss.family,BI

Examples

```r
ZABI()
curve(dZABI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rZABI(1000, mu=.2, sigma=.3, bd=10))
r <- barplot(tN, col='lightblue')

ZIBI()
curve(dZIBI(x, mu = .5, bd=10), from=0, to=10, n=10+1, type="h")
tN <- table(Ni <- rZIBI(1000, mu=.2, sigma=.3, bd=10))
r <- barplot(tN, col='lightblue')
```

The zero adjusted Gamma distribution for fitting a GAMLSS model

Description

The function ZAGA() defines the zero adjusted Gamma distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The zero adjusted Gamma distribution is similar to the Gamma distribution but allows zeros as y values. The extra parameter \(\nu \) models the probabilities at zero. The functions `dZAGA`, `pZAGA`, `qZAGA` and `rZAGA` define the density, distribution function, quartile function and random generation for the ZAGA parameterization of the zero adjusted Gamma distribution. `plotZAGA` can be used to plot the distribution. `meanZAGA` calculates the expected value of the response for a fitted model.
Usage

ZAGA(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZAGA(x, mu = 1, sigma = 1, nu = 0.1, log = FALSE)
pZAGA(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
qZAGA(p, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
rZAGA(n, mu = 1, sigma = 1, nu = 0.1, ...)
plotZAGA(mu = 5, sigma = 1, nu = 0.1, from = 0, to = 10, n = 101, main=NULL, ...)
meanZAGA(obj)

Arguments

mu.link Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link Defines the nu.link, with "logit" link as the default for the sigma parameter
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of probability at zero parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required from where to start plotting the distribution from
to up to where to plot the distribution
obj a fitted gamlss object
main for title in the plot
... ... can be used to pass the uppr.limit argument to qIG

Details

The Zero adjusted GA distribution is given as

\[f(y|\mu, \sigma, \nu) = \nu \]

if \(y=0 \)

\[f(y|\mu, \sigma, \nu) = (1 - \nu) \left[\frac{1}{(\sigma^2\mu)^{1/\alpha^2}} \frac{y^{\frac{1}{\alpha^2} - 1} e^{-y/(\sigma^2\mu)}}{\Gamma(1/\alpha^2)} \right] \]

otherwise

for \(y = (0, \infty), \mu > 0, \sigma > 0 \) and \(0 < \nu < 1 \). \(E(y) = (1 - \nu)\mu \) and \(Var(y) = (1 - \nu)\mu^2(\nu + \sigma^2) \).
Value

The function ZAGA returns a `gamlss.family` object which can be used to fit a zero adjusted Gamma distribution in the `gamlss()` function.

Author(s)

Bob Rigby, Mikis Stasinopoulos and Almond Stocker

References

See Also

`gamlss.family`, `GA`, `ZAIG`

Examples

```r
ZAGA()# gives information about the default links for the ZAGA distribution
# plotting the function
PPP <- par(mfrow=c(2,2))
plotZAGA(mu=1, sigma=.5, nu=.2, from=0,to=3)
#curve(dZAGA(x,mu=1, sigma=.5, nu=.2), 0,3) # pdf
curve(pZAGA(x,mu=1, sigma=.5, nu=.2), 0,3, ylim=c(0,1)) # cdf
curve(qZAGA(x,mu=1, sigma=.5, nu=.2), 0,.99) # inverse cdf
y<-rZAGA(100, mu=1, sigma=.5, nu=.2) # randomly generated values
hist(y)
par(PPP)
# check that the positive part sums up to .8 (since nu=0.2)
integrate(function(x) dZAGA(x,mu=1, sigma=.5, nu=.2), 0,Inf)
```

ZAIG

The zero adjusted Inverse Gaussian distribution for fitting a GAMLSS model
Description
The function `ZAIG()` defines the zero adjusted Inverse Gaussian distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The zero adjusted Inverse Gaussian distribution is similar to the Inverse Gaussian distribution but allows zeros as y values. The extra parameter models the probabilities at zero. The functions `dZAIG`, `pZAIG`, `qZAIG` and `rZAIG` define the density, distribution function, quantile function and random generation for the ZAIG parameterization of the zero adjusted Inverse Gaussian distribution. `plotZAIG` can be used to plot the distribution. `meanZAIG` calculates the expected value of the response for a fitted model.

Usage
```r
ZAIG(mu.link = "log", sigma.link = "log", nu.link = "logit")
dZAIG(x, mu = 1, sigma = 1, nu = 0.1, log = FALSE)
pZAIG(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
qZAIG(p, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
rZAIG(n, mu = 1, sigma = 1, nu = 0.1, ...)
plotZAIG(mu = 5, sigma = 1, nu = 0.1, from = 0, to = 10, n = 101, ...)
meanZAIG(obj)
```

Arguments
- `mu.link`: Defines the mu.link, with "log" link as the default for the mu parameter
- `sigma.link`: Defines the sigma.link, with "log" link as the default for the sigma parameter
- `nu.link`: Defines the nu.link, with "logit" link as the default for the sigma parameter
- `x, q`: vector of quantiles
- `mu`: vector of location parameter values
- `sigma`: vector of scale parameter values
- `nu`: vector of probability at zero parameter values
- `log, log.p`: logical; if TRUE, probabilities p are given as log(p).
- `lower.tail`: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- `p`: vector of probabilities.
- `n`: number of observations. If length(n) > 1, the length is taken to be the number required
- `from`: where to start plotting the distribution from
- `to`: up to where to plot the distribution
- `obj`: a fitted BEINF object
- `...`: can be used to pass the uppr.limit argument to `qIG`

Details
The Zero adjusted IG distribution is given as
\[f(y|\mu, \sigma, \nu) = \nu \]
if \((y=0)\)

\[
f(y|\mu, \sigma, \nu) = (1 - \nu) \frac{1}{\sqrt{2\pi\sigma^2y^3}} \exp\left(- \frac{(y - \mu)^2}{2\mu^2\sigma^2y}\right)
\]

otherwise

for \(y = (0, \infty), \mu > 0, \sigma > 0\) and \(0 < \nu < 1\). \(E(y) = (1 - \nu)\mu\) and \(Var(y) = (1 - \nu)\mu^2(\nu + \mu\sigma^2)\).

Value

returns a \texttt{gamlss.family} object which can be used to fit a zero adjusted inverse Gaussian distribution in the \texttt{gamlss()} function.

Author(s)

Bob Rigby and Mikis Stasinopoulos

References

See Also

\texttt{gamlss.family}, \texttt{IG}

Examples

\texttt{ZAIG()}\# gives information about the default links for the ZAIG distribution
plotting the distribution
plotZAIG(mu =10 , sigma=.5, nu = 0.1, from = 0, to=10, n = 101)
plotting the cdf
plot(function(y) pZAIG(y, mu=10 ,sigma=.5, nu = 0.1), 0, 1)
plotting the inverse cdf
plot(function(y) qZAIG(y, mu=10 ,sigma=.5, nu = 0.1), 0.001, .99)
generate random numbers
dat <- rZAIG(100,mu=10,sigma=.5, nu=.1)
fit a model to the data
library(gamlss)
Zero inflated and zero adjusted negative binomial distributions for fitting a GAMLSS model

Description

The function `zinbi` defines the zero inflated negative binomial distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dzinbi`, `pzinbi`, `qzinbi` and `rzinbi` define the density, distribution function, quantile function and random generation for the zero inflated negative binomial, `zinbi()`, distribution.

The function `zanbi` defines the zero adjusted negative binomial distribution, a three parameter distribution, for a `gamlss.family` object to be used in GAMLSS fitting using the function `gamlss()`. The functions `dzanbi`, `zanbi`, `ranzi` and `rzanbi` define the density, distribution function, quantile function and random generation for the zero inflated negative binomial, `zanbi()`, distribution.

Usage

```r
zinbi(mu.link = "log", sigma.link = "log", nu.link = "logit")
dzinbi(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pzinbi(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qzinbi(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
rzinbi(n, mu = 1, sigma = 1, nu = 0.3)
zanbi(mu.link = "log", sigma.link = "log", nu.link = "logit")
dzanbi(x, mu = 1, sigma = 1, nu = 0.3, log = FALSE)
pzanbi(p, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
qzanbi(q, mu = 1, sigma = 1, nu = 0.3, lower.tail = TRUE, log.p = FALSE)
rzanbi(n, mu = 1, sigma = 1, nu = 0.3)
```

Arguments

- `mu.link` Defines the `mu.link`, with "log" link as the default for the `mu` parameter
- `sigma.link` Defines the `sigma.link`, with "log" link as the default for the `sigma` parameter
- `nu.link` Defines the `nu.link`, with "logit" link as the default for the `nu` parameter
- `x` vector of (non-negative integer) quantiles
- `mu` vector of positive means
- `sigma` vector of positive dispersion parameter
- `nu` vector of zero probability parameter
- `p` vector of probabilities
- `q` vector of quantiles
- `n` number of random values to return
- `log`, `log.p` logical; if TRUE, probabilities p are given as log(p)
- `lower.tail` logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
Details

The definition for the zero inflated Negative Binomial type I distribution and for the zero adjusted Negative Binomial type I distribution is given in Rigby and Stasinopoulos (2010) below.

Value

The functions ZINBI and ZANBI return a gamlss.family object which can be used to fit a zero inflated or zero adjusted Negative Binomial type I distribution respectively in the gamlss() function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby

References

See Also
gamlss.family, NBI, NBII

Examples

```r
ZINBI()
ZANBI()
# creating data and plotting them
dat <- rZINBI(1000, mu=5, sigma=.5, nu=0.1)
r <- barplot(table(dat), col='lightblue')
dat1 <- rZANBI(1000, mu=5, sigma=.5, nu=0.1)
r1 <- barplot(table(dat1), col='lightblue')
```
Zero adjusted poisson distribution for fitting a GAMLSS model

ZAP

Description

The function ZAP defines the zero adjusted Poisson distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dzap, pZAP, qZAP and rZAP define the density, distribution function, quantile function and random generation for the inflated poisson, ZAP(), distribution.

Usage

ZAP(mu.link = "log", sigma.link = "logit")
dZAP(x, mu = 5, sigma = 0.1, log = FALSE)
pZAP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZAP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZAP(n, mu = 5, sigma = 0.1)

Arguments

mu.link defines the mu.link, with "log" link as the default for the mu parameter
sigma.link defines the sigma.link, with "logit" link as the default for the sigma parameter which in this case is the probability at zero. Other links are "probit" and "cloglog" (complementary log-log)
x vector of (non-negative integer)
mu vector of positive means
sigma vector of probabilities at zero
p vector of probabilities
q vector of quantiles
n number of random values to return
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

For the definition of the distribution see Rigby and Stasinopoulos (2010) below.

Value

The function ZAP returns a gamlss.family object which can be used to fit a zero inflated poisson distribution in the gamlss() function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby
References

See Also

gamlss.family, PO, ZIP, ZIP2, ZALG

Examples

ZIP()
creating data and plotting them
dat<rzAP(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')

ZIP

Zero inflated poisson distribution for fitting a GAMLSS model

Description

The function ZIP defines the zero inflated Poisson distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIP, pZIP, qZIP and rZIP define the density, distribution function, quantile function and random generation for the inflated poisson, ZIP(), distribution.

Usage

ZIP(mu.link = "log", sigma.link = "logit")
dZIP(x, mu = 5, sigma = 0.1, log = FALSE)
pZIP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIP(n, mu = 5, sigma = 0.1)
Arguments

mu.link defines the mu.link, with "log" link as the default for the mu parameter

sigma.link defines the sigma.link, with "logit" link as the default for the sigma parameter which in this case is the probability at zero. Other links are "probit" and "cloglog" (complementary log-log)

x vector of (non-negative integer) quantiles

mu vector of positive means

sigma vector of probabilities at zero

p vector of probabilities

q vector of quantiles

n number of random values to return

log, log.p logical; if TRUE, probabilities p are given as log(p)

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

Let $Y = 0$ with probability σ and $Y \sim Po(\mu)$ with probability $(1-\sigma)$ the Y has a Zero inflated Poisson Distribution given by

$$f(y) = \sigma + (1-\sigma)e^{-\mu}$$

if $(y=0)$

$$f(y) = (1-\sigma)e^{-\mu}\frac{\mu^y}{y!}$$

if $(y>0)$ for $y = 0, 1, ...$

Value

returns a gamlss.family object which can be used to fit a zero inflated poisson distribution in the gamlss() function.

Author(s)

Mikis Stasinopoulos <mikis.stasinopoulos@gamlss.org>, Bob Rigby

References

ZIP2

See Also
gamlss.family, PO, ZIP2

Examples

```r
ZIP()# gives information about the default links for the normal distribution
# creating data and plotting them
dat<-rZIP(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')
# library(gamlss)
# fit the distribution
# mod1<-gamlss(dat~1, family=ZIP)# fits a constant for mu and sigma
# fitted(mod1)[1]
# fitted(mod1,"sigma")[1]
```

ZIP2

Zero inflated poisson distribution for fitting a GAMLSS model

Description

The function ZIP2 defines the zero inflated Poisson type 2 distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIP2, pZIP2, qZIP2 and rZIP2 define the density, distribution function, quantile function and random generation for the inflated poisson, ZIP2(), distribution. The ZIP2 is a different parameterization of the ZIP distribution. In the ZIP2 the mu is the mean of the distribution.

Usage

```r
ZIP2(mu.link = "log", sigma.link = "logit")
dZIP2(x, mu = 5, sigma = 0.1, log = FALSE)
pZIP2(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIP2(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIP2(n, mu = 5, sigma = 0.1)
```

Arguments

- `mu.link` defines the `mu.link`, with "log" link as the default for the `mu` parameter
- `sigma.link` defines the `sigma.link`, with "logit" link as the default for the `sigma` parameter which in this case is the probability at zero. Other links are "probit" and "cloglog" (complementary log-log)
x vector of (non-negative integer) quantiles
mu vector of positive means
sigma vector of probabilities at zero
p vector of probabilities
q vector of quantiles
n number of random values to return
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

Let $Y = 0$ with probability σ and $Y \sim Po(\mu/ [1 - \sigma])$ with probability $(1 - \sigma)$ then Y has a Zero inflated Poisson type 2 distribution given by

$$f(y|\mu,\sigma) = \sigma + (1 - \sigma)e^{-\mu/(1-\sigma)} \quad \text{if} \ y = 0$$

$$f(y|\mu,\sigma) = (1 - \sigma)e^{-\mu/(1-\sigma)} \frac{\mu/[(1-\sigma)]^y}{y!} \quad \text{if} \ y = 1, 2, 3, \ldots$$

The mean of the distribution in this parameterization is μ.

Value

returns a `gamlss.family` object which can be used to fit a zero inflated poisson distribution in the `gamlss()` function.

Author(s)

Bob Rigby, Gillian Heller and Mikis Stasinopoulos

References

ZIPF

The zipf and zero adjusted zipf distributions for fitting a GAMLSS model

Description

This function ZIPF() defines the zipf distribution, Johnson et. al., (2005), sections 11.2.20, p 527-528. The zipf distribution is an one parameter distribution with long tails (a discrete version of the Pareto distribution). The function ZIPF() creates a gamlss.family object to be used in GAMLSS fitting. The functions dZIPF, pZIPF, qZIPF and rZIPF define the density, distribution function, quantile function and random generation for the zipf, ZIPF(), distribution. The function zetaP() defines the zeta function and it is based on the zeta function defined on the VGAM package of Thomas Yee, see Yee (2017).

The distribution zipf is defined on $y = 1, 2, 3, \ldots, \infty$, the zero adjusted zipf permits values on $y = 0, 1, 2, \ldots, \infty$. The function ZAZIPF() defines the zero adjusted zipf distribution. The function ZAZIPF() creates a gamlss.family object to be used in GAMLSS fitting. The functions dZAZIPF, pZAZIPF, qZAZIPF and rZAZIPF define the density, distribution function, quantile function and random generation for the zero adjusted zipf, ZAZIPF(), distribution.

Usage

ZIPF(mu.link = "log")
dZIPF(x, mu = 1, log = FALSE)
pZIPF(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qZIPF(p, mu = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rZIPF(n, mu = 1, max.value = 10000)
zetaP(x)
ZAZIPF(mu.link = "log", sigma.link = "logit")
dZAZIPF(x, mu = 0.5, sigma = 0.1, log = FALSE)
pZAZIPF(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZAZIPF(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rzAZIPF(n, mu = 0.5, sigma = 0.1, max.value = 10000)

Arguments

mu.link the link function for the parameter mu with default log
x,q vectors of (non-negative integer) quantiles
p vector of probabilities
mu vector of positive parameter
log, log.p logical; if TRUE, probabilities p are given as log(p)
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
n number of random values to return
max.value a constant, set to the default value of 10000. It is used in the q function which numerically calculates how far the algorithm should look for q. Maybe for zipf data the values has to increase at a considerable computational cost.
sigma.link the link function for the parameter sigma with default logit
sigma a vector of probabilities of zero

Details

The probability density for the zipf distribution, ZIPF, is:

\[f(y|\mu) = \frac{y^{-(\mu+1)}}{\zeta(\mu + 1)} \]

for \(y = 1, 2, \ldots, \infty, \mu > 0 \) and where \(\zeta() \) is the (Reimann) zeta function.

The distribution has mean \(\zeta(\mu)/\zeta(\mu + 1) \) and variance \(\zeta(\mu + 1)\zeta(\mu - 1) - [\zeta(\mu)]^2/[\zeta(\mu + 1)]^2 \).

Value

The function ZIPF() returns a gamlss.family object which can be used to fit a zipf distribution in the gamlss() function.

Note

Because the zipf distribution has very long tails the max.value in the q and r, may need to increase.

Author(s)

Mikis Stasinopoulos and Bob Rigby
References

See Also

PO, LG, GEOM, YULE

Examples

```r
# ZIPF
par(mfrow=c(2,2))
y<–seq(1,20,1)
plot(y, dZIPF(y, type="h")
q <- seq(1, 20, 1)
plot(q, pZIPF(q, type="h")
p<–seq(0.0001,0.999,0.05)
plot(p , qZIPF(p), type="s")
dat <- rZIPF(100)
hist(dat)

# ZAZIPF
y<–seq(0,20,1)
plot(y, dZAZIPF(y, mu=.9, sigma=.1), type="h")
q <- seq(1, 20, 1)
plot(q, pZAZIPF(q, mu=.9, sigma=.1), type="h")
p<–seq(0.0001,0.999,0.05)
plot(p, qZAZIPF(p, mu=.9, sigma=.1), type="s")
dat <- rZAZIPF(100, mu=.9, sigma=.1)
hist(dat)
```

Index

*Topic distribution

BB, 8
BCCG, 10
BCPE, 13
BCT, 16
BE, 18
BEINF, 20
BEOI, 24
BEZI, 27
BI, 29
BNB, 31
count_1_31, 35
DBI, 38
DBURR12, 40
DEL, 42
DPO, 44
EGB2, 46
exGAUS, 48
EXP, 50
flexDist, 51
GA, 53
GAF, 55
GB1, 60
GB2, 62
gen.Family, 65
GEOM, 67
GG, 69
GIG, 71
GPO, 73
GT, 75
GU, 77
hazardFun, 78
IG, 80
IGAMMA, 81
JSU, 83
JSUo, 85
LG, 88
LNO, 90
LO, 93
LOGITNO, 94
LQNO, 96
MN3, 102
NBF, 104
NBI, 106
NBII, 108
NET, 110
NO, 112
NO2, 114
NOF, 116
PARETO2, 118
PE, 120
PIG, 122
PO, 125
RG, 126
RGE, 128
SEP, 131
SEP1, 133
SHASH, 135
SI, 139
SICHEL, 141
SIMPLEX, 144
SN1, 145
SN2, 147
ST1, 149
TF, 152
WARING, 154
WEI, 156
WEI2, 158
WEI3, 160
YULE, 162
ZABB, 163
ZABI, 165
ZAGA, 167
ZAILG, 169
ZANBI, 172
ZAP, 174
ZIP, 175
ZIP2, 177
ZIPF, 179

*Topic package
 gamlssNdist-package, 4

*Topic regression
 BB, 8
 BCCG, 10
 BCPE, 13
 BCT, 16
 BE, 18
 BEINF, 20
 BEOI, 24
 BEZI, 27
 BI, 29
 BNB, 31
 checklink, 34
 count.1_31, 35
 DBI, 38
 DBURR12, 40
 DEL, 42
 DPO, 44
 EGB2, 46
 exGAUS, 48
 EXP, 50
 flexDist, 51
 GA, 53
 GAF, 55
 gamlss.family, 57
 GB1, 60
 GB2, 62
 gen.Family, 65
 GEOM, 67
 GG, 69
 GIG, 71
 GPO, 73
 GT, 75
 GU, 77
 hazardFun, 78
 IG, 80
 IGAMMA, 81
 JSU, 83
 JSuo, 85
 LG, 88
 LNO, 90
 LO, 93
 LOGITNO, 94
 LQNO, 96
 make.link.gamlss, 98
 MN3, 102

NBF, 104
NBI, 106
NBII, 108
NET, 110
NO, 112
NO2, 114
NOF, 116
PARETO2, 118
PE, 120
PIG, 122
PO, 125
RG, 126
RGE, 128
SEP, 131
SEP1, 133
SHASH, 135
SI, 139
SICHEL, 141
SIMPLEX, 144
SN1, 145
SN2, 147
ST1, 149
TF, 152
WARING, 154
WEI, 156
WEI2, 158
WEI3, 160
YULE, 162
ZABB, 163
ZABI, 165
ZAGA, 167
ZAIG, 169
ZANBI, 172
ZAP, 174
ZIP, 175
ZIP2, 177
ZIPF, 179

as.family(gamlss.family), 57
as.gamlss.family(gamlss.family), 57

BB, 8, 39, 57, 60
BCCG, 10, 18, 49, 58, 60, 90, 92
BCCGo (BCCG), 10
BCCGuntr (BCCG), 10
BCPE, 13, 18, 58, 60, 112, 122
BCPEo (BCPE), 13
BCPEuntr (BCPE), 13
INDEX

BCT, 13, 15, 16, 47, 58, 60, 62, 64, 76, 85, 87, 132, 138
BCTo (BCT), 16
BCTuntr (BCT), 16
BE, 18, 20, 23, 57, 60
BEINF, 20, 20, 58, 60
BEINF0 (BEINF), 20
BEINF1 (BEINF), 20
BEO (BE), 23
BEOI, 20, 23, 24, 26, 58
BEZI, 20, 23, 27, 29, 58
BI, 10, 29, 39, 58, 60, 103, 167
binom_1_31 (count_1_31), 35
binom_2_33 (count_1_31), 35
binom_3_33 (count_1_31), 35
BNN, 31, 58

checkBCEP (BCPE), 13
checklink, 34
cotrR0_1_12 (count_1_31), 35
cotrR0_1_4_33 (count_1_31), 35
cotrR_2_12 (count_1_31), 35
cotrR_3_11 (count_1_31), 35
cotrR_4_13 (count_1_31), 35
cotrplus_2_11 (count_1_31), 35
cotrplus_3_13 (count_1_31), 35
cotrplus_4_33 (count_1_31), 35
count_1_22 (count_1_31), 35
count_3_31, 35
count_2_32 (count_1_31), 35
count_2_32R (count_1_31), 35
count_2_33 (count_1_31), 35
count_3_32 (count_1_31), 35
count_3_33 (count_1_31), 35
dBB (BB), 8
dBCB (BCB), 10
dBCGo (BCGo), 10
dBCPE (BCPE), 13
dBCPEo (BCPE), 13
dBCT (BCT), 16
dBCTo (BCT), 16
BEO (BE), 18
dBEINF (BEINF), 20
dBEINF0 (BEINF), 20
dBEINF1 (BEINF), 20
dBEO (BE), 18
dBEOI (BEOI), 24
dBEZI (BEZI), 27
DBI, 38, 58
dIB (IB), 29
dNB (NB), 31
dNBURR12, 40, 58
dDBI (DBI), 38
dNBURR12 (NBURR12), 40
dDEL (DEL), 42
dDPO (DPO), 44
dEGB (EGB), 46
dDEL, 42, 58
dEXP (EXP), 50
dGA (GA), 53
dGAF (GAF), 55
dGB (GB), 60
dGB2 (GB2), 62
dGEO (GEO), 67
dGEO (GEO), 67
dGG (GG), 69
dGIG (GIG), 71
dGP (GP), 75
dGPO (GPO), 73
dGT (GT), 75
dGU (GU), 77
dIG (IG), 80
dIGAMMA (IGAMMA), 81
dJSU (JSU), 83
dJSU (JSU), 85
dLG (LG), 88
dLNO (LNO), 90
dLQ (LQ), 93
dLOGITNO (LOGITNO), 94
dLOGNO (LOGNO), 90
dLOGNO2 (LOGNO), 90
dLOGNO (LOGNO), 96
dMN (MN), 102
dMN4 (MN4), 102
dMN5 (MN5), 102
dNB (NB), 104
dNB (NB), 106
dNBII (NBII), 108
dNET (NET), 110
dNO (NO), 112
dNO2 (NO2), 114
dNO (NO), 116
dPARETO (PARETO), 118
dPARETO (PARETO), 118
INDEX

41, 44, 58, 74
51, 54
56, 57, 62, 64, 68, 71, 73, 74, 76, 78,
79, 81, 83, 85, 87, 89, 90, 92, 94, 96,
100, 103, 108, 110, 112, 114, 116,
118, 120, 122, 124, 126, 128, 130,
132, 135, 138, 140, 143, 146, 148,
152, 154, 155, 157, 159–161, 163,
165, 167, 169, 171, 173, 175, 177,
179
20, 58, 60
58, 62
78
58, 67, 181
58
67
44
38
GG, 56, 58, 69
58, 71, 81
58, 62
GP (GB2), 62
GPO, 73
58, 75
58, 60, 77
78
53
49, 58, 60, 73, 80, 171
IGAMMA, 58, 81
JSU, 47, 58, 60, 62, 64, 76, 83, 87, 132, 138
JSUo, 85, 85
LG, 58, 88, 181
LNO, 49, 58, 60, 90
L0, 58, 60, 93
LOGITNO, 20, 58, 94
LOGNO, 58, 96
LOGNO (LNO), 90
LOGNO2 (LNO), 90
LQNO, 58, 96
make.link.gamlss, 98
meanBEINF (BEINF), 20
meanBEINF0 (BEINF), 20
meanBEINF1 (BEINF), 20
meanBEIOI (BEOI), 24
meanBEZII (BEZI), 27
meanZAGA (ZAGA), 167
meanZAIIG (ZAIIG), 169
MN3, 102
MN4 (MN3), 102
MN5 (MN3), 102
MULTIN (MN3), 102
NBF, 58, 104
NBI, 33, 58, 60, 106, 108, 110, 124, 126, 140, 165, 173
NBII, 33, 58, 60, 106, 108, 110, 124, 126, 140, 165, 173
NET, 58, 110
NO, 58, 60, 94, 98, 112, 116, 118
NO2, 98, 114, 114, 118
NOF, 58, 98, 116
own.linkfun (make.link.gamlss), 98
own.linkinv (make.link.gamlss), 98
own.mu.eta (make.link.gamlss), 98
own.valideta (make.link.gamlss), 98
PARETO2, 58, 118
PARETO2o, 58
PARETO2o (PARETO2), 118
pBB (BB), 8
pBCCG (BCCG), 10
pBCCGo (BCCGo), 10
pBCPE (BCPE), 13
pBCPEo (BCPE), 13
pBCT (BCT), 16
pBCTo (BCT), 16
pBE (BE), 18
pBEINF (BEINF), 20
pBEINF0 (BEINF), 20
pBEINF1 (BEINF), 20
pBEO (BE), 18
pBEIOI (BEOI), 24
pBEZII (BEZI), 27
pBI (B1), 29
pBNB (BNB), 31
pDBI (DBI), 38
pDBURR12 (DBURR12), 40
pDEL (DEL), 42
pDPO (DPO), 44
PE., 58, 60, 120
PE2, 58
PE2 (PE), 120
pEB2 (EGB2), 46
pexpGAUSS (expGAUSS), 48
pEXP (EXP), 50
pGA (GA), 53
pGAF (GAF), 55
pGB1 (GB1), 60
pGB2 (GB2), 62
pGEOM (GEOM), 67
pGEOMo (GEOM), 67
pGG (GG), 69
pGIG (GIG), 71
pGP (GB2), 62
pGP0 (GP0), 73
pGT (GT), 75
pGU (GU), 77
pIG, 58, 60, 108, 110, 122, 140, 143
pIG (IG), 80
pIGAMMA (IGAMMA), 81
pJSU (JSU), 83
pJSUo (JSUo), 85
pLG (LG), 88
pLNO (LNO), 90
pLO (LO), 93
pLO1 (LO), 93
pLOGTNO (LOGITNO), 94
pLOGNO (LNO), 90
pLOGNO2 (LNO), 90
plotBEINF (BEINF), 20
plotBEINF0 (BEINF), 20
plotBEINF1 (BEINF), 20
plotBEIOI (BEOI), 24
INDEX

plotBEZI (BEZI), 27
plotZAGA (ZAGA), 167
plotZAIG (ZAIG), 169
pLQNO (LQNO), 96
pMN3 (MN3), 102
pMN4 (MN4), 102
pMN5 (MN5), 102
pNBF (NBF), 104
pNBI (NBI), 106
pNBI (NBI), 108
pNET (NET), 110
pNO (NO), 112
pNO2 (NO2), 114
pNOF (NOF), 116
PO, 45, 58, 60, 74, 89, 125, 175, 177, 181
pPARETO2 (PARETO2), 118
pPARETO2o (PARETO2), 118
pPE (PE), 120
pPE2 (PE), 120
pPIG (PIG), 122
pPO (PO), 125
pRG (RG), 126
pRGE (RGE), 128
print.gamlss.family(gamlss.family), 57
pSEP (SEP), 131
pSEP1 (SEP1), 133
pSEP2 (SEP2), 133
pSEP3 (SEP3), 133
pSEP4 (SEP4), 133
pSHASH (SHASH), 135
pSHASHo (SHASH), 135
pSHASHo2 (SHASH), 135
pSI (SI), 139
pSICHEL (SICHEL), 141
pSIMPLEX (SIMPLEX), 144
pSN1 (SN1), 145
pSN2 (SN2), 147
pSST (ST1), 149
pST1 (ST1), 149
pST2 (ST1), 149
pST3 (ST1), 149
pST3C (ST1), 149
pST4 (ST1), 149
pST5 (ST1), 149
pTF (TF), 152
pTF2 (TF), 152
pWARING (WARING), 154
pWEI (WEI), 156
pWEI2 (WEI2), 158
pWEI3 (WEI3), 160
pYULE (YULE), 162
pZABB (ZABB), 163
pZABI (ZABI), 165
pZABB (ZABB), 31
pZAGA (ZAGA), 167
pZAIG (ZAIG), 169
pZALG (LG), 88
pZANBI (ZANBI), 172
pZAP (ZAP), 174
pZAPIG (PIG), 122
pZASICHEL (SICHEL), 141
pZAZIPF (ZIPF), 179
pZIBB (ZABB), 163
pZIBI (ZABI), 165
pZIBNB (NB), 31
pZINBF (NB), 104
pZINBI (ZANBI), 172
pZIP (ZIP), 175
pZIP2 (ZIP2), 177
pZIPF (ZIPF), 179
pZPIPEG (PIG), 122
pZISICHEL (SICHEL), 141
qBB (BB), 8
qBCCG (BCCG), 10
qBCCGo (BCCG), 10
qBCPE (BCPE), 13
qBCPEo (BCPE), 13
qBCT (BCT), 16
qBCTo (BCT), 16
qBE (BE), 18
qBEINF (BEINF), 20
qBEINF0 (BEINF), 20
qBEINF1 (BEINF), 20
qBEo (BE), 18
qBEOI (BE01), 24
qBEZI (BEZI), 27
qB1 (B1), 29
qBNB (NB), 31
qBDI (BDI), 38
qDBURR12 (DBURR12), 40
qDEL (DEL), 42
qDPO (DPO), 44
qEGB2 (EGB2), 46
qexGAUS (exGAUS), 48
qEXP (EXP), 50
qGA (GA), 53
qGAF (GAF), 55
qGB1 (GB1), 60
qGB2 (GB2), 62
qGEOM (GEOM), 67
qGEOMo (GEOM), 67
qGG (GG), 69
qGIG (GIG), 71
qGP (GP), 62
qGPO (GPO), 73
qGT (GT), 75
qGU (GU), 77
qIG (IG), 80
qIGAMMA (IGAMMA), 81
qJSU (JSU), 83
qJSUo (JSUo), 85
qLG (LG), 88
qLNO (LNO), 90
qLO (LO), 93
qLOGITNO (LOGITNO), 94
qLOGNO (LNO), 90
qLOGNO2 (LNO), 90
qLNO (LNO), 96
qMN3 (MN3), 102
qMN4 (MN3), 102
qMN5 (MN3), 102
qNBF (NBF), 104
qNBI (NBI), 106
qNBIi (NBIi), 108
qNET (NET), 110
qNO (NO), 112
qNO2 (NO2), 114
qNOF (NOF), 116
qPARETO2 (PARETO2), 118
qPARETO2o (PARETO2), 118
qPE (PE), 120
qPE2 (PE), 120
qPIG (PIG), 122
qPO (PO), 125
qRG (RG), 126
qRGE (RGE), 128
qSEP (SEP), 131
qSEP1 (SEP1), 133
qSEP2 (SEP1), 133
qSEP3 (SEP1), 133
qSEP4 (SEP1), 133
qSHASH (SHASH), 135
qSHASHo (SHASH), 135
qSHASHo2 (SHASH), 135
qSI (SI), 139
qSICHEL (SICHEL), 141
qSIMPLEX (SIMPLEX), 144
qSN1 (SN1), 145
qSN2 (SN2), 147
qSST (ST1), 149
qST1 (ST1), 149
qST2 (ST1), 149
qST3 (ST1), 149
qST3 (ST1), 149
qST4 (ST1), 149
qST5 (ST1), 149
qTF (TF), 152
qTF2 (TF), 152
qWARING (WARING), 154
qWEI (WEI), 156
qWEI2 (WEI2), 158
qWEI3 (WEI3), 160
qYULE (YULE), 162
qZABB (ZABB), 163
qZABI (ZABI), 165
qZABNB (BNB), 31
qZAGA (ZAGA), 167
qZAIG (ZAIG), 169
qZALG (LG), 88
qZANBI (ZANBI), 172
qZAP (ZAP), 174
qZAPIG (PIG), 122
qZASICHEL (SICHEL), 141
qZAZIPF (ZIPF), 179
qZIBBB (ZABB), 163
qZIBI (ZABI), 165
qZIBNB (BNB), 31
qZINBF (NBF), 104
qZINBI (ZANBI), 172
qZIP (ZIP), 175
qZIP2 (ZIP2), 177
qZIPF (ZIPF), 179
qZIPIG (PIG), 122
qZISICHEL (SICHEL), 141
rBB (BB), 8
rBCCG (BCCG), 10
rBCCGo (BCCG), 10
rBCPE (BCPE), 13
rBCPEo (BCPE), 13
rBCT (BCT), 16
rBCTo (BCT), 16
rBE (BE), 18
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>rBEINF (BEINF)</td>
<td>20</td>
</tr>
<tr>
<td>rBEINF0 (BEINF)</td>
<td>20</td>
</tr>
<tr>
<td>rBEINF1 (BEINF)</td>
<td>20</td>
</tr>
<tr>
<td>rBEo (BE)</td>
<td>18</td>
</tr>
<tr>
<td>rBEoi (BEOI)</td>
<td>24</td>
</tr>
<tr>
<td>rBEzi (BEZI)</td>
<td>27</td>
</tr>
<tr>
<td>rBI (BI)</td>
<td>29</td>
</tr>
<tr>
<td>rBNB (BNB)</td>
<td>31</td>
</tr>
<tr>
<td>rDBI (DBI)</td>
<td>38</td>
</tr>
<tr>
<td>rDBRR12 (DBRR12)</td>
<td>40</td>
</tr>
<tr>
<td>rDEL (DEL)</td>
<td>42</td>
</tr>
<tr>
<td>rDPO (DPO)</td>
<td>44</td>
</tr>
<tr>
<td>rEB2 (EB2)</td>
<td>46</td>
</tr>
<tr>
<td>rExGAUS (exGAUS)</td>
<td>48</td>
</tr>
<tr>
<td>rEXP (EXP)</td>
<td>50</td>
</tr>
<tr>
<td>RG, 58, 60, 78, 126</td>
<td></td>
</tr>
<tr>
<td>rGA (GA)</td>
<td>53</td>
</tr>
<tr>
<td>rGAF (GAF)</td>
<td>55</td>
</tr>
<tr>
<td>rGB1 (GB1)</td>
<td>60</td>
</tr>
<tr>
<td>rGB2 (GB2)</td>
<td>62</td>
</tr>
<tr>
<td>RGE, 58, 128</td>
<td></td>
</tr>
<tr>
<td>rGEOM (GEOM)</td>
<td>67</td>
</tr>
<tr>
<td>rGEOMo (GEOM)</td>
<td>67</td>
</tr>
<tr>
<td>rGG (GG)</td>
<td>69</td>
</tr>
<tr>
<td>rGIG (GIG)</td>
<td>71</td>
</tr>
<tr>
<td>rGP (GP)</td>
<td>62</td>
</tr>
<tr>
<td>rGP0 (GP0)</td>
<td>73</td>
</tr>
<tr>
<td>rGT (GT)</td>
<td>75</td>
</tr>
<tr>
<td>rGU (GU)</td>
<td>77</td>
</tr>
<tr>
<td>rIG (IG)</td>
<td>80</td>
</tr>
<tr>
<td>rIGAMMA (IGAMMA)</td>
<td>81</td>
</tr>
<tr>
<td>rJSU (JSU)</td>
<td>83</td>
</tr>
<tr>
<td>rJSuo (JSuo)</td>
<td>85</td>
</tr>
<tr>
<td>rLG (LG)</td>
<td>88</td>
</tr>
<tr>
<td>rLNO (LNO)</td>
<td>90</td>
</tr>
<tr>
<td>rLO (LO)</td>
<td>93</td>
</tr>
<tr>
<td>rLOGITNO (LOGITNO)</td>
<td>94</td>
</tr>
<tr>
<td>rLOGNO (LNO)</td>
<td>90</td>
</tr>
<tr>
<td>rLOGNO2 (LNO)</td>
<td>90</td>
</tr>
<tr>
<td>rLQNO (LQNO)</td>
<td>96</td>
</tr>
<tr>
<td>rMN3 (MN3)</td>
<td>102</td>
</tr>
<tr>
<td>rMN4 (MN4)</td>
<td>102</td>
</tr>
<tr>
<td>rMN5 (MN5)</td>
<td>102</td>
</tr>
<tr>
<td>rNBF (NBF)</td>
<td>104</td>
</tr>
<tr>
<td>rNBI (NBI)</td>
<td>106</td>
</tr>
<tr>
<td>rNBIi (NBIi)</td>
<td>108</td>
</tr>
<tr>
<td>rNET (NET)</td>
<td>110</td>
</tr>
<tr>
<td>rNO (NO)</td>
<td>112</td>
</tr>
<tr>
<td>rNO2 (NO2)</td>
<td>114</td>
</tr>
<tr>
<td>rNOF (NOF)</td>
<td>116</td>
</tr>
<tr>
<td>rPARETO2 (PARETO2)</td>
<td>118</td>
</tr>
<tr>
<td>rPARETO2o (PARETO2)</td>
<td>118</td>
</tr>
<tr>
<td>rPE (PE)</td>
<td>120</td>
</tr>
<tr>
<td>rPE2 (PE)</td>
<td>120</td>
</tr>
<tr>
<td>rPIG (PIG)</td>
<td>122</td>
</tr>
<tr>
<td>rPO (PO)</td>
<td>125</td>
</tr>
<tr>
<td>rRG (RG)</td>
<td>126</td>
</tr>
<tr>
<td>rRGE (RGE)</td>
<td>128</td>
</tr>
<tr>
<td>rSEP (SEP)</td>
<td>131</td>
</tr>
<tr>
<td>rSEP1 (SEP1)</td>
<td>133</td>
</tr>
<tr>
<td>rSEP2 (SEP1)</td>
<td>133</td>
</tr>
<tr>
<td>rSEP3 (SEP1)</td>
<td>133</td>
</tr>
<tr>
<td>rSEP4 (SEP1)</td>
<td>133</td>
</tr>
<tr>
<td>rSHASH (SHASH)</td>
<td>135</td>
</tr>
<tr>
<td>rSHASHo (SHASH)</td>
<td>135</td>
</tr>
<tr>
<td>rSI (SI)</td>
<td>139</td>
</tr>
<tr>
<td>rSICHEL (SICHEL)</td>
<td>141</td>
</tr>
<tr>
<td>rSIMPLEX (SIMPLEX)</td>
<td>144</td>
</tr>
<tr>
<td>rSN1 (SN1)</td>
<td>145</td>
</tr>
<tr>
<td>rSN2 (SN2)</td>
<td>147</td>
</tr>
<tr>
<td>rSST (ST1)</td>
<td>149</td>
</tr>
<tr>
<td>rST1 (ST1)</td>
<td>149</td>
</tr>
<tr>
<td>rST2 (ST1)</td>
<td>149</td>
</tr>
<tr>
<td>rST3 (ST1)</td>
<td>149</td>
</tr>
<tr>
<td>rST3C (ST1)</td>
<td>149</td>
</tr>
<tr>
<td>rST4 (ST1)</td>
<td>149</td>
</tr>
<tr>
<td>rST5 (ST1)</td>
<td>149</td>
</tr>
<tr>
<td>rTF (TF)</td>
<td>152</td>
</tr>
<tr>
<td>rTF2 (TF)</td>
<td>152</td>
</tr>
<tr>
<td>rWARING (WARING)</td>
<td>154</td>
</tr>
<tr>
<td>rWEI (WEI)</td>
<td>156</td>
</tr>
<tr>
<td>rWEI2 (WEI2)</td>
<td>158</td>
</tr>
<tr>
<td>rWEI3 (WEI3)</td>
<td>160</td>
</tr>
<tr>
<td>rYULE (YULE)</td>
<td>162</td>
</tr>
<tr>
<td>rZABB (ZABB)</td>
<td>163</td>
</tr>
<tr>
<td>rZABI (ZABI)</td>
<td>165</td>
</tr>
<tr>
<td>rZABNB (BNB)</td>
<td>31</td>
</tr>
<tr>
<td>rZAGA (ZAGA)</td>
<td>167</td>
</tr>
<tr>
<td>rZAIG (ZAIG)</td>
<td>169</td>
</tr>
<tr>
<td>rZALG (LG)</td>
<td>88</td>
</tr>
<tr>
<td>rZANBI (ZANBI)</td>
<td>172</td>
</tr>
<tr>
<td>rZAP (ZAP)</td>
<td>174</td>
</tr>
<tr>
<td>rZAPIG (PIG)</td>
<td>122</td>
</tr>
<tr>
<td>rZASICHEL (SICHEL)</td>
<td>141</td>
</tr>
<tr>
<td>rZAZIPF (ZIPF)</td>
<td>179</td>
</tr>
</tbody>
</table>
INDEX

rZIBB (ZABB), 163
rZIBI (ZABI), 165
rZINBN (BNB), 31
rZINBF (NBF), 104
rZINBI (ZANBI), 172
rZIP (ZIP), 175
rZIP2 (ZIP2), 177
rZIPF (ZIPF), 179
rZIPIG (PIG), 122
rZISICHEL (SICHEL), 141

SEP, 131, 135
SEP1, 58, 133, 152
SEP2, 59
SEP2 (SEP1), 133
SEP3, 59
SEP3 (SEP1), 133
SEP4, 59
SEP4 (SEP1), 133
SHASH, 59, 135, 152
SHASHo, 59
SHASHo (SHASH), 135
SHASHo2 (SHASH), 135
show.link (make.link.gamlss), 98
SI, 43, 59, 108, 110, 124, 126, 139, 143
SICHEL, 43, 59, 124, 126, 141
SIMPLEX, 59, 144
SN1, 145
SN2, 147
SST (ST1), 149
ST1, 59, 149
ST2, 59
ST2 (ST1), 149
ST3, 59
ST3 (ST1), 149
ST3C (ST1), 149
ST4, 59
ST4 (ST1), 149
ST5, 59
ST5 (ST1), 149

TF, 59, 60, 94, 152
TF2 (TF), 152
tofyS (SI), 139
tofySICHEL (SICHEL), 141

VSICHEL (SICHEL), 141

WARING, 59, 154

WEI, 59, 60, 156, 159–161
WEI2, 59, 60, 157, 158, 160, 161
WEI3, 59, 157, 159, 160

YULE, 59, 162, 181

ZABB, 163
ZABI, 31, 59, 165
ZABNB, 59
ZABNB (BNB), 31
ZAGA, 167
ZAIG, 59, 169, 169
ZALG, 59, 175
ZALG (LG), 88
ZANBI, 59, 172
ZAP, 59, 89, 174
ZAPIG (PIG), 122
ZASICHEL, 59
ZASICHEL (SICHEL), 141
ZAZIPF, 59
ZAZIPF (ZIPF), 179
ZetaP (ZIPF), 179
ZIBB (ZABB), 163
ZIBI, 31, 59
ZIBI (ZABI), 165
ZINBN, 59
ZINBN (BNB), 31
ZINBF (NBF), 104
ZINBI, 59
ZINBI (ZANBI), 172
ZIP, 59, 60, 175, 175, 179
ZIP2, 59, 175, 177, 177
ZIPF, 59, 179
ZIPIG, 59
ZIPIG (PIG), 122
ZISICHEL, 59
ZISICHEL (SICHEL), 141