Package ‘gamlss’

January 27, 2023

Description Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables.

Version 5.4-12
Date 2023-01-26
Title Generalised Additive Models for Location Scale and Shape
Maintainer Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
Depends R (>= 3.3.0), graphics, stats, splines, utils, grDevices, gamlss.data (>= 5.0-0), gamlss.dist (>= 4.3.1), nlme, parallel
LazyLoad yes
Imports MASS, survival, methods
License GPL-2 | GPL-3
URL https://www.gamlss.com/
NeedsCompilation yes
Author Mikis Stasinopoulos [aut, cre, cph], Bob Rigby [aut], Vlasios Voudouris [ctb], Calliope Akantziliotou [ctb], Marco Enea [ctb], Daniil Kiose [ctb]
Repository CRAN
Date/Publication 2023-01-27 10:10:02 UTC

\textbf{R topics documented:}

\begin{itemize}
\item gamlss-package
\item acfResid
\item additive.fit
\item bfp
\item bp
\end{itemize}

\begin{tabular}{ll}
\textbf{gamlss-package} & 3 \\
\textbf{acfResid} & 7 \\
\textbf{additive.fit} & 8 \\
\textbf{bfp} & 10 \\
\textbf{bp} & 12 \\
\end{tabular}
calibration .. 14
centiles .. 16
centiles.com .. 18
centiles.pred ... 20
centiles.split ... 23
coeff.gamlss ... 25
cs ... 26
deviance.gamlss ... 29
devianceIncr .. 30
dtop ... 32
edf ... 34
find.hyper ... 35
fitDist ... 38
fitted.gamlss ... 42
fittedPlot ... 43
formula.gamlss .. 44
gamlss .. 46
gamlss.control .. 50
gamlss.cs ... 52
gamlss.fp ... 53
gamlss.lo ... 54
gamlss.ps ... 55
gamlss.random .. 56
gamlss.scope ... 57
gamlssML ... 59
gamlssVGD .. 62
gen.likelihood .. 67
getPEF .. 69
getQuartile ... 71
getSmo .. 73
glim.control ... 74
histDist .. 75
histSmo .. 78
IC ... 81
lms .. 83
lo ... 86
loglogSurv ... 89
lpred ... 91
LR.test .. 93
model.frame.gamlss ... 94
numeric.deriv .. 96
par.plot ... 97
pcat .. 98
pdf.plot ... 101
plot.gamlss ... 103
plot.histSmo .. 105
plot2way ... 106
polyS .. 107
Description

Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables.

Details

The DESCRIPTION file:

Package: gamlss
Description: Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables.
Version: 5.4-12
Date: 2023-01-26
Authors@R: c(person("Mikis", "Stasinopoulos", role = c("aut", "cre", "cph"), email = "d.stasinopoulos@londonmet.ac.uk"), person("Dimitra", "Akantziliotou", role = "ctb"), person("Marco", "Enea", role = "ctb"), person("Danil", "Kiose", role = "ctb"))
Maintainer: Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
Depends: R (>= 3.3.0), graphics, stats, splines, utils, grDevices, gamlss.data (>= 5.0-0), gamlss.dist (>= 4.3.1), nlme, parallel
LazyLoad: yes
Imports: MASS, survival, methods
License: GPL-2 | GPL-3
URL: https://www.gamlss.com/
NeedsCompilation: yes
Packaged: 2020-09-10 11:45:48 UTC; dimitriosstasinopoulos
Author: Mikis Stasinopoulos [aut, cre, cph], Bob Rigby [aut], Vlasios Voudouris [ctb], Calliope Akantziliotou [ctb], Marco Enea [ctb], Daniil Kiose [ctb]
Repository: CRAN
Date/Publication: 2020-09-12 06:40:02 UTC

Index of help topics:

IC Gives the GAIC for a GAMLSS Object
LR.test Likelihood Ratio test for nested GAMLSS models
Q.stats A function to calculate the Q-statistics
Rsq Generalised (Pseudo) R-squared for GAMLSS models
VC.test Vuong and Clarke tests
acfResid ACF plot of the residuals
additive.fit Implementing Backfitting in GAMLSS
bfp Functions to fit fractional polynomials in GAMLSS
bp Bucket plot
calibration Calibrating centile curves
centiles Plots the centile curves for a GAMLSS object
centiles.com Comparing centiles from different GAMLSS models
centiles.pred Creating predictive centiles values
centiles.split Plots centile curves split by x for a GAMLSS object
coef.gamlss Extract Model Coefficients in a GAMLSS fitted model
cs Specify a Smoothing Cubic Spline Fit in a GAMLSS Formula
deviance.gamlss Global Deviance of a GAMLSS model
devianceIncr The global deviance increment
dtop Detrended transformed Owen's plot
edf Effective degrees of freedom from gamlss model
find.hyper A function to select values of hyper-parameters in a GAMLSS model
fitDist Fitting Different Parametric 'gamlss.family' Distributions.
fitted.gamlss Extract Fitted Values For A GAMLSS Model
fittedPlot Plots The Fitted Values of a GAMLSS Model
formula.gamlss Extract the Model Formula in a GAMLSS fitted model
gamlss Generalized Additive Models for Location Scale and Shape
gamlss-package Generalised Additive Models for Location Scale and Shape
gamlss.control Auxiliary for Controlling GAMLSS Fitting

gamlss.cs Support for Function cs() and scs()

gamlss.fp Support for Function fp()

gamlss.lo Support for Function lo()

gamlss.ps Support for Functions for smoothers

gamlss.random Support for Functions random() and re()

gamlss.scope Generate a Scope Argument for Stepwise GAMLSS

gamlssML Maximum Likelihood estimation of a simple
 GAMLSS model

gamlssVGD A Set of Functions for selecting Models using
 Validation or Test Data Sets and Cross
 Validation

gen.likelihood A function to generate the likelihood function
from a GAMLSS object

getPEF Getting the partial effect function from a
continuous term in a GAMLSS model

getQuantile Getting the partial quantile function for a
term

getSmo Extracting Smoother information from a GAMLSS
fitted object

glim.control Auxiliary for Controlling the inner algorithm
in a GAMLSS Fitting

histDist This function plots the histogram and a fitted
(GAMLSS family) distribution to a variable

histSmo Density estimation using the Poisson trick

lms A function to fit LMS curves for centile estimation

lo Specify a loess fit in a GAMLSS formula

loglogSurv Survival function plots for checking the tail
behaviour of the data

lpred Extract Linear Predictor Values and Standard
Errors For A GAMLSS Model

model.frame.gamlss Extract a model.frame, a model matrix or terms
from a GAMLSS object for a given distributional
parameter

numeric.deriv An internal GAMLSS function for numerical
derivatives

par.plot A function to plot parallel plot for repeated
measurement data

pcat Reduction for the Levels of a Factor.

pdf.plot Plots Probability Distribution Functions for
GAMLSS Family

plot.gamlss Plot Residual Diagnostics for an GAMLSS Object

plot.histSmo A Plotting Function for density estimator
object histSmo

plot2way Function to plot two interaction in a GAMLSS
model

polyS Auxiliary support for the GAMLSS
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predict.gamlss</td>
<td>Extract Predictor Values and Standard Errors For New Data In a GAMLSS Model</td>
</tr>
<tr>
<td>print.gamlss</td>
<td>Prints a GAMLSS fitted model</td>
</tr>
<tr>
<td>prof.dev</td>
<td>Plotting the Profile Deviance for one of the Parameters in a GAMLSS model</td>
</tr>
<tr>
<td>prof.term</td>
<td>Plotting the Profile: deviance or information criterion for one of the terms (or hyper-parameters) in a GAMLSS model</td>
</tr>
<tr>
<td>ps</td>
<td>P-Splines Fits in a GAMLSS Formula</td>
</tr>
<tr>
<td>quantSheets</td>
<td>Quantile Sheets</td>
</tr>
<tr>
<td>random</td>
<td>Specify a random intercept model in a GAMLSS formula</td>
</tr>
<tr>
<td>refit</td>
<td>Refit a GAMLSS model</td>
</tr>
<tr>
<td>residuals.gamlss</td>
<td>Extract Residuals from GAMLSS model</td>
</tr>
<tr>
<td>ri</td>
<td>Specify ridge or lasso Regression within a GAMLSS Formula</td>
</tr>
<tr>
<td>rqres.plot</td>
<td>Creating and Plotting Randomized Quantile Residuals</td>
</tr>
<tr>
<td>rvcov</td>
<td>Robust Variance-Covariance matrix of the parameters from a fitted GAMLSS model</td>
</tr>
<tr>
<td>stepGAIC</td>
<td>Choose a model by GAIC in a Stepwise Algorithm</td>
</tr>
<tr>
<td>summary.gamlss</td>
<td>Summarizes a GAMLSS fitted model</td>
</tr>
<tr>
<td>term.plot</td>
<td>Plot regression terms for a specified parameter of a fitted GAMLSS object</td>
</tr>
<tr>
<td>update.gamlss</td>
<td>Update and Re-fit a GAMLSS Model</td>
</tr>
<tr>
<td>wp</td>
<td>Worm plot</td>
</tr>
<tr>
<td>z.scores</td>
<td>Z-scores for lms objects</td>
</tr>
</tbody>
</table>

Author(s)

Mikis Stasinopoulos [aut, cre, cph], Bob Rigby [aut], Vlasios Voudouris [ctb], Calliope Akantziliotou [ctb], Marco Enea [ctb], Daniil Kiose [ctb]

Maintainer: Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

acfResid

(see also https://www.gamlss.com/).

See Also
gamlss.dist

Examples

data(abdom)
mod<-gamlss(y~pb(x),sigma.fo=~pb(x),family=BCT, data=abdom, method=mixed(1,20))
plot(mod)
rm(mod)

acfResid | ACF plot of the residuals

Description

This plot display the ACF and PACF of the residuals of a gamlss or other fitted model (provided that they have been standardised appropriately. Is is appropriate for time series data.

Usage

acfResid(obj = NULL, resid = NULL)

Arguments

obj A gamlss model or other fitted model where the resid() function applies exist
resid if obj does not exist the argument here will be used

Details

The ACF and PACF for the residuals r, squared residuals r^2, r^3 and r^4 are plotted

Value

The relevant plots are displayed

Author(s)

Mikis Stasinopoulos. Bob Rigby. Vlasios Voudouris and Majid Djennad
References

See Also

acf

Examples

```r
library(datasets)
data(co2)
ml<- gamlss(co2~pb(as.numeric(time(co2)))+factor(cycle(co2)))
acfResid(ml)
```

additive.fit Implementing Backfitting in GAMLSS

Description

This function is not to be used on its own. It is used for backfitting in the GAMLSS fitting algorithms and it is based on the equivalent function written by Trevor Hastie in the gam() S-plus implementation, (Chambers and Hastie, 1991).

Usage

`additive.fit(x, y, w, s, who, smooth.frame, maxit = 30, tol = 0.001, trace = FALSE, se = TRUE, ...)`

Arguments

- `x`: the linear part of the explanatory variables
- `y`: the response variable
- `w`: the weights
- `s`: the matrix containing the smoothers
- `who`: the current smoothers
- `smooth.frame`: the data frame used for the smoothers
additive.fit

- `maxit` maximum number of iterations in the backfitting
- `tol` the tolerance level for the backfitting
- `trace` whether to trace the backfitting algorithm
- `se` whether standard errors are required
- `...` for extra arguments

Details

This function should not be used on its own

Value

Returns a list with the linear fit plus the smoothers

Author(s)

Mikis Stasinopoulos

References

(see also https://www.gamlss.com/).

See Also

gamlss
bfp

Functions to fit fractional polynomials in GAMLSS

Description

The function `bfp` generate a power polynomial basis matrix which (for given powers) can be used to fit power polynomials in one x-variable. The function `fp` takes a vector and returns it with several attributes. The vector is used in the construction of the model matrix. The function `fp()` is not used for fitting the fractional polynomial curves but assigns the attributes to the vector to aid `gamlss` in the fitting process. The function doing the fitting is `gamlss.fp()` which is used at the backfitting function `additive.fit` (but never used on its own). The (experimental) function `pp` can be use to fit power polynomials as in $a + b_1 x^{p_1} + b_2 x^{p_2}$, where p_1 and p_2 have arbitrary values rather restricted as in the `fp` function.

Usage

```r
bfp(x, powers = c(1, 2), shift = NULL, scale = NULL)
fp(x, npoly = 2, shift = NULL, scale = NULL)
pp(x, start = list(), shift = NULL, scale = NULL)
```

Arguments

- **x**: the explanatory variable to be used in functions `bfp()` or `fp()`. Note that this is different from the argument `x` use in `gamlss.fp` (a function used in the backfitting but not by straight by the user)
- **powers**: a vector containing as elements the powers in which the `x` has to be raised
- **shift**: a number for shifting the `x`-variable. The default values is zero, if `x` is positive, or the minimum of the positive difference in `x` minus the minimum of `x`
- **scale**: a positive number for scaling the `x`-variable. The default values is $10^{\text{sign}(\log_{10}(\text{range}))}\cdot \text{trunc}(\text{abs}(\log_{10}(\text{range})))}$
- **npoly**: a positive indicating how many fractional polynomials should be considered in the fit. Can take the values 1, 2 or 3 with 2 as default
- **start**: a list containing the starting values for the non-linear maximization to find the powers. The results from fitting the equivalent fractional polynomials can be used here

Details

The above functions are an implementation of the fractional polynomials introduced by Royston and Altman (1994). The three functions involved in the fitting are loosely based on the fractional polynomials implementation in S-plus written by Gareth Amber in 1999, (unfortunately the URL link for his work no longer exist). The function `bfp` generates the right design matrix for the fitting a power polynomial of the type $a + b_1 x^{p_1} + b_2 x^{p_2} + \ldots + b_k x_k^{p_k}$. For given powers p_1, p_2, \ldots, p_k given as the argument `powers` in `bfp()` the function can be used to fit power polynomials in the same way as the functions `poly()` or `bs()` (of package `splines`) are used to fit orthogonal or piecewise polynomials respectively. The function `fp()`, which is working as a smoother in `gamlss`, is used
to fit the best fractional polynomials within a set of power values. Its argument `npoly` determines whether one, two or three fractional polynomials should used in the fitting. For a fixed number `npoly` the algorithm looks for the best fitting fractional polynomials in the list \(c(-2, -1, -0.5, 0, 0.5, 1, 2, 3) \). Note that `npoly=3` is rather slow since it fits all possible combinations 3-way combinations at each backfitting interaction. The function `gamlss.fp()` is an internal function of `GAMLSS` allowing the fractional polynomials to be fitted in the backfitting cycle of `gamlss`, and should be not used on its own.

Value

The function `bfp` returns a matrix to be used as part of the design matrix in the fitting.

The function `fp` returns a vector with values zero to be included in the design matrix but with attributes useful in the fitting of the fractional polynomials algorithm in `gamlss.fp`.

Warning

Since the model constant is included in both the design matrix \(X \) and in the backfitting part of fractional polynomials, its values is wrongly given in the `summary`. Its true values is the model constant minus the constant from the fractional polynomial fitting. What happens if more that one fractional polynomials are fitted?

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <b.rigby@londonmet.ac.uk>

References

(see also https://www.gamlss.com/).

See Also

gamlss, gamlss.family
Examples

```r
data(abdom)
# fits polynomials with power 1 and .5
mod1 <- gamlss(y ~ bfp(x, c(1, 0.5)), data = abdom)
# fit the best of one fractional polynomial
m1 <- gamlss(y ~ fp(x, 1), data = abdom)
# fit the best of two fractional polynomials
m2 <- gamlss(y ~ fp(x, 2), data = abdom)
# fit the best of three fractional polynomials
m3 <- gamlss(y ~ fp(x, 3), data = abdom)
# get the coefficient for the second model
m2$mu.coefSmo
# now power polynomials using the best 2 fp c()
m4 <- gamlss(y ~ pp(x, c(1, 3)), data = abdom)
# This is not a good idea in this case because
# if you look at the fitted values you see what it went wrong
plot(y ~ x, data = abdom)
lines(fitted(m2, "mu") ~ abdom$x, col = "red")
lines(fitted(m4, "mu") ~ abdom$x, col = "blue")
```

Description

A bucket plot is a graphical way to check the skewness and kurtosis of a continuous variable or the residuals of a fitted GAMLSS model. It plots the transformed moment skewness and transformed moment kurtosis of the variable (or residuals) together with a cloud of points obtained using a non-parametric bootstrap from the original variable (or residuals). It also provides a graphical way of performing the Jarque-Bera test (Jarque and Bera, 1980).

There are two different bucket plots specified by the `type` argument:

i) the moment bucket and ii) the centile bucket which itself can be central or tail one.

Usage

```r
bp(obj = NULL, weights = NULL,
   type = c("moment", "centile.central", "centile.tail"),
   xvar = NULL, bootstrap = TRUE, no.bootstrap = 99,
   col.bootstrap = c("lightblue", "pink", "khaki",
                     "thistle", "tan", "sienna", "steelblue", "coral", "gold",
                     "cyan"),
   pch.bootstrap = rep(21, 10), asCharacter = TRUE,
   col.point = rep("black", 10), pch.point = 1:10,
   lwd.point = 2, text.to.show = NULL, cex.text = 1.5,
   col.text = "black", show.legend = FALSE, n.inter = 4,
   xcut.points = NULL, overlap = 0, show.given = TRUE,
   cex = 1, pch = 21, data = NULL,
   bar.bg = c(num = "lightblue", fac = "pink"), ...)```
**Arguments**

- **obj**
  A `gamlss` fitted object.

- **weights**
  Prior weights.

- **type**
  Type of bucket plot whether "moment", "centile.central", or "centile.tail".

- **xvar**
  The x-variable if need to split the bucket plot.

- **bootstrap**
  Whether to bootstrap the skewness and kurtosis points.

- **no.bootstrap**
  The number of the bootstrap samples in the plot.

- **col.bootstrap**
  The colour of the bootstrap samples in the plot.

- **pch.bootstrap**
  The character plotting symbol.

- **asCharacter**
  Whether to plot the skewness and kurtosis as character or just points.

- **col.point**
  The colour of the point is plotted as point.

- **pch.point**
  The character symbol for the point.

- **lwd.point**
  The width of the symbol.

- **text.to.show**
  Whether to show character for the model.

- **cex.text**
  The `cex` of the text.

- **col.text**
  The colour of the text.

- **show.legend**
  Whether to show the legend.

- **n.inter**
  Number of intervals.

- **xcut.points**
  Cut points for the `xvar` if need.

- **overlap**
  Whether the interval id `xvar` is set should overlap.

- **show.given**
  Showing the top part of the plot.

- **cex**
  The `cex`.

- **pch**
  The point character `pch`.

- **data**
  If data has to be set.

- **bar.bg**
  The background color of the bars in the top of the figure.

- **...**
  Other arguments.

**Value**

A plot displaying the transformed moment skewness and transformed moment kurtosis of the sample or residual of a model.

**Note**

The bucket plot provides an additional residual diagnostic tool that can be used for fitted model checking, alongside other diagnostic tools, for example worm plots, and Q (and Z) statistics.

**Author(s)**

Mikis Stasinopoulos, <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk> and Fernanda De Bastiani
References


(see also https://www.gamlss.com/).

See Also

wp, Q.stats

Examples

m1 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA)
bp(m1)

Description

This function can used when the fitted model centiles do not coincide with the sample centiles.

Usage

calibration(object, xvar, cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
         legend = FALSE, fan = FALSE, ...)

Arguments

object a gamlss fitted object
xvar The explanatory variable
cent a vector with elements the % centile values for which the centile curves have to be evaluated
The function finds the sample quantiles of the residuals of the fitted model (the z-scores) and use them as sample quantile in the argument `cent` of the `centiles()` function. This procedure is appropriate if the fitted model centiles do not coincide with the sample centiles and when this failure is the same in all values of the explanatory variable `xvar`.

Value

A centile plot is produced and the sample centiles below each centile curve are printed (or saved)

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk> and Vlasios Voudouris

References


(see also https://www.gamlss.com/).

See Also

centiles, centiles.fan

Examples

data(abdom)
m1<-gamlss(y~pb(x), sigma.fo=-pb(x), family=LO, data=abdom)
calibration(m1, xvar=abdom$x, fan=TRUE)
centiles

Plots the centile curves for a GAMLSS object

Description

This function centiles() plots centiles curves for distributions belonging to the GAMLSS family of distributions. The function also tabulates the sample percentages below each centile curve (for comparison with the model percentages given by the argument cent.) The function centiles.fan() plots a fan-chart of the centile curves. A restriction of the functions is that it applies to models with one explanatory variable only.

Usage

centiles(obj, xvar, cent = c(0.4, 2, 10, 25, 50, 90, 98, 99.6),
        legend = TRUE, ylab = "y", xlab = "x", main = NULL,
        main.gsub = "@", xleg = min(xvar), yleg = max(obj$y),
        xlim = range(xvar), ylim = range(obj$y), save = FALSE,
        plot = TRUE, points = TRUE, pch = 15, cex = 0.5, col = gray(0.7),
        col.centiles = 1:length(cent) + 2, lty.centiles = 1, lwd.centiles = 1,
        ...)

centiles.fan(obj, xvar, cent = c(0.4, 2, 10, 25, 50, 90, 98, 99.6),
             ylab = "y", xlab = "x", main = NULL, main.gsub = "@",
             xleg = min(xvar), yleg = max(obj$y), xlim = range(xvar),
             ylim = range(obj$y), points = FALSE, median = TRUE, pch = 15,
             cex = 0.5, col = gray(0.7),
             colors = c("cm", "gray", "rainbow", "heat", "terrain", "topo"), ...)

Arguments

obj    a fitted gamlss object from fitting a gamlss distribution
xvar   the unique explanatory variable
cent   a vector with elements the % centile values for which the centile curves have to be evaluated
legend whether a legend is required in the plot or not, the default is legend=TRUE
ylab   the y-variable label
xlab   the x-variable label
main   the main title here as character. If NULL the default title "centile curves using NO" (or the relevant distributions name) is shown
main.gsub if the main.gsub (with default "@") appears in the main title then it is substituted with the default title.
xleg   position of the legend in the x-axis
yleg   position of the legend in the y-axis
xlim   the limits of the x-axis
ylim   the limits of the y-axis
save  whether to save the sample percentages or not with default equal to FALSE. In this case the sample percentages are printed but are not saved
plot whether to plot the centiles. This option is useful for centile.split
pch the character to be used as the default in plotting points see par
cex size of character see par
col plotting colour see par
col.centiles  Plotting colours for the centile curves
lty.centiles line type for the centile curves
lwd.centiles The line width for the centile curves
colors the different colour schemes to be used for the fan-chart. The following are available c("cm","gray", "rainbow", "heat", "terrain", "topo"),
points whether the data points should be plotted, default is TRUE for centiles() and FALSE for centiles.fan()
median whether the median should be plotted (only in centiles.fan())
... for extra arguments

Details
Centiles are calculated using the fitted values in obj and xvar must correspond exactly to the predictor in obj to plot correctly.

col.centiles, lty.centiles and lwd.centiles may be vector arguments and are recycled to the length cent if necessary.

Value
A centile plot is produced and the sample centiles below each centile curve are printed (or saved)

Warning
This function is appropriate only when one continuous explanatory variable is fitted in the model

Author(s)
Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk>
with contribution from Steve Ellison

References

(see also https://www.gamlss.com/).

See Also

gamlss, centiles.split, centiles.com

Examples

data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
# default plot
centiles(h,xvar=abdom$x)
# control of colours and lines
centiles(h, xvar=abdom$x, col.cent=c(2,3,4,5,1,5,4,3,2,1), lwd.cent=c(1,1,1,2,1,7,1,1))
#Control line types
centiles(h, xvar=abdom$x, col.cent=1, cent=c(5,2.5,50,97.5,99.5), lty.centiles=c(3,2,1,2,3),lwd.cent=c(1,1,2,1,1))
# control of the main title
centiles(h, xvar=abdom$x, main="Abdominal data 
 @")
# the fan-chart
centiles.fan(h,xvar=abdom$x, colors="rainbow")
rm(h)

centiles.com Comparing centiles from different GAMLSS models

Description

This function compares centiles curves for more than one GAMLSS objects. It is based on the centiles function. The function also tabulates the sample percentages below each centile curve (for comparison with the model percentages given by the argument cent). A restriction of the function is that it applies to models with one explanatory variable only.

Usage

centiles.com(obj, ..., xvar, cent = c(0.4, 10, 50, 90, 99.6), legend = TRUE, ylab = "y", xlab = "x", xleg = min(xvar), yleg = max(obj$y), xlim = range(xvar), ylim = NULL, no.data = FALSE, color = TRUE, main = NULL, plot = TRUE)

Arguments

obj a fitted gamlss object from fitting a gamlss continuous distribution
... optionally more fitted GAMLSS model objects
xvar the unique explanatory variable
a vector with elements the % centile values for which the centile curves have to be evaluated

whether a legend is required in the plot or not, the default is `legend=TRUE`

the y-variable label

the x-variable label

position of the legend in the x-axis

position of the legend in the y-axis

the limits of the x-axis

the limits of the y-axis

whether the data should plotted, default `no.data=FALSE` or not `no.data=TRUE`

whether the fitted centiles are shown in colour, `color=TRUE` (the default) or not `color=FALSE`

the main title

whether to plot the centiles

Centile plots are produced for the different fitted models and the sample centiles below each centile curve are printed

This function is appropriate only when one continuous explanatory variable is fitted in the model

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Bob Rigby <r.rigby@londonmet.ac.uk>


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

[gamlss, centiles, centiles.split]
Examples

data(abdom)
h1<-gamlss(y~cs(x,df=3), sigma.formula=-cs(x,1),family=BCT, data=abdom)
h2<-gamlss(y~pb(x), sigma.formula=-pb(x), family=BCT, data=abdom)
centiles.com(h1,h2,xvar=abdom$x)
rm(h1,h2)

centiles.pred	Creating predictive centiles values

Description

This function creates predictive centiles curves for new x-values given a GAMLSS fitted model. The function has three options: i) for given new x-values and given percentage centiles calculates a matrix containing the centiles values for y, ii) for given new x-values and standard normalized centile values calculates a matrix containing the centiles values for y, iii) for given new x-values and new y-values calculates the z-scores. A restriction of the function is that it applies to models with only one explanatory variable.

Usage

centiles.pred(obj, type = c("centiles", "z-scores", "standard-centiles"),
  xname = NULL, xvalues = NULL, power = NULL, yval = NULL,
  cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
  dev = c(-4, -3, -2, -1, 0, 1, 2, 3, 4), calibration = FALSE,
  plot = FALSE, legend = TRUE, ylim = NULL,xlim = NULL,
  ...
)

Arguments

obj a fitted gamlss object from fitting a gamlss continuous distribution
type the default, "centiles", gets the centiles values given in the option cent. type="standard-centiles" gets the standard centiles given in the dev. type="z-scores" gets the z-scores for given y and x new values
xname the name of the unique explanatory variable (it has to be the same as in the original fitted model)xvalues the new values for the explanatory variable where the prediction will take placepower if power transformation is needed (but read the note below)yval the response values for a given x required for the calculation of "z-scores"cent a vector with elements the % centile values for which the centile curves have to be evaluateddev a vector with elements the standard normalized values for which the centile curves have to be evaluated in the option type="standard-centiles"calibration whether to calibrate the "centiles", the default is calibrate=FALSE
plot  whether to plot the "centiles" or the "standard-centiles", the default is plot=FALSE
legend whether a legend is required in the plot or not, the default is legend=TRUE
ylim  If different ylim is required from the default
xlim  If different xlim is required from the default
... for extra arguments

Value

a vector (for option type="z-scores") or a matrix for options type="centiles" or type="standard-centiles" containing the appropriate values

Warning

See example below of how to use the function when power transformation is used for the x-variables

Note

The power option should be only used if the model

Author(s)

Mikis Stasinopoulos, <d.stasinopoulos@londonmet.ac.uk>, based on ideas of Elaine Borghie from the World Health Organization

References


(see also https://www.gamlss.com/).

See Also

gamlss, centiles, centiles.split
Examples

```r
bring the data and fit the model
data(abdom)
a <- gamlss(y~pb(x), sigma.fo=pb(x), data=abdom, family=BCT)
plot the centiles
centiles(a, xvar=abdom$x)
```

```r
the first use of the function centiles.pred()
to calculate the centiles at new x values
newx <- seq(12, 40, 2)
mat <- centiles.pred(a, xname="x", xvalues=newx)
mat
now plot the centile curves
mat <- centiles.pred(a, xname="x", xvalues=newx, plot=TRUE)
```

```r
the second use of the function centiles.pred()
to calculate (normalised) standard-centiles for new x
values using the fitted model
newx <- seq(12, 40, 2)
mat <- centiles.pred(a, xname="x", xvalues=newx, type="standard-centiles")
mat
now plot the standard centiles
mat <- centiles.pred(a, xname="x", xvalues=newx, type="standard-centiles", plot = TRUE)
```

```r
the third use of the function centiles.pred()
if we have new x and y values what are their z-scores?
create new y and x values and plot them in the previous plot
newy <- c(130, 121, 123, 125, 140, 145, 150)
for(i in 1:7) points(newx[i], newy[i], col="blue")
now calculate their z-scores
znewx <- centiles.pred(a, xname="x", xvalues=newx, yval=newy, type="z-scores")
znewx
```

```r
Not run:
What we do if the x variables is transformed?
case 1 : transformed x-variable within the formula
fit model
aa <- gamlss(y~pb(x^0.5), sigma.fo=pb(x^0.5), data=abdom, family=BCT)
centiles is working in this case
centiles(aa, xvar=abdom$x, legend = FALSE)
get predict for values of x at 12, 14, ..., 40
mat <- centiles.pred(aa, xname="x", xvalues=seq(12, 40, 2), plot=TRUE)
mat
plot all prediction points
xx <- rep(mat[,1],9)
```
yy <- unlist(mat[,2:10])
points(xx,yy,col="red")

## case 2 : the x-variable is previously transformed

nx <- abdom$x^0.5
aa <- gamlss(y~pb(nx),sigma.fo=~pb(nx), data=abdom, family=BCT)
centiles(aa, xvar=abdom$x)
# equivalent to fitting
newd<-.data.frame( abdom, nx=abdom$x^0.5)
aal <- gamlss(y~pb(nx),sigma.fo=~pb(nx), family=BCT, data=newd)
centiles(aal, xvar=abdom$x)
# getting the centiles at x equal to 12, 14, ...40
mat <- centiles.pred(aa, xname="nx", xvalues=seq(12,40,2), power=0.5,
data=newd, plot=TRUE)
# plot all prediction points
xxx <- rep(mat[,1],9)
yyy <- unlist(mat[,2:10])
points(xxx,yyy,col="red")
# the idea is that if the transformed x-variable is used in the fit
# the power argument has to used in centiles.pred()

## End(Not run)

centiles.split

Plots centile curves split by x for a GAMLSS object

Description
This function plots centiles curves for separate ranges of the unique explanatory variable x. It is similar to the centiles function but the range of x is split at a user defined values xcut.point into r separate ranges. The functions also tabulates the sample percentages below each centile curve for each of the r ranges of x (for comparison with the model percentage given by cent) The model should have only one explanatory variable.

Usage

centiles.split(obj, xvar, xcut.points = NULL, n.inter = 4,
cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
legend = FALSE, main = NULL, main.gsub = "",
ylab = "y", xlab = "x", ylim = NULL, overlap = 0,
save = TRUE, plot = TRUE, ...)

Arguments

obj a fitted gamlss object from fitting a gamlss continuous distribution
xvar the unique explanatory variable
xcut.points the x-axis cut off points e.g. c(20,30). If xcut.points=NULL then the n.inter argument is activated
n.inter  if xcut.points=NULL this argument gives the number of intervals in which the 
x-variable will be split, with default 4
cent  a vector with elements the % centile values for which the centile curves are to 
be evaluated
legend  whether a legend is required in the plots or not, the default is legend=FALSE
main  the main title as character. If NULL the default title (shown the intervals) is 
shown
main.gsub  if the main.gsub (with default "@") appears in the main title then it is substi-
tuted with the default title.
ylab  the y-variable label
xlab  the x-variable label
ylim  the range of the y-variable axis
overlap  how much overlapping in the xvar intervals. Default value is overlap=0 for non 
overlapping intervals
save  whether to save the sample percentages or not with default equal to TRUE. In 
this case the functions produce a matrix giving the sample percentages for each 
interval
plot  whether to plot the centiles. This option is useful if the sample statistics only are 
to be used
...  for extra arguments

Value

Centile plots are produced and the sample centiles below each centile curve for each of the r ranges 
of x can be saved into a matrix.

Warning

This function is appropriate when only one continuous explanatory variable is fitted in the model

Author(s)

Mikis Stasinopoulos, <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk>, 
with contributions from Elaine Borghie

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and 

modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older 
version can be found in https://www.gamlss.com/.

jstatsoft.org/v23/i07/. 

(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

gamlss centiles, centiles.com

Examples

data(abdom)

h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
mout <- centiles.split(h,xvar=abdom$x)
mout

rm(h,mout)

---

**coef.gamlss**

*Extract Model Coefficients in a GAMLSS fitted model*

**Description**

`coef.gamlss` is the GAMLSS specific method for the generic function `coef` which extracts model coefficients from objects returned by modelling functions. `coefficients` is an alias for `coef`.

**Usage**

```r
S3 method for class 'gamlss'
coef(object, what = c("mu", "sigma", "nu", "tau"),
 parameter = NULL, ...)

coefAll(obj, deviance = FALSE, ...)
```

**Arguments**

- `object, obj` a GAMLSS fitted model
- `what` which parameter coefficient is required, default what="mu"
- `parameter` equivalent to what (more obvious name)
- `deviance` whether to print also the deviance.
- `...` for extra arguments

**Value**

Coefficients extracted from the GAMLSS model object.

**Author(s)**

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

`gamlss`, `deviance.gamlss`, `fitted.gamlss`

Examples

```r
data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=NBI, data=aids) #
coef(h)
coefAll(h)
rm(h)
```

---

**cs**

Specify a Smoothing Cubic Spline Fit in a GAMLSS Formula

Description

The functions `cs()` and `scs()` are using the cubic smoothing splines function `smooth.spline()` to do smoothing. They take a vector and return it with several attributes. The vector is used in the construction of the model matrix. The functions do not do the smoothing, but assigns the attributes to the vector to aid gamlss in the smoothing. The function doing the smoothing is `gamlss.cs()`. This function use the R function `smooth.spline()` which is then used by the backfitting function `additive.fit()` which is based on the original GAM implementation described in Chambers and Hastie (1992). The function `gamlss.scs()` differs from the function `cs()` in that allows cross validation of the smoothing parameters unlike the `cs()` which fixes the effective degrees of freedom, df. Note that the recommended smoothing function is now the function `pb()` which allows the estimation of the smoothing parameters using a local maximum likelihood. The function `pb()` is based on the penalised beta splines (P-splines) of Eilers and Marx (1996).

The (experimental) function `vc` is now defunct. For fitting varying coefficient models, Hastie and Tibshirani (1993) use the function `pvc()`.
Usage

cs(x, df = 3, spar = NULL, c.spar = NULL, control = cs.control(...), ...)
scs(x, df = NULL, spar = NULL, control = cs.control(...), ...)
cs.control(cv = FALSE, all.knots = TRUE, nknots = NULL, keep.data = TRUE,
  df.offset = 0, penalty = 1.4, control.spar = list(), ...)

Arguments

x
  the univariate predictor, (or expression, that evaluates to a numeric vector). For
  the function vc the x argument is the vector which has its (linear) coefficient
  change with r

df
  the desired equivalent number of degrees of freedom (trace of the smoother ma-
  trix minus two for the constant and linear fit). The real smoothing parameter
  (spar below) is found such that df=tr(S)-2, where S is the implicit smoother
  matrix. Values for df should be greater than 0, with 0 implying a linear fit.

spar
  smoothing parameter, typically (but not necessarily) in (0,1]. The coefficient
  lambda of the integral of the squared second derivative in the fit (penalised
  log likelihood) criterion is a monotone function of 'spar', see the details in
  smooth.spline.

c.spar
  This is an option to be used when the degrees of freedom of the fitted gamlss
  object are different from the ones given as input in the option df. The de-
  fault values used are the ones given the option control.spar in the R func-
  tion smooth.spline() and they are c.spar=c(-1.5, 2). For very large data
  sets e.g. 10000 observations, the upper limit may have to increase for exam-
  ple to c.spar=c(-1.5, 2.5). Use this option if you have received the warning
  'The output df are different from the input, change the control.spar'. c.spar
  can take both vectors or lists of length 2, for example c.spar=c(-1.5, 2.5) or
  c.spar=list(-1.5, 2.5) would have the same effect.

control
  control for the function smooth.spline(), see below

cv
  see the R function smooth.spline()

all.knots
  see the R function smooth.spline()

nknots
  see the R function smooth.spline()

keep.data
  see the R function smooth.spline()

df.offset
  see the R function smooth.spline()

penalty
  see the R function smooth.spline(), here the default value is 1.4

control.spar
  see above c.spar or the equivalent argument in the function smooth.spline

... for extra arguments

Details

Note that cs itself does no smoothing; it simply sets things up for the function gamlss() which in
turn uses the function additive.fit() for backfitting which in turn uses gamlss.cs()

Note that cs() and scs() functions behave differently at their default values that is if df and lambda
are not specified. cs(x) by default will use 3 extra degrees of freedom for smoothing for x. scs(x)
by default will estimate lambda (and the degrees of freedom) automatically using generalised cross validation (GCV). Note that if GCV is used the convergence of the gamlss model can be less stable compared to a model where the degrees of freedom are fixed. This will be true for small data sets.

**Value**

the vector x is returned, endowed with a number of attributes. The vector itself is used in the construction of the model matrix, while the attributes are needed for the backfitting algorithms additive.fit(). Since smoothing splines includes linear fits, the linear part will be efficiently computed with the other parametric linear parts of the model.

**Warning**

For a user who wishes to compare the gamlss() results with the equivalent gam() results in S-plus: make sure when using S-plus that the convergence criteria epsilon and bf.epsilon in control.gam() are decreased sufficiently to ensure proper convergence in S-plus. Also note that the degrees of freedom are defined on top of the linear term in gamlss, but on top of the constant term in S-plus, (so use an extra degrees of freedom in S-plus in order to obtain comparable results to those in gamlss).

Change the upper limit of spar if you received the warning 'The output df are different from the input, change the control.spar'.

For large data sets do not use expressions, e.g. cs(x^0.5) inside the gamlss function command but evaluate the expression, e.g. nx=x^0.5, first and then use cs(nx).

**Note**

The degrees of freedom df are defined differently from that of the gam() function in S-plus. Here df are the additional degrees of freedom excluding the constant and the linear part of x. For example df=4 in gamlss() is equivalent to df=5 in gam() in S-plus

**Author(s)**

Mikis Stasinopoulos and Bob Rigby (see also the documentation of the functionsmooth.spline() for the original authors of the cubic spline function.)

**References**


See Also
gamlss, gamlss.cs, pb, pvc

Examples

# cubic splines example
data(aids)
# fitting a smoothing cubic spline with 7 degrees of freedom
# plus the a quarterly effect
#plus the a quarterly effect
aids1<-gamlss(y~cs(x,df=7)+qrt,data=aids,family=PO) #
aids2<-gamlss(y~cs(x,df=5)+qrt,data=aids,family=PO) #
aids3<-gamlss(y~scs(x)+qrt,data=aids,family=PO) # using GCV
with(aids, plot(x,y))
lines(aids$x,fitted(aids1), col="red")
lines(aids$x,fitted(aids3), col="green")
rm(aids1, aids2, aids3)

deviance.gamlss Global Deviance of a GAMLSS model

Description

Returns the global, -2*log(likelihood), or the penalized, -2*log(likelihood)+ penalties, deviance of a fitted GAMLSS model object.

Usage

## S3 method for class 'gamlss'
deviance(object, what = c("G", "P"), ...)

Arguments

object a GAMLSS fitted model
what put "G" for Global or "P" for Penalized deviance
... for extra arguments

Details
deviance is a generic function which can be used to extract deviances for fitted models. deviance.gamlss is the method for a GAMLSS object.
Value

The value of the global or the penalized deviance extracted from a GAMLSS object.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

(see also https://www.gamlss.com/).

See Also

gamlss.family, coef.gamlss, fitted.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
deviance(h)
rm(h)

devianceIncr

The global deviance increment

Description

The global deviance increment is the contribution of each individual observation to the global deviance. The function devianceIncr() can be used to extract the global deviance increment for a fitted gamlss model or for a new (test/validation) data set. Large values for global deviance increment indicate a bad fit and for new data a bad prediction.

Usage

devianceIncr(obj, newdata = NULL)
Arguments

obj a gamlss object
newdata test data set to check the global deviance increment.

Value

Returns a vector of the global deviance increments for each observation.

Author(s)

Mikis Stasinopoulos

References


(see also https://www.gamlss.com/).

See Also

deviance

Examples

#---------------------------------------------------------------
# Count data set
# fit Poisson model
h1 <- gamlss(Claims~L_Population+L_Accidents+L_KI+L_Popdensity, data=LGAclaims, family=PO)
p1<-devianceIncr(h1)
# fit negative binomial model
h2 <- gamlss(Claims~L_Population+L_Accidents+L_KI+L_Popdensity, data=LGAclaims, family=NBI)
p2<-devianceIncr(h2)
# comparing using boxplots
boxplot(cbind(p1,p2))
# comparing using empirical cdf
plot(ecdf(p1))
lines(ecdf(p2), col=2)
# comparing against the y-values
plot(p1~LGAclaims$Claims, pch=20, col="gray")
# Continuous data sets
## Not run:
m1 <- gamlss(head~pb(age), data=db[1:6000,])
p1 <- devianceIncr(m1)
m2 <- gamlss(head~pb(age), sigma.fo=~pb(age), nu.fo=~pb(age),
        tau.fo=~pb(age), data=db[1:6000,], family=BCT)
p2 <- devianceIncr(m2)
# comparing using summaries
summary(p1); summary(p2)
# comparing using boxplots
boxplot(cbind(p1, p2))
# comparing using histograms
hist(p1, col=rgb(1,0,0,0.5), xlim=c(0,50), breaks=seq(0,50,2))
hist(p2, col=rgb(0,0,1,0.5), add=T)
# comparing using empirical cdf
plot(ecdf(p1))
lines(ecdf(p2), col=2)
## End(Not run)

---

### dtop

**Detrended transformed Owen’s plot**

**Description**

Provides single or multiple detrended transformed Owen’s plot, Owen (1995), for a GAMLSS fitted
objects or any other fitted object which has the method resid(). This is a diagnostic tool for checking
whether the normalised quantile residuals are coming from a normal distribution or not. This could
be true if the horizontal line is within the confidence intervals.

**Usage**

```r
dtop(object = NULL, xvar = NULL, resid = NULL,
 type = c("Owen", "JW"),
 conf.level = c("95", "99"), n.inter = 4,
 xcut.points = NULL, overlap = 0,
 show.given = TRUE, cex = 1, pch = 21,
 line = TRUE, ...)
```

**Arguments**

- **object**
  - a GAMLSS fitted object or any other fitted object which has the method resid().
- **xvar**
  - the explanatory variable against which the detrended Owen’s plots will be plotted
- **resid**
  - if the object is not specified the residual vector can be given here

conf.level: 95 (default) or 99 percent confidence interval for the plots

n.inter: the number of intervals in which the explanatory variable xvar will be cut

xcut.points: the x-axis cut off points e.g. c(20,30). If xcut.points=NULL then the n.inter argument is activated

overlap: how much overlapping in the xvar intervals. Default value is overlap=0 for non overlapping intervals

show.given: whether to show the x-variable intervals in the top of the graph, default is show.given=TRUE

cex: the cex plotting parameter with default cex=1

pch: the pch plotting parameter with default pch=21

line: whether the detrended empirical cdf should be plotted or not

...for extra arguments

Details

If the xvar argument is not specified then a single detrended Owen’s plot is used, see Owen (1995). In this case the plot is a detrended nonparametric likelihood confidence band for a distribution function. That is, if the horizontal lines lies within the confidence band then the normalised residuals could have come from a Normal distribution and consequently the assumed response variable distribution is reasonable. If the xvar is specified then we have as many plots as n.iter. In this case the x-variable is cut into n.iter intervals with an equal number observations and detrended Owen’s plots for each interval are plotted. This is a way of highlighting failures of the model within different ranges of the explanatory variable.

Value

A plot is returned.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Vlassios Voudouris

References


See Also

wp

Examples

data(abdom)
a<-gamlss(y~pb(x),sigma.fo=~pb(x,1),family=LO,data=abdom)
dtop(a)
dtop(a, xvar=abdom$x)
rm(a)

edf

Effective degrees of freedom from gamlss model

Description

The functions edf() and edfAll() can be used to obtained the effective degrees of freedom for different additive terms for the distribution parameters in a gamlss model.

Usage

edf(obj, what = c("mu", "sigma", "nu", "tau"),
    parameter= NULL, print = TRUE, ...)
edfAll(obj, ...)

Arguments

obj A gamlss fitted model
what which of the four parameters mu, sigma, nu or tau.
parameter equivalent to what
print whether to print the label
... for extra arguments

Value

The function edfAll() re turns a list of edf for all the fitted parameters. The function edf() a vector of edf.
Note

The edf given are the ones fitted in the backfitting so the usually contained (depending on the additive term) the constant and the linear part.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also https://www.gamlss.com/).

See Also

gamlss

Examples

library(gamlss.data)
data(usair)
m1<- gamlss(y~pb(x1)+pb(x2)+pb(x6), data=usair)
edfAll(m1)
edf(m1)

find.hyper A function to select values of hyper-parameters in a GAMLSS model

Description

This function selects the values of hyper parameters and/or non-linear parameters in a GAMLSS model. It uses the R function optim which then minimises the generalised Akaike information criterion (GAIC) with a user defined penalty.

Usage

find.hyper(model = NULL, parameters = NULL, other = NULL, k = 2, steps = c(0.1), lower = -Inf, upper = Inf, method = "L-BFGS-B", ...)
Arguments

- **model**: this is a GAMLSS model in `quote()`, e.g. 
  ```r
 quote(gamlss(y~cs(x,df=p[1]),sigma.fo=~cs(x,df=p[2]),data=abdom))
  ```
  where `p[1]` and `p[2]` denote the parameters to be estimated.

- **parameters**: the starting values in the search of the optimum hyper-parameters and/or non-linear parameters, e.g. `parameters=c(3,3)`

- **other**: this is used to optimise other non-parameters, for example a transformation of the explanatory variable of the kind `x^{p[3]}`, e.g. `others=quote(nx<-x^p[3])` where `nx` is now in the model formula.

- **k**: specifies the penalty in the GAIC, (the default is 2) e.g. `k=3`

- **steps**: the steps taken in the optimisation procedure [see the ndeps option in `optim()`], by default is set to 0.1 for all hyper parameters and non-linear parameters.

- **lower**: the lower permissible level of the parameters i.e. `lower=c(1,1)` this does not apply if a method other than the default method "L-BFGS-B" is used.

- **upper**: the upper permissible level of the parameters i.e. `upper=c(30,10)`, this is not apply if a method other than the default method "L-BFGS-B" is used.

- **method**: the method used in `optim()` to numerically minimise the GAIC over the hyper-parameters and/or non-linear parameters. By default this is "L-BFGS-B" to allow box-restriction on the parameters.

- **...**: for extra arguments to be passed to the R function `optim()` used in the optimisation.

Details

This historically was an experimental function which worked well for the search of the optimum degrees of freedom and non-linear parameters (e.g. power parameter \( \lambda \) used to transform \( x \) to \( x^\lambda \)).

With the introduction of the P-Spline smoothing function `pb()` the function `find.hyper()` became almost redundant. `find.hyper()` takes lot longer than `pb()` to find automatically the hyper parameters while both method produce similar results. See below the examples for a small demonstration.

Value

The function turns the same output as the function `optim()`

```r
par
value
counts
convergence
message
```

- **par**: the optimum hyper-parameter values
- **value**: the minimised value of the GAIC
- **counts**: A two-element integer vector giving the number of calls to ‘fn’ and ‘gr’ respectively.
- **convergence**: An integer code. ‘0’ indicates successful convergence. see the function `optim()` for other errors
- **message**: A character string giving any additional information returned by the optimiser, or ‘NULL’

Warning

It may be slow to find the optimum.
find.hyper

Author(s)
Mikis Stasinopoulos

References


(see also https://www.gamlss.com/).

See Also
gamlss, plot.gamlss, optim

Examples
```r
Not run:
data(abdom)
Example estimating the smoothing parameters for mu and
the transformation parameters for x
declare the model
mod1<-quote(gamlss(y~cs(nx,df=p[1]),family=BCT,data=abdom,
 control=gamlss.control(trace=FALSE))
since we want also to find the transformation for x
we use the "other" option
op <- find.hyper(model=mod1, other=quote(nx<-x^p[2]), parameters=c(3,0.5),
 lower=c(1,0.001), steps=c(0.1,0.001))
op
the optimum parameters found are
p = (p[1],p[2]) = (3.113218 0.001000) = (df for mu, lambda)
so it needs df = 3 on top of the constant and linear
in the cubic spline model for mu since p[1] is approximately 3
and log transformation for x since p[2] is approximately 0
here is an example with no data declaration in define the model
we have to attach the data
attach(abdom)
mod2 <- quote(gamlss(y~cs(nx,df=p[1]),family=BCT,
 control=gamlss.control(trace=FALSE))
op2<-find.hyper(model=mod2, other=quote(nx<-x^p[2]), parameters=c(3,0.5),
 lower=c(1,0.001), steps=c(0.1,0.001))
op2
detach(abdom)
#--
```

```
showing different ways of estimating the smoothing parameter
get the df using local ML (PQL)
m0 <- gamlss(y~pb(x), data=abdom)
get the df using local GAIC
m1 <- gamlss(y~pb(x, method="GAIC", k=2), data=abdom)
fitting cubic splines with fixed df's at 3
m2 <- gamlss(y~cs(x, df=3), data=abdom)
fitting cubic splines using find hyper (global GAIC)
mod1 <- quote(gamlss(y~cs(x, df=p[1]), family=BCT, data=abdom, control=gamlss.control(trace=FALSE)))
opt <- find.hyper(model=mod1, parameters=c(3), lower=c(1,0.001), steps=c(0.1,0.001))
now fit final model
m3 <- gamlss(y~cs(x, df=opt$par), data=abdom)
effective degrees of freedom for the 4 models
edf(m0); edf(m1); m2$mu.df; m3$mu.df
deviances for the four models
deviance(m0); deviance(m1); deviance(m2); deviance(m3)
their GAIC
GAIC(m0,m1,m2,m3)
plotting the models
plot(y~x, data=abdom, type="n")
lines(fitted(m3)~abdom$x, col="red")
lines(fitted(m1)~abdom$x, col="green")
lines(fitted(m0)~abdom$x, col="blue")
almost identical

End(Not run)

fitDist

Fitting Different Parametric gamlss.family Distributions.

Description

The function `fitDist()` is using the function `gamlssML()` to fit all relevant parametric `gamlss.family` distributions, specified by the argument `type`, to a single data vector (with no explanatory variables). The final marginal distribution is the one selected by the generalised Akaike information criterion with penalty `k`. The default is `k=2` i.e AIC.

The function `fitDistPred()` is using the function `gamlssMLpred()` to fit all relevant (marginal) parametric `gamlss.family` distributions to a single data vector (similar to `fitDist()`) but the final model is selected by the minimum prediction global deviance. The user has to specify the training and validation/test samples.

The function `chooseDist()` is using the function `update.gamlss()` to fit all relevant parametric (conditional) `gamlss.family` distributions to a given fitted `gamlss` model. The output of the function is a matrix with rows the different distributions (from the argument `type`) and columns the different GAIC's `. The default argument for `k` are 2, for AIC, 3.84, for Chi square, and `log(n)` for BIC. No final model is given by the function like for example in `fitDist()`. The function `getOrder()` can be used to rank the columns of the resulting table (matrix). The final model can be refitted using `update()`, see the examples.
Usage

fitDist(y, k = 2,
 type = c("realAll", "realline", "realplus", "real0to1", "counts", "binom"),
 try.gamlss = FALSE, extra = NULL, data = NULL, trace = FALSE, ...)

fitDistPred(y,
 type = c("realAll", "realline", "realplus", "real0to1", "counts", "binom"),
 try.gamlss = FALSE, extra = NULL, data = NULL, rand = NULL,
 newdata = NULL, trace = FALSE, ...)

chooseDist(object, k = c(2, 3.84, round(log(length(object$y)), 2)), type =
 c("realAll", "realline", "realplus", "real0to1", "counts", "binom", "extra"),
 extra = NULL, trace = FALSE,
 parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL, ...)

chooseDistPred(object, type = c("realAll", "realline", "realplus",
 "real0to1", "counts", "binom", "extra"),
 extra = NULL, trace = FALSE, parallel = c("no", "multicore", "snow"),
 ncpus = 1L, cl = NULL, newdata = NULL, rand = NULL, ...)

gOrder(obj, column = 1)

Arguments

`y` the data vector

`object, obj` a GAMLSS fitted model

`k` the penalty for the GAIC with default values k=2 the standard AIC. In the case
of the function chooseDist() k can be a vector i.e. k= c(2, 4, 6) so more than
one GAIC are saved.

`type` the type of distribution to be tried see details

`try.gamlss` this applies to functions fitDist() and fitDistPred(). It allows if gamlssML()
fail to fit the model to try gamlss instead. This will slow up things for big data.

`extra` whether extra distributions should be tried, which are not in the type list. Note
that the function chooseDist() allows the fitting of only the 'extra' distributions.
This can be achieved if extra is set i.e. extra=c("GA", "IG", "GG")
and type is set to extra i.e. type="extra".

`data` the data frame where y can be found, only for functions fitDist() and fitDistPred()

`rand` For fitDistPred() a factor with values 1 (for fitting) and 2 (for predicting).

`newdata` The prediction data set (validation or test).

`trace` whether to print during fitting. Note that when parallel is 'multicore' or
"snow" "trace" is not produce any output.

`parallel` The type of parallel operation to be used (if any). If missing, the default is "no".

`ncpus` integer: number of processes to be used in parallel operation: typically one
would chose this to the number of available CPUs.
This is useful for snow clusters, i.e. `parallel = "snow"`, when the clusters are created in advance. If not supplied, a cluster on the local machine is created for the duration of the call.

```
column
```

which column of the output matrix to be ordered according to best GAIC.

```
... 
```

for extra arguments to be passed to `gamlssML()` to `gamlss()`.

Details

The following are the different type argument:

- **realAll**: All the `gamlss.family` continuous distributions defined on the real line, i.e. `realline` and the real positive line i.e. `realplus`
- **real0to1**: The `gamlss.family` continuous distributions from 0 to 1: "BE", "BEo", "BE-INF0", "BEINF1", "BEOI", "BEZI", "BEINF", "GB1"
- **binom**: The `gamlss.family` distributions for binomial type data: "BI", "BB", "DB", "ZIBI", "ZIBB", "ZABBI", "ZABB"

The function `fitDist()` uses the function `gamlssML()` to fit the different models, the function `fitDistPred()` uses `gamlssMLpred()` and the function `chooseDist()` used `update.gamlss()`.

Value

For the functions `fitDist()` and `fitDistPred()` a `gamlssML` object is return (the one which minimised the GAIC or VDEV respectively) with two extra components:

```
fits            an ordered list according to the GAIC of the fitted distribution
failed          the distributions where the `gamlssML()` (or `gamlss()`) fits have failed
```

For the function `chooseDist()` a matrix is returned, with rows the different distributions and columns the different GAIC's set by `k`.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby, Vlasis Voudouris and Majid Djenndad.
References

(see also https://www.gamlss.com/).

See Also

`gamlss`, `gamlssML`

Examples

```r
y <- rt(100, df=1)
m1<-fitDist(y, type="realline")
m1$fits
m1$failed
# an example of using extra
## Not run:
#---------------------------------------
# Example of using the argument extra
library(gamlss.tr)
data(tensile)
gen.trun(par=1,family="GA", type="right")
gen.trun(par=1,"LOGNO", type="right")
gen.trun(par=c(0,1),"TF", type="both")
ma<-fitDist(str, type="real0to1", trace=T, extra=c("GAtr", "LOGNOTr", "TFtr"),
data=tensile)
ma$fits
ma$failed
#--------------------------------------------------
# selecting model using the prediction global deviance
# Using fitDistPred
# creating training data
y <- rt(1000, df=2)
m1 <- fitDist(y, type="realline")
m1$fits
m1$fails
# create validation data
yn <- rt(1000, df=2)
# choose distribution which fits the new data best
p1 <- fitDistPred(y, type="realline", newdata=yn)
p1$fits
```
using the function chooseDist()
fitting normal distribution model
m1 <- gamlss(y~pb(x), sigma.fo~pb(x), family=NO, data=abdom)
choose a distribution on the real line
and save GAIC(k=c(2,4,6.4), i.e. AIC, Chi-square and BIC.
t1 <- chooseDist(m1, type="realline", parallel="snow", ncpus=4)
the GAIC's
t1
the distributions which failed are with NA's
ordering according to BIC
getOrder(t1,3)
fm<-update(m1, family=names(getOrder(t1,3)[1]))

End(Not run)

fitted.gamlss

Extract Fitted Values For A GAMLSS Model

Description

`fitted.gamlss` is the GAMLSS specific method for the generic function `fitted` which extracts fitted values for a specified parameter from a GAMLSS object. `fitted.values` is an alias for it. The function `fv()` is similar to `fitted.gamlss()` but allows the argument `what` not to be character.

Usage

```r
## S3 method for class 'gamlss'
fitted(object, what = c("mu", "sigma", "nu", "tau"),
       parameter = NULL, ...)
fv(obj, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, ... )
```

Arguments

- `object`: a GAMLSS fitted model
- `obj`: a GAMLSS fitted model
- `what`: which parameter fitted values are required, default `what="mu"`
- `parameter`: equivalent to `what`
- `...`: for extra arguments

Value

Fitted values extracted from the GAMLSS object for the given parameter.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
References

(see also https://www.gamlss.com/).

See Also

`print.gamlss`, `summary.gamlss`, `fitted.gamlss`, `coef.gamlss`, `residuals.gamlss`, `update.gamlss`, `plot.gamlss`, `deviance.gamlss`, `formula.gamlss`

Examples

```r
data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
fitted(h)
rm(h)
```

fittedPlot

Plots The Fitted Values of a GAMLSS Model

Description

This function, applicable only to a models with a single explanatory variable, plots the fitted values for all the parameters of a GAMLSS model against the (one) explanatory variable. It is also useful for comparing the fits for more than one model.

Usage

`fittedPlot(object, ..., x = NULL, color = TRUE, line.type = FALSE, xlab = NULL)`

Arguments

- `object` a fitted GAMLSS model object(with only one explanatory variable)
- `...` optionally more fitted GAMLSS model objects
- `x` The unique explanatory variable
- `color` whether the fitted lines plots are shown in colour, `color=TRUE` (the default) or not `color=FALSE`
- `line.type` whether the line type should be different or not. The default is `color=FALSE`
- `xlab` the x-label
Value

A plot of the fitted values against the explanatory variable

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Calliope Akantziliotou

References

See Also

`gamlss`, `centiles`, `centiles.split`

Examples

```r
data(abdom)
h1<-gamlss(y~pb(x), sigma.formula=~x, family=BCT, data=abdom)
h2<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
fittedPlot(h1,h2,x=abdom$x)
rm(h1,h2)
```

formula.gamlss
Extract the Model Formula in a GAMLSS fitted model

Description

`formula.gamlss` is the GAMLSS specific method for the generic function `formula` which extracts the model formula from objects returned by modelling functions.

Usage

```r
## S3 method for class 'gamlss'
formula(x, what = c("mu", "sigma", "nu", "tau"),
         parameter= NULL, ... )
```
Arguments

- `x` a GAMLSS fitted model
- `what` which parameter coefficient is required, default `what="mu"`
- `parameter` equivalent to `what`
- `...` for extra arguments

Value

Returns a model formula

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

(see also https://www.gamlss.com/).

See Also

gamlss, deviance.gamlss, fitted.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
formula(h,"mu")
rm(h)
Generalized Additive Models for Location Scale and Shape

Description

Returns an object of class "gamlss", which is a generalized additive model for location scale and shape (GAMLSS). The function gamlss() is very similar to the gam() function in S-plus (now also in R in package gam), but can fit more distributions (not only the ones belonging to the exponential family) and can model all the parameters of the distribution as functions of the explanatory variables (e.g. using linear, non-linear, smoothing, loess and random effects terms).

This implementation of gamlss() allows modelling of up to four parameters in a distribution family, which are conventionally called mu, sigma, nu and tau.

The function gamlssNews() shows what is new in the current implementation.

Usage

```r
gamlss(formula = formula(data), sigma.formula = ~1, 
nu.formula = ~1, tau.formula = ~1, family = NO(), 
data, weights = NULL, 
contrasts = NULL, method = RS(), start.from = NULL, 
mu.start = NULL, sigma.start = NULL, 
nu.start = NULL, tau.start = NULL, 
uu.fix = FALSE, sigma.fix = FALSE, nu.fix = FALSE, 
tau.fix = FALSE, control = gamlss.control(...), 
i.control = glim.control(...), ...)
```

Arguments

- `formula` a formula object, with the response on the left of an ~ operator, and the terms, separated by + operators, on the right. Nonparametric smoothing terms are indicated by pb() for penalised beta splines, cs for smoothing splines, lo for loess smooth terms and random or ra for random terms, e.g. y~cs(x,df=5)+x1+x2*x3. Additional smoothers can be added by creating the appropriate interface. Interactions with nonparametric smooth terms are not fully supported, but will not produce errors; they will simply produce the usual parametric interaction
- `sigma.formula` a formula object for fitting a model to the sigma parameter, as in the formula above, e.g. sigma.formula=cs(x,df=5). It can be abbreviated to sigma.fo=cs(x,df=5).
- `nu.formula` a formula object for fitting a model to the nu parameter, e.g. nu.fo=x
- `tau.formula` a formula object for fitting a model to the tau parameter, e.g. tau.fo=cs(x,df=2)
- `family` a `gamlss.family` object, which is used to define the distribution and the link functions of the various parameters. The distribution families supported by gamlss() can be found in `gamlss.family`. Functions such as BI() (binomial) produce a family object. Also can be given without the parentheses i.e. BI. Family functions can take arguments, as in BI(mu.link=probit)
gamlss

- **data**: a data frame containing the variables occurring in the formula, e.g. `data=aids`. If this is missing, the variables should be on the search list.
- **weights**: a vector of weights. Note that this is not the same as in the `glm()` or `gam()` function. Here weights can be used to weight out observations (like in subset) or for a weighted likelihood analysis where the contribution of the observations to the likelihood differs according to weights. The length of weights must be the same as the number of observations in the data. By default, the weight is set to one. To set weights to vector `w` use `weights=w`.
- **contrasts**: list of contrasts to be used for some or all of the factors appearing as variables in the model formula. The names of the list should be the names of the corresponding variables. The elements should either be contrast-type matrices (matrices with as many rows as levels of the factor and with columns linearly independent of each other and of a column of ones), or else they should be functions that compute such contrast matrices.
- **method**: the current algorithms for GAMLSS are RS(), CG() and mixed(), i.e. `method=RS()` will use the Rigby and Stasinopoulos algorithm, `method=CG()` will use the Cole and Green algorithm and `mixed(2,10)` will use the RS algorithm twice before switching to the Cole and Green algorithm for up to 10 extra iterations.
- **start.from**: a fitted GAMLSS model which the fitted values will be used as starting values for the current model.
- **mu.start**: vector or scalar of initial values for the location parameter mu e.g. `mu.start=4`.
- **sigma.start**: vector or scalar of initial values for the scale parameter sigma e.g. `sigma.start=1`.
- **nu.start**: vector or scalar of initial values for the parameter nu e.g. `nu.start=3`.
- **tau.start**: vector or scalar of initial values for the location parameter tau e.g. `tau.start=2`.
- **mu.fix**: whether the mu parameter should be kept fixed in the fitting processes e.g. `mu.fix=FALSE`.
- **sigma.fix**: whether the sigma parameter should be kept fixed in the fitting processes e.g. `sigma.fix=FALSE`.
- **nu.fix**: whether the nu parameter should be kept fixed in the fitting processes e.g. `nu.fix=FALSE`.
- **tau.fix**: whether the tau parameter should be kept fixed in the fitting processes e.g. `tau.fix=FALSE`.
- **control**: this sets the control parameters of the outer iterations algorithm. The default setting is the `gamlss.control` function.
- **i.control**: this sets the control parameters of the inner iterations of the RS algorithm. The default setting is the `glim.control` function.
- **...**: for extra arguments.
- **x**: an object.

Details

The Generalized Additive Model for Location, Scale and Shape is a general class of statistical models for a univariate response variable. The model assumes independent observations of the response variable y given the parameters, the explanatory variables and the values of the random effects. The
distribution for the response variable in the GAMLSS can be selected from a very general family of distributions including highly skew and/or kurtotic continuous and discrete distributions, see \textit{gamlss.family}. The systematic part of the model is expanded to allow modelling not only of the mean (or location) parameter, but also of the other parameters of the distribution of \(y \), as linear parametric and/or additive nonparametric (smooth) functions of explanatory variables and/or random effects terms. Maximum (penalized) likelihood estimation is used to fit the (non)parametric models. A Newton-Raphson/Fisher scoring algorithm is used to maximize the (penalized) likelihood. The additive terms in the model are fitted using a backfitting algorithm.

\texttt{is.gamlss} is a short version is \texttt{is(object,"gamlss")}

\textbf{Value}

Returns a \texttt{gamlss} object with components

- \texttt{family} the distribution family of the \texttt{gamlss} object (see \texttt{gamlss.family})
- \texttt{parameters} the name of the fitted parameters i.e. mu, sigma, nu, tau
- \texttt{call} the call of the \texttt{gamlss} function
- \texttt{y} the response variable
- \texttt{control} the \texttt{gamlss} fit control settings
- \texttt{weights} the vector of weights
- \texttt{G.deviance} the global deviance
- \texttt{N} the number of observations in the fit
- \texttt{rqres} a function to calculate the normalized (randomized) quantile residuals of the object
- \texttt{iter} the number of external iterations in the fitting process
- \texttt{type} the type of the distribution or the response variable (continuous or discrete)
- \texttt{method} which algorithm is used for the fit, RS(), CG() or mixed()
- \texttt{converged} whether the model fitting has have converged
- \texttt{residuals} the normalized (randomized) quantile residuals of the model
- \texttt{mu.fv} the fitted values of the mu model, also sigma.fv, nu.fv, tau.fv for the other parameters if present
- \texttt{mu.lp} the linear predictor of the mu model, also sigma.lp, nu.lp, tau.lp for the other parameters if present
- \texttt{mu.wv} the working variable of the mu model, also sigma.wv, nu.wv, tau.wv for the other parameters if present
- \texttt{mu.wt} the working weights of the mu model, also sigma.wt, nu.wt, tau.wt for the other parameters if present
- \texttt{mu.link} the link function for the mu model, also sigma.link, nu.link, tau.link for the other parameters if present
- \texttt{mu.terms} the terms for the mu model, also sigma.terms, nu.terms, tau.terms for the other parameters if present
- \texttt{mu.x} the design matrix for the mu, also sigma.x, nu.x, tau.x for the other parameters if present
mu.qr the QR decomposition of the mu model, also sigma.qr, nu.qr, tau.qr for the other parameters if present
mu.coefficients
the linear coefficients of the mu model, also sigma.coefficients, nu.coefficients, tau.coefficients for the other parameters if present
mu.formula
the formula for the mu model, also sigma.formula, nu.formula, tau.formula for the other parameters if present
mu.df
the mu degrees of freedom also sigma.df, nu.df, tau.df for the other parameters if present
mu.nl.df
the non linear degrees of freedom, also sigma.nl.df, nu.nl.df, tau.nl.df for the other parameters if present
df.fit
the total degrees of freedom use by the model
df.residual
the residual degrees of freedom left after the model is fitted
aic
the Akaike information criterion
sbc
the Bayesian information criterion

Warning
Respect the parameter hierarchy when you are fitting a model. For example a good model for mu should be fitted before a model for sigma is fitted

Note
The following generic functions can be used with a GAMLSS object: print, summary, fitted, coef, residuals, update, plot, deviance, formula

Author(s)
Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby, Calliope Akantziliotou and Vlasios Voudouris

References
(see also https://www.gamlss.com/).
gamlss.control

Auxiliary for Controlling GAMLSS Fitting

Description

Auxiliary function as user interface for gamlss fitting. Typically only used when calling gamlss function with the option control.

Usage

gamlss.control(c.crit = 0.001, n.cyc = 20, mu.step = 1, sigma.step = 1, nu.step = 1, tau.step = 1, gd.tol = Inf, iter = 0, trace = TRUE, autostep = TRUE, save = TRUE, ...)

Arguments

c.crit the convergence criterion for the algorithm
n.cyc the number of cycles of the algorithm
mu.step the step length for the parameter mu
sigma.step the step length for the parameter sigma
nu.step the step length for the parameter nu
tau.step the step length for the parameter tau
gd.tol global deviance tolerance level (set more recently to Inf to allow the algorithm to conversed even if the global deviance change dramatically during the iterations)
iter starting value for the number of iterations, typically set to 0 unless the function refit is used
trace whether to print at each iteration (TRUE) or not (FALSE)
autostep whether the steps should be halved automatically if the new global deviance is greater that the old one, the default is autostep=TRUE
save save=TRUE, (the default), saves all the information on exit. save=FALSE saves only limited information as the global deviance and AIC. For example fitted values, design matrices and additive terms are not saved. The latest is useful when gamlss() is called several times within a procedure.
...
for extra arguments
Details

The step length for each of the parameters mu, sigma, nu or tau is very useful to aid convergence if the parameter has a fully parametric model. However using a step length is not theoretically justified if the model for the parameter includes one or more smoothing terms, (even thought it may give a very approximate result).

The c.crit can be increased to speed up the convergence especially for a large set of data which takes longer to fit. When ‘trace’ is TRUE, calls to the function cat produce the output for each outer iteration.

Value

A list with the arguments as components.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

References

(see also https://www.gamlss.com/).

See Also

gamlss

Examples

data(aids)
h<-gamlss(y=poly(x,3)+qrt, family=PO, data=aids)
con<-gamlss.control(mu.step=0.1)
h<-gamlss(y=poly(x,3)+qrt, family=PO, data=aids, control=con)
rm(h,con)
gamlss.cs (Support for Function cs() and scs())

Description
This is support for the functions cs(), and scs(). It is not intended to be called directly by users. The function `gamlss.cs` is using the R function `smooth.spline`.

Usage

```r
gamlss.cs(x, y, w, df = NULL, spar = NULL, xeval = NULL, ...)
```

Arguments
- `x` the design matrix
- `y` the response variable
- `w` prior weights
- `df` effective degrees of freedom
- `spar` spar the smoothing parameter
- `xeval` used in prediction
- `...` for extra arguments

Value
Returns a class "smooth.spline" object with
- `residuals` The residuals of the fit
- `fitted.values` The smoothing values
- `var` the variance for the fitted smoother
- `lambda` the final value for spar
- `nl.df` the smoothing degrees of freedom excluding the constant and linear terms, i.e. (df-2)
- `coefSmo` this is a list containing among others the knots and the coefficients

Author(s)
Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

See Also
- `gamlss, cs`
Support for Function fp()

Description

Those are support for the functions fp() and pp. It is not intended to be called directly by users.

Usage

gamlss.fp(x, y, w, npoly = 2, xeval = NULL)
gamlss.pp(x, y, w)

Arguments

x the x for function gamlss.fp is referred to the design matrix of the specific parameter model (not to be used by the user)
y the y for function gamlss.fp is referred to the working variable of the specific parameter model (not to be used by the user)
w the w for function gamlss.fp is referred to the iterative weight variable of the specific parameter model (not to be used by the user)
npoly a positive indicating how many fractional polynomials should be considered in the fit. Can take the values 1, 2 or 3 with 2 as default
xeval used in prediction

Value

Returns a list with

fitted.values fitted
residuals residuals
var
nl.df the trace of the smoothing matrix
lambda the value of the smoothing parameter
coefSmo the coefficients from the smoothing fit
varcoeff the variance of the coefficients

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby
References

(see also https://www.gamlss.com/).

See Also

`gamlss.fp`

gamlss.lo

Support for Function lo()

Description

This is support for the loess function lo(). It is not intended to be called directly by users. The function `gamlss.lo` is calling the R function `loess`.

Usage

`gamlss.lo(x, y, w, xeval = NULL, ...)`

Arguments

- `x`: the design matrix
- `y`: the response variable
- `w`: prior weights
- `xeval`: used in prediction
- `...`: further arguments passed to or from other methods.

Value

Returns an object

- `fitted`: the smooth values
- `residuals`: the residuals
- `var`: the variance of the smoother
nl.df the non-linear degrees of freedom
coefSmo with value NULL
lambda the value of span

Author(s)
Mikis Stasinopoulos based on Brian Ripley implementation of loess function in R

See Also
gamlss, lo

description
Those functions are support for the functions pb(), pbo(), ps(), ridge(), ri(), cy(), pvc(), and pbm(). The functions are not intended to be called directly by users.

Usage
gamlss.pb(x, y, w, xeval = NULL, ...)
gamlss.pbo(x, y, w, xeval = NULL, ...)
gamlss.ps(x, y, w, xeval = NULL, ...)
gamlss.ri(x, y, w, xeval = NULL, ...)
gamlss.cy(x, y, w, xeval = NULL, ...)
gamlss.pvc(x, y, w, xeval = NULL, ...)
gamlss.pbm(x, y, w, xeval = NULL, ...)
gamlss.pbz(x, y, w, xeval = NULL, ...)
gamlss.pbc(x, y, w, xeval = NULL, ...)
gamlss.pbp(x, y, w, xeval = NULL, ...)

Arguments
x the x for function gamlss.fp is referred to the design matrix of the specific parameter model (not to be used by the user)
y the y for function gamlss.fp is referred to the working variable of the specific parameter model (not to be used by the user)
w the w for function gamlss.fp is referred to the iterative weight variable of the specific parameter model (not to be used by the user)
xeval used in prediction
... further arguments passed to or from other methods.

Value
All function return fitted smoothers.
Author(s)
Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

References
(see also https://www.gamlss.com/).

See Also
gamlss, pb, ps, ri, ridge, cy, pvc, pbm

gamlss.random Support for Functions random() and re()

Description
This is support for the functions random() and re() respectively. It is not intended to be called directly by users.

Usage
gamlss.random(x, y, w, xeval = NULL, ...)
gamlss.re(x, y, w, xeval = NULL, ...)

Arguments

- **x**
 the explanatory design matrix
- **y**
 the response variable
- **w**
 iterative weights
- **xeval**
 it used internally for prediction
- **...**
 for extra arguments
gamlss.scope

Value

Returns a list with

- \(y \) the fitted values
- residuals the residuals
- var the variance of the fitted values
- lambda the final lambda, the smoothing parameter
- coefSmo with value NULL

Author(s)

Mikis Stasinopoulos, based on Trevor Hastie function \textit{gam.random}

References

(see also \url{https://www.gamlss.com/}).

See Also

gamlss, random

gamlss.scope

\hspace{1cm} \textit{Generate a Scope Argument for Stepwise GAMLSS}

Description

Generates a scope argument for a stepwise GAMLSS.

Usage

gamlss.scope(frame, response = 1, smoother = "cs", arg = NULL, form = TRUE)
Arguments

- **frame**: a data or model frame
- **response**: which variable is the response; the default is the first
- **smoother**: what smoother to use; default is cs
- **arg**: any additional arguments required by the smoother
- **form**: should a formula be returned (default), or else a character version of the formula

Details

Each formula describes an ordered regimen of terms, each of which is eligible on their own for inclusion in the gam model. One of the terms is selected from each formula by step.gam. If a 1 is selected, that term is omitted.

Value

A list of formulas is returned, one for each column in frame (excluding the response). For a numeric variable, say x1, the formula is

\[\sim 1 + x1 + cs(x1) \]

If x1 is a factor, the last smooth term is omitted.

Author(s)

Mikis Stasinopoulos: a modified function from Statistical Models in S

References

(see also https://www.gamlss.com/).

See Also

stepGAIC
Examples

data(usair)
gs1<-gamlss.scope(model.frame(y~x1+x2+x3+x4+x5+x6, data=usair))
gs2<-gamlss.scope(model.frame(usair))
gs1
gs2
gs3<-gamlss.scope(model.frame(usair), smooth="fp", arg="3")
gs3

Maximum Likelihood estimation of a simple GAMLSS model

Description

The function gamlssML() fits a gamlss.family distribution to single data set using a non linear maximisation algorithm in R. This is relevant only when explanatory variables do not exist.

The function gamlssMLpred() is similar to gamlssML() but it saves the predictive global deviance for the newdata. The new data in gamlssMLpred() can be given with the arguments newdata or defining the factor rand. rand should be a binary factor rand splitting the original data set into a training set (value 1) and a validation/test set (values 2), see also gamlssVGD

Usage

gamlssML(formula, family = NO, weights = NULL, mu.start = NULL, sigma.start = NULL, nu.start = NULL, tau.start = NULL, mu.fix = FALSE, sigma.fix = FALSE, nu.fix = FALSE, tau.fix = FALSE, data, start.from = NULL, ...)
gamlssMLpred(response = NULL, data = NULL, family = NO, rand = NULL, newdata = NULL, ...)

Arguments

formula, response

a vector of data requiring the fit of a gamlss.family distribution or (only for the function gamlssML) a formula, for example, y~1, with no explanatory variables because they are ignored).

family
gamlss.family object, which is used to define the distribution and the link functions of the various parameters. The distribution families supported by gamlssML() can be found in gamlss.family

weights

a vector of weights. Here weights can be used to weight out observations (like in subset) or for a weighted likelihood analysis where the contribution of the observations to the likelihood differs according to weights. The length of weights must be the same as the number of observations in the data. By default, the weight is set to one. To set weights to vector say w use weights=w

mu.start

a scalar of initial values for the location parameter mu e.g. mu.start=4
The function `gamlssML()` fits a `gamlss.family` distribution to a single data set using a non-linear maximisation. In fact, it uses the internal function `MLE()` which is a copy of the `mle()` function of package `stat4`. The function `gamlssML()` could be for large data faster than the equivalent `gamlss()` function which is designed for regression type of models.

The function `gamlssMLpred()` uses the function `gamlssML()` to fit the model but then uses `predict.gamlssML()` to predict for new data and saves the prediction (i) deviance increments, (ii) global deviance, (iii) residuals.

Value

Returns a `gamlssML` object which behaves like a `gamlss` fitted object.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby, Vlasis Voudouris and Majid Djennad

References

(see also https://www.gamlss.com/).

See Also
gamlss.family, gamlss

Examples

#-------- negative binomial 1000 observations
y<- rNBI(10000)
system.time(m1<-gamlss(y~1, family=NBI))
system.time(m1a<-gamlss(y~1, family=NBI, trace=FALSE))
system.time(m11<-gamlssML(y, family=NBI))
AIC(m1,m1a,m11, k=0)

neg. binomial n=10000
y<- rNBI(10000)
system.time(m1<-gamlss(y~1, family=NBI))
system.time(m1a<-gamlss(y~1, family=NBI, trace=FALSE))
system.time(m11<-gamlssML(y, family=NBI))
AIC(m1,m1a,m11, k=0)

binomial type data
data(aep)
m1 <- gamlssML(aep$y, family=BB) # ok
m2 <- gamlssML(y, data=aep, family=BB) # ok
m3 <- gamlssML(y~1, data=aep, family=BB) # ok
m4 <- gamlssML(aep$y~1, family=BB) # ok
AIC(m1,m2,m3,m4)

Not run:
#---
neg. binomial n=10000
y<- rNBI(10000)
rand <- sample(2, length(y), replace=TRUE, prob=c(0.6,0.4))
table(rand)
Y <- subset(y, rand==1)
YVal <- subset(y, rand==2)
length(Y)
length(YVal)
da1 <- data.frame(y=y)
dim(d1)
da2 <- data.frame(y=Y)
dim(d2)
danew <- data.frame(y=YVal)
using gamlssVGD to fit the models
g1 <- gamlssVGD(y~1, rand=rand, family=NBI, data=d1)
g2 <- gamlssVGD(y~1, family=NBI, data=d2, newdata=dan)
AIC(g1,g2)
VGD(g1,g2)
using gamlssMLpred to fit the models
p1 <- gamlssMLpred(y, rand=rand, family=NBI)
p2 <- gamlssMLpred(Y, family=NBI, newdata=YVal)
AIC and VGD should produce identical results
AIC(p1,p2,g1,g2)
VGD(p1,p2, g1,g2)
the fitted residuals
wp(p1, ylim.all=1)
the prediction residuals
wp(resid=p1$residVal, ylim.all=.5)
#---
choosing between distributions
p2<-gamlssMLpred(y, rand=rand, family=PO)
p3<-gamlssMLpred(y, rand=rand, family=PIG)
p4<-gamlssMLpred(y, rand=rand, family=BNB)
AIC(p1, p2, p3, p4)
VGD(p1, p2, p3, p4)
#--
End(Not run)

gamlssVGD A Set of Functions for selecting Models using Validation or Test Data
Sets and Cross Validation

Description
This is a set of function useful for selecting appropriate models.
The functions gamlssVGD, VGD, getTGD, TGD can be used when a subset of the data is used for
validation or testing.
The function stepVGD() is a stepwise procedure for selecting an appropriate model for any of the
parameters of the model minimising the test global deviance. The function stepVGDAll.A() can
select a model using strategy A for all the parameters.
The functions gamlssCV, CV can be used for a k-fold cross validation.

Usage
gamlssVGD(formula = NULL, sigma.formula = ~1, nu.formula = ~1,
tau.formula = ~1, data = NULL, family = NO,
control = gamlss.control(trace = FALSE),
rand = NULL, newdata = NULL, ...)

VGD(object, ...)

getTGD(object, newdata = NULL, ...)

TGD(object, ...)
gamlssCV(formula = NULL, sigma.formula = ~1, nu.formula = ~1,
 tau.formula = ~1, data = NULL, family = NO,
 control = gamlss.control(trace = FALSE),
 K.fold = 10, set.seed = 123, rand = NULL,
 parallel = c("no", "multicore", "snow"),
 ncpus = 1L, cl = NULL, ...)

CV(object, ...)

drop1TGD(object, scope, newdata, parameter = c("mu", "sigma", "nu", "tau"),
 sorted = FALSE, trace = FALSE,
 parallel = c("no", "multicore", "snow"),
 ncpus = 1L, cl = NULL, ...)

add1TGD(object, scope, newdata, parameter = c("mu", "sigma", "nu", "tau"),
 sorted = FALSE, trace = FALSE,
 parallel = c("no", "multicore", "snow"),
 ncpus = 1L, cl = NULL, ...)

stepTGD(object, scope, newdata,
 direction = c("both", "backward", "forward"),
 trace = TRUE, keep = NULL, steps = 1000,
 parameter = c("mu", "sigma", "nu", "tau"),
 parallel = c("no", "multicore", "snow"),
 ncpus = 1L, cl = NULL, ...)

stepTGDAll.A(object, scope = NULL, newdata = NULL,
 steps = 1000, sigma.scope = NULL, nu.scope = NULL,
 tau.scope = NULL, mu.try = TRUE, sigma.try = TRUE,
 nu.try = TRUE, tau.try = TRUE,
 parallel = c("no", "multicore", "snow"),
 ncpus = 1L, cl = NULL, ...)

Arguments

 formula A gamlss mu formula.
 sigma.formula Formula for sigma.
 nu.formula Formula for nu.
 tau.formula Formula for tau.
 data The data frame required for the fit.
 family The gamlss.family distribution.
 control The control for fitting the gamlss model.
 rand For gamlssVGD a variable with values 1 (for fitting) and 2 (for predicting). For
 gamlssCV a variable with k values indicating the cross validation sets.
newdata The new data set (validation or test) for prediction.
object A relevant R object.
scope defines the range of models examined in the stepwise selection similar to stepGAIC() where you can see examples
sigma.scope defines the range of models examined in the stepwise selection for sigma
nu.scope defines the range of models examined in the stepwise selection for nu
tau.scope defines the range of models examined in the stepwise selection for tau
mu.try whether should try fitting models for mu
sigma.try whether should try fitting models for sigma
nu.try whether should try fitting models for nu
tau.try whether should try fitting models for tau
parameter which distribution parameter is required, default what="mu"
sorted should the results be sorted on the value of TGD
trace if TRUE additional information may be given on the fits as they are tried.
direction The mode of stepwise search, can be one of both, backward, or forward, with a default of both. If the scope argument is missing the default for direction is backward
keep see stepGAIC() for explanation
steps the maximum number of steps to be considered. The default is 1000.
K.fold the number of subsets of the data used
set.seed the seed to be used in creating rand
parallel The type of parallel operation to be used (if any). If missing, the default is "no".
cmpus integer: number of processes to be used in parallel operation: typically one would chose this to the number of available CPUs.
cl An optional parallel or snow cluster for use if parallel = "snow". If not supplied, a cluster on the local machine is created for the duration of the call.

... further arguments to be pass in the gamlss fit

Details

The function gamlssVGD() fits a gamlss model to the training data set determined by the arguments rand or newdata. The results is a gamlssVGD objects which contains the gamlss fit to the training data plus three extra components: i) VGD the global deviance applied to the validation data sets. ii) predictError which is VGD divided with the number of observations in the validation data set and iii) residVal the residuals for the validation data set.

The function VGD() extract the validated global deviance from one or more fitted gamlssVGD objects and can be used foe model comparison.

The function getTGD() operates different from the function gamlssVGD(). It assumes that the users already have fitted models using gamlss() and now he/she wants to evaluate the global deviance at a new (validation or test) data set.

The function TGD() extract the validated/test global deviance from one or more fitted gamlssTGD objects and can be use to compare models.
The `gamlssCV()` performs a k-fold cross validation on a `gamlss` models. The function `CV()` extract the cross validated global deviance from one or more fitted `gamlssCV` objects and can be use to compare models. The functions `add1TGD()`, `drop1TGD()` and `stepTGD()` behave similar to `add1()`, `drop1()` and `stepGAIC()` functions respectively but they used validation or test deviance as the selection criterion rather than the GAIC.

Value

A fitted models of a set of global deviances.

Author(s)

Mikis Stasinopoulos

References

See Also

`stepGAIC`

Examples

data(abdom)
 # generate the random split of the data
 rand <- sample(2, 610, replace=TRUE, prob=c(0.6,0.4))
 # the proportions in the sample
 table(rand)/610
 olddata<-abdom[rand==1,] # training data
 newdata<-abdom[rand==2,] # validation data
 # gamlssVGD
 #---
 # Using rand
v1 <- gamlssVGD(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=NO, rand=rand)
v2 <- gamlssVGD(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=LO, rand=rand)
v3 <- gamlssVGD(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=TF, rand=rand)
VGD(v1,v2,v3)
#---
Not run:
#---
using two data set
v11 <- gamlssVGD(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=NO, newdata=newdata)
v12 <- gamlssVGD(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=LO, newdata=newdata)
v13 <- gamlssVGD(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=TF, newdata=newdata)
VGD(v11,v12,v13)
#---
function getTGD
#---
fit gamlss models first
g1 <- gamlss(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=NO)
g2 <- gamlss(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=LO)
g3 <- gamlss(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=TF)
and then use
gg1 <- getTGD(g1, newdata=newdata)
gg2 <- getTGD(g2, newdata=newdata)
gg3 <- getTGD(g3, newdata=newdata)
TGD(gg1,gg2,gg3)
#---
function gamlssCV
#---
sample.seed(123)
rand1 <- sample (10 , 610, replace=TRUE)
g1 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=NO, rand=rand1)
g2 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=LO, rand=rand1)
g3 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=TF, rand=rand1)
CV(g1,g2,g3)
CV(g1)
using parallel
set.seed(123)
rand1 <- sample (10 , 610, replace=TRUE)
nC <- detectCores()
system.time(g21 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=NO, rand=rand1, parallel = "no", ncpus = nC))
functions add1TGD() drop1TGD() and stepTGD()
the data
data(rent)
rand <- sample(2, dim(rent)[1], replace=TRUE, prob=c(0.6,0.4))
the proportions in the sample
table(rand)/dim(rent)[1]
oldrent<-rent[rand==1,] # training set
newrent<-rent[rand==2,] # validation set

null model
v0 <- gamlss(R~1, data=oldrent, family=GA)
complete model
v1 <- gamlss(R~pb(Fl)+pb(A)+H+loc, sigma.fo=~pb(Fl)+pb(A)+H+loc,
data=oldrent, family=GA)

drop1TGD
system.time(v3<- drop1TGD(v1, newdata=newrent, parallel="no"))
system.time(v4<- drop1TGD(v1, newdata=newrent, parallel="multicore", ncpus=nC)
system.time(v5<- drop1TGD(v1, newdata=newrent, parallel="snow", ncpus=nC))
cbind(v3,v4,v5)

add1TGD
system.time(d3<- add1TGD(v0,scope=~pb(Fl)+pb(A)+H+loc, newdata=newrent, parallel="no"))
system.time(d4<- add1TGD(v0,scope=~pb(Fl)+pb(A)+H+loc, newdata=newrent, parallel="multicore", ncpus=nC)
system.time(d5<- add1TGD(v0, scope=~pb(Fl)+pb(A)+H+loc,newdata=newrent, parallel="snow", ncpus=nC))

stepTG D
system.time(d6<- stepTG D(v0, scope=~pb(Fl)+pb(A)+H+loc,newdata=newrent))
system.time(d7<- stepTG D(v0, scope=~pb(Fl)+pb(A)+H+loc,newdata=newrent, parallel="multicore", ncpus=nC)
system.time(d8<- stepTG D(v0, scope=~pb(Fl)+pb(A)+H+loc,newdata=newrent, parallel="snow", ncpus=nC))

End(Not run)
Description

This function generates a function with arguments the parameters of the GAMLSS model which can evaluate the log-likelihood function.

Usage

gen.likelihood(object)

Arguments

object A gamlss fitted model

Details

The purpose of this function is to help the function vcov() to get the right Hessian matrix after a model has fitted. Note that at the moment smoothing terms are considered as fixed.

Value

A function of the log-likelihood

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> Bob Rigby and Vlasios Voudouris

References

(see also https://www.gamlss.com/).

See Also

vcov
getPEF

Examples

```r
data(aids)
m1 <- gamlss(y~x+qrt, data=aids, family=NBI)
logL<-gen.likelihood(m1)
logL()
logLik(m1)
```

getPEF

Getting the partial effect function from a continuous term in a GAMLSS model

Description

This function can be used to calculate the partial effect and the elasticity of a continuous explanatory variable \(x \).

By 'partial effect' function we mean how \(x \) is influence the parameter of interest given that the rest of explanatory terms for this parameter are on (specified) fixed values.

The function takes a GAMLSS object and for the range of the continuous variable \(x \), (by fixing the rest of the explanatory terms at specified values), calculates the effect that \(x \) has on the specific distribution parameter (or its predictor). The resulting function shows the effect that \(x \) has on the distribution parameter. The partial effect function which is calculated on a finite grit is then approximated using the `splinefun()` in R and its is saved.

The saved function can be used to calculate the elasticity of \(x \). The elasticity is the first derivative of the partial effect function and shows the chance of the parameter of interest for a small change in \(x \), by fixing the rest of the explanatory variables at specified values.

Usage

```r
getPEF(obj = NULL, term = NULL, data = NULL, n.points = 100,
       parameter = c("mu", "sigma", "nu", "tau"),
       type = c("response", "link"), how = c("median", "last"),
       fixed.at = list(), plot = FALSE)
```

Arguments

- `obj` A `gamlss` object
- `term` the continuous explanatory variable
- `data` the `data.frame` (not needed if is declared on `obj`)
- `n.points` the number of points in which the influence function for \(x \) need to be evaluated
- `parameter` which distribution parameter
- `type` whether against the parameter, "response", or the predictor "link"
- `how` whether for continuous variables should use the median or the last observation in the data
- `fixed.at` a list indicating at which values the rest of the explanatory terms should be fixed
- `plot` whether to the plot the influence function and its first derivatives
getPEF

Value

A function is created which can be used to evaluate the partial effect function at different values of
x.

Author(s)

Mikis Stasinopoulos, Vlasios Voudouris, Daniil Kiose

References

(see also https://www.gamlss.com/).

See Also

* gamlss

Examples

```r
m1 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA)
# getting the Partial Efect function
pef <- getPEF(obj=m1,term="A", plot=TRUE)
# the value at 1980
pef(1980)
# the first derivative at 1980
pef(1980, deriv=1)
# the second derivative at 1980
pef(1980, deriv=2)
# plotting the first derivative
curve(pef(x, deriv=1), 1900,2000)
```
Description

This function can be used to calculate the partial effect that an explanatory variable has on a specific quantile.

By ‘partial effect’ function we mean how the term influence the quantile given that the rest of explanatory terms are constant.

The function takes a GAMLSS object and for the range of a specified explanatory (by fixing the rest of the terms at specified values), calculates the effect that this term has on the a quantile of the distribution. That is, it shows the effect that the particular term has on the quantile. The ‘partial’ quantile is calculated on a finite grid of values and then the function is approximated (using the splinefun()) and saved.

The saved function can be used to calculate the first derivative. This first derivatives shows the chance of the quantile function for a small change in the explanatory variable, by fixing the rest of the explanatory variables at a constant values.

Usage

getQuantile(obj = NULL, term = NULL, quantile = 0.9, data = NULL, n.points = 100, how = c("median", "last"), fixed.at = list(), plot = FALSE)

Arguments

obj A gamlss object
term an explanatory variable (at the moment works with with continuous)
quantile the required quantile of the distribution
data the data.frame (not needed if is declared on obj)
n.points the number of points in which the quantile function needs evaluation
how whether for extra continuous explanatory variables should fixed at the median or the last observation in the data
fixed.at a list indicating at which values the rest of the explanatory terms should be fixed
plot whether to the plot the partial quantile function and its first derivatives

Details

The function getQuantile() relies on the predictAll() function to evaluate the distribution parameters at a grid (default 100 points) of the specified term (given that the the rest of the terms are fixed). Then the inverse cdf is used to calculate the partial quantile. The function then is approximated using splinefun() and saved.
A function is created which can be used to evaluate the partial effect of the explanatory variable on a specified quantile.

Author(s)

Mikis Stasinopoulos

References

(see also https://www.gamlss.com/).

See Also

gamlss, getPEF

Examples

library(gamlss)
data(rent)
ml <- gamlss(R~pb(Fl)+pb(A)+B+loc, data=rent, family=GA)
FF<-getQuantile(ml, quantile=0.9, term="A", plot=TRUE)
FF(1960)
FF(1060, deriv=1)
FF(1060, deriv=2)
Not run:
plotting partial quantile
#.05, 0.25, 0.5, 0.75, 0.95
at the default values
Fl = median(Fl), B=0, and loc=2
plot(R~A, data=rent, col="lightgray", pch=20)
for (i in c(.05, 0.25, 0.5, 0.75, 0.95))
{
 Qua <- getQuantile(ml, quantile=i,term="A")
 curve(Qua, 1900, 1985, lwd=1, lty=1, add=T)
}
plotting at values Fl=60, B=1, and loc=1.
for (i in c(.05, 0.25, 0.5, 0.75, 0.95))
{
getSmo

Extracting Smoother information from a GAMLSS fitted object

Description

The function getSmo() extracts information from a fitted smoothing additive term.

Usage

getsmo(object, what = c("mu", "sigma", "nu", "tau"),
 parameter = NULL, which = 1)

Arguments

object a GAMLSS fitted model
what which distribution parameter is required, default what = "mu"
parameter equivalent to what
which which smoothing term i.e. 1, 2 etc. Note that 0 means all.

Details

This function facilitates the extraction of information from a fitted additive terms. For example

getsmo(m1, "sigma", 2) is equivalent of m1$sigma.coefSmo[[2]]. To get the actual fitted values

type m1$sigma.s[[2]]

Value

A list containing information about a fitted smoother or a fitted objects

Author(s)

Mikis Stasinopoulos and Bob Rigby
References

(see also https://www.gamlss.com/).

Examples

data(usair)
t1<-gamlss(y~x1+pb(x5)+pb(x6), data=usair, family=GA)
get the value for lambda for the second fitted term in mu
getSmo(t1, parameter="mu", 2)$lambda

glim.control

Auxiliary for Controlling the inner algorithm in a GAMLSS Fitting

Description

Auxiliary function used for the inner iteration of gamlss algorithm. Typically only used when calling gamlss function through the option i.control.

Usage

```r
glim.control(cc = 0.001, cyc = 50, glm.trace = FALSE,
            bf.cyc = 30, bf.tol = 0.001, bf.trace = FALSE,
            ...)```

**Arguments**

- **cc**: the convergence criterion for the algorithm
- **cyc**: the number of cycles of the algorithm
- **glm.trace**: whether to print at each iteration (TRUE) or not (FALSE)
- **bf.cyc**: the number of cycles of the backfitting algorithm
- **bf.tol**: the convergence criterion (tolerance level) for the backfitting algorithm
- **bf.trace**: whether to print at each iteration (TRUE) or not (FALSE, the default)
- **...**: for extra arguments
Value

A list with the arguments as components

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

gamlss

Examples

data(aids)
con<-glim.control(glm.trace=TRUE)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids, i.control=con) #
rm(h,con)

---

**histDist**

This function plots the histogram and a fitted (GAMLSS family) distribution to a variable

Description

This function fits constants to the parameters of a GAMLSS family distribution and them plot the histogram and the fitted distribution.
Usage

histDist(y, family = NO, freq = NULL, density = FALSE,
       nbins = 10, xlim = NULL, ylim = NULL, main = NULL,
       xlab = NULL, ylab = NULL, data = NULL,
       col.hist = "gray", border.hist = "blue",
       fg.hist = rainbow(12)[9], line.wd = 2,
       line.ty = c(1, 2), line.col = c(2, 3),
       col.main = "blue4", col.lab = "blue4",
       col.axis = "blue", ...)

Arguments

y        a vector for the response variable
family   a gamlss.family distribution
freq     the frequencies of the data in y if exist. freq is used as weights in the gamlss fit
density  default value is FALSE. Change to TRUE if you would like a non-parametric density plot together with the parametric fitted distribution plot (for continuous variable only)
nbins    The suggested number of bins (argument passed to truehist() of package MASS). Either a positive integer, or a character string naming a rule: "Scott" or "Freedman-Diaconis" or "FD". (Case is ignored.)
xlim     the minimum and the maximum x-axis value (if the default values are out of range)
ylim     the minimum and the maximum y-axis value (if the default values are out of range)
main     the main title for the plot
xlab     the label in the x-axis
ylab     the label in the y-axis
data     the data.frame
col.hist the colour of the histogram or barplot
border.hist the colour of the border of the histogram or barplot
fg.hist  the colour of axis in the histogram or barplot
line.wd  the line width of the fitted distribution
line.ty  the line type of the fitted distribution
line.col the line color of the fitted distribution
col.main the colour for the main title
col.lab  the colour of the labels
col.axis the color of the axis
...      for extra arguments to be passed to the gamlss function
Details

This function first fits constants for each parameters of a GAMLSS distribution family using the `gamlss` function and then plots the fitted distribution together with the appropriate plot according to whether the y variable is of a continuous or discrete type. Histogram is plotted for continuous and barplot for discrete variables. The function `truehist` of Venables and Ripley’s MASS package is used for the histogram plotting.

Value

returns a plot

Author(s)

Mikis Stasinopoulos

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

gamlss, gamlss.family

Examples

data(abdom)

histDist(y,family="NO", data=abdom)

# use the ylim
histDist(y,family="NO", ylim=c(0,0.005), data=abdom)

# bad fit use PE
histDist(y,family="PE",ymax=0.005, data=abdom, line.col="blue")

# discere data counts
# Hand at al. p150 Leptinotarsa decemlineata
y <- c(0,1,2,3,4,6,7,8,10,11)
freq <- c(33,12,5,6,5,2,2,2,1,2)
histDist(y, "NBI", freq=freq)

# the same as
histDist(rep(y,freq), "NBI")
Density estimation using the Poisson trick

Description

This set of functions use the old Poisson trick of discretising the data and then fitting a Poisson error model to the resulting frequencies (Lindsey, 1997). Here the model fitted is a smooth cubic spline curve. The result is a density estimator for the data.

Usage

```
histSmo(y, lambda = NULL, df = NULL, order = 3, lower = NULL, upper = NULL, type = c("freq", "prob"), plot = FALSE, breaks = NULL, discrete = FALSE, ...)
histSmoC(y, df = 10, lower = NULL, upper = NULL, type = c("freq", "prob"), plot = FALSE, breaks = NULL, discrete = FALSE, ...)
histSmoO(y, lambda = 1, order = 3, lower = NULL, upper = NULL, type = c("freq", "prob"), plot = FALSE, breaks = NULL, discrete = FALSE, ...)
histSmoP(y, lambda = NULL, df = NULL, order = 3, lower = NULL, upper = NULL, type = c("freq", "prob"), plot = FALSE, breaks = NULL, discrete = FALSE, ...)
```

Arguments

- `y` the variable of interest
- `lambda` the smoothing parameter
- `df` the degrees of freedom
- `order` the order of the P-spline
- `lower` the lower limit of the y-variable
- `upper` the upper limit of the y-variable
- `type` the type of histogram
- `plot` whether to plot the resulting density estimator
- `breaks` the number of break points to be used in the histogram and consequently the number of observations in the Poisson fit
- `discrete` whether to treat the fitting density as a discrete distribution or not
- `...` further arguments passed to or from other methods.
Details

Here are the methods used here:

i) The function `histSmoO()` uses Penalised discrete splines (Eilers, 2003). This function is appropriate when the smoothing parameter is fixed.

ii) The function `histSmoC()` uses smooth cubic splines and fits a Poisson error model to the frequencies using the `cs()` additive function of GAMLSS. This function is appropriate if the effective degrees of freedom are fixed in the model.

iii) The function `histSmoP()` uses Penalised cubic splines (Eilers and Marx 1996). It is fitting a Poisson model to the frequencies using the `pb()` additive function of GAMLSS. This function is appropriate if automatic selection of the smoothing parameter is required.

iv) The function `histSmo()` combines all the above functions in the sense that if lambda is fixed it uses `histSmoO()`, if the df’s are fixed it uses codehistSmoC() and if none of these is specified it uses `histSmoP()`.

Value

Returns a `histSmo` S3 object. The object has the following components:

x the middle points of the discretise data

counts how many observation are on the discretise intervals
density the density value for each discrete interval

hist the hist object used to discretise the data
cdf The resulting cumulative distribution function useful for calculating probabilities from the estimate density

nvcdff The inverse cumulative distribution function

model The fitted Poisson model only for `histSmoP()` and `histSmoC()`

Author(s)

Mikis Stasinopoulos, Paul Eilers, Bob Rigby and Vlasios Voudouris

References


(see also https://www.gamlss.com/).

See Also

pb, cs

Examples

# creating data from Pareto 2 distribution
set.seed(153)
Y <- rPARETO2(1000)
## Not run:
# getting the density
histSmo(Y, lower=0, plot=TRUE)
# more breaks a bit slower
histSmo(Y, breaks=200, lower=0, plot=TRUE)
# quick fit using lambda
histSmoO(Y, lambda=1, breaks=200, lower=0, plot=TRUE)
# or
histSmo(Y, lambda=1, breaks=200, lower=0, plot=TRUE)
# quick fit using df
histSmoO(Y, df=15, breaks=200, lower=0,plot=TRUE)
# or
histSmo(Y, df=15, breaks=200, lower=0)
# saving results
m1<- histSmo(Y, lower=0, plot=T)
plot(m1)
plot(m1, "cdf")
plot(m1, "invcdf")
# using with a histogram
library(MASS)
truehist(Y)
lines(m1, col="red")
#---------------------------
# now generate from SHASH distribution
YY <- rSHASH(1000)
m1<- histSmo(YY)
# calculate Pr(YY>10)
1-m1$cdf(10)
# calculate Pr(-10<YY<10)
1-(1-m1$cdf(10))-m1$cdf(-10)
#---------------------------
# from discrete distribution
YYY <- rNBI(1000, mu=5, sigma=4)
histSmo(YYY, discrete=TRUE, plot=T)
#
YYY <- rP0(1000, mu=5)
histSmo(YYY, discrete=TRUE, plot=T)
#
YYY <- rNBI(1000, mu=5, sigma=.1)
histSmo(YYY, discrete=TRUE, plot=T)
# generating from beta distribution
YYY <- rBE(1000, mu=.1, sigma=.3)
histSmo(YYY, lower=0, upper=1, plot=T)
# from truncated data
Y <- with(stylo, rep(word,freq))
histSmo(Y, lower=1, discrete=TRUE, plot=T)
histSmo(Y, lower=1, discrete=TRUE, plot=T, type="prob")
## End(Not run)

IC

_Gives the GAIC for a GAMLSS Object_

**Description**

The function `GAIC()` calculates the Generalised Akaike information criterion (GAIC) for a given penalty `k` for a fitted GAMLSS object.

The function `AIC.gamlss()` is the method associated with a GAMLSS object of the generic function `AIC()`. Note that `GAIC()` is a synonymous of the function `AIC.gamlss`.

The function `IC()` is an old version of `GAIC()`.

The function `GAIC.table()` produces a table with different models as rows and different penalties, `k`, as columns.

The function `GAIC.scaled()` produces, [for a given set of different fitted models or for a table produced by `chooseDist()`], the scaled Akaike values (see Burnham and Anderson (2002) section 2.9 for a similar concept the GAIC weights. The scaled Akaike should not be interpreted as posterior probabilities of models given the data but for model selection purpose they produce a scaled ranking of the model using their relative importance i.e. from the worst to the best model.

The function `extractAIC` is the method associated a GAMLSS object of the generic function `extractAIC` and it is mainly used in the `stepAIC` function.

The function `Rsq` compute a generalisation of the R-squared for not normal models.

**Usage**

```r
IC(object, k = 2)
S3 method for class 'gamlss'
AIC(object, ..., k = 2, c = FALSE)
GAIC(object, ..., k = 2, c = FALSE)
GAIC.table(object, ..., k = c(2, 3.84, round(log(length(object$y)), 2)),
 text.to.show=NULL)
GAIC.scaled(object,..., k = 2, c = FALSE, plot = TRUE,
 text.cex = 0.7, which = 1, diff.dev = 1000,
 text.to.show = NULL, col = NULL, horiz = FALSE)
S3 method for class 'gamlss'
extractAIC(fit, scale, k = 2, c = FALSE, ...)
```
Arguments

- **object**: an gamlss fitted model(s) [or for GAIC.scaled() a table produced by chooseDist()].
- **fit**: an gamlss fitted model
- **...**: allows several GAMLSS object to be compared using a GAIC
- **k**: the penalty with default k=2.5
- **c**: whether the corrected AIC, i.e. AICc, should be used, note that it applies only when k=2
- **scale**: this argument is not used in gamlss
- **plot**: whether to plot the ranking in GAIC.scaled().
- **text.cex**: the size of the models/families in the text of the plot of GAIC.scaled().
- **diff.dev**: this argument prevents models with a difference in deviance greater than diff.dev from the ‘best’ model to be considered (or plotted).
- **which**: which column of GAIC scaled to plot in GAIC.scaled().
- **text.to.show**: if NULL, GAIC.scaled() shows the model names otherwise the character in this list
- **col**: The colour of the bars in GAIC.scaled()
- **horiz**: whether to plot the bars vertically (default) or horizontally

Value

The function IC() returns the GAIC for given penalty k of the GAMLSS object. The function AIC() returns a matrix contains the df’s and the GAIC’s for given penalty k. The function GAIC() returns identical results to AIC. The function GAIC.table() returns a table which its rows showing different models and its columns different k’s. The function extractAIC() returns vector of length two with the degrees of freedom and the AIC criterion.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also https://www.gamlss.com/).
**lms**

*A function to fit LMS curves for centile estimation*

**Description**

This function is design to help the user to easily construct growth curve centile estimation. It is applicable when only "one" explanatory variable is available (usually age).

**Usage**

```r
lms(y, x, families = LMS, data = NULL, k = 2,
 cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
 calibration = TRUE, trans.x = FALSE,
 fix.power = NULL, lim.trans = c(0, 1.5),
 prof = FALSE, step = 0.1, legend = FALSE,
 mu.df = NULL, sigma.df = NULL, nu.df = NULL,
 tau.df = NULL, c.crit = 0.01,
 method.pb = c("ML", "GAIC"), ...)```

Arguments

- `y` The response variable
- `x` The unique explanatory variable
- `families` a list of `gamlss.family` with default `LMS=c("BCCGo", "BCPEo", "BCTo")`
data the data frame
k the penalty to be used in the GAIC
cent a vector with elements the % centile values for which the centile curves have to
 be evaluated
calibration whether calibration is required with default TRUE
trans.x whether to check for transformation in x with default FALSE
fix.power if set it fix the power of the transformation for x
lim.trans the limits for the search of the power parameter for x
prof whether to use the profile GAIC of the power transformation
step if codeprof=TRUE is used this determine the step for the profile GAIC
legend whether a legend is required in the plot with default FALSE
mu.df mu effective degrees of freedom if required otherwise are estimated
sigma.df sigma effective degrees of freedom if required otherwise are estimated
nu.df nu effective degrees of freedom if required otherwise are estimated
tau.df tau effective degrees of freedom if required otherwise are estimated
c.crit the convergence criterion to be pass to gamlss()
method.pb the method used in the pb() for estimating the smoothing parameters. The de-
 fault is local maximum likelihood "ML". "GAIC" is also permitted where k is
 taken from the k argument of the function.
... extra argument which can be passed to gamlss()

Details

This function should be used if the construction of the centile curves involves only one explanatory
variable.

The model assumes that the response variable has a flexible distribution i.e. $y \sim D(\mu, \sigma, \nu, \tau)$ where
the parameters of the distribution are smooth functions of the explanatory variable i.e. $g(\mu) = s(x)$,
where $g()$ is a link function and $s()$ is a smooth function. Occasionally a power transformation in
the x-axis helps the construction of the centile curves. That is, in this case the parameters are
modelled by x^p rather than just x, i.e. $g(\mu) = s(x^p)$. The function lms() uses P-splines (pb()) as a
smoother.

If a transformation is needed for x the function lms() starts by finding an optimum value for p
using the simple model $NO(\mu = s(x^p))$. (Note that this value of p is not the optimum for the final
chosen model but it works well in practice.)

After fitting a Normal error model for staring values the function proceeds by fitting several "appropriate"
distributions for the response variable. The set of gamlss.family distributions to fit is specified
by the argument families. The default families arguments is LMS=c("BCCGo", "BCPEo",
"BCTe") that is the LMS class of distributions, Cole and Green (1992). Note that this class is only
appropriate when y is positive (with no zeros). If the response variable contains negative values and
zeros then use the argument families=theSHASH where theSHASH <- c("NO", "SHASHo") or add
any other list of distributions which you may think is appropriate. Justification of using the specific
centile (0.38 2.27 9.12 11220 25.25, 50, 74.75, 90.88, 97.72, 99.62) is given in Cole (1994).
Value

It returns a `gamlss` fitted object

Note

The function is fitting several models and for large data can be slow

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Vlasios Voudouris

References

(see also https://www.gamlss.com/).

See Also

`gamlss`, `centiles`, `calibration`

Examples

```r
## Not run:
data(abdom)
m1 <- lms(y,x , data=abdom, n.cyc=30)
m2 <- lms(y,x ,data=abdom, method.pb="GAIC", k=log(610))
# this example takes time
data(db)
m1 <- lms(y=head, x=age, data=db, trans.x=TRUE)

## End(Not run)
```
Specify a loess fit in a GAMLSS formula

Description

Allows the user to specify a loess fit within a GAMLSS model. This function is similar to the lo function in the gam implementation of package gam see Chambers and Hastie (1991).

The function vis.lo() allows plotting the results.

Usage

lo(formula, control = lo.control(...), ...)
lo.control(span = 0.75, enp.target = NULL,
 degree = 2, parametric = FALSE, drop.square = FALSE,
 normalize = TRUE, family = c("gaussian", "symmetric"),
 method = c("loess", "model.frame"),
 surface = c("interpolate", "direct"),
 statistics = c("approximate", "exact", "none"),
 trace.hat = c("exact", "approximate"),
 cell = 0.2, iterations = 4, iterTrace = FALSE, ...)
vis.lo(obj, se=-1, rug = FALSE, partial.resid = FALSE,
 col.term = "darkred", col.shaded = "gray",
 col.res = "lightblue", col.rug = "gray", lwd.term = 1.5,
 cex.res = 1, pch.res = par("pch"),
 type = c("persp", "contour"), col.surface = "gray",
 nlevels = 30, n.grid = 30, image = TRUE, ...)

Arguments

formula a formula specifying the explanatory variables
control a control to be passed to the loess function
... extra arguments
span the number of observations in a neighbourhood. This is the smoothing parameter for a loess fit.
enp.target an alternative way to specify span, as the approximate equivalent number degrees of freedom to be used. See also the help file of the R function loess. For consistency with the older version of lo the effective degrees of freedom df can be also specified instead of span, e.g. df=5
degree the degree of local polynomial; can be 1 or 2. See also the help file of loess
parametric should any terms be fitted globally rather than locally? See the help file of loess
drop.square for fits with more than one predictor and degree=2, should the quadratic term be dropped for particular predictors?. See also help file of loess
normalize should the predictors be normalized to a common scale if there is more than one? See the help file of loess
family if "gaussian" fitting is by least-squares, and if "symmetric" a re-descending M
estimator is used with Tukey's biweight function. See the help file of loess
method fit the model or just extract the model frame. See the help file of loess
surface should the fitted surface be computed exactly or via interpolation from a kd tree?
See also the help file of loess.control
statistics should the statistics be computed exactly or approximately? See the help file of
loess.control
trace.hat should the trace of the smoother matrix be computed exactly or approximately?
See the help file of loess.control
cell if interpolation is used this controls the accuracy of the approximation via the
maximum number of points in a cell in the kd tree. See the help file of loess.control
iterations the number of iterations used in robust fitting. See the help file of loess.control
iterTrace logical (or integer) determining if tracing information during the robust itera-
tions (iterations>= 2) is produced. See the help file of loess.control
obj an loess object fitted within gamlss
se if se>0 then standard errors surfaces are drawn in the 3-dimensional plot. Set
se at the required level i.e se=1.96 will be an approximated 95% CI.
rug whether to plot a rug in the plot
partial.resid whether to plot the partial residuals
col.term the colour of the line of fitted term
cex.res the shading of standard
col.shaded the shading of standard error intervals
col.res the colour of partial residuals
col.rug the colour of the rug
lwd.term the width of the line
pch.res The character for the partial residuals
type The type of the plot if the x's are two dimensional
col.surface the colour of the fitted surface
nlevels the number of levels used in contour() plot.
n.grid The number of points to evaluate the surface
image whether to use image() or just contour

Details
Note that lo itself does no smoothing; it simply sets things up for the function gamlss.lo() which
is used by the backfitting function gamlss.add().

Value
a loess object is returned.
Warning

In this version the first argument is a formula NOT a list as in the previous one.

Note

Note that lo itself does no smoothing; it simply sets things up for gamlss.lo() to do the backfitting.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby. (The original lo() function was based on the Trevor Hastie’s S-plus lo() function. See also the documentation of the loess function for the authorship of the function.

References

See Also

cs, random,

Examples

fitting a loess curve with span=0.4 plus the a quarterly effect
aids1<-gamlss(y~lo(~x,span=0.4)+qrt,data=aids,family=PO) #
term.plot(aids1, page=1)
Not run:
NOT RUN:
r1 <- gamlss(R~lo(~Fl)+lo(~A), data=rent, family=GA)
term.plot(r1, pages=1)
vis.lo(getSmo(r1, which=1), partial=T)
r2 <- gamlss(R~lo(~Fl+A), data=rent, family=GA)
term.plot(r2, pages=1)
vis.lo(getSmo(r2, which=1))
vis.lo(getSmo(r2, which=1), se=1.97)
vis.lo(getSmo(r2, which=1), partial.res=T)

End(Not run)
Description

The log-log Survival functions are designed for checking the tails of a single response variable (no explanatory should be involved). There are three different functions:

a) the function `loglogSurv1()` which plots the right tails of the empirical log-log Survival function against \(\log(\log(y)) \), where \(y \) is the variable of interest. The coefficient of a linear fit to the plot can be used as an estimated for Type I tails (see Chapter 17 in Rigby et al. (2019) for definition of the different types of tails.)

b) the function `loglogSurv2()` which plots the right tails of the empirical log-log Survival function against \(\log(y) \). The coefficient of a linear fit to the plot can be used as an estimated for Type II tails.

c) the function `loglogSurv3()` which plots the (left or right) tails of the empirical log-log Survival function against \(y \). The coefficient of a linear fit to the plot can be used as an estimated for Type III tails.

The function `loglogSurv()` combines all the above functions.

The function `logSurv()` is designed for exploring the heavy tails of a single response variable. It plots the empirical log-survival function of the right tail of the distribution or the empirical log-cdf function of the left tail against \(\log(y) \) for a specified probability of the tail. Then fits a linear, a quadratic and an exponential curve to the points of the plot. For distributions defined on the positive real line a good linear fit would indicate a Pareto type tail, a good quadratic fit a log-normal type tail and good exponential fit a Weibull type tail. Note that this function is only appropriate to investigate rather heavy tails and it is not very good to discriminate between different types of tails, as the `loglogSurv()` does not fit the curves.

The function `loglogplot()` plots the empirical log-survival function of all data against \(\log(y) \). The function `ECDF()` calculates the empirical commutative distribution function. It is similar to `ecdf()` but divides by \(n+1 \) rather \(n \), the number of conservations.

Usage

```r
loglogSurv(y, prob = 0.9, print = TRUE, title = NULL, lcol = gray(0.1), ltype = 1, plot = TRUE, ...)
loglogSurv1(y, prob = 0.9, print = TRUE, title = NULL, lcol = gray(0.1), ltype = 1, ...)
loglogSurv2(y, prob = 0.9, print = TRUE, title = NULL, lcol = gray(0.1), ltype = 1, ...)
loglogSurv3(y, prob = 0.9, print = TRUE, title = NULL, lcol = gray(0.1), ltype = 1, ...)
logSurv(y, prob = 0.9, tail = c("right", "left"), plot = TRUE,
...)`
\begin{verbatim}
loglogSurv(y, prob = 0.9, tail = c("right", "left"), plot = TRUE,
          title = NULL, ...) 

logSurv0(y, prob = 0.9, tail = c("right", "left"), plot = TRUE,
          title = NULL, ...) 

ECDF(y, weights=NULL) 

loglogplot(y, nplus1 = TRUE, ...) 
\end{verbatim}

Arguments

- **y**: a vector, the variable of interest
- **prob**: what probability. The default is 0.90 which means 10% for "right" tail 90% for "left" tail
- **tail**: which tail needs checking the right (default) of the left
- **plot**: whether to plot with default equal TRUE
- **print**: whether to print the coefficients with default equal TRUE
- **title**: if a different title rather the default is needed
- **lcol**: The line colour in the plot
- **lines**: whether to plot the fitted lines
- **ltype**: The line type in the plot
- **nplus1**: whether to divide by n+1 or n when calculating the ecdf
- **weights**: prior weights for ECDF()
- **...**: for extra argument in the plot command

Details

The functions \texttt{loglogSurv1()}, \texttt{loglogSurv3()} and \texttt{loglogSurv3()} take the upper part of an ordered variable, create its empirical survival function, and plot the log-log of this functions against \( \log(\log(y)) \), \( \log(y) \) and \( y \), respectively. Then they fit a line to the plot. The coefficients of the line can be interpreted as parameters determined the behaviour of the tail. The function \texttt{loglogSurv()} fits all three models and displays the best.

The function \texttt{logSurv()} takes the upper (or lower) part of an ordered variable and plots the log empirical survival function against \( \log(y) \). Also display three curves \( \text{i) linear ii) quadratic and iii) exponential} \) to determine what kind of tail relationship exist. Plotting the log empirical survival function against \( \log(y) \) often call in the literature the "log-log plot".

The function \texttt{loglogplot()} plots the whole log empirical survival function against \( \log(y) \) (not just the tail). The function \texttt{ECDF()} calculate the step function of the empirical cumulative distribution function.

More details can be found in Chapter 17 of "Rigby et al. (2019) book an old version on which can be found in \url{https://www.gamlss.com/}"
Value

The functions create plots.

Author(s)

Bob Rigby, Mikis Stasinopoulos and Vlassios Voudouris

References


(see also https://www.gamlss.com/).

Examples

data(film90)
y <- film90$lborev1
op<-par(mfrow=c(3,1))
loglogSurv1(y)
loglogSurv2(y)
loglogSurv3(y)
par(op)
loglogSurv(y)

logSurv(y)

loglogplot(y)

plot(ECDF(y), main="ECDF")


<table>
<thead>
<tr>
<th>lpred</th>
<th>Extract Linear Predictor Values and Standard Errors For A GAMLSS Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description

The function \texttt{lpred()} is the GAMLSS specific method which extracts the linear predictor and its (approximate) standard errors for a specified model parameter from a GAMLSS objects. The \texttt{lpred()} can be used to extract the predictor fitted values (and its approximate standard errors) or the contribution of specific terms in the model (with their approximate standard errors) in the same way that the \texttt{predict.lm()} and \texttt{predict.glm()} functions can be used for \texttt{lm} or \texttt{glm} objects. Note that \texttt{lpred()} extract information for the predictors of \textit{mu}, \textit{sigma}, \textit{nu} and \textit{tau} at the training data values. If predictions are required for new data then use the functions \texttt{predict.gamlss()} or \texttt{predictAll()}.

The function \texttt{lp} extract only the linear predictor at the training data values.

Usage

\begin{verbatim}
lpred(obj, what = c("mu", "sigma", "nu", "tau"), parameter= NULL,
type = c("link", "response", "terms"),
terms = NULL, se.fit = FALSE, ...)
lp(obj, what = c("mu", "sigma", "nu", "tau"), parameter= NULL, ...)
\end{verbatim}

Arguments

- \texttt{obj} a GAMLSS fitted model
- \texttt{what} which distribution parameter is required, default what="mu"
- \texttt{parameter} equivalent to \texttt{what}
- \texttt{type} type="link" (the default) gets the linear predictor for the specified distribution parameter. type="response" gets the fitted values for the parameter while type="terms" gets the fitted terms contribution
- \texttt{terms} if type="terms", which terms to be selected (default is all terms)
- \texttt{se.fit} if TRUE the approximate standard errors of the appropriate type are extracted
- \texttt{...} for extra arguments

Value

If \texttt{se.fit}=FALSE a vector (or a matrix) of the appropriate type is extracted from the GAMLSS object for the given parameter in \texttt{what}. If \texttt{se.fit}=TRUE a list containing the appropriate type, \texttt{fit}, and its (approximate) standard errors, \texttt{se.fit}.

Author(s)

Mikis Stasinopoulos

References


(see also https://www.gamlss.com/).

See Also

predict.gamlss

Examples

data(aids)
mod<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
mod.t <- lpred(mod, type = "terms", terms= "qrt")
mod.t
mod.lp <- lp(mod)
mod.lp
rm(mod, mod.t,mod.lp)

LR.test

Likelihood Ratio test for nested GAMLSS models

Description

The function performs a likelihood ration test for two nested fitted model.

Usage

LR.test(null, alternative, print = TRUE)

Arguments

null The null hypothesis (simpler) fitted model
alternative The alternative hypothesis (more complex) fitted model
print whether to print or save the result

Details

Warning: no checking whether the models are nested is performed.

Value

If print=FALSE a list with chi, df and p.val is produced.
Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

`gamlss`, `dropterm`

Examples

data(usair)
m0<-gamlss(y~x1+x2, data=usair)
m1<-gamlss(y~x1+x2+x3+x4, data=usair)
LR.test(m0,m1)

---

model.frame.gamlss

Extract a model.frame, a model matrix or terms from a GAMLSS object for a given distributional parameter

Description

`model.frame.gamlss`, `model.matrix.gamlss` and `terms.gamlss` are the `gamlss` versions of the generic functions `model.frame`, `model.matrix` and `terms` respectively.

Usage

```r
S3 method for class 'gamlss'
model.frame(formula, what = c("mu", "sigma", "nu", "tau"),
 parameter = NULL, ...)
S3 method for class 'gamlss'
terms(x, what = c("mu", "sigma", "nu", "tau"),
 parameter = NULL, ...)
S3 method for class 'gamlss'
model.matrix(object, what = c("mu", "sigma", "nu", "tau"),
 parameter = NULL, ...)
```
model.frame.gamlss

Arguments

- formula: a gamlss object
- x: a gamlss object
- object: a gamlss object
- what: for which parameter to extract the model.frame, terms or model.frame
- parameter: equivalent to what
- ...: for extra arguments

Value

a model.frame, a model.matrix or terms

Author(s)

Mikis Stasinopoulos

References


(see also https://www.gamlss.com/).

See Also

gamlss

Examples

data(aids)
mod<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
model.frame(mod)
model.matrix(mod)
terms(mod, "mu")
rm(mod)
An internal GAMLSS function for numerical derivatives

Description

A function to calculate numerical derivatives.

Usage

```r
numeric.deriv(expr, theta, delta = NULL, rho = sys.frame(sys.parent()))
```

Arguments

- `expr`: The expression to be differentiated
- `theta`: A character vector
- `delta`: constant for the accuracy
- `rho`: environment

Details

This function is use by several GAMLSS functions but it is not for general use since there are more reliable function to do that in R.

Value

A vector of numerical derivatives

Note

Do not use this function unless you know what you are doing

Author(s)

Mikis Stasinopoulos

References


par.plot  
A function to plot parallel plot for repeated measurement data

Description
This function can be used to plot parallel plots for each individual in a repeated measurement study. It is based on the coplot() function of R.

Usage
par.plot(formula = NULL, data = NULL, subjects = NULL, color = TRUE, show.given = TRUE, ...)

Arguments
- formula: a formula describing the form of conditioning plot. A formula of the form y ~ x | a indicates that plots of y versus x should be produced conditional on the variable a. A formula of the form y ~ x | a * b indicates that plots of y versus x should be produced conditional on the two variables a and b.
- data: a data frame containing values for any variables in the formula. This argument is compulsory.
- subjects: a factor which distinguish between the individual participants
- color: whether the parallel plot are shown in colour, color=TRUE (the default) or not color=FALSE
- show.given: logical (possibly of length 2 for 2 conditioning variables): should conditioning plots be shown for the corresponding conditioning variables (default 'TRUE')
- ...: for extra arguments

Value
It returns a plot.

Note
Note that similar plot can be fount in the library nlme by Pinheiro and Bates

Author(s)
Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
References


(see also https://www.gamlss.com/).

See Also

`gamlss`

Examples

```r
library(nlme)
data(Orthodont)
par.plot(distance~age,data=Orthodont,subject=Subject)
par.plot(distance~age|Sex,data=Orthodont,subject=Subject)
par.plot(distance~age|Subject,data=Orthodont,subject=Subject,show.given=FALSE)
```

**pcat**

*Reduction for the Levels of a Factor.*

Description

The function is trying to merged similar levels of a given factor. Its based on ideas given by Tutz (2013).

Usage

```r
pcat(fac, df = NULL, lambda = NULL, method = c("ML", "GAIC"), start = 0.001,
Lp = 0, kappa = 1e-05, iter = 100, c.crit = 1e-04, k = 2)
gamlss.pcat(x, y, w, xeval = NULL, ...)
plotDF(y, factor = NULL, formula = NULL, data, along = seq(0, nlevels(factor)),
kappa = 1e-06, Lp = 0, ...)
plotLambda(y, factor = NULL, formula = NULL, data, along = seq(-2, 2, 0.1),
kappa = 1e-06, Lp = 0, ...)
```
**Arguments**

- **fac, factor** a factor to reduce its levels
- **df** the effective degrees of freedom df
- **lambda** the smoothing parameter
- **method** which method is used for the estimation of the smoothing parameter, "ML" or "GAIC" are allowed.
- **start** starting value for lambda if it estimated using "ML" or "GAIC"
- **Lp** The type of penalty required, Lp=0 is the default. Use Lp=1 for lasso type and different values for different required penalty.
- **kappa** a regulation parameters used for the weights in the penalties.
- **iter** the number of internal iteration allowed
- **c.crit** the convergent criterion
- **k** the penalty if "GAIC" method is used.
- **x** explanatory factor
- **y** the response or iterative response variable
- **w** iterative weights
- **xeval** indicator whether to predict
- **formula** A formula
- **data** A data frame
- **along** a sequence of values
- ... for extra variables

**Details**

The `pcat()` is used for the fitting of the factor. The function shrinks the levels of the categorical factor (not towards the overall mean as the function `random()` is doing) but towards each other. This results to a reduction of the number if levels of the factors. Different norms can be used for the shrinkage by specifying the argument Lp.

**Value**

The function `pcat()` reruns a vector endowed with a number of attributes. The vector itself is used in the construction of the model matrix, while the attributes are needed for the backfitting algorithms `additive.fit()`. The backfitting is done in `gamlss.pcat()`.

**Note**

Note that `pcat()` itself does no smoothing; it simply sets things up for `gamlss.pcat()` to do the smoothing within the backfitting.

**Author(s)**

Mikis Stasinopoulos `<d.stasinopoulos@londonmet.ac.uk>`, Paul Eilers and Marco Enea
References


(see also https://www.gamlss.com/).

See Also

random

Examples

```r
Simulate data 1
n <- 10 # number of levels
m <- 200 # number of observations
set.seed(2016)
level <- as.factor(floor(runif(m) * n) + 1)
a0 <- rnorm(n)
sigma <- 0.4
mu <- a0[level]
y <- mu + sigma * rnorm(m)
plot(y~level)
points(1:10,a0, col="red")
da1 <- data.frame(y, level)

#------------------
mn <- gamlss(y~1,data=da1) # null model
ms <- gamlss(y~level-1, data=da1) # saturated model
m1 <- gamlss(y~pcat(level), data=da1) # calculating lambda ML

AIC(mn, ms, m1, m1)

Not run:
m11 <- gamlss(y~pcat(level, method="GAIC", k=log(200)), data=da1) # GAIC
AIC(mn, ms, m1, m11)

Getting the fitted object ---
getSmo(m1)
coef(getSmo(m1))
fitted(getSmo(m1))[1:10]
plot(getSmo(m1)) #

After the fit a new factor is created this factor has the reduced levels
levels(getSmo(m1)$factor)

End(Not run)
```
pdf.plot

Plots Probability Distribution Functions for GAMLSS Family

Description

A function to plot probability distribution functions (pdf) belonging to the gamlss family of distributions. This function allows either plotting of the fitted distributions for up to eight observations or plotting specified distributions belonging in the gamlss family.

Usage

pdf.plot(obj = NULL, obs = c(1), family = NO(), mu = NULL,
          sigma = NULL, nu = NULL, tau = NULL, from = 0,
          to = 10, min = NULL, max = NULL, no.points = 201,
          no.title = FALSE, col = gray(0.4), y.axis.lim = 1.1,
          frame.plot = TRUE, ...)

Arguments

obj  An gamlss object e.g. obj=model1 where model1 is a fitted gamlss object
obs  A number or vector of up to length eight indicating the case numbers of the observations for which fitted distributions are to be displayed, e.g. obs=c(23,58) will display the fitted distribution for the 23th and 58th observations
family  This must be a gamlss family i.e. family=NO
mu  The value(s) of the location parameter mu for which the distribution has to be evaluated e.g mu=c(3,7)
sigma  The value(s) the scale parameter sigma for which the distribution has to be evaluated e.g sigma=c(3,7)
nu  The value(s) the parameter nu for which the distribution has to be evaluated e.g. nu=3
tau  The value(s) the parameter tau for which the distribution has be evaluated e.g. tau=5
from  Minimum value of the random variable y (identical to min)
to  Maximum value of the random variable y(identical to max)
min  Minimum value of the random variable y e.g. min=0
max  Maximum value of y e.g. max=10
no.points  the number fo point in which the function will be evaluated
no.title  Whether you need title in the plot, default is no.title=FALSE
col  the colot of the lines
y.axis.lim  the limits for the y-axis
frame.plot  whether to frame the individual plots
...  for extra arguments. Note that a useful argument can be col.axis, col.lab, cex.axis, cex.lab etc.
Details

This function can be used to plot distributions of the GAMLSS family. If the first argument `obj` is specified and it is a GAMLSS fitted object, then the fitted distribution of this model at specified observation values (given by the second argument `obs`) is plotted for a specified y-variable range (arguments `min`, `max`, and `step`).

If the first argument is not given then the `family` argument has to be specified and the pdf is plotted at specified values of the parameters `mu`, `sigma`, `nu`, `tau`. Again the range of the y-variable has to be given.

Value

plot(s) of the required pdf(s) are returned

Warning

The range of some distributions depends on the fitted parameters

Note

The range of the y values given by min, max and step are very important in the plot

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Calliope Akantziliotou

References


(see also https://www.gamlss.com/).

See Also

gamlss
Examples

```r
pdf.plot(family=BCT, min=1, max=20, mu=10, sigma=0.15, nu=-1, tau=c(4,10,20,40))
Not run:
now using an gamlss object
data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom) # fits
pdf.plot(obj=h , obs=c(23,67), min=50, max=150)
End(Not run)
```

**plot.gamlss**  
*Plot Residual Diagnostics for an GAMLSS Object*

**Description**

This function provides four plots for checking the normalized (randomized for a discrete response distribution) quantile residuals of a fitted GAMLSS object, referred to as residuals below: a plot of residuals against fitted values, a plot of the residuals against an index or a specific explanatory variable, a density plot of the residuals and a normal Q-Q plot of the residuals. If argument ts=TRUE then the first two plots are replaced by the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the residuals.

**Usage**

```r
S3 method for class 'gamlss'
plot(x, xvar = NULL, parameters = NULL, ts = FALSE, summaries = TRUE, ...)
```

**Arguments**

- **x**
  - a GAMLSS fitted object
- **xvar**
  - an explanatory variable to plot the residuals against
- **parameters**
  - plotting parameters can be specified here
- **ts**
  - set this to TRUE if ACF and PACF plots of the residuals are required
- **summaries**
  - set this to FALSE if no summary statistics of the residuals are required
- ...
  - further arguments passed to or from other methods.

**Details**

This function provides four plots for checking the normalized (randomized) quantile residuals (called residuals) of a fitted GAMLSS object. Randomization is only performed for discrete response variables. The four plots are:

- residuals against the fitted values (or ACF of the residuals if ts=TRUE)
- residuals against an index or specified x-variable (or PACF of the residuals if ts=TRUE)
• kernel density estimate of the residuals
• QQ-normal plot of the residuals

For time series response variables option ts=TRUE can be used to plot the ACF and PACF functions of the residuals.

Value

Returns four plots related to the residuals of the fitted GAMLSS model and prints summary statistics for the residuals if the summary=T

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Kalliope Akantziliotou

References


(see also https://www.gamlss.com/).

See Also

gamlss

Examples

data(aids)
a<-gamlss(y~pb(x)+qrt,family=PO, data=aids)
plot(a)
rm(a)
Description

Plots the estimated density or its c.d.f function or its inverse c.d.f function

Usage

```r
S3 method for class 'histSmo'
plot(x, type = c("hist", "cdf", "invcdf"), ...)
```

Arguments

- `x` An histSmo object
- `type` Different plots: a histogram and density estimator, a c.d.f function or an inverse c.d.f function.
- `...` for further arguments

Value

returns the relevant plot

Author(s)

Mikis Stasinopoulos, Paul Eilers, Bob Rigby, Vlasios Voudouris and Majid Djennad

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).
See Also

histSmo

Examples

Y <- rPARETO2(1000)
m1<- histSmo(Y, lower=0, save=TRUE)
plot(m1)
plot(m1, "cdf")
plot(m1, "invcdf")

plot2way

Function to plot two interaction in a GAMLSS model

Description

This function is designed to plot a factor to factor interaction in a GAMLSS model.

Usage

plot2way(obj, terms = list(), what = c("mu", "sigma", "nu", "tau"),
         parameter = NULL, show.legend = TRUE, ...)

Arguments

obj                A gamlss model
terms              this should be a character vector with the names of the two factors to be plotted
what               which parameters? mu, sigma, nu, or tau
parameter          equivalent to what
show.legend        whether to show the legend in the two way plot
...                Further arguments

Details

This is an experimental function which should be use with prudence since no other check is done
on whether this interaction interfere with other terms in the model

Value

The function creates a 2 way interaction plot

Author(s)

Mikis Stasinopoulos
References


(see also https://www.gamlss.com/).

See Also
term.plot.

Examples
data(aids)
  ti <- factor(c(rep(1,18),rep(2,27)))
  m1 <- gamlss(y~x+qrt*ti, data=aids, family=NBI)
  m2 <- gamlss(y~x+qrt*ti, data=aids, family=NO)
  plot2way(m1, c("qrt","ti"))
  plot2way(m1, c("ti", "qrt"))

polyS

Auxiliary support for the GAMLSS

Description

These two functions are similar to the poly and polym in R. Are needed for the gamlss.lo function of GAMLSS and should not be used on their own.

Usage

polyS(x, ...)
poly.matrix(m, degree = 1)

Arguments

  x           a variable
  m           a variable
  degree      the degree of the polynomial
  ...         for extra arguments
predict.gamlss

Value

Returns a matrix of orthogonal polynomials

Warning

Not to be used by the user

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

`gamlss`, `gamlss.lo`

---

predict.gamlss Extract Predictor Values and Standard Errors For New Data In a GAMLSS Model

Description

`predict.gamlss` is the GAMLSS specific method which produce predictors for a new data set for a specified parameter from a GAMLSS objects. The `predict.gamlss` can be used to extract the linear predictors, fitted values and specific terms in the model at new data values in the same way that the `predict.lm()` and `predict.glm()` functions can be used for `lm` or `glm` objects. Note that linear predictors, fitted values and specific terms in the model at the current data values can also be extracted using the function `lpred()` (which is called from predict if new data is NULL).
predict.gamlss

Usage

## S3 method for class 'gamlss'
predict(object, what = c("mu", "sigma", "nu", "tau"),
       parameter = NULL,
       newdata = NULL, type = c("link", "response", "terms"),
       terms = NULL, se.fit = FALSE, data = NULL, ...)
predictAll(object, newdata = NULL, type = c("response", "link", "terms"),
           terms = NULL, se.fit = FALSE, use.weights = FALSE,
           data = NULL, y.value = "median",
           set.to = .Machine$double.xmin,
           output = c("list","data.frame", "matrix"), ...)

Arguments

object a GAMLSS fitted model
what which distribution fitted parameter is required, default what="mu"
parameter equivalent to what
newdata a data frame containing new values for the explanatory variables used in the
         model
type the default, gets the linear predictor for the specified distribution parameter.
       type="response" gets the fitted values for the parameter while type="terms"
       gets the fitted terms contribution
terms if type="terms", which terms to be selected (default is all terms)
se.fit if TRUE the approximate standard errors of the appropriate type are extracted if
       exist
use.weights if use.weights=TRUE the old data and the newdata are merged and the model
         is refitted with weights equal to the prior weights for the old data observational
         and equal to a very small value (see option set.to) for the .newdata values.
         This trick allows to obtain standard errors for all parameters
data the data frame used in the original fit if is not defined in the call
y.value how to get the response values for the newdata if they do not exist. The default
       is taking the median, y.value="median". Other function like "max", "min" are
       allowed. Also numerical values.
set.to what values the weights for the newdata should take
output whether the output to be a 'list' (default) or a 'matrix'
... for extra arguments

Details

The predict function assumes that the object given in newdata is a data frame containing the right x-
variables used in the model. This could possible cause problems if transformed variables are used in
the fitting of the original model. For example, let us assume that a transformation of age is needed in
the model e.g. nage<—age^0.5. This could be fitted as mod<-gamlss(y~cs(age^0.5), data=mydata)
or as nage<—age^0.5; mod<-gamlss(y~cs(nage), data=mydata). The later could more efficient if
the data are in thousands rather in hundreds. In the first case, the code predict(mod,newdata=data.frame(age=c(34,56)))
would produce the right results. In the second case a new data frame has to be created containing the old data plus any new transform data. This data frame has to be declared in the data option. The option `newdata` should contain a data.frame with the new names and the transformed values in which prediction is required, (see the last example).

**Value**

A vector or a matrix depending on the options.

**Note**

This function is under development

**Author(s)**

Mikis Stasinopoulos

**References**


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

**See Also**

`lp`, `lpred`

**Examples**

data(aids)
a<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
newaids<-data.frame(x=c(45,46,47), qrt=c(2,3,4))
ap <- predict(a, newdata=newaids, type = "response")
ap
# now getting all the parameters
predictAll(a, newdata=newaids)
rm(a, ap)
data(abdom)
# transform x
aa<-gamlss(y~cs(x*.5),data=abdom)
# predict at old values
predict(aa)[610]
### print.gamlss

**Prints a GAMLSS fitted model**

#### Description

`print.gamlss` is the GAMLSS specific method for the generic function `print` which prints objects returned by modelling functions.

#### Usage

```r
S3 method for class 'gamlss'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

#### Arguments

- **x**: a GAMLSS fitted model
- **digits**: the number of significant digits to use when printing
- **...**: for extra arguments

#### Value

Prints a `gamlss` object

#### Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Calliope Akantziliotou

#### References


(see also https://www.gamlss.com/).

See Also
gamlss, deviance.gamlss, fitted.gamlss

Examples
data(aids)

\[
\begin{align*}
h & \leftarrow \text{gamlss}(y \sim \text{poly}(x,3) + \text{qrt}, \text{family=PO, data=aids}) \\
\text{print}(h) & \quad \text{# or just } h \\
\text{rm}(h)
\end{align*}
\]

prof.dev

---

*Plotting the Profile Deviance for one of the Parameters in a GAMLSS model*

Description

This functions plots the profile deviance of one of the (four) parameters in a GAMLSS model. It can be used if one of the parameters \(\mu\), \(\sigma\), \(\nu\) or \(\tau\) is a constant (not a function of explanatory variables) to obtain a profile confidence intervals.

Usage

\[
\text{prof.dev}(\text{object}, \text{which = NULL, min = NULL, max = NULL, step = NULL, length = 7, startlastfit = TRUE, plot = TRUE, perc = 95, col=“darkgreen”})
\]

Arguments

- **object**: A fitted GAMLSS model
- **which**: which parameter to get the profile deviance e.g. \text{which=“tau”}
- **min**: the minimum value for the parameter e.g. \text{min=1}
- **max**: the maximum value for the parameter e.g. \text{max=20}
- **step**: how often to evaluate the global deviance (defines the step length of the grid for the parameter) e.g. \text{step=1}
- **length**: the length if step is not set, default equal 7
- **startlastfit**: whether to start fitting from the last fit or not, default value is \text{startlastfit=TRUE}
- **plot**: whether to plot, \text{plot=TRUE} or save the results, \text{plot=FALSE}
- **perc**: what % confidence interval is required
- **col**: The colour of the profile line
Details

This function can be used to provide likelihood based confidence intervals for a parameter for which a constant model (i.e. no explanatory model) is fitted and consequently for checking the adequacy of a particular values of the parameter. This can be used to check the adequacy of one distribution (e.g. Box-Cox Cole and Green) nested within another (e.g. Box-Cox power exponential). For example one can test whether a Box-Cox Cole and Green (Box-Cox-normal) distribution or a Box-Cox power exponential is appropriate by plotting the profile of the parameter tau. A profile deviance showing support for tau=2 indicates adequacy of the Box-Cox Cole and Green (i.e. Box-Cox normal) distribution.

Value

Return a profile plot (if the argument plot=TRUE) and an ProfLikelihood.gamlss object if saved. The object contains:

- values: the values at the grid where the parameter was evaluated
- fun: the function which approximates the points using splines
- min: the minimum values in the grid
- max: the maximum values in the grid
- max.value: the value of the parameter maximising the Profile deviance (or GAIC)
- CI: the profile confidence interval (if global deviance is used)
- criterion: which criterion was used

Warning

A dense grid (i.e. small step) evaluation of the global deviance can take a long time, so start with a sparse grid (i.e. large step) and decrease gradually the step length for more accuracy.

Author(s)

Calliope Akantziliotou, Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Bob Rigby

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).
prof.term

See Also
gamlss, prof.term

Examples

## Not run:
data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
prof.dev(h,"nu",min=-2.000,max=2)
rm(h)
## End(Not run)

prof.term

Plotting the Profile: deviance or information criterion for one of the
terms (or hyper-parameters) in a GAMLSS model

Description

This functions plots the profile deviance for a chosen parameter included in the linear predictor of
any of the mu, sigma, nu or tau models so profile confidence intervals can be obtained. In can also
be used to plot the profile of a specified information criterion for any hyper-parameter when smooth
additive terms are used.

Usage

prof.term(model = NULL, criterion = c("GD", "GAIC"), penalty = 2.5,
other = NULL, min = NULL, max = NULL, step = NULL,
length = 7, xlabel = NULL, plot = TRUE, perc = 95,
start.prev = TRUE, col="darkgreen")

Arguments

model this is a GAMLSS model, e.g.
        model=gamlss(y~cs(x,df=this),sigma.fo=~cs(x,df=3),data=abdom), where
        this indicates the (hyper)parameter to be profiled

criterion whether global deviance ("GD") or information criterion ("GAIC") is profiled.
        The default is global deviance criterion="GD"

penalty The penalty value if information criterion is used in criterion, default penalty=2.5

other this can be used to evaluate an expression before the actual fitting of the model
        (Make sure that those expressions are well define in the global environment)

min the minimum value for the parameter e.g. min=1

max the maximum value for the parameter e.g. max=20

step how often to evaluate the global deviance (defines the step length of the grid for
        the parameter) e.g. step=1
length: if the step is left NULL then length is considered for evaluating the grid for the parameter. It has a default value of 11.
xlabel: if a label for the axis is required.
plot: whether to plot, plot=TRUE if the resulting profile deviance (or GAIC)
perc: what % confidence interval is required.
start.prev: whether to start from the previous fitted model parameters values or not (default is TRUE).
col: the color of the profile line.

Details

This function can be used to provide likelihood based confidence intervals for a parameter involved in terms in the linear predictor(s). These confidence intervals are more accurate than the ones obtained from the parameters’ standard errors. The function can also be used to plot a profile information criterion (with a given penalty) against a hyper-parameter. This can be used to check the uniqueness in hyper-parameter determination using for example find.df.

Value

Return a profile plot (if the argument plot=TRUE) and a ProfLikelihood.gamlss object if saved. The object contains:

- values: the values at the grid where the parameter was evaluated
- fun: the function which approximates the points using splines
- min: the minimum values in the grid
- max: the maximum values in the grid
- max.value: the value of the parameter maximising the Profile deviance (or GAIC)
- CI: the profile confidence interval (if global deviance is used)
- criterion: which criterion was used

Warning

A dense grid (i.e. small step) evaluation of the global deviance can take a long time, so start with a sparse grid (i.e. large step) and decrease gradually the step length for more accuracy.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Bob Rigby

References


(see also https://www.gamlss.com/).

See Also

gamlss, prof.dev

Examples

data(aids)
# fitting a linear model
gamlss(y~x+qrt,family=NBI,data=aids)
# testing the linear beta parameter
mod<-quote(gamlss(y ~ offset(this * x) + qrt, data = aids, family = NBI))
prof.term(mod, min=0.06, max=0.11)
# find the hyper parameter using cubic splines smoothing
mod1< quote(gamlss(y ~ cs(x,df=this) + qrt, data = aids, family = NBI))
prof.term(mod1, min=1, max=15, step=1, criterion="GAIC", penalty=log(45))
# find a break point in x
mod2< quote(gamlss(y ~ x+I((x>this)*(x-this)+qrt,family=NBI,data=aids))
prof.term(mod2, min=1, max=45, step=1, criterion="GD")
rm(mod,mod1,mod2)

---

**P-Splines Fits in a GAMLSS Formula**

Description

There are several function which use P-spline methodology:

a) pb(), the current version of P-splines which uses SVD in the fitting and therefore is the most reliable

b) pbo() and pbp(), older versions of P-splines. The first uses a simple matrix algebra in the fits. The second is the last version of pb() with SVD but uses different method for prediction.

c) pbc() the new version of cycle P-splines (using SVD)

d) cy() the older version of cycle P-splines.

e) pbm() for fitting monotonic P-splines (using SVD)

f) pbz() for fitting P-splines which allow the fitted curve to shrink to zero degrees of freedom

g) ps() the original P-splines with no facility of estimating the smoothing parameters and

j) pvc() penalised varying coefficient models.

k) pvp() older version of pb() where the prediction was different (it is here in case someone would like to compare the results).
Theoretical explanation of the above P-splines can be found in Eilers et al. (2016)

The functions take a vector and return it with several attributes. The vector is used in the construction of the design matrix $X$ used in the fitting. The functions do not do the smoothing, but assign the attributes to the vector to aid gamlss in the smoothing. The functions doing the smoothing are `gamlss.pb()`, `gamlss.pbo()`, `gamlss.pbc()` `gamlss.cy()` `gamlss.pvc()`, `gamlss.pbm()` `gamlss.pbz` and `gamlss.ps()` which are used in the backfitting function `additive.fit`.

The function `pb()` is more efficient and faster than the original penalised smoothing function `ps()`. After December 2014 the `pb()` function has changed radically to improved performance. The older version of the `pb()` function is called now `pbo()`. `pb()` allows the estimation of the smoothing parameters using different local (performance iterations) methods. The method are "ML", "ML-1", "EM", "GAIC" and "GCV".

The function `pbo()` fits monotonic smooth functions, that is functions which increase or decrease monotonically depending on the value of the argument `mono` which takes the values "up" or "down".

The function `pbz()` is similar to `pb()` with the extra property that when lambda becomes very large the resulting smooth function goes to a constant rather than to a linear function. This is very useful for model selection. The function is based on Maria Durban idea of using a double penalty, one of order 2 and one of order 1. The second penalty only applies if the effective df are close to 2 (that is if a linear is already selected).

The function `pbc()` fits a cycle penalised beta regression spline such as the last fitted value of the smoother is equal to the first fitted value. `cy()` is the older version.

The function `pvc()` fits varying coefficient models see Hastie and Tibshirani(1993) and it is more general and flexible than the old `vc()` function which was based on cubic splines.

The function `getZmatrix()` creates a (random effect) design matrix $Z$ which can be used to fit a P-splines smoother using the `re()` function. (The `re()` is an interface with the random effect function lme of the package `nlme`.

Usage

pb(x, df = NULL, lambda = NULL, max.df=NULL,  
control = pb.control(...), ...)
pbo(x, df = NULL, lambda = NULL, control = pbo.control(...), ...)
pbp(x, df = NULL, lambda = NULL, control = pbp.control(...), ...)
pbo.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE,  
method = c("ML", "GAIC", "GCV", "EM", "ML-1"), k = 2, ...)
pb.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE,  
method = c("ML", "GAIC", "GCV"), k = 2, ...)
pbp.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE,  
method = c("ML", "GAIC", "GCV"), k = 2, ...)
pbc(x, df = NULL, lambda = NULL, max.df=NULL,  
control = pbc.control(...), ...)
pbc.control(inter = 20, degree = 3, order = 2, start = 10,  
method = c("ML", "GAIC", "GCV"), k = 2, sin = TRUE, ...)
cy(x, df = NULL, lambda = NULL, control = cy.control(...), ...)
cy.control(inter = 20, degree = 3, order = 2, start = 10,  
method = c("ML", "GAIC", "GCV", "EM", "ML-1"), k = 2, ts=FALSE, ...)
pvc(x, df = NULL, lambda = NULL, by = NULL, control = pvc.control(...), ...)
pvc.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE,
method = c("ML", "GAIC", "GCV"), k = 2, ...)
pbm(x, df = NULL, lambda = NULL, mono = c("up", "down"),
    control = pbm.control(...), ...)
pbm.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE,
    method = c("ML", "GAIC", "GCV"), k = 2, kappa = 1e10, ...)
pbz(x, df = NULL, lambda = NULL, control = pbz.control(...), ...)
pbz.control(inter = 20, degree = 3, order = 2, start = c(1e-04, 1e-04),
    quantiles = FALSE, method = c("ML", "GAIC", "GCV"), k = 2, lim = 3, ...)
ps(x, df = 3, lambda = NULL, ps.intervals = 20, degree = 3, order = 3)
getZmatrix(x, xmin = NULL, xmax = NULL, inter = 20, degree = 3, order = 3)

Arguments

x                the univariate predictor
df               the desired equivalent number of degrees of freedom (trace of the smoother ma-
                 trix minus two for the constant and linear fit)
lambda           the smoothing parameter
max.df           the limit of how large the effective degrees of freedom should be allowed to be
control          setting the control parameters
by               a factor, for fitting different smoothing curves to each level of the factor or a
                 continuous explanatory variable in which case the coefficients of the by variable
                 change smoothly according to x i.e. beta(x)*z where z is the by variable.
...               for extra arguments
inter            the no of break points (knots) in the x-axis
degree           the degree of the piecewise polynomial
order            the required difference in the vector of coefficients
start            the lambda starting value if the local methods are used, see below
quantiles        if TRUE the quantile values of x are use to determine the knots
ts               if TRUE assumes that it is a seasonal factor
method           The method used in the (local) performance iterations. Available methods are
                 "ML", "ML-1", "EM", "GAIC" and "GCV"
k                the penalty used in "GAIC" and "GCV"
mono             for monotonic P-splines whether going "up" or "down"
kappa            the smoothing hyper-parameter for the monotonic part of smoothing
ps.intervals     the no of break points in the x-axis
xmin             minimum value for creating the B-spline
xmax             maximum value for creating the B-spline
sin              whether to use the sin penalty or not
lim              at which level the second penalty of order 1 should start
Details

The `ps()` function is based on Brian Marx function which can be found in his website. The `pb()`, `cy()`, `pvc()` and `pbm()` functions are based on Paul Eilers's original R functions. Note that `ps()` and `pb()` functions behave differently at their default values if df and lambda are not specified. `ps(x)` by default uses 3 extra degrees of freedom for smoothing `x`. `pb(x)` by default estimates lambda (and therefore the degrees of freedom) automatically using a "local" method. The local (or performance iterations) methods available are: (i) local Maximum Likelihood, "ML", (ii) local Generalized Akaike information criterion, "GAIC", (iii) local Generalized Cross validation "GCV" (iv) local EM-algorithm, "EM" (which is very slow) and (v) a modified version of the ML, "ML-1" which produce identical results with "EM" but faster.

The function `pb()` fits a P-spline smoother.
The function `pbm()` fits a monotonic (going up or down) P-spline smoother.
The function `pbc()` fits a P-spline smoother where the beginning and end are the same.
The `pvc()` fits a varying coefficient model.

Note that the local (or performance iterations) methods can occasionally make the convergence of `gam` less stable compared to models where the degrees of freedom are fixed.

Value

The vector `x` is returned, endowed with a number of attributes. The vector itself is used in the construction of the model matrix, while the attributes are needed for the backfitting algorithms `additive.fit()`.

Warning

There are occasions where the automatic local methods do not work. One accusation which came to our attention is when the range of the response variable values is very large. Scaling the response variable will solve the problem.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Paul Eilers

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

**See Also**
gamlss, gamlss.ps.cs

**Examples**

```r
#==============================
pb() and ps() functions
data(aids)
fitting a smoothing cubic spline with 7 degrees of freedom
plus the a quarterly effect
aids1<-gamlss(y~ps(x,df=7)+qrt,data=aids,family=PO) # fix df's
aids2<-gamlss(y~pb(x,df=7)+qrt,data=aids,family=PO) # fix df's
aids3<-gamlss(y~pb(x)+qrt,data=aids,family=PO) # estimate lambda
with(aids, plot(x,y))
with(aids, lines(x,fitted(aids1),col="red"))
with(aids, lines(x,fitted(aids2),col="green"))
with(aids, lines(x,fitted(aids3),col="yellow"))
rm(aids1, aids2, aids3)
#=============================
Not run:
pbc()
simulate data
set.seed(555)
x = seq(0, 1, length = 100)
y = sign(cos(1 * x * 2 * pi + pi / 4)) + rnorm(length(x)) * 0.2
plot(y~x)
m1<-gamlss(y~pbc(x))
lines(fitted(m1)~x)
rm(y,x,m1)
#=============================
the pvc() function
function to generate data
genData <- function(n=200)
{
 f1 <- function(x=-60+15*x-0.10*x^2
 f2 <- function(x=-120+10*x+0.08*x^2
 set.seed(1441)
x1 <- runif(n/2, min=0, max=55)
x2 <- runif(n/2, min=0, max=55)
y1 <- f1(x1)+rNO(n=n/2,mu=0,sigma=20)
y2 <- f2(x2)+rNO(n=n/2,mu=0,sigma=30)
y <- c(y1,y2)
x <- c(x1,x2)
f <- gl(2,n/2)
```

dat <- data.frame(y, x, f)
dat
}
dat <- genData(500)
plot(y ~ x, data = dat, pch = 21, bg = c("gray", "yellow3") [unclass(f)])

# fitting models
# smoothing x
m1 <- gamlss(y ~ pb(x), data = dat)
# parallel smoothing lines
m2 <- gamlss(y ~ pb(x) + f, data = dat)
# linear interaction
m3 <- gamlss(y ~ pb(x) + f * x, data = dat)
# varying coefficient model
m4 <- gamlss(y ~ pv(x, by = f), data = dat)
GAIC(m1, m2, m3, m4)

# plotting the fit
lines(fitted(m4)[dat$f == 1][order(dat$x[dat$f == 1])] ~ dat$x[dat$f == 1][order(dat$x[dat$f == 1])], col = "blue", lwd = 2)
lines(fitted(m4)[dat$f == 2][order(dat$x[dat$f == 2])] ~ dat$x[dat$f == 2][order(dat$x[dat$f == 2])], col = "red", lwd = 2)
rm(da, m1, m2, m3, m4)

#=================================
# the rent data
# first with a factor
data(rent)
plot(R ~ Fl, data = rent, pch = 21, bg = c("gray", "blue") [unclass(rent$B)])
r1 <- gamlss(R ~ pb(Fl), data = rent)
# identical to model
r11 <- gamlss(R ~ pv(Fl), data = rent)

# now with the factor
r2 <- gamlss(R ~ pv(Fl, by = B), data = rent)
lines(fitted(r2)[rent$B == 1][order(rent$Fl[rent$B == 1])] ~ rent$Fl[rent$B == 1][order(rent$Fl[rent$B == 1])], col = "blue", lwd = 2)
lines(fitted(r2)[rent$B == 0][order(rent$Fl[rent$B == 0])] ~ rent$Fl[rent$B == 0][order(rent$Fl[rent$B == 0])], col = "red", lwd = 2)

# probably not very sensible model
rm(r1, r11, r2)

# now with a continuous variable
# additive model
h1 <- gamlss(R ~ pb(Fl) + pb(A), data = rent)
# varying-coefficient model
h2 <- gamlss(R ~ pb(Fl) + pb(A) + pv(Fl, by = A), data = rent)
AIC(h1, h2)
rm(h1, h2)

# monotone function
set.seed(1334)
x = seq(0, 1, length = 100)
p = 0.4
y = sin(2 * pi * p * x) + rnorm(100) * 0.1
plot(y ~ x)
m1 <- gamlss(y ~ pbm(x))
points(fitted(m1)-x, col="red")
yy <- -y
plot(yy~x)
m2 <- gamlss(yy-pbm(x, mono="down"))
points(fitted(m2)-x, col="red")

# the pbz() function
# creating uncorrelated data
set.seed(123)
y<-rNO(100)
x<-1:100
plot(y~x)

# ML estimation
m1<-gamlss(y~pbz(x))
m2 <-gamlss(y~pb(x))
AIC(m1,m2)
op <- par( mfnrow=c(1,2))
term.plot(m1, partial=T)
term.plot(m2, partial=T)
par(op)

# GAIC estimation
m11<-gamlss(y~pbz(x, method="GAIC", k=2))
m21 <-gamlss(y~pb(x, method="GAIC", k=2))
AIC(m11,m21)
op <- par( mfnrow=c(1,2))
term.plot(m11, partial=T)
term.plot(m21, partial=T)
par(op)

# GCV estimation
m12<-gamlss(y~pbz(x, method="GCV"))
m22 <-gamlss(y~pb(x, method="GCV"))
AIC(m12,m22)
op <- par( mfnrow=c(1,2))
term.plot(m12, partial=T)
term.plot(m22, partial=T)
par(op)

# fixing df is more tricky since df are the extra df
m13<-gamlss(y~pbz(x, df=0))
m23 <-gamlss(y~pb(x, df=0))
AIC(m13,m23)
# here the second penalty is not take effect therefore identical results
m14<-gamlss(y~pbz(x, df=1))
m24 <-gamlss(y~pb(x, df=1))
AIC(m14,m24)

# fixing lambda
m15<-gamlss(y~pbz(x, lambda=1000))
m25 <-gamlss(y~pb(x, lambda=1000))
AIC(m15,m25)

# prediction
m1<-gamlss(y~pbz(x), data=data.frame(y,x))
m2 <-gamlss(y~pb(x), data=data.frame(y,x))
A function to calculate the Q-statistics

Description

This function calculates and prints the Q-statistics (or Z-statistics) which are useful to test normality of the residuals within a range of an independent variable, for example age in centile estimation, see Royston and Wright (2000).

Usage

Q.stats(obj = NULL, xvar = NULL, resid = NULL, xcut.points = NULL, n.inter = 10, zvals = TRUE, save = TRUE, plot = TRUE, digits.xvar = getOption("digits"), ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>a GAMLSS object</td>
</tr>
<tr>
<td>xvar</td>
<td>a unique explanatory variable</td>
</tr>
<tr>
<td>resid</td>
<td>quantile or standardised residuals can be given here instead of a GAMLSS object in obj. In this case the function behaves differently (see details below)</td>
</tr>
<tr>
<td>xcut.points</td>
<td>the x-axis cut off points e.g. c(20,30). If xcut.points=NULL then the n.inter argument is activated</td>
</tr>
<tr>
<td>n.inter</td>
<td>if xcut.points=NULL this argument gives the number of intervals in which the x-variable will be split, with default 10</td>
</tr>
<tr>
<td>zvals</td>
<td>if TRUE the output matrix contains the individual Z-statistics rather that the Q statistics</td>
</tr>
<tr>
<td>save</td>
<td>whether to save the Q-statistics or not with default equal to TRUE. In this case the functions produce a matrix giving individual Q (or z) statistics and the final aggregate Q’s</td>
</tr>
<tr>
<td>plot</td>
<td>whether to plot a visual version of the Q statistics (default is TRUE)</td>
</tr>
<tr>
<td>digits.xvar</td>
<td>to control the number of digits of the xvar in the plot</td>
</tr>
<tr>
<td>...</td>
<td>for extra arguments</td>
</tr>
</tbody>
</table>
Details

Note that the function `Q.stats` behaves differently depending whether the `obj` or the `resid` argument is set. The `obj` argument produces the Q-statistics (or Z-statistics) table appropriate for centile estimation (therefore it expect a reasonable large number of observations). The argument `resid` allows any model residuals, (not necessary GAMLSS), suitable standardised and is appropriate for any size of data. The resulting table contains only the individuals Z-statistics.

Value

A table containing the Q-statistics or Z-statistics. If `plot=TRUE` it produces also an graphical representation of the table.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby with contributions from Elaine Borghie

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

`gamlss`, `centiles.split`, `wp`

Examples

data(abdom)
h<-gamlss(y~pb(x), sigma.formula=-pb(x), family=BCT, data=abdom)
Q.stats(h,xvar=abdom$x, n.inter=8)
Q.stats(h,xvar=abdom$x, n.inter=8, zvals=FALSE)
Q.stats(resid=resid(h), xvar=abdom$x, n.inter=5)
rm(h)
quantSheets

Quantile Sheets

Description

The quantile sheets function quantSheets() is based on the work of Sabine Schnabe and Paul Eiler (see references below). The estimation of the quantile curves is done simultaneously by also smoothing in the direction of y as well as x. This avoids (but do not eliminate completely) the problem of crossing quantiles.

Usage

```r
quantSheets(y, x, x.lambda = 1, p.lambda = 1, data = NULL,
 cent = 100 * pnorm((-4:4) * 2/3),
 control = quantSheets.control(...), print = TRUE, ...)
```

```r
quantSheets.control(x.inter = 10, p.inter = 10, degree = 3, logit = FALSE,
 order = 2, kappa = 0, n.cyc = 100, c.crit = 1e-05, plot = TRUE,
 power = NULL, ...)
```

```r
findPower(y, x, data = NULL, lim.trans = c(0, 1.5), prof = FALSE,
 k = 2, c.crit = 0.01, step = 0.1)
```

```r
z.scoresQS(object, y, x, plot = FALSE, tol = NULL)
```

Arguments

- `y` the y variable
- `x` the x variable
- `x.lambda` smoothing parameter in the direction of x
- `p.lambda` smoothing parameter in the direction of y (probabilities)
- `data` the data frame
- `cent` the centile values where the quantile sheets is evaluated
- `control` for the parameters controlling the algorithm
- `print` whether to print the sample percentages
- `x.inter` number of intervals in the x direction for the B-splines
- `p.inter` number of intervals in the probabilities (y-direction) for the B-splines
- `degree` the degree for the B-splines
- `logit` whether to use logit(p) instead of p (probabilities) for the y-axis
- `order` the order of the penalty
- `kappa` is a ridge parameter set to zero (for no ridge effect)
- `n.cyc` number of cycles of the algorithm
quantSheets

c.crit convergence criterion of the algorithm
plot whether to plot the resulting quantile sheets
power The value of the power transformation in the x axis if needed
lim.trans the limits for looking for the power transformation parameter using findPower()
prof whether to use the profile GAIC or optim() to the parameter the power trans-formation
k the GAIC penalty
step the steps for the profile GAIC if the argument prof of findPower() is TRUE
object a fitted quantSheets object
tol how far out from the range of the y variable should go for estimating the distri-ution of y using the flexDist() function
... for further arguments

Details

The advantage of quantile sheets is that they estimates simultaneously all the quantiles. This almost
eliminates the problem of crossing quantiles. The method is very fast and useful for exploratory
tool. The function needs two smoothing parameters. Those two parameters have to specified by the
user. They are not estimated automatically. They can be selected by visual inspection.

The disadvantages of quantile sheets comes from the fact that like all non-parametric techniques
do not have a goodness of fit measure to change how good is the models and the residuals based
diagnostics are not existence since it is difficult to define residuals in this set up.

In this implementation we do provide residuals by using the flexDist() function from package
gamlss.dist. This is based on the idea that by knowing the quantiles of the distribution we can
reconstruct non parametrically the distribution itself and this is what flexDist() is doing. As a
word of caution, such a construct is based on several assumptions and depends on several smoothing
parameters. Treat those residuals with caution. The same caution should apply to the function
z.scoresQS().

Value

Using the function quantSheets() a quantSheets object is returned having the following meth-
ods: print(), fitted(), predict() and resid().

Using findPower() a single values of the power parameter is returned.
Using z.scoresQS a vector of z-scores is returned.

Author(s)

Mikis Stasinopoulos based on function provided by Paul Eiler and Sabine Schnabe

References

application to life expectancy, Utrecht University.


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

**See Also**

`lms`: for a parametric equivalent results.

**Examples**

```r
data(abdom)
m1 <- quantSheets(y,x, data=abdom)
head(fitted(m1))
p1 <- predict(m1, newdata=c(20,30,40))
matpoints(c(20,30,40), p1)
z.scoresQS(m1,y=c(150, 300),x=c(20, 30))
If we needed a power transformation not appropriate for this data
findPower(y,x, data=abdom)
```

**random**

*Specify a random intercept model in a GAMLSS formula*

**Description**

They are two functions for fitting random effects within a GAMLSS model, `random()` and `re()`.

The function `random()` is based on the original `random()` function of Trevor Hastie in the package `gam`. In our version the function has been modified to allow a "local" maximum likelihood estimation of the smoothing parameter `lambda`. This method is equivalent to the PQL method of Breslow and Clayton (1993) applied at the local iterations of the algorithm. In fact for a GLM model and a simple random effect it is equivalent to `glmmPQL()` function in the package `MASS` see Venables and Ripley (2002). Venables and Ripley (2002) claimed that this iterative method was first introduced by Schall (1991). Note that in order for the "local" maximum likelihood estimation procedure to operate both argument `df` and `lambda` has to be `NULL`.

The function `re()` is an interface for calling the `lme()` function of the package `nlme`. This gives the user the ability to fit complicated random effect models while the assumption of the normal distribution for the response variable is relaxed. The theoretical justification comes again from the fact that this is a PQL method, Breslow and Clayton (1993).
**Usage**

```r
random(x, df = NULL, lambda = NULL, start=10)
re(fixed = ~1, random = NULL, correlation = NULL, method = "ML",
 level = NULL, ...)
```

**Arguments**

- **x**: a factor
- **df**: the target degrees of freedom
- **lambda**: the smoothing parameter lambda which can be viewed as a shrinkage parameter.
- **start**: starting value for lambda if local Maximul likelihood is used.
- **fixed**: a formula specify the fixed effects of the \( lme() \) model. This, in most cases can be also included in the \( \text{gamlss} \) parameter formula
- **random**: a formula or list specifying the random effect part of the model as in \( lme() \) function
- **correlation**: the correlation structure of the \( lme() \) model
- **method**: which method, "ML" (the default), or "REML"
- **level**: this argument has to be set to zero (0) if when use \( \text{predict}() \) you want to get the marginal contribution
- **...**: this can be used to pass arguments for \( \text{lmeControl}() \)

**Details**

The function `random()` can be seen as a smoother for use with factors in `gamlss()`. It allows the fitted values for a factor predictor to be shrunk towards the overall mean, where the amount of shrinking depends either on lambda, or on the equivalent degrees of freedom or on the estimated sigma parameter (default). Similar in spirit to smoothing splines, this fitting method can be justified on Bayesian grounds or by a random effects model. Note that the behaviour of the function is different from the original Hastie function. Here the function behaves as follows: i) if both `df` and `lambda` are NULL then the PQL method is used ii) if `lambda` is not NULL, `lambda` is used for fitting iii) if `lambda` is NULL and `df` is not NULL then `df` is used for fitting.

Since factors are coded by `model.matrix()` into a set of contrasts, care has been taken to add an appropriate "contrast" attribute to the output of `random()`. This zero contrast results in a column of zeros in the model matrix, which is aliased with any column and is hence ignored.

The use of the function `re()` requires knowledge of the use of the function \( lme() \) of the package `nlme` for the specification of the appropriate random effect model. Some care should be taken whether the data set is

**Value**

`x` is returned with class "smooth", with an attribute named "call" which is to be evaluated in the backfitting `additive.fit()` called by `gamlss()`
random

Author(s)

For `re()` Mikis Stasinopoulos and Marco Enea and for `random()` Trevor Hastie (amended by Mikis Stasinopoulos).

References


See Also

gamlss, gamlss.random

Examples

```r
#------------- Example 1 from Pinheiro and Bates (2000) page 15-------------
bring nlme
library(nlme)
data(ergoStool)
lme model
l1<-lme(effort~Type, data=ergoStool, random=~1|Subject, method="ML")
use random()
t1<-gamlss(effort~Type+random(Subject), data=ergoStool)
use re() with fixed effect within re()
t2<-gamlss(effort~re(fixed=~Type, random=~1|Subject), data=ergoStool)
use re() with fixed effect in gamlss formula
compare lme fitted values with random
plot(fitted(l1), fitted(t1))
compare lme fitted values with random
plot(fitted(l1), fitted(t2))
```
lines(fitted(l1), fitted(t3), col=2)
# getting the fitted coefficients
getSmo(t2)

# Not run:
# Example 2 Hodges data
data(hodges)
plot(prind~state, data=hodges)
m1<- gamlss(prind~random(state), sigma.fo=~random(state),
           nu.fo=~random(state),
           family=BCT, data=hodges)
m2<- gamlss(prind~re(random=~1|state), sigma.fo=~re(random=~1|state),
           nu.fo=~re(random=~1|state),
           tau.fo=~re(random=~1|state),
           family=BCT,
           data=hodges)

# comparing the fitted effective degrees of freedom
m1$mu.df
m2$mu.df
m1$sigma.df
m2$sigma.df
m1$nu.df
m2$nu.df
m1$tau.df
m2$tau.df

# random effect for tau is not needed
m3<- gamlss(prind~random(state), sigma.fo=~random(state),
            nu.fo=~random(state),
            family=BCT,
            data=hodges, start.from=m1)

plot(m3)

# term plots work for random but not at the moment for re()
op <- par(mfrow=c(2,2))
term.plot(m3, se=TRUE)
term.plot(m3, se=TRUE, what="sigma")
term.plot(m3, se=TRUE, what="nu")
par(op)

# getting information from a fitted lme object
coef(getSmo(m2))
ranef(getSmo(m2))
VarCorr(getSmo(m2))
summary(getSmo(m2))
intervals(getSmo(m2))
fitted(getSmo(m2))

# plotting
plot(getSmo(m2))
qqnorm(getSmo(m2))

# Example 3 from Pinheiro and Bates (2000) page 42
data(Pixel)
l1 <- lme(pixel~ day+I(day^2), data=Pixel, random=list(Dog=~day, Side=~1),
          method="ML")

# this will fail
# t1<- gamlss(pixel~re(fixed=~day+I(day^2), random=list(Dog=~day, Side=~1)),
# data=Pixel)
# but this is working
l1 <- lme(pixel~ day+I(day^2), data=Pixel, random=list(Dog=~day, Side=~1),
          method="ML", opt="optim", data=Pixel)
plot(fitted(l1)-fitted(t1))

#------------Example 4 from Pinheiro and Bates (2000) page 146------------

data(Orthodont)
l1 <- lme(distance~ I(age-11), data=Orthodont, random=~I(age-11)|Subject,
method="ML")

t1<-gamlss(distance~I(age-11)+re(random=~I(age-11)|Subject), data=Orthodont)
plot(fitted(l1)-fitted(t1))

# checking the model
plot(t1)
wp(t1, ylim.all=2)

# two observation fat try LO

plot(t2)
wp(t2, ylim.all=2)

# a bit better but not satisfactory Note that 3 parameters distributions fail

#------------example 5 from Venables and Ripley (2002)------------------------

library(MASS)
data(bacteria)

summary(glmmPQL(y ~ trt + I(week > 2), random =~ 1 | ID,
family = binomial, data = bacteria))
s1 <- gamlss(y ~ trt + I(week > 2)*random(ID), family = BI,
data = bacteria)
s2 <- gamlss(y ~ trt + I(week > 2)*re(random=~1|ID), family = BI,
data = bacteria)
s3 <- gamlss(y ~ trt + I(week > 2)*re(random=~1|ID, method="REML"), family = BI,
data = bacteria)

# the estimate of the random effect sd sigma_b
sqrt(getSmo(s1)$tau2)
getSmo(s2)
getSmo(s3)

#----------Example 6 from Pinheiro and Bates (2000) page 239-244-----------

# using corAR1()
data(Ovary)

# AR1
l1 <- lme(follicles~sin(2*pi*Time)+cos(2*pi*Time), data=Ovary,
random=pdDiag(~sin(2*pi*Time)), correlation=corAR1())

# ARMA
l2 <- lme(follicles~sin(2*pi*Time)+cos(2*pi*Time), data=Ovary,
random=pdDiag(~sin(2*pi*Time)), correlation=corARMA(q=2))

# now gamlss
# AR1
t1 <- gamlss(follicles~re(fixed=~sin(2*pi*Time)+cos(2*pi*Time),
random=pdDiag(~sin(2*pi*Time)), correlation=corAR1()), data=Ovary)

plot(fitted(l1)-fitted(t1))

# ARMA
t2 <- gamlss(follicles~re(fixed=~sin(2*pi*Time)+cos(2*pi*Time),
random=pdDiag(~sin(2*pi*Time)),
correlation=corARMA(q=2)), data=Ovary)

plot(fitted(l2)-fitted(t2))

AIC(t1,t2)
wp(t2, ylim.all=1)
refit

Refit a GAMLSS model

Description
This function refits a GAMLSS model. It is useful when the algorithm has not converged after 20 outer iteration (the default value)

Usage
refit(object, ...)

Arguments
object  a GAMLSS fitted model which has not converged
...
for extra arguments

Details
This function is useful when the iterations have reach the maximum value set by the code(\text{\texttt{n.cyc}) of the \texttt{gamlss.control} function and the model has not converged yet

Value
Returns a GAMLSS fitted model

Note
The function \texttt{update} does a very similar job

Author(s)
Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

References
residuals.gamlss


(see also https://www.gamlss.com/).

See Also
gamlss, update.gamlss

Examples
data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
refit(h)
rm(h)

residuals.gamlss Extract Residuals from GAMLSS model

Description

residuals.gamlss is the GAMLSS specific method for the generic function residuals which extracts the residuals for a fitted model. The abbreviated form resid is an alias for residuals.

Usage

## S3 method for class 'gamlss'
residuals(object, what = c("z-scores", "mu", "sigma", "nu", "tau"),
    type = c("simple", "weighted", "partial"),
    terms=NULL, ...)

Arguments

object a GAMLSS fitted model
what specify whether the standardized residuals are required, called here the "z-scores",
or residuals for a specific parameter
type the type of residual if residuals for a parameter are required
terms if type is "partial" this specifies which term is required
... for extra arguments

Details

The "z-scores" residuals saved in a GAMLSS object are the normalized (randomized) quantile residuals (see Dunn and Smyth, 1996). Randomization is only needed for the discrete family distributions, see also rqres.plot. Residuals for a specific parameter can be "simple" = (working variable - linear predictor), "weighted" = sqrt(working weights)*(working variable - linear predictor) or "partial" = (working variable - linear predictor)+contribution of specific terms.
Value

A vector or a matrix of the appropriate residuals of a GAMLSS model. Note that when weights are used in the fitting the length of the residuals can be different from \( N \) the length of the fitted values. Observations with weights equal to zero are not appearing in the residuals. Also observations with frequencies as weights will appear more than once according to their frequencies.

Note

The "weighted" residuals of a specified parameter can be zero and one if the square of first derivative have been used in the fitting of this parameter.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Bob Rigby

References


(see also https://www.gamlss.com/).

See Also

print.gamlss, summary.gamlss, fitted.gamlss, coef.gamlss, residuals.gamlss, update.gamlss, plot.gamlss, deviance.gamlss, formula.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=NBI, data=aids) #
plot(aids$x,resid(h))
plot(aids$x,resid(h,"sigma") )
rm(h)
Specify ridge or lasso Regression within a GAMLSS Formula

**Description**

The function `ri()` allows the user to fit a ridge regression within GAMLSS. It allows the coefficients of a set of explanatory variables to be shrunk towards zero. The amount of shrinking depends either on lambda, or on the equivalent degrees of freedom (df). The type of shrinking depends on the argument `Lp` see example.

**Usage**

```r
ri(X = NULL, x.vars = NULL, df = NULL, lambda = NULL,
 method = c("ML", "GAIC"), order = 0, start = 10, Lp = 2,
 kappa = 1e-05, iter = 100, c.crit = 1e-06, k = 2)
```

**Arguments**

- `X`: A matrix of explanatory variables `X` which is standardised (mean=0, sd=1) automatically. Note that in order to get predictions you should use the option `x.vars` which variables from the `data.frame` declared in `data` needs to be included. This is a way to fit the model if predictions are required.
- `df`: the effective degrees of freedom `df`
- `lambda`: the smoothing parameter `lambda`
- `method`: which method is used for the estimation of the smoothing parameter, ‘ML’ or ‘GAIC’ are allowed.
- `order`: the order of the difference applied to the coefficients with default zero. (Do not change this unless there is some ordering in the explanatory variables.).
- `start`: starting value for lambda if it estimated using ‘ML’ or ‘GAIC’
- `Lp`: The type of penalty required, `Lp=2` a proper ridge regression is the default. Use code `Lp=1` for lasso and different values for different penalties.
- `kappa`: a regulation parameters used for the weights in the penalties.
- `iter`: the number of internal iteration allowed see details.
- `c.crit`: `c.crit` is the convergent criterion
- `k`: `k` is the penalty if ‘GAIC’ method is used.

**Details**

This implementation of ridge and related regressions is based on an idea of Paul Eilers which used weights in the penalty matrix. The type of weights are defined by the argument `Lp`. `Lp=2` is the standard ridge regression, `Lp=1` fits a lasso regression while `Lp=0` allows a "best subset" regression see Hastie et al (2009) page 71.
Value

x is returned with class "smooth", with an attribute named "call" which is to be evaluated in the backfitting additive.fit() called by gamlss()

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Paul Eilers

References


(see also https://www.gamlss.com/).

See Also

gamlss

Examples

# USAIR DATA
# standarise data 1-------------------------------------
# ridge
m1<- gamlss(y~ri(x.vars=c("x1","x2","x3","x4","x5","x6")),
data=usair)
# lasso
m2<- gamlss(y~ri(x.vars=c("x1","x2","x3","x4","x5","x6"), Lp=1),
data=usair)
# best subset
m3<- gamlss(y~ri(x.vars=c("x1","x2","x3","x4","x5","x6"), Lp=0),
data=usair)
#--------- plotting the coefficients
op <- par(mfrow=c(3,1))
plot(getSmo(m1)) #
plot(getSmo(m2))
plot(getSmo(m3))
par(op)
Description

This function plots worm plots, van Buuren and Fredriks M. (2001), or QQ-plots of the normalized randomized quantile residuals (Dunn and Smyth, 1996) for a model using a discrete GAMLSS family distribution.

Usage

rqres.plot(obj = NULL, howmany = 6, plot.type = c("few", "all"),
           type = c("wp", "QQ"), xlim = NULL, ylim = NULL, ...)
get.rqres(obj = NULL, howmany = 10, order = FALSE)

Arguments

- obj: a fitted GAMLSS model object from a "discrete" type of family
- howmany: The number randomise quantile residuals required i.e. howmany=6
- plot.type: whether to plot few of the randomised quantile residual realisations, "few" in a separate plots (there must be less than 8) or all "all" in one plot (with their median)
- type: whether to plot worm plots "wp"or QQ plots "QQ" with default worm plots
- xlim: setting manually the xlim of the graph
- ylim: setting manually the ylim of the graph
- order: whether to order the ealization of randomised quantile residuals
- ...: for extra arguments to be passed to wp()

Details

For discrete family distributions, the `gamlss()` function saves on exit one realization of randomized quantile residuals which can be plotted using the generic function `plot` which calls the `plot.gamlss`. Looking at only one realization can be misleading, so the current function creates QQ-plots for several realizations. The function allows up to 10 QQ-plots to be plotted. Occasionally one wishes to create a lot of realizations and then take a median of them (separately for each ordered value) to create a single median realization. The option all in combinations with the option howmany creates a QQ-plot of the medians of the normalized randomized quantile residuals. These 'median' randomized quantile residuals can be saved using the option (save=TRUE).

Value

If save it is TRUE then the vector of the median residuals is saved.
Rsq

Generalised (Pseudo) R-squared for GAMLSS models

Description

This function gives the generalised R-squared of Nagelkerke (1991) for a GAMLSS model.

Usage

Rsq(object, type = c("Cox Snell", "Cragg Uhler", "both"))
Arguments

object a GAMLSS object
type which definition of R squared. Can be the “Cox Snell” or the Nagelkerke, "Cragg Uhler" or "both".

Details

The Rsq() function uses the definition for R-squared:

\[ R^2 = 1 - \left( \frac{L(0)}{L(\theta)} \right)^{2/n} \]

where \( L(0) \) is the null model (only a constant is fitted to all parameters) and \( L(\theta) \) is the current fitted model. This definition sometimes is referred to as the Cox & Snell R-squared. The Nagelkerke /Cragg & Uhler’s definition divides the above with

\[ 1 - L(0)^{2/n} \]

Value

The Rsq() produces a single value if type="Cox Snell" or "Cragg Uhler" and a list if type="both".

Note

The null model is fitted using the function gamlssML() which can create warning messages

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also https://www.gamlss.com/).

See Also

GAIC
Examples

data(aids)
m1 <- gamlss(y~x+qrt, data=aids, family=NBI)
Rsq(m1)
Rsq(m1, type="both")

rvcov Robust Variance-Covariance matrix of the parameters from a fitted GAMLSS model

Description

The function `rvcov()` is designed for providing robust standard errors for the parameters estimates of a GAMLSS fitted model. The same result can be achieved by using `vcov(fitted_model, robust=TRUE)`. The function `get.K()` gets the $K$ matrix (see details below).

Usage

```r
rvcov(object, type = c("vcov", "cor", "se", "coef", "all"),
 hessian.fun = c("R", "PB")
get.K(object, what = c("K", "Deriv"))
```

Arguments

- **object** a GAMLSS fitted object
- **type** this argument for `rvcov()` function whether variance-covariance matrix, correlation matrix, standard errors or all of them
- **what** this an argument for the function `get.K()` allowing to get either $K$ or the first derivative of the likelihood with respect to the parameters (the $\beta$'s in the GAMLSS notation).
- **hessian.fun** How to obtain numerically the Hessian i) using `optimHess()` option "R" ii) using a function by Pinheiro and Bates taken from package `nlme`, option "PB".

Details

The robust standard errors are calculated for the robust sandwich estimator of the variance-covariance given by $S = VKV$ where $V$ is the standard variance-covariance matrix (the inverse of the information matrix) and $K$ is an estimate of the variance of he first derivatives of he likelihood. The function `get.K()` is use the get the required $K$ matrix.

Value

A variance covariance matrix or other relevant output

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Vlasios Voudouris
References


(see also https://www.gamlss.com/).

See Also

vcov, ~~~

Examples

# generate from a gamma distribution
Y <- rGA(200, mu=1, sigma=2)
hist(Y)

# fitting the wrong model i.e. sigma=1
m1 <- gamlss(Y~1, family=EXP)
# the conventional se is too precise
vcov(m1, type="se")
# the sandwich se is wider
rvcov(m1, type="se")

# fitting the correct model
m2 <- gamlss(Y~1, family=GA)
vcov(m2, type="se")
rvcov(m2, type="se")
# similar standard errors
# also obtained using
vcov(m2, type="se", robust=TRUE)

stepGAIC

Choose a model by GAIC in a Stepwise Algorithm

Description

The function stepGAIC() performs stepwise model selection using a Generalized Akaike Information Criterion (GAIC). It is based on the function stepAIC() given in the library MASS of Venables and Ripley (2002). The function has been changed recently to allow parallel computation. The parallel computations are similar to the ones performed in the function boot() of the boot package.
Note that since version 4.3-5 of \texttt{gamlss} the \texttt{stepGAIC()} do not have the option of using the function \texttt{stepGAIC.CH} through the argument additive.

Note that \texttt{stepGAIC()} is relying to the \texttt{dropterm()} and \texttt{addterm()} methods applied to \texttt{gamlss} objects. \texttt{drop1()} and \texttt{add1()} are equivalent methods to the \texttt{dropterm()} and \texttt{addterm()} respectively but with different default arguments (see the examples).

The function \texttt{stepGAIC.VR()} is the old version of \texttt{stepGAIC()} with no parallel computations.

The function \texttt{stepGAIC.CH} is based on the S function \texttt{step.gam()} (see Chambers and Hastie (1991)) and it is more suited for model with smoothing additive terms when the degrees of freedom for smoothing are fixed in advance. This is something which rarely used these days, as most of the smoothing functions allow the calculations of the smoothing parameter, see for example the additive function \texttt{pb()}).

The functions \texttt{stepGAIC.VR()} and \texttt{stepGAIC.CH()} have been adapted to work with \texttt{gamlss} objects and the main difference is the \texttt{scope} argument, see below.

While the functions \texttt{stepGAIC()} is used to build models for individual parameters of the distribution of the response variable, the functions \texttt{stepGAICA11.A()} and \texttt{stepGAICA11.A()} are building models for all the parameters.

The functions \texttt{stepGAICA11.A()} and \texttt{stepGAICA11.B()} are based on the \texttt{stepGAIC()} function but use different strategies for selecting a appropriate final model.

\texttt{stepGAICA11.A()} has the following strategy:

Strategy A:

i) build a model for $\mu$ using a forward approach.

ii) given the model for $\mu$ build a model for $\sigma$ (forward)

iii) given the models for $\mu$ and $\sigma$ build a model for $\nu$ (forward)

iv) given the models for $\mu$, $\sigma$ and $\nu$ build a model for $\tau$ (forward)

v) given the models for $\mu$, $\sigma$, $\nu$ and $\tau$ check whether the terms for $\nu$ are needed using backward elimination.

vi) given the models for $\mu$, $\sigma$, $\nu$ and $\tau$ check whether the terms for $\sigma$ are needed (backward).

vii) given the models for $\mu$, $\sigma$, $\nu$ and $\tau$ check whether the terms for $\mu$ are needed (backward).

Note for this strategy to work the \texttt{scope} argument should be set appropriately.

\texttt{stepGAICA11.B()} uses the same procedure as the function \texttt{stepGAIC()} but each term in the scope is fitted to all the parameters of the distribution, rather than the one specified by the argument \texttt{what} of \texttt{stepGAIC()}. The \texttt{stepGAICA11.B()} relies on the \texttt{add1All()} and \texttt{drop1All()} functions for the selection of variables.

\textbf{Usage}

\begin{verbatim}
stepGAIC(object, scope, direction = c("both", "backward", "forward"),
         trace = TRUE, keep = NULL, steps = 1000, scale = 0,
         what = c("mu", "sigma", "nu", "tau"), parameter= NULL, k = 2,
         parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL,
         
```
...)

stepGAIC.VR(object, scope, direction = c("both", "backward", "forward"),
 trace = TRUE, keep = NULL, steps = 1000, scale = 0,
 what = c("mu", "sigma", "nu", "tau"), parameter= NULL, k = 2,
 ...)

stepGAIC.CH(object, scope = gamlss.scope(model.frame(object)),
 direction = c("both", "backward", "forward"), trace = TRUE,
 keep = NULL, steps = 1000, what = c("mu", "sigma", "nu", "tau"),
 parameter= NULL, k = 2, ...)

stepGAICAll.A(object, scope = NULL, sigma.scope = NULL, nu.scope = NULL,
 tau.scope = NULL, mu.try = TRUE, sigma.try = TRUE,
 nu.try = TRUE, tau.try = TRUE, direction = NULL,
 parallel = c("no", "multicore", "snow"), ncpus = 1L,
 cl = NULL, ...)

stepGAICAll.B(object, scope, direction = c("both", "backward", "forward"),
 trace = T, keep = NULL, steps = 1000, scale = 0, k = 2,
 parallel = c("no", "multicore", "snow"), ncpus = 1L,
 cl = NULL, ...)

drop1All(object, scope, test = c("Chisq", "none"), k = 2, sorted = FALSE,
 trace = FALSE, parallel = c("no", "multicore", "snow"),
 ncpus = 1L, cl = NULL, ...)

add1All(object, scope, test = c("Chisq", "none"), k = 2, sorted = FALSE,
 trace = FALSE, parallel = c("no", "multicore", "snow"),
 ncpus = 1L, cl = NULL, ...)

Arguments

object an gamlss object. This is used as the initial model in the stepwise search.

scope defines the range of models examined in the stepwise search. For the function
stepAIC() this should be either a single formula, or a list containing compo-
nents upper and lower, both formulae. See the details for how to specify the
formulae and how they are used. For the function stepGAIC the scope defines
the range of models examined in the step-wise search. It is a list of formulas,
with each formula corresponding to a term in the model. A 1 in the formula
allows the additional option of leaving the term out of the model entirely. +
direction the mode of stepwise search, can be one of both, backward, or forward, with a
default of both. If the scope argument is missing the default for direction is
backward.

trace if positive, information is printed during the running of stepAIC. Larger values
may give more information on the fitting process.

keep a filter function whose input is a fitted model object and the associated 'AIC'
statistic, and whose output is arbitrary. Typically 'keep' will select a subset
of the components of the object and return them. The default is not to keep anything.

steps
the maximum number of steps to be considered. The default is 1000 (essentially as many as required). It is typically used to stop the process early.

scale
scale is not used in gamlss

what
which distribution parameter is required, default what="mu"

parameter
equivalent to what

k
the multiple of the number of degrees of freedom used for the penalty. Only 'k = 2' gives the genuine AIC: 'k = log(n)' is sometimes referred to as BIC or SBC.

parallel
The type of parallel operation to be used (if any). If missing, the default is "no".

ncpus
integer: number of processes to be used in parallel operation: typically one would chose this to the number of available CPUs.

cl
An optional parallel or snow cluster for use if parallel = "snow". If not supplied, a cluster on the local machine is created for the duration of the call.

sigma.scope
scope for sigma if different to scope in stepGAICall.A()

nu.scope
scope for nu if different to scope in stepGAICall.A()

tau.scope
scope for tau if different to scope in stepGAICall.A()

mu.try
The default value is is TRUE, set to FALSE if no model for mu is needed

sigma.try
The default value is TRUE, set to FALSE if no model for sigma is needed

nu.try
The default value is TRUE, set to FALSE if no model for nu is needed

tau.try
The default value is TRUE, set to FALSE if no model for tau is needed

test
whether to print the chi-square test or not

sorted
whether to sort the results

... any additional arguments to 'extractAIC'. (None are currently used.)

Details

The set of models searched is determined by the scope argument.

For the function stepGAIC.VR() the right-hand-side of its lower component is always included in the model, and right-hand-side of the model is included in the upper component. If scope is a single formula, it specifies the upper component, and the lower model is empty. If scope is missing, the initial model is used as the upper model.

Models specified by scope can be templates to update object as used by update.formula.

For the function stepGAIC.CH() each of the formulas in scope specifies a "regimen" of candidate forms in which the particular term may enter the model. For example, a term formula might be

\[- x1 + log(x1) + cs(x1, df=3)\]

This means that x1 could either appear linearly, linearly in its logarithm, or as a smooth function estimated non-parametrically. Every term in the model is described by such a term formula, and the final model is built up by selecting a component from each formula.

The function gamlss.scope similar to the S gam.scope() in Chambers and Hastie (1991) can be used to create automatically term formulae from specified data or model frames.
The supplied model object is used as the starting model, and hence there is the requirement that one term from each of the term formulas of the parameters be present in the formula of the distribution parameter. This also implies that any terms in formula of the distribution parameter not contained in any of the term formulas will be forced to be present in every model considered.

When the smoother used in gamlss modelling belongs to the new generation of smoothers allowing the determination of the smoothing parameters automatically (i.e. pb(), cy()) then the function stepGAIC.VR() can be used for model selection (see example below).

Value

the stepwise-selected model is returned, with up to two additional components. There is an "anova" component corresponding to the steps taken in the search, as well as a "keep" component if the 'keep=' argument was supplied in the call. The "Resid. Dev" column of the analysis of deviance table refers to a constant minus twice the maximized log likelihood.

The function stepGAICA1l.A() returns with a component "anovaAll" containing all the different anova tables used in the process.

Author(s)

Mikis Stasinopoulos based on functions in MASS library and in Statistical Models in S

References

(see also https://www.gamlss.com/).

See Also

gamlss.scope

Examples

```r
## Not run:
data(usair)
# 1-----------------------------------------------1
# null model
```
mod0<-gamlss(y~1, data=usair, family=GA)
all the explanatory variables x1:x6 fitted linearly
mod1<-gamlss(y~., data=usair, family=GA)
dropping terms
dropterm(mod1)
with chi-square information
drop1(mod1)
for parallel computations use something like
nc <- detectCores()
drop1(mod1, parallel="snow", ncpus=nc)
drop1(mod1, parallel=" multicore", ncpus=nc)
adding terms
addterm(mod0, scope=as.formula(paste("~", paste(names(usair[-1]),
collapse="+"),sep="")))
with chi-square information
add1(mod0, scope=as.formula(paste("~", paste(names(usair[-1]),
collapse="+"),sep="")))
for parallel computations
nc <- detectCores()
add1(mod0, scope=as.formula(paste("~", paste(names(usair[-1]),
collapse="+"),sep="")), parallel="snow", ncpus=nc)

stepGAIC
find the best subset for the mu
mod2 <- stepGAIC(mod1)
mod2$anova
#--
for parallel computations
mod21 <- stepGAIC(mod1, parallel="snow", ncpus=nc)
#--
find the best subset for sigma
mod3<stepGAIC(mod2, what="sigma", scope=~x1+x2+x3+x4+x5+x6)
mod3$anova
#--
find the best model using pb() smoother
only three variables are used here for simplicity
mod20<stepGAIC(mod0, scope=list(lower=~1, upper=~pb(x1)+pb(x2)+pb(x5)))
edf(mod20)
note that x1 and x2 enter linearly
#--
the stepGAIC.CH function (no parallel here)
creating a scope from the usair model frame
gs<-gamlss.scope(model.frame(y~x1+x2+x3+x4+x5+x6, data=usair))
gs
mod5<stepGAIC.CH(mod0,gs)
mod5$anova
#--
now stepGAICAll.A
summary.gamlss

Summary a GAMLSS fitted model

Description
summary.gamlss is the GAMLSS specific method for the generic function summary which summarize objects returned by modelling functions.

Usage
```r
# S3 method for class 'gamlss'
summary(object, type = c("vcov", "qr"),
          robust = FALSE, save = FALSE,
          hessian.fun = c("R", "PB"),
          digits = max(3, getOption("digits") - 3),...)
```

Arguments
- **object**: a GAMLSS fitted model
- **type**: the default value vcov uses the vcov() method for gamlss to get the variance-covariance matrix of the estimated beta coefficients, see details below. The alternative qr is the original method used in gamlss to estimated the standard errors but it is not reliable since it do not take into the account the inter-correlation between the distributional parameters mu, sigma, nu and tau.
- **robust**: whether robust (sandwich) standard errors are required
- **save**: whether to save the environment of the function so to have access to its values
- **hessian.fun**: whether when calculate the Hessian should use the "R" function optimHess() or a function based on Pinheiro and Bates nlme package, "PB".
- **digits**: the number of digits in the output
- **...**: for extra arguments
Details

Using the default value type="vcov", the vcov() method for gamlss is used to get the variance covariance matrix (and consequently the standard errors) of the beta parameters. The variance covariance matrix is calculated using the inverse of the numerical second derivatives of the observed information matrix. This is a more reliable method since it take into the account the inter-correlation between the all the parameters. The type="qr" assumes that the parameters are fixed at the estimated values. Note that both methods are not appropriate and should be used with caution if smoothing terms are used in the fitting.

Value

Print summary of a GAMLSS object

Author(s)

Mikis Stasinopoulos <d.stasinopolos@londonmet.ac.uk>, Bob Rigby and Calliope Akantziliotou

References

(see also https://www.gamlss.com/).

See Also

gamlss, deviance.gamlss, fitted.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
summary(h)
rm(h)
term.plot

Plot regression terms for a specified parameter of a fitted GAMLSS object

Description

Plots regression terms against their predictors, optionally with standard errors and partial residuals added. It is based on the R function termplot but is suitably changed to apply to GAMLSS objects.

Usage

```r
term.plot(object, what = c("mu", "sigma", "nu", "tau"),
          parameter = NULL, data = NULL,
          envir = environment(formula(object)), partial.resid = FALSE,
          rug = FALSE, terms = NULL, se = TRUE, ylim = c("common", "free"),
          scheme = c("shaded", "lines"), xlabs = NULL, ylabs = NULL,
          main = NULL, pages = 0, col.term = "darkred",
          col.se = "orange", col.shaded = "gray", col.res = "lightblue",
          col.rug = "gray", lwd.term = 1.5, lty.se = 2, lwd.se = 1,
          cex.res = 1, pch.res = par("pch"),
          ask = interactive() && nb.fig < n.tms && .Device != "postscript",
          use.factor.levels = TRUE, surface.gam = FALSE,
          polys = NULL, polys.scheme = "topo",...)
```

Arguments

- **object**: a fitted GAMLSS object
- **what**: the required parameter of the GAMLSS distribution i.e. "mu"
- **parameter**: equivalent to what
- **data**: data frame in which variables in object can be found
- **envir**: environment in which variables in object can be found
- **partial.resid**: logical; should partial residuals be plotted or not
- **rug**: add rug plots (jitter 1-d histograms) to the axes?
- **terms**: which terms to be plotted (default 'NULL' means all terms)
- **se**: plot point-wise standard errors?
- **ylim**: there are two options here a) "common" and b) "free". The "common" option plots all figures with the same ylim range and therefore allows the viewer to check the relative contribution of each terms compare to the rest. In the 'free' option the limits are computed for each plot separately.
- **scheme**: whether the se's should appear shaded or as lines
- **xlabs**: vector of labels for the x axes
- **ylabs**: vector of labels for the y axes
term.plot

- **main**: logical, or vector of main titles; if 'TRUE', the model’s call is taken as main title, 'NULL' or 'FALSE' mean no titles.
- **pages**: in how many pages the plot should appear. The default is 0 which allows different page for each plot.
- **col.term**: the colour of the term line
- **col.se**: the colour of the se's lines
- **col.shaded**: the colour of the shaded area
- **col.res**: the colour of the partial residuals
- **col.rug**: the colour of the rug
- **lwd.term**: line width of the fitted terms
- **lty.se**: line type for standard errors
- **lwd.se**: line width for the standard errors
- **cex.res**: plotting character expansion for the partial residuals
- **pch.res**: characters for points in the partial residuals
- **ask**: logical; if 'TRUE', the user is asked before each plot, see 'par(ask=.)'.
- **use.factor.levels**: Should x-axis ticks use factor levels or numbers for factor terms?
- **surface.gam**: whether to use surface plot if a ga() term is fitted
- **polys**: The polygon information file for MRF models
- **polys.scheme**: Color scheme for polygons for RMF models
- ... other graphical parameters

Details

The function uses the `lpred` function of GAMLSS. The 'data' argument should rarely be needed, but in some cases 'termplot' may be unable to reconstruct the original data frame. Using 'na.action=na.exclude' makes these problems less likely. Nothing sensible happens for interaction terms.

Value

A plot of fitted terms.

Author(s)

Mikis Stasinopoulos based on the existing `termplot()` function

References

See Also

termplot

Examples

```r
data(aids)
a<-gamlss(y~pb(x)+qrt,data=aids,family=NBI)
term.plot(a, pages=1)
rm(a)
```

update.gamlss
Update and Re-fit a GAMLSS Model

Description

`update.gamlss` is the GAMLSS specific method for the generic function `update` which updates and (by default) refits a GAMLSS model.

Usage

```r
## S3 method for class 'gamlss'
update(object, formula., ..., what = c("mu", "sigma", "nu", "tau", "All"), parameter= NULL, evaluate = TRUE)
```

Arguments

- `object`
a GAMLSS fitted model
- `formula.`
the formula to update
- `...`
for updating argument in `gamlss()`
- `what`
the parameter in which the formula needs updating for example "mu", "sigma", "nu" "tau" or "All". If "All" all the formulae are updated. Note that the what argument has an effect only if only if the argument formula. is set
- `parameter`
equivalent to what
- `evaluate`
whether to evaluate the call or not

Value

Returns a GAMLSS call or fitted object.
VC.test

Vuong and Clarke tests

Description

The Vuong and Clarke tests for GAMLSS fitted models.

Usage

VC.test(obj1, obj2, sig.lev = 0.05)
Arguments

- obj1: The first fitted gamlss object
- obj2: The second fitted gamlss object
- sig.lev: Significance level used for testing.

Details

The Vuong (1989) and Clarke (2007) tests are likelihood-ratio-based tests for model selection that use the Kullback-Leibler information criterion. The implemented tests can be used for choosing between two bivariate models which are non necessary nested.

In the Vuong test, the null hypothesis is that the two models are equally close to the actual model, whereas the alternative is that one model is closer. The test follows asymptotically a standard normal distribution under the null. Assume that the critical region is \((-c, c)\), where \(c\) is typically set to 1.96. If the value of the test is greater than \(c\) then we reject the null hypothesis that the models are equivalent in favour of the model in \(\text{obj1}\). Vice-versa if the value is smaller than \(-c\) we reject the null hypothesis that the models are equivalent in favour of the model in \(\text{obj2}\). If the value falls within \((-c, c)\) then we cannot discriminate between the two competing models given the data.

In the Clarke test, if the two models are statistically equivalent then the log-likelihood ratios of the observations should be evenly distributed around zero and around half of the ratios should be larger than zero. The test follows asymptotically a binomial distribution with parameters \(n\) and 0.5. Critical values can be obtained as shown in Clarke (2007). Intuitively, the model in \(\text{obj1}\) is preferred over that in \(\text{obj2}\) if the value of the test is significantly larger than its expected value under the null hypothesis ('\(\text{cden}/2\)'), and vice versa. If the value is not significantly different from \(n/2\) then \(\text{obj1}\) can be thought of as equivalent to \(\text{obj2}\).

Value

For the Vuong test it returns its value and the decision and for the Clarke test returns the value the p-value and the decision. Decisions criteria are as discussed above.

Author(s)

Mikis Stasinopoulos and Giampiero Marra

References

(see also https://www.gamlss.com/).

Econometrica, 57(2), 307-333.

See Also

LR.test

Examples

library(gamlss)
fitting different models
m0 <- gamlss(y~x+qrt, data=aids, family=PO)
m1 <- gamlss(y~pb(x)+qrt, data=aids, family=PO)
m2 <- gamlss(y~pb(x)+qrt, data=aids, family=NBI)
comparison of the models
VC.test(m0,m2)
VC.test(m0,m1)
VC.test(m1,m2)

Description

Provides a single plot or multiple worm plots for a GAMLSS fitted or more general for any fitted
models where the method resid() exist and the residuals are defined sensibly. The worm plot
(a de-trended QQ-plot), van Buuren and Fredriks M. (2001), is a diagnostic tool for checking
the residuals within different ranges (by default not overlapping) of the explanatory variable(s).

Usage

wp(object = NULL, xvar = NULL, resid = NULL, n.inter = 4,
xcut.points = NULL, overlap = 0, xlim.all = 4,
xlim.worm = 3.5, show.given = TRUE, line = TRUE,
ylim.all = 12 * sqrt(1/length(resid)),
ylim.worm = 12 * sqrt(n.inter/length(resid)),
cex = 1, cex.lab = 1, pch = 21, bg = "wheat",
col = "red", bar.bg = c(num = "light blue"), ...)

Arguments

object a GAMLSS fitted object or any other fitted model where the resid() method
works (preferably it should be standardised or quantile residuals)
xvar the explanatory variable(s) against which the worm plots will be plotted. If
only one variable is involved use xvar=x1 if two variables are involved use
xvar=x1*x2. See also note below for use of formula if the data argument is
not found in the fitted model
wp

resid if object is missing this argument can be used to specify the residual vector
(again it should a quantile residuals or it be assumed to come from a normal
distribution)
n.inter the number of intervals in which the explanatory variable xvar will be cut
xcut.points the x-axis cut off points e.g. c(20,30). If xcut.points=NULL then the n.inter
argument is activated
overlap how much overlapping in the xvar intervals. Default value is overlap=0 for
non overlapping intervals
xlim.all for the single plot, this value is the x-variable limit, default is xlim.all=4
xlim.worm for multiple plots, this value is the x-variable limit, default is xlim.worm=3.5
show.given whether to show the x-variable intervals in the top of the graph, default is
show.given=TRUE
line whether to plot the polynomial line in the worm plot, default value is line=TRUE
ylim.all for the single plot, this value is the y-variable limit, default value is ylim.all=12*sqrt(1/length(fitted(object))
ylim.worm for multiple plots, this values is the y-variable limit, default value is ylim.worm=12*sqrt(n.inter/length(fitted(object))
cex the cex plotting parameter for changing the side of worm with default cex=1
cex.lab the cex plotting parameter for changing the size of the axis labels
pch the pch plotting parameter with default pch=21
bg The background colour of the worm plot points
col the colour of the fitted (and horizontal and vertical) lines
bar.bg the colour of the bars when xvar is used
... for extra arguments

Details

If the xvar argument is not specified then a single worm plot is used. In this case a worm plot is a
de-trended normal QQ-plot so departure from normality is highlighted.

If a single xvar is specified (with or without the use of a formula) i.e. xvar=x1 or xvar=~x1) then
we have as many worm plot as n.iter. In this case the x-variable is cut into n.iter intervals with
an equal number observations and de-trended normal QQ (i.e. worm) plots for each interval are
plotted. This is a way of highlighting failures of the model within different ranges of the the single
explanatory variable. The fitted coefficients from fitting cubic polynomials to the residuals (within
each x-variable interval) can be obtain by e.g. coeffs<-wp(model1,xvar=x,n.iter=9). van Bu-
uren and Fredriks M. (2001) used these residuals to identify regions (intervals) of the explanatory
variable within which the model does not fit adequately the data (called "model violation")

Two variables can be displayed with the use of a formula, i.e. xvar=~x1*x2. In this case the
n.iter can be a vector with two values.

Value

For multiple plots the xvar intervals and the coefficients of the fitted cubic polynomials to the
residuals (within each xvar interval) are returned.
Note

Note that the wp() function, if the argument object is used, is looking for the data argument of the object. If the argument data exists it uses its environment to find xvar (whether it is a formula or not). As a result if data exists within object xvar=~x*f can be used (assuming that x and f are in the data) otherwise the variable should be explicitly defined i.e. xvar=data$x*data$f.

Author(s)

Mikis Stasinopoulos and Bob Rigby

References

(see also https://www.gamlss.com/).

See Also

gamlss, plot.gamlss

Examples

data(abdom)
with data
a<-gamlss(y~pb(x),sigma.fo=-pb(x,1),family=LO,data=abdom)
wpa)
coeff1<-wp(a,xvar=x)
coeff1
Not run:
no data argument
b <- gamlss(abdom$y~pb(abdom$x),sigma.fo=-pb(abdom$x),family=LO)
wpb(b)
wpb(b, xvar=abdom$x)# not wp(b, xvar=x)
using the argument resid
this will work
wp(resid=resid(a), xvar=abdom$x)
not this
wp(resid=resid(a), xvar=x)
this example uses the rent data
z.scores <- gamlss(R~pb(Fl)+pb(A)+loc, sigma.fo=~pb(Fl)+pb(A), data=rent, family=GA)
a single worm plot
wp(m1, ylim.all=0.5)
a single continuous x variable
wp(m1, xvar=Fl, ylim.worm=.8)
a single x variable changing the default number of intervals
wp(m1, xvar=Fl, ylim.worm=1.5, n.inter=9)
different x variable changing the default number of intervals
B1 <- wp(m1, xvar=A, ylim.worm=1.2, n.inter=9)
B1
the number five plot has intervals
[5,] 1957.5 1957.5
rather disappointing
try formula for xvar
wp(m1, xvar=~A, ylim.worm=1.2, n.inter=9)
better in this case using formula
now using a factor included in the model
wp(m1, xvar=~loc, ylim.worm=1.2, n.inter=9)
using a factor not in the model
wp(m1, xvar=~B, ylim.worm=1.5, n.inter=9)
level 2 (with B=1) did not fit well
trying two continuous variable
wp(m1, xvar=~Fl*A, ylim.worm=1.5, n.inter=4)
one continuous and one categorical
wp(m1, xvar=~Fl*loc, ylim.worm=1.5, n.inter=4)
two categorical
wp(m1, xvar=~B*loc, ylim.worm=1.5, n.inter=4)

End(Not run)

Z-scores for lms objects

Description

This creates z-scores for new values of y and x given a fitted lms object.

Usage

z.scores(object, y, x)

Arguments

object
a lms fitted object
y
new y values
x
new x values
Details

This is simply a job that can be also done by centiles.pred().

Value

the required z-scores

Author(s)

Mikis Stasinopoulos

References

Cole, T. J. and Green, P. J. (1992) Smoothing reference centile curves: the LMS method and penal-
ized likelihood, Statist. Med. 11, 1305–1319

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and

modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older
version can be found in https://www.gamlss.com/.

jstatsoft.org/v23/i07/

Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

(see also https://www.gamlss.com/).

See Also

centiles.pred

Examples

Not run:
IND<-sample.int(7040, 1000, replace=FALSE)
 db1 <- db[IND,]
 plot(head~age, data=db1)
 m0 <- lms(head, age, data=db1,trans.x=TRUE)
 z.scores(m0, x=c(2,15,30,40),y=c(45,50,56,63))
End(Not run)
Index

* Statistical Models
 getQuantile, 71
* diagnostic
 bp, 12
* distribution
 fitDist, 38
 gamlss-package, 3
 histSmo, 78
 loglogSurv, 89
 plot.histSmo, 105
* package
 gamlss-package, 3
* regression
 pcat, 98
* regression
 additive.fit, 8
 bfp, 10
 bp, 12
 calibration, 14
 centiles, 16
 centiles.com, 18
 centiles.pred, 20
 centiles.split, 23
 coef.gamlss, 25
 cs, 26
 deviance.gamlss, 29
 devianceIncr, 30
 dtop, 32
 edf, 34
 find.hyper, 35
 fitDist, 38
 fitted.gamlss, 42
 fittedPlot, 43
 formula.gamlss, 44
 gamlss, 46
 gamlss-package, 3
 gamlss.control, 50
 gamlss.cs, 52
 gamlss.fp, 53
 gamlss.lo, 54
 gamlss.ps, 55
 gamlss.random, 56
 gamlss.scope, 57
 gamlssML, 59
 gamlssVGD, 62
 gen.likelihood, 67
 getPEF, 69
 getQuantile, 71
 getSmo, 73
 glm.control, 74
 histDist, 75
 IC, 81
 lms, 83
 lo, 86
 lpred, 91
 LR.test, 93
 model.frame.gamlss, 94
 numeric.deriv, 96
 par.plot, 97
 pdf.plot, 101
 plot.gamlss, 103
 plot2way, 106
 polyS, 107
 predict.gamlss, 108
 print.gamlss, 111
 prof.dev, 112
 prof.term, 114
 ps, 116
 Q.stats, 123
 quantSheets, 125
 random, 127
 refit, 132
 residuals.gamlss, 133
 ri, 135
 rqres.plot, 137
 Rsq, 138
 rvcov, 140
 stepGAIC, 141
summary.gamlss, 147
term.plot, 149
update.gamlss, 151
VC.test, 152
wp, 154
z.scores, 157
* **regression**
 acfResid, 7
* **ts**
 acfResid, 7
acf, 8
acfResid, 7
add1All (stepGAIC), 141
add1TGD (gamlssVGD), 62
additive.fit, 8, 10, 117
aic.gamlss (IC), 81

bfp, 10
bp, 12
calibration, 14, 85
centiles, 15, 16, 19, 21, 23, 25, 44, 85
centiles.com, 18, 18, 25
centiles.fit, 15
centiles.pred, 20, 158
centiles.split, 18, 19, 21, 23, 44, 124
chooseDist (fitDist), 38
chooseDistPred (fitDist), 38
coeff.gamlss, 25, 30, 43, 134, 152
coeffAll (coeff.gamlss), 25
cs, 26, 52, 80, 88, 120
cV (gamlssVGD), 62
cy, 56
cy (ps), 116
deviance, 31
deviance.gamlss, 26, 29, 43, 45, 112, 134, 148, 152
devianceIncr, 30
drop1All (stepGAIC), 141
drop1TGD (gamlssVGD), 62
dropTerm, 94
dtop, 32

cfd (loglogSurv), 89
edf, 34
edfAll (edf), 34
extractAIC.gamlss (IC), 81

find.hyper, 35, 50
findPower (quantSheets), 125
fitDist, 38
fitDistPred (fitDist), 38
fitted.gamlss, 26, 30, 42, 43, 45, 112, 134, 148, 152
fittedPlot, 43
formula.gamlss, 43, 44, 134, 152
fp, 54
fp (bfp), 10
fv (fitted.gamlss), 42

GAIC, 139
GAIC (IC), 81
gamlss-package, 3
gamlss.control, 47, 50
gamlss.cs, 26, 29, 52
gamlss.cy, 117
gamlss.cy (gamlss.ps), 55
gamlss.dist, 7
gamlss.family, 11, 30, 46, 48, 50, 59, 61, 77
gamlss.fp, 10, 53
gamlss.lo, 54, 108
gamlss.pb, 117
gamlss.pb (gamlss.ps), 55
gamlss.pbc, 117
gamlss.pbc (gamlss.ps), 55
gamlss.pbm, 117
gamlss.pbm (gamlss.ps), 55
gamlss.pbo, 117
gamlss.pbo (gamlss.ps), 55
gamlss.pbo (gamlss.ps), 55
gamlss.pbz (gamlss.ps), 55
gamlss.pcat (pcat), 98
gamlss.pp (gamlss.fp), 53
gamlss.ps, 55, 117, 120
gamlss.pvc, 117
gamlss.pvc (gamlss.ps), 55
gamlss.random, 56, 129
gamlss.re (gamlss.random), 56
gamlss.ri (gamlss.ps), 55
gamlss.scope, 57, 145
gamlssCV (gamlssVGD), 62
TGD (gamlssVGD), 62
update, 132
update.gamlss, 43, 133, 134, 151
VC.test, 152
vcov, 68, 141
VGD (gamlssVGD), 62
vis.lo(lo), 86
wp, 14, 34, 124, 154
z.scores, 157
z.scoresQS (quantSheets), 125