Package ‘gamlss’

February 7, 2022

Description Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables.

Version 5.4-1
Date 2022-02-01
Title Generalised Additive Models for Location Scale and Shape
Maintainer Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
Depends R (>= 3.3.0), graphics, stats, splines, utils, grDevices,
 gamlss.data (>= 5.0-0), gamlss.dist (>= 4.3.1), nlme, parallel
LazyLoad yes
Imports MASS, survival, methods
License GPL-2 | GPL-3
URL https://www.gamlss.com/
NeedsCompilation yes
Author Mikis Stasinopoulos [aut, cre, cph],
 Bob Rigby [aut],
 Vlasios Voudouris [ctb],
 Calliope Akantziliotou [ctb],
 Marco Enea [ctb],
 Daniil Kiose [ctb]
Repository CRAN
Date/Publication 2022-02-07 08:20:12 UTC

R topics documented:

gamlss-package ... 3
acfResid ... 7
additive.fit .. 8
bfp ... 10
bp ... 12
R topics documented:
calibration ... 14
centiles ... 16
centiles.com ... 18
centiles.pred ... 20
centiles.split .. 23
coeff.gamlss .. 25
cs .. 27
deviance.gamlss ... 30
devianceIncr ... 31
dtop .. 33
edf ... 35
find.hyper .. 36
fitDist .. 39
fitted.gamlss ... 43
fittedPlot ... 44
formula.gamlss ... 45
gamlss .. 46
gamlss.control .. 51
gamlss.cs ... 52
gamlss.fp ... 53
gamlss.lo ... 55
gamlss.ps ... 56
gamlss.random ... 57
gamlss.scope .. 58
gamlssML .. 60
gamlssVGD ... 63
gen.likelihood ... 68
getPEF .. 69
getQuantile .. 71
getSmo ... 74
glim.control ... 75
histDist .. 76
histSmo .. 78
IC .. 81
lms .. 84
lo ... 86
loglogSurv ... 89
lpred ... 92
LR.test .. 94
model.frame.gamlss 95
numeric.deriv ... 96
par.plot ... 98
pcat .. 99
pdf.plot ... 102
plot.gamlss ... 104
plot.histSmo ... 106
plot2way .. 107
polyS ... 108
Description

Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables.

Details

The DESCRIPTION file:

Package: gamlss
Description: Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>
Version: 5.4-1
Date: 2022-02-01
Authors@R: c(person("Mikis", "Stasinopoulos", role = c("aut", "cre", "cph"), email = "d.stasinopoulos@londonmet.ac.uk"), person("Panagiotis", "Rigby", role = "cre"), person("Vasso", "Akantziliotou", role = "ctb"), person("Marco", "Enea", role = "ctb"), person("Daniil", "Kiose", role = "ctb"))
Title: Generalised Additive Models for Location Scale and Shape
Maintainer: Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
Depends: R (>= 3.3.0), graphics, stats, splines, utils, grDevices, gamlss.data (>= 5.0-0), gamlss.dist (>= 4.3.1), nlme, parallel, MASS, survival, methods
LazyLoad: yes
Imports: MASS, survival, methods
License: GPL-2 | GPL-3
URL: https://www.gamlss.com/
NeedsCompilation: yes
Packaged: 2020-09-10 11:45:48 UTC; dimitriosstasinopoulos
Author: Mikis Stasinopoulos [aut, cre, cph], Bob Rigby [aut], Vlasios Voudouris [ctb], Calliope Akantziliotou [ctb], Marco Enea [ctb], Daniil Kiose [ctb]
Repository: CRAN
Date/Publication: 2020-09-12 06:40:02 UTC

Index of help topics:

IC Gives the GAIC for a GAMLSS Object
LR.test Likelihood Ratio test for nested GAMLSS models
Q.stats A function to calculate the Q-statistics
Rsq Generalised (Pseudo) R-squared for GAMLSS models
VC.test Vuong and Clarke tests
acfResid ACF plot of the residuals
additive.fit Implementing Backfitting in GAMLSS
bfp Functions to fit fractional polynomials in GAMLSS
bp Bucket plot
calibration Calibrating centile curves
centiles Plots the centile curves for a GAMLSS object
centiles.com Comparing centiles from different GAMLSS models
centiles.pred Creating predictive centiles values
centiles.split Plots centile curves split by x for a GAMLSS object
coeff.gamlss Extract Model Coefficients in a GAMLSS fitted model
cs Specify a Smoothing Cubic Spline Fit in a GAMLSS Formula
deviance.gamlss Global Deviance of a GAMLSS model
devianceIncr The global deviance increment
dtop Detrended transformed Owen's plot
edf Effective degrees of freedom from gamlss model
find.hyper A function to select values of hyper-parameters in a GAMLSS model
fitDist Fitting Different Parametric 'gamlss.family' Distributions.
fitted.gamlss Extract Fitted Values For A GAMLSS Model
fittedPlot Plots The Fitted Values of a GAMLSS Model
formula.gamlss Extract the Model Formula in a GAMLSS fitted model
gamlss Generalized Additive Models for Location Scale and Shape
gamlss-package Generalised Additive Models for Location Scale and Shape
gamlss.control Auxiliary for Controlling GAMLSS Fitting

gamlss.cs Support for Function cs() and scs()

gamlss.fp Support for Function fp()

gamlss.lo Support for Function lo()

gamlss.ps Support for Functions for smoothers

gamlss.random Support for Functions random() and re()

gamlss.scope Generate a Scope Argument for Stepwise GAMLSS

gamlssML Maximum Likelihood estimation of a simple GAMLSS model

gamlssVGD A Set of Functions for selecting Models using Validation or Test Data Sets and Cross Validation

gen.likelihood A function to generate the likelihood function from a GAMLSS object

getPEF Getting the partial effect function from a continuous term in a GAMLSS model

getQuantile Getting the partial quantile function for a term

getSmo Extracting Smoother information from a GAMLSS fitted object

glim.control Auxiliary for Controlling the inner algorithm in a GAMLSS Fitting

histDist This function plots the histogram and a fitted (GAMLSS family) distribution to a variable

histSmo Density estimation using the Poisson trick

lms A function to fit LMS curves for centile estimation

lo Specify a loess fit in a GAMLSS formula

loglogSurv Survival function plots for checking the tail behaviour of the data

lpred Extract Linear Predictor Values and Standard Errors For A GAMLSS Model

model.frame.gamlss Extract a model.frame, a model matrix or terms from a GAMLSS object for a given distributional parameter

numeric.deriv An internal GAMLSS function for numerical derivatives

par.plot A function to plot parallel plot for repeated measurement data

pcat Reduction for the Levels of a Factor.

pdf.plot Plots Probability Distribution Functions for GAMLSS Family

plot.gamlss Plot Residual Diagnostics for an GAMLSS Object

plot.histSmo A Plotting Function for density estimator object histSmo

plot2way Function to plot two interaction in a GAMLSS model

polyS Auxiliary support for the GAMLSS
predict.gamlss Extract Predictor Values and Standard Errors
For New Data In a GAMLSS Model
print.gamlss Prints a GAMLSS fitted model
prof.dev Plotting the Profile Deviance for one of the
 Parameters in a GAMLSS model
prof.term Plotting the Profile: deviance or information
criterion for one of the terms (or
hyper-parameters) in a GAMLSS model
ps P-Splines Fits in a GAMLSS Formula
quantSheets Quantile Sheets
random Specify a random intercept model in a GAMLSS
 formula
refit Refit a GAMLSS model
residuals.gamlss Extract Residuals from GAMLSS model
ri Specify ridge or lasso Regression within a
 GAMLSS Formula
rqres.plot Creating and Plotting Randomized Quantile
 Residuals
rvcov Robust Variance-Covariance matrix of the
 parameters from a fitted GAMLSS model
stepGAIC Choose a model by GAIC in a Stepwise Algorithm
summary.gamlss Summarizes a GAMLSS fitted model
term.plot Plot regression terms for a specified parameter
 of a fitted GAMLSS object
update.gamlss Update and Re-fit a GAMLSS Model
wp Worm plot
z.scores Z-scores for lms objects

Author(s)

Mikis Stasinopoulos [aut, cre, cph], Bob Rigby [aut], Vlasios Voudouris [ctb], Calliope Akantziliotou [ctb], Marco Enea [ctb], Daniil Kiose [ctb]

Maintainer: Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and

modeling location, scale, and shape: Using GAMLSS in R. Chapman and Hall/CRC. An older
version can be found in https://www.gamlss.com/.

acfResid

(see also https://www.gamlss.com/).

See Also

gamlss.dist

Examples

data(abdom)
mod<-gamlss(y~pb(x),sigma.fo=~pb(x),family=BCT, data=abdom, method=mixed(1,20))
plot(mod)
rm(mod)

acfResid

ACF plot of the residuals

Description

This plot display the ACF and PACF of the residuals of a gamlss or other fitted model (provided that they have been standardised appropriately. Is is appropriate for time series data.

Usage

acfResid(obj = NULL, resid = NULL)

Arguments

obj A gamlss model or othe fitted model where the resid() function applies exist
resid if obj does not exist the argument here will be used

Details

The ACF abd PACF for the residuals r, squared residuals r^2, r^3 and r^4 are plotted

Value

The relevant plots are displayied

Author(s)

Mikis Stasinopoulos. Bob Rigby. Vlasios Voudouris and Majid Djennd
References

See Also

`acf`

Examples

```r
library(datasets)
data(co2)
m1<- gamlss(co2~pb(as.numeric(time(co2)))+factor(cycle(co2)))
acfResid(m1)
```

additive.fit

Implementing Backfitting in GAMLSS

Description

This function is not to be used on its own. It is used for backfitting in the GAMLSS fitting algorithms and it is based on the equivalent function written by Trevor Hastie in the gam() S-plus implementation, (Chambers and Hastie, 1991).

Usage

```r
additive.fit(x, y, w, s, who, smooth.frame, maxit = 30, tol = 0.001,
             trace = FALSE, se = TRUE, ...)
```

Arguments

- `x` the linear part of the explanatory variables
- `y` the response variable
- `w` the weights
- `s` the matrix containing the smoothers
- `who` the current smoothers
- `smooth.frame` the data frame used for the smoothers

See Also

`acf`

Examples

```r
library(datasets)
data(co2)
m1<- gamlss(co2~pb(as.numeric(time(co2)))+factor(cycle(co2)))
acfResid(m1)
```
additive.fit

 maxit maximum number of iterations in the backfitting
 tol the tolerance level for the backfitting
 trace whether to trace the backfitting algorithm
 se whether standard errors are required
 ... for extra arguments

Details

This function should not be used on its own

Value

Returns a list with the linear fit plus the smoothers

Author(s)

Mikis Stasinopoulos

References

(see also https://www.gamlss.com/).

See Also

gamlss
bfp

Functions to fit fractional polynomials in GAMLSS

Description

The function bfp generate a power polynomial basis matrix which (for given powers) can be used to fit power polynomials in one x-variable. The function fp takes a vector and returns it with several attributes. The vector is used in the construction of the model matrix. The function fp() is not used for fitting the fractional polynomial curves but assigns the attributes to the vector to aid gamlss in the fitting process. The function doing the fitting is gamlss.fp() which is used at the backfitting function additive.fit (but never used on its own). The (experimental) function pp can be use to fit power polynomials as in $a + b_1x^{p_1} + b_2x^{p_2}$, where p_1 and p_2 have arbitrary values rather restricted as in the fp function.

Usage

bfp(x, powers = c(1, 2), shift = NULL, scale = NULL)
fp(x, npoly = 2, shift = NULL, scale = NULL)
pp(x, start = list(), shift = NULL, scale = NULL)

Arguments

x the explanatory variable to be used in functions bfp() or fp(). Note that this is different from the argument x use in gamlss.fp (a function used in the backfitting but not by straight by the user)
powers a vector containing as elements the powers in which the x has to be raised
shift a number for shifting the x-variable. The default values is zero, if x is positive, or the minimum of the positive difference in x minus the minimum of x
scale a positive number for scalling the x-variable. The default values is $10^{\text{sign}(\log_{10}(\text{range}))}*\text{trunc}(\text{abs}(\log_{10}(\text{range})))}$
npoly a positive indicating how many fractional polynomials should be considered in the fit. Can take the values 1, 2 or 3 with 2 as default
start a list containing the starting values for the non-linear maximization to find the powers. The results from fitting the equivalent fractional polynomials can be used here

Details

The above functions are an implementation of the fractional polynomials introduced by Royston and Altman (1994). The three functions involved in the fitting are loosely based on the fractional polynomials implementation in S-plus written by Gareth Amber in 1999, (unfortunately the URL link for his work no longer exist). The function bfp generates the right design matrix for the fitting a power polynomial of the type $a + b_1x^{p_1} + b_2x^{p_2} + \ldots + b_kx^p$. For given powers p_1, p_2, \ldots, p_k given as the argument powers in bfp() the function can be used to fit power polynomials in the same way as the functions poly() or bs() (of package splines) are used to fit orthogonal or piecewise polynomials respectively. The function fp(), which is working as a smoother in gamlss, is used to fit
the best fractional polynomials within a set of power values. Its argument npoly determines whether one, two or three fractional polynomials should be used in the fitting. For a fixed number npoly the algorithm looks for the best fitting fractional polynomials in the list c(-2,-1,-0.5,0,0.5,1,2,3). Note that npoly=3 is rather slow since it fits all possible combinations 3-way combinations at each backfitting interaction. The function gamlss.fp() is an internal function of GAMLSS allowing the fractional polynomials to be fitted in the backfitting cycle of gamlss, and should be not used on its own.

Value

The function bfp returns a matrix to be used as part of the design matrix in the fitting.

The function fp returns a vector with values zero to be included in the design matrix but with attributes useful in the fitting of the fractional polynomials algorithm in gamlss.fp.

Warning

Since the model constant is included in both the design matrix X and in the backfitting part of fractional polynomials, its values is wrongly given in the summary. Its true values is the model constant minus the constant from the fractional polynomial fitting. What happens if more that one fractional polynomials are fitted?

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <b.rigby@londonmet.ac.uk>

References

Examples

data(abdom)
fits polynomials with power 1 and .5
mod1<-gamlss(y~bfp(x,c(1,0.5)),data=abdom)
fit the best of one fractional polynomial
m1<-gamlss(y~fp(x,1),data=abdom)
fit the best of two fractional polynomials
m2<-gamlss(y~fp(x,2),data=abdom)
fit the best of three fractional polynomials
m3<-gamlss(y~fp(x,3),data=abdom)
get the coefficient for the second model
m2$mu.coefSmo
now power polynomials using the best 2 fp c()
m4 <- gamlss(y ~ pp(x, c(1,3)), data = abdom)
This is not good idea in this case because
if you look at the fitted values you see what it went wrong
plot(y~x,data=abdom)
lines(fitted(m2, "mu")~abdom$x,col="red")
lines(fitted(m4, "mu")~abdom$x,col="blue")

bp

Bucket plot

Description

A bucket plot is a graphical way to check the skewness and kurtosis of a continuous variable or the residuals of a fitted GAMlss model. It plots the transformed moment skewness and transformed moment kurtosis of the variable (or residuals) together with a cloud of points obtained using a non-parametric bootstrap from the original variable (or residuals). It also provides a graphical way of performing the Jarque-Bera test (Jarque and Bera, 1980).

There are two different bucket plots specified by the type argument:

i) the moment bucket and ii) the centile bucket which itself can be central or tail one.

Usage

bp(obj = NULL, weights = NULL,
 type = c("moment", "centile.central", "centile.tail"),
 xvar = NULL, bootstrap = TRUE, no.bootstrap = 99,
 col.bootstrap = c("lightblue", "pink", "khaki",
 "thistle", "tan", "sienna", "steelblue", "coral", "gold",
 "cyan"),
 pch.bootstrap = rep(21, 10), asCharacter = TRUE,
 col.point = rep("black", 10), pch.point = 1:10,
 lwd.point = 2, text.to.show = NULL, cex.text = 1.5,
 col.text = "black", show.legend = FALSE, n.inter = 4,
 xcute.points = NULL, overlap = 0, show.given = TRUE,
 cex = 1, pch = 21, data = NULL,
 bar.bg = c(num = "lightblue", fac = "pink"), ...)
Arguments

- **obj**: A gamlss fitted object.
- **weights**: prior weights.
- **type**: type of bucket plot whether "moment", "centile.central", or "centile.tail".
- **xvar**: the x-variable if need to split the bucket plot.
- **bootstrap**: whether to bootstrap the skewness and kurtosis points
- **no.bootstrap**: the number of the bootstrap samples in the plot
- **col.bootstrap**: the colour of the bootstrap samples in the plot
- **pch.bootstrap**: the character plotting symbol
- **asCharacter**: whether to plot the skewness and kurtosis as character or just points.
- **col.point**: the colour of the point is plotted as point
- **pch.point**: the character symbol for the point
- **lwd.point**: the width of the symbol
- **text.to.show**: whether to show character for the model
- **cex.text**: the cex of the text
- **col.text**: the colour of the text
- **show.legend**: whether to show the legend
- **n.inter**: number of intervals
- **xcut.points**: cut points for the xvar if need
- **overlap**: whether the interval id xvar is set should ovelap
- **show.given**: showing the top part of the plot
- **cex**: the cex
- **pch**: the point character pch
- **data**: if data has to be set
- **bar.bg**: the background color of the bars in the top of the figure
- **...**: other arguments

Value

A plot displaying the transformed moment skewness and transformed moment kurtosis of the sample or residual of a model.

Note

The bucket plot provides an additional residual diagnostic tool that can be used for fitted model checking, alongside other diagnostic tools, for example worm plots, and Q (and Z) statistics.

Author(s)

Mikis Stasinopoulos, <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk> and Fernanda De Bastiani
calibration

References

(see also https://www.gamlss.com/).

See Also

`wp`, `Q.stats`

Examples

```r
m1 <- gamlss(R~pb(fl)+pb(A), data=rent, family=GA)
bp(m1)
```

calibration Calibration centile curves

Description

This function can used when the fitted model centiles do not coincide with the sample centiles.

Usage

```r
calibration(object, xvar, cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
    legend = FALSE, fan = FALSE, ...)
```
calibration

Arguments

- **object** a gamlss fitted object
- **xvar** The explanatory variable
- **cent** a vector with elements the % centile values for which the centile curves have to be evaluated
- **legend** whether legend is required
- **fan** whether to use the fan version of centiles
- ... other argument pass on to centiles() function

Details

The function finds the sample quantiles of the residuals of the fitted model (the z-scores) and use them as sample quantile in the argument cent of the centiles() function. This procedure is appropriate if the fitted model centiles do not coincide with the sample centiles and when this failure is the same in all values of the explanatory variable xvar.

Value

A centile plot is produced and the sample centiles below each centile curve are printed (or saved)

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk> and Vlasios Voudouris

References

(see also https://www.gamlss.com/).

See Also

centiles, centiles.fan
Examples

```
data(abdom)
m1<-gamlss(y~pb(x), sigma.fo~pb(x), family=L0, data=abdom)
calibration(m1, xvar=abdom$x, fan=TRUE)
```

centiles

Plots the centile curves for a GAMLSS object

Description

This function `centiles()` plots centile curves for distributions belonging to the GAMLSS family of distributions. The function also tabulates the sample percentages below each centile curve (for comparison with the model percentages given by the argument `cent`.) The function `centiles.fan()` plots a fan-chart of the centile curves. A restriction of the functions is that it applies to models with one explanatory variable only.

Usage

```
centiles(obj, xvar, cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
        legend = TRUE, ylab = "y", xlab = "x", main = NULL,
        main.gsub = "@", xleg = min(xvar), yleg = max(obj$y),
        xlim = range(xvar), ylim = range(obj$y), save = FALSE,
        plot = TRUE, points = TRUE, pch = 15, cex = 0.5, col = gray(0.7),
        col.centiles = 1:length(cent) + 2, lty.centiles = 1, lwd.centiles = 1, ...)
```

```
centiles.fan(obj, xvar, cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
             ylab = "y", xlab = "x", main = NULL, main.gsub = "@",
             xleg = min(xvar), yleg = max(obj$y), xlim = range(xvar),
             ylim = range(obj$y), points = FALSE, median = TRUE, pch = 15,
             cex = 0.5, col = gray(0.7),
             colors = c("cm", "gray", "rainbow", "heat", "terrain", "topo"), ...)
```

Arguments

- `obj`: a fitted gamlss object from fitting a gamlss distribution
- `xvar`: the unique explanatory variable
- `cent`: a vector with elements the % centile values for which the centile curves have to be evaluated
- `legend`: whether a legend is required in the plot or not, the default is `legend=TRUE`
- `ylab`: the y-variable label
- `xlab`: the x-variable label
- `main`: the main title here as character. If NULL the default title "centile curves using NO" (or the relevant distributions name) is shown
- `main.gsub`: if the `main.gsub` (with default "@") appears in the main title then it is substituted with the default title.
Centiles are calculated using the fitted values in `obj` and `xvar` must correspond exactly to the predictor in `obj` to plot correctly.

col.centiles, lty.centiles and lwd.centiles may be vector arguments and are recycled to the length `cent` if necessary.

Details

A centile plot is produced and the sample centiles below each centile curve are printed (or saved)

Warning

This function is appropriate only when one continuous explanatory variable is fitted in the model

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk>
with contribution from Steve Ellison
References

(see also https://www.gamlss.com/).

See Also

gamlss, centiles.split, centiles.com

Examples

data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
default plot
centiles(h,xvar=abdom$x)
control of colours and lines
centiles(h, xvar=abdom$x, col.cent=c(2,3,4,5,1,5,4,3,2,1),
 lwd.cent=c(1,1,1,2,1,1,1,1,1))
#Control line types
centiles(h, xvar=abdom$x, col.cent=1, cent=c(.5,2.5,50,97.5,99.5),
 lty.centiles=c(3,2,1,2,3),lwd.cent=c(1,1,2,1,1))
control of the main title
centiles(h, xvar=abdom$x, main="Abdominal data
 @")
the fan-chart
centiles.fan(h,xvar=abdom$x, colors="rainbow")
rm(h)

centiles.com

Comparing centiles from different GAMLSS models

Description

This function compares centiles curves for more than one GAMLSS objects. It is based on the `centiles` function. The function also tabulates the sample percentages below each centile curve (for comparison with the model percentages given by the argument `cent`). A restriction of the function is that it applies to models with one explanatory variable only.
Usage

centiles.com(obj, ..., xvar, cent = c(0.4, 10, 50, 90, 99.6),
 legend = TRUE, ylab = "y", xlab = "x", xleg = min(xvar),
 yleg = max(obj$y), xlim = range(xvar), ylim = NULL,
 no.data = FALSE, color = TRUE, main = NULL, plot = TRUE)

Arguments

obj a fitted gamlss object from fitting a gamlss continuous distribution
...
 optionally more fitted GAMLSS model objects
xvar the unique explanatory variable
cent a vector with elements the % centile values for which the centile curves have to
 be evaluated
legend whether a legend is required in the plot or not, the default is legend=TRUE
ylab the y-variable label
xlab the x-variable label
xleg position of the legend in the x-axis
yleg position of the legend in the y-axis
xlim the limits of the x-axis
ylim the limits of the y-axis
no.data whether the data should plotted, default no.data=FALSE or not no.data=TRUE
color whether the fitted centiles are shown in colour, color=TRUE (the default) or not
color=FALSE
main the main title
plot whether to plot the centiles

Value

Centile plots are produced for the different fitted models and the sample centiles below each centile
curve are printed

Warning

This function is appropriate only when one continuous explanatory variable is fitted in the model

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Bob Rigby <r.rigby@londonmet.ac.uk>
References

See Also

`gamlss, centiles, centiles.split`

Examples

```r
data(abdom)
h1<-gamlss(y~cs(x,df=3), sigma.formula=~-cs(x,1), family=BCT, data=abdom)
h2<-gamlss(y~pb(x), sigma.formula=~-pb(x), family=BCT, data=abdom )
centiles.com(h1,h2,xvar=abdom$x)
rm(h1,h2)
```

centiles.pred
Creating predictive centiles values

Description

This function creates predictive centiles curves for new x-values given a GAMLSS fitted model. The function has three options: i) for given new x-values and given percentage centiles calculates a matrix containing the centiles values for y, ii) for given new x-values and standard normalized centile values calculates a matrix containing the centiles values for y, iii) for given new x-values and new y-values calculates the z-scores. A restriction of the function is that it applies to models with only one explanatory variable.

Usage

```r
centiles.pred(obj, type = c("centiles", "z-scores", "standard-centiles"),
              xname = NULL, xvalues = NULL, power = NULL, yval = NULL,
              cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
              dev = c(-4, -3, -2, -1, 0, 1, 2, 3, 4), calibration = FALSE,
              plot = FALSE, legend = TRUE,
              ...)
```
Arguments

obj a fitted gamlss object from fitting a gamlss continuous distribution

type the default, "centiles", gets the centiles values given in the option cent. type="standard-centiles" gets the standard centiles given in the dev. type="z-scores" gets the z-scores for given y and x new values

xname the name of the unique explanatory variable (it has to be the same as in the original fitted model)

xvalues the new values for the explanatory variable where the prediction will take place

power if power transformation is needed (but read the note below)

yval the response values for a given x required for the calculation of "z-scores"

cent a vector with elements the % centile values for which the centile curves have to be evaluated

deve a vector with elements the standard normalized values for which the centile curves have to be evaluated in the option type="standard-centiles"

calibration whether to calibrate the "centiles", the default is calibrate=FALSE

plot whether to plot the "centiles" or the "standard-centiles", the default is plot=FALSE

legend whether a legend is required in the plot or not, the default is legent=TRUE

... for extra arguments

Value

a vector (for option type="z-scores") or a matrix for options type="centiles" or type="standard-centiles" containing the appropriate values

Warning

See example below of how to use the function when power transformation is used for the x-variables

Note

The power option should be only used if the model

Author(s)

Mikis Stasinopoulos, <d.stasinopoulos@londonmet.ac.uk>, based on ideas of Elaine Borghie from the World Health Organization

References

See Also
gamlss, centiles, centiles.split

Examples

```r
## bring the data and fit the model
data(abdom)
#<gamlss(y~pb(x), sigma.fo~pb(x), data=abdom, family=BCT)
## plot the centiles
centiles(a, xvar=abdom$x)
#--------------------------------------------------------------------------------------
## the first use of the function centiles.pred() to calculate the centiles at new x values
#--------------------------------------------------------------------------------------
newx<seq(12,40,2)
mat<centiles.pred(a, xname="x", xvalues=newx )
mat
## now plot the centile curves
mat<centiles.pred(a, xname="x", xvalues=newx, plot=TRUE )
#--------------------------------------------------------------------------------------
## the second use of the function centiles.pred() to calculate (normalised) standard-centiles for new x values using the fitted model
#--------------------------------------------------------------------------------------
newx < seq(12,40,2)
mat<centiles.pred(a, xname="x", xvalues=newx, type="standard-centiles" )
mat
## now plot the standard centiles
mat<centiles.pred(a, xname="x", xvalues=newx, type="standard-centiles", plot = TRUE )
#--------------------------------------------------------------------------------------
## the third use of the function centiles.pred()
## if we have new x and y values what are their z-scores?
#--------------------------------------------------------------------------------------
# create new y and x values and plot them in the previous plot
newy < c(130,121,123,125,140,145,150)
for(i in 1:7) points(newx[i],newy[i],col="blue")
# now calculate their z-scores
znewx < centiles.pred(a, xname="x", xvalues=newx, yval=newy, type="z-scores" )
znewx
## Not run:
#--------------------------------------------------------------------------------------
## What we do if the x variables is transformed?
```
centiles.split

Plots centile curves split by x for a GAMLSS object

Description

This function plots centiles curves for separate ranges of the unique explanatory variable x. It is similar to the centiles function but the range of x is split at a user defined values xcut.point into r separate ranges. The functions also tabulates the sample percentages below each centile curve for each of the r ranges of x (for comparison with the model percentage given by cent) The model should have only one explanatory variable.

Usage

centiles.split(obj, xvar, xcut.points = NULL, n.inter = 4,
cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
legend = FALSE, main = NULL, main.gsub = "@",
ylab = "y", xlab = "x", ylim = NULL, overlap = 0,
save = TRUE, plot = TRUE, ...)

Arguments

- obj: a fitted gamlss object from fitting a gamlss continuous distribution
- xvar: the unique explanatory variable
- xcut.points: the x-axis cut off points e.g. c(20,30). If xcut.points=NULL then the n.inter argument is activated
- n.inter: if xcut.points=NULL this argument gives the number of intervals in which the x-variable will be split, with default 4
- cent: a vector with elements the % centile values for which the centile curves are to be evaluated
- legend: whether a legend is required in the plots or not, the default is legend=FALSE
- main: the main title as character. If NULL the default title (shown the intervals) is shown
- main.gsub: if the main.gsub (with default "@") appears in the main title then it is substituted with the default title.
- ylab: the y-variable label
- xlab: the x-variable label
- ylim: the range of the y-variable axis
- overlap: how much overlapping in the xvar intervals. Default value is overlap=0 for non overlapping intervals
- save: whether to save the sample percentages or not with default equal to TRUE. In this case the functions produce a matrix giving the sample percentages for each interval
- plot: whether to plot the centiles. This option is useful if the sample statistics only are to be used
- ...: for extra arguments

Value

Centile plots are produced and the sample centiles below each centile curve for each of the r ranges of x can be saved into a matrix.

Warning

This function is appropriate when only one continuous explanatory variable is fitted in the model

Author(s)

Mikis Stasinopoulos, <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk>, with contributions from Elaine Borghie
coef.gamlss

References

(see also https://www.gamlss.com/).

See Also

gamlss centiles, centiles.com

Examples

data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
mout <- centiles.split(h,xvar=abdom$x)
mout
rm(h,mout)

coef.gamlss

Extract Model Coefficients in a GAMLSS fitted model

Description

coef.gamlss is the GAMLSS specific method for the generic function coef which extracts model coefficients from objects returned by modelling functions. ‘coefficients’ is an alias for coef.

Usage

```r
## S3 method for class 'gamlss'
coef(object, what = c("mu", "sigma", "nu", "tau"),
     parameter = NULL, ...)
coefAll(obj, deviance = FALSE, ...)
```

References

(see also https://www.gamlss.com/).

See Also

gamlss centiles, centiles.com

Examples

```r
data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
mout <- centiles.split(h,xvar=abdom$x)
mout
rm(h,mout)
```

Description

`coef.gamlss` is the GAMLSS specific method for the generic function `coef` which extracts model coefficients from objects returned by modelling functions. ‘coefficients’ is an alias for `coef`.

Usage

```r
## S3 method for class 'gamlss'
coef(object, what = c("mu", "sigma", "nu", "tau"),
     parameter = NULL, ...)
coefAll(obj, deviance = FALSE, ...)
```
Arguments

object, obj a GAMLSS fitted model
what which parameter coefficient is required, default what="mu"
parameter equivalent to what (more obvious name)
deviance whether to print also the deviance.
... for extra arguments

Value

Coefficients extracted from the GAMLSS model object.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

(see also https://www.gamlss.com/).

See Also

gamlss, deviance.gamlss, fitted.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=NBI, data=aids) #
coef(h)
coefAll(h)
rm(h)
Specify a Smoothing Cubic Spline Fit in a GAMLSS Formula

Description

The functions `cs()` and `scs()` are using the cubic smoothing splines function `smooth.spline()` to do smoothing. They take a vector and return it with several attributes. The vector is used in the construction of the model matrix. The functions do not do the smoothing, but assigns the attributes to the vector to aid gamlss in the smoothing. The function doing the smoothing is `gamlss.cs()`. This function uses the R function `smooth.spline()` which is then used by the backfitting function `additive.fit()` which is based on the original GAM implementation described in Chambers and Hastie (1992). The function `gamlss.scs()` differs from the function `cs()` in that it allows cross validation of the smoothing parameters unlike the `cs()` which fixes the effective degrees of freedom, df. Note that the recommended smoothing function is now the function `pb()` which allows the estimation of the smoothing parameters using a local maximum likelihood. The function `pb()` is based on the penalised beta splines (P-splines) of Eilers and Marx (1996).

The (experimental) function `vc` is now defunct. For fitting varying coefficient models, Hastie and Tibshirani (1993) use the function `pvc()`.

Usage

```r
cs(x, df = 3, spar = NULL, c.spar = NULL, control = cs.control(...), ...)
cscs(x, df = NULL, spar = NULL, control = cs.control(...), ...)
cs.control(cv = FALSE, all.knots = TRUE, nknots = NULL, keep.data = TRUE,
    df.offset = 0, penalty = 1.4, control.spar = list(), ...)
```

Arguments

- `x` the univariate predictor, (or expression, that evaluates to a numeric vector). For the function `vc` the `x` argument is the vector which has its (linear) coefficient change with `r`
- `df` the desired equivalent number of degrees of freedom (trace of the smoother matrix minus two for the constant and linear fit). The real smoothing parameter (spar below) is found such that df=tr(S)-2, where S is the implicit smoother matrix. Values for df should be greater than 0, with 0 implying a linear fit.
- `spar` smoothing parameter, typically (but not necessarily) in (0,1]. The coefficient lambda of the integral of the squared second derivative in the fit (penalised log likelihood) criterion is a monotone function of ‘spar’, see the details in `smooth.spline`.
- `c.spar` This is an option to be used when the degrees of freedom of the fitted gamlss object are different from the ones given as input in the option `df`. The default values used are the ones given the option `control.spar` in the R function `smooth.spline()` and they are `c.spar=c(-1.5,2)`. For very large data sets e.g. 10000 observations, the upper limit may have to increase for example to `c.spar=c(-1.5,2.5)`. Use this option if you have received the warning 'The output df are different from the input, change the control.spar'. `c.spar`
can take both vectors or lists of length 2, for example \(\text{c.spar} = c(-1.5, 2.5) \) or \(\text{c.spar} = \text{list}(-1.5, 2.5) \) would have the same effect.

control
control for the function smooth.spline(), see below

cv
see the \(\text{R} \) function smooth.spline()

all.knots
see the \(\text{R} \) function smooth.spline()

nknots
see the \(\text{R} \) function smooth.spline()

keep.data
see the \(\text{R} \) function smooth.spline()

df.offset
see the \(\text{R} \) function smooth.spline()

penalty
see the \(\text{R} \) function smooth.spline(), here the default value is 1.4

control.spar
see above \(\text{c.spar} \) or the equivalent argument in the function smooth.spline

... for extra arguments

Details

Note that \(\text{cs} \) itself does no smoothing; it simply sets things up for the function \(\text{gamlss()} \) which in turn uses the function additive.fit() for backfitting which in turn uses \(\text{gamlss.cs()} \)

Note that \(\text{cs()} \) and \(\text{scs()} \) functions behave differently at their default values that is if \(\text{df} \) and \(\lambda \) are not specified. \(\text{cs}(x) \) by default will use 3 extra degrees of freedom for smoothing for \(x \). \(\text{scs}(x) \) by default will estimate \(\lambda \) (and the degrees of freedom) automatically using generalised cross validation (GCV). Note that if GCV is used the convergence of the \(\text{gamlss} \) model can be less stable compared to a model where the degrees of freedom are fixed. This will be true for small data sets.

Value

the vector \(x \) is returned, endowed with a number of attributes. The vector itself is used in the construction of the model matrix, while the attributes are needed for the backfitting algorithms additive.fit(). Since smoothing splines includes linear fits, the linear part will be efficiently computed with the other parametric linear parts of the model.

Warning

For a user who wishes to compare the \(\text{gamlss()} \) results with the equivalent \(\text{gam()} \) results in S-plus: make sure when using S-plus that the convergence criteria \(\epsilon \) and \(\text{bf.epsilon} \) in control.gam() are decreased sufficiently to ensure proper convergence in S-plus. Also note that the degrees of freedom are defined on top of the linear term in \(\text{gamlss} \), but on top of the constant term in S-plus, (so use an extra degrees of freedom in S-plus in order to obtain comparable results to those in \(\text{gamlss} \)).

Change the upper limit of \(\text{spar} \) if you received the warning 'The output df are different from the input, change the control.spar'.

For large data sets do not use expressions, e.g. \(\text{cs}(x^0.5) \) inside the \(\text{gamlss} \) function command but evaluate the expression, e.g. \(nx = x^{0.5} \), first and then use \(\text{cs}(nx) \).

Note

The degrees of freedom \(df \) are defined differently from that of the \(\text{gam()} \) function in S-plus. Here \(df \) are the additional degrees of freedom excluding the constant and the linear part of \(x \). For example \(df=4 \) in \(\text{gamlss()} \) is equivalent to \(df=5 \) in \(\text{gam()} \) in S-plus.
Author(s)

Mikis Stasinopoulos and Bob Rigby (see also the documentation of the functionsmooth.spline() for the original authors of the cubic spline function.)

References

(see also https://www.gamlss.com/).

See Also

gamlss, gamlss.cs, pb, pvc

Examples

cubic splines example
data(aids)
data(aids)
fitting a smoothing cubic spline with 7 degrees of freedom
plus the a quarterly effect
aids1<-gamlss(y~cs(x,df=7)+qrt,data=aids,family=PO) #
aids2<-gamlss(y~scs(x,df=5)+qrt,data=aids,family=PO) #
aids3<-gamlss(y~scs(x)+qrt,data=aids,family=PO) # using GCV
with(aids, plot(x,y))
lines(aids$x,fitted(aids1), col="red")
lines(aids$x,fitted(aids3), col="green")
rm(aids1, aids2, aids3)
deviance.gamlss

Global Deviance of a GAMLSS model

Description
Returns the global, -2*log(likelihood), or the penalized, -2*log(likelihood)+ penalties, deviance of
a fitted GAMLSS model object.

Usage

S3 method for class 'gamlss'
deviance(object, what = c("G", "P"), ...)

Arguments

object a GAMLSS fitted model
what put "G" for Global or "P" for Penalized deviance
... for extra arguments

Details

deviance is a generic function which can be used to extract deviances for fitted models. deviance.gamlss
is the method for a GAMLSS object.

Value

The value of the global or the penalized deviance extracted from a GAMLSS object.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and

modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older
version can be found in https://www.gamlss.com/.

jstatsoft.org/v23/i07/.

Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

(see also https://www.gamlss.com/).
devianceIncr

See Also
gamlss.family, coef.gamlss, fitted.gamlss

Examples
data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
deviance(h)
rm(h)

devianceIncr The global deviance increment

Description
The global deviance increment is the contribution of each individual observation to the global deviance. The function devianceIncr() can be used to extract the global deviance increment for a fitted gamlss model or for a new (test/validation) data set. Large values for global deviance increment indicate a bad fit and for new data a bad prediction.

Usage
devianceIncr(obj, newdata = NULL)

Arguments
obj a gamlss object
newdata test data set to check the global deviance increment.

Value
Returns a vector of the global deviance increments for each observation.

Author(s)
Mikis Stasinopoulos

References

(see also https://www.gamlss.com/).

See Also

deviance

Examples

```r
# Count data set
# fit Poisson model
h1 <- gamlss(Claims~L_Population+L_Accidents+L_KI+L_Popdensity, 
data=LGAclaims, family=PO)
p1<-devianceIncr(h1)
# fit negative binomial model
h2 <- gamlss(Claims~L_Population+L_Accidents+L_KI+L_Popdensity, 
data=LGAclaims, family=NBI)
p2<-devianceIncr(h2)
# comparing using boxplots
boxplot(cbind(p1,p2))
# comparing using emprirical cdf
plot(ecdf(p1))
lines(ecdf(p2), col=2)
# comparing against the y-values
plot(p1~LGAclaims$Claims, pch=20, col="gray")
points(p2~LGAclaims$Claims, pch="-", col="orange")

# Continuous data sets
## Not run:
m1 <- gamlss(head~pb(age), data=db[1:6000,])
p1<-devianceIncr(m1)
m2 <- gamlss(head~pb(age), sigma.fo~pb(age), nu.fo=pb(age), 
 tau.fo=pb(age), data=db[1:6000,], family=BCT)
p2<-devianceIncr(m2)
# comparing using summaries
summary(p1); summary(p2)
# comparing using boxplots
boxplot(cbind(p1,p2))
# comparing using histograms
hist(p1, col=rgb(1,0,0,0.5), xlim=c(0,50), breaks=seq(0,50,2))
hist(p2, col=rgb(0,0,1,0.5), add=T)
# comparing using emprirical cdf
plot(ecdf(p1))
lines(ecdf(p2), col=2)
## End(Not run)
```

```
**dtop**  
*Detrended transformed Owen’s plot*

**Description**

Provides single or multiple detrended transformed Owen’s plot, Owen (1995), for a GAMLSS fitted objects or any other fitted object which has the method resid(). This is a diagnostic tool for checking whether the normalised quantile residuals are coming from a normal distribution or not. This could be true if the horizontal line is within the confidence intervals.

**Usage**

```r
dtop(object = NULL, xvar = NULL, resid = NULL,
 type = c("Owen", "JW"),
 conf.level = c("95", "99"), n.inter = 4,
 xcut.points = NULL, overlap = 0,
 show.given = TRUE, cex = 1, pch = 21,
 line = TRUE, ...)
```

**Arguments**

- **object** a GAMLSS fitted object or any other fitted object which has the method resid().
- **xvar** the explanatory variable against which the detrended Owen’s plots will be plotted
- **resid** whether the object is not specified the residual vector can be given here
- **type** whether to use Owen (1995) or Jager and Wellner (2004) approximate formula
- **conf.level** 95 (default) or 99 percent confidence interval for the plots
- **n.inter** number of intervals in which the explanatory variable xvar will be cut
- **xcut.points** the x-axis cut off points e.g. c(20,30). If xcut.points=NULL then the n.inter argument is activated
- **overlap** how much overlapping in the xvar intervals. Default value is overlap=0 for non overlapping intervals
- **show.given** whether to show the x-variable intervals in the top of the graph, default is show.given=TRUE
- **cex** the cex plotting parameter with default cex=1
- **pch** the pch plotting parameter with default pch=21
- **line** whether the detrended empirical cdf should be plotted or not
- **...** for extra arguments
Details

If the xvar argument is not specified then a single detrended Owen’s plot is used, see Owen (1995). In this case the plot is a detrended nonparametric likelihood confidence band for a distribution function. That is, if the horizontal lines lies within the confidence band then the normalised residuals could have come from a Normal distribution and consequently the assumed response variable distribution is reasonable. If the xvar is specified then we have as many plots as n.iter. In this case the x-variable is cut into n.iter intervals with an equal number observations and detrended Owen’s plots for each interval are plotted. This is a way of highlighting failures of the model within different ranges of the explanatory variable.

Value

A plot is returned.

Author(s)

Mikis Stasinopoulos, Bob Rigby and Vlassios Voudouris

References


(see also https://www.gamlss.com/).

See Also

wp

Examples

data(abdom)
a<-gamlss(y~pb(x),sigma.fo=~pb(x,1),family=L0, data=abdom)
dtop(a)
dtop(a, xvar=abdom$x)
rm(a)
**edf**

**Effective degrees of freedom from gamlss model**

**Description**

The functions `edf()` and `edfAll()` can be used to obtained the effective degrees of freedom for different additive terms for the distribution parameters in a gamlss model.

**Usage**

```r
edf(obj, what = c("mu", "sigma", "nu", "tau"),
 parameter = NULL, print = TRUE, ...)
edfAll(obj, ...)
```

**Arguments**

- **obj** A gamlss fitted model
- **what** which of the four parameters mu, sigma, nu or tau.
- **parameter** equivalent to what
- **print** whether to print the label
- **...** for extra arguments

**Value**

The function `edfAll()` returns a list of edf for all the fitted parameters. The function `edf()` a vector of edf.

**Note**

The edf given are the ones fitted in the backfitting so the usually contained (depending on the additive term) the constant and the linear part.

**Author(s)**

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

**References**


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

**See Also**

- `gamlss`

**Examples**

```r
library(gamlss.data)
data(usair)
m1<- gamlss(y~pb(x1)+pb(x2)+pb(x6), data=usair)
edfAll(m1)
edf(m1)
```

---

**find.hyper**

*A function to select values of hyper-parameters in a GAMLSS model*

**Description**

This function selects the values of hyper parameters and/or non-linear parameters in a GAMLSS model. It uses the R function `optim` which then minimises the generalised Akaike information criterion (GAIC) with a user defined penalty.

**Usage**

```r
find.hyper(model = NULL, parameters = NULL, other = NULL, k = 2, steps = c(0.1), lower = -Inf, upper = Inf, method = "L-BFGS-B", ...)
```

**Arguments**

- `model` this is a GAMLSS model in `quote()`. e.g. `quote(gamlss(y~cs(x,df=p[1]),sigma.fo=-cs(x,df=p[2]),data=abdom))` where `p[1]` and `p[2]` denote the parameters to be estimated.
- `parameters` the starting values in the search of the optimum hyper-parameters and/or non-linear parameters e.g. `parameters=c(3,3)`
- `other` this is used to optimise other non-parameters, for example a transformation of the explanatory variable of the kind `x^p[3]`, `others=quote(nx<-x^p[3])` where `nx` is now in the model formula.
- `k` specifies the penalty in the GAIC, (the default is 2) e.g. `k=3`
- `steps` the steps taken in the optimisation procedure [see the `ndeps` option in `optim()`], by default is set to 0.1 for all hyper parameters and non-linear parameters.
- `lower` the lower permissible level of the parameters i.e. `lower=c(1,1)` this does not apply if a method other than the default method "L-BFGS-B" is used.
**find.hyper**

the upper permissible level of the parameters i.e. upper=c(30,10), this is not apply if a method other than the default method "L-BFGS-B" is used

the method used in optim() to numerically minimise the GAIC over the hyper-parameters and/or non-linear parameters. By default this is "L-BFGS-B" to allow box-restriction on the parameters

... for extra arguments to be passed to the R function optim() used in the optimisation

**Details**

This historically was an experimental function which worked well for the search of the optimum degrees of freedom and non-linear parameters (e.g. power parameter \( \lambda \) used to transform \( x \) to \( x^\lambda \)). With the introduction of the P-Spline smoothing function pb() the function find.hyper() became almost redundant. find.hyper() takes lot longer than pb() to find automatically the hyper parameters while both method produce similar results. See below the examples for a small demonstration.

**Value**

The function turns the same output as the function optim()

- **par** the optimum hyper-parameter values
- **value** the minimised value of the GAIC
- **counts** A two-element integer vector giving the number of calls to ‘fn’ and ‘gr’ respectively
- **convergence** An integer code. ‘0’ indicates successful convergence. see the function optim() for other errors
- **message** A character string giving any additional information returned by the optimiser, or ‘NULL’

**Warning**

It may be slow to find the optimum

**Author(s)**

Mikis Stasinopoulos

**References**


**See Also**

`gamlss`, `plot.gamlss`, `optim`

**Examples**

```r
Not run:
data(abdom)
Example estimating the smoothing parameters for mu and
the transformation parameters for x
declare the model
mod1<-quote(gamlss(y~cs(nx,df=p[1]),family=BCT,data=abdom,
 control=gamlss.control(trace=FALSE)))
since we want also to find the transformation for x
we use the "other" option
op <- find.hyper(model=mod1, other=quote(nx<-x^p[2]), parameters=c(3,0.5),
 lower=c(1,0.001), steps=c(0.1,0.001))
op
the optimum parameters found are
p = (p[1],p[2]) = (3.113218 0.001000) = (df for mu, lambda)
so it needs df = 3 on top of the constant and linear
in the cubic spline model for mu since p[1] is approximately 3
and log transformation for x since p[2] is approximately 0
here is an example with no data declaration in define the model
we have to attach the data
attach(abdom)
mod2 <- quote(gamlss(y~cs(nx,df=p[1]),family=BCT,
 control=gamlss.control(trace=FALSE)))
op2<-find.hyper(model=mod2, other=quote(nx<-x^p[2]), parameters=c(3,0.5),
 lower=c(1,0.001), steps=c(0.1,0.001))
op2
detach(abdom)
#--
showing different ways of estimating the smoothing parameter
get the df using local ML (PQL)
m0 <- gamlss(y~pb(x), data=abdom)
get the df using local GAIC
m1<gamllss(y~pb(x, method="GAIC", k=2), data=abdom)
fitting cubic splines with fixed df's at 3
m2<gamllss(y~cs(x, df=3), data=abdom)
fitting cubic splines using find hyper (global GAIC)
mod1 <- quote(gamlss(y~cs(x, df=p[1]),family=BCT,data=abdom,control=gamlss.control(trace=FALSE)))
op <- find.hyper(model=mod1, parameters=c(3), lower=c(1,0.001), steps=c(0.1,0.001))
now fit final model
m3 <- gamlss(y~cs(x, df=op$par), data=abdom)
effective degrees of fiedom for the 4 models
edf(m0);edf(m1); m2$mu.df; m3$mu.df
deviances for the four models
```
fitDist

Fitting Different Parametric \texttt{gamlss.family} Distributions.

Description

The function \texttt{fitDist()} is using the function \texttt{gamlssML()} to fit all relevant parametric \texttt{gamlss.family} distributions, specified by the argument \texttt{type}, to a single data vector (with no explanatory variables). The final marginal distribution is the one selected by the generalised Akaike information criterion with penalty $k$. The default is $k=2$ i.e AIC.

The function \texttt{fitDistPred()} is using the function \texttt{gamlssMLpred()} to fit all relevant (marginal) parametric \texttt{gamlss.family} distributions to a single data vector (similar to \texttt{fitDist()}) but the final model is selected by the minimum prediction global deviance. The user has to specify the training and validation/test samples.

The function \texttt{chooseDist()} is using the function \texttt{update.gamlss()} to fit all relevant parametric (conditional) \texttt{gamlss.family} distributions to a given fitted \texttt{gamlss} model. The output of the function is a matrix with rows the different distributions (from the argument \texttt{type}) and columns the different GAIC’s. The default argument for $k$ are 2, for AIC, 3.84, for Chi square, and $\log(n)$ for BIC. No final model is given by the function like for example in \texttt{fitDist()}. The function \texttt{getOrder()} can be used to rank the columns of the resulting table (matrix). The final model can be refitted using \texttt{update()}, see the examples.

Usage

\begin{verbatim}
fitDist(y, k = 2, 
         type = c("realAll", "realline", "realplus", "real0to1", "counts", "binom"),
         try.gamlss = FALSE, extra = NULL, data = NULL, trace = FALSE, ...)

fitDistPred(y, 
            type = c("realAll", "realline", "realplus", "real0to1", "counts", "binom"),
            try.gamlss = FALSE, extra = NULL, data = NULL, rand = NULL,
            newdata = NULL, trace = FALSE, ...)

chooseDist(object, k = c(2, 3.84, round(log(length(object$y)), 2)), type =
            c("realAll", "realline", "realplus", "real0to1", "counts", "binom","extra"),
            extra = NULL, trace = FALSE,
\end{verbatim}
parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL, ...)

chooseDistPred(object, type = c("realAll", "realline", "realplus", "real0tol", "counts", "binom", "extra"), extra = NULL, trace = FALSE, parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL, newdata = NULL, rand = NULL, ...)

getAddress(obj, column = 1)

Arguments

y the data vector

object, obj a GAMLSS fitted model

k the penalty for the GAIC with default values k=2 the standard AIC. In the case of the function chooseDist() k can be a vector i.e. k= c(2,4,6) so more than one GAIC are saved.

type the type of distribution to be tried see details

try.gamlss this applies to functions fitDist() and fitDistPred(). It allows if gamlssML() fail to fit the model to try gamlss instead. This will slow up things for big data.

extra whether extra distributions should be tried, which are not in the type list. Note that the function chooseDist() allows the fitting of only the ‘extra’ distributions. This can be achieved if extra is set i.e. extra=c("GA", "IG", "GG") and type is set to extra i.e. type="extra".

data the data frame where y can be found, only for functions fitDist() and fitDistPred()

rand For fitDistPred() a factor with values 1 (for fitting) and 2 (for predicting).

newdata The prediction data set (validation or test).

trace whether to print during fitting. Note that when parallel is 'multicore' or "snow" "trace" is not produce any output.

parallel The type of parallel operation to be used (if any). If missing, the default is "no".

ncpus integer: number of processes to be used in parallel operation: typically one would chose this to the number of available CPUs.

cl This is useful for snow clusters, i.e. parallel = "snow", when the clusters are created in advance. If not supplied, a cluster on the local machine is created for the duration of the call.

column which column of the output matrix to be ordered according to best GAIC

... for extra arguments to be passed to gamlssML() to gamlss()

Details

The following are the different type argument:

- realAll: All the gamlss.family continuous distributions defined on the real line, i.e. realline and the real positive line i.e. realplus


The `gamlss.family` continuous distributions from 0 to 1 are "BE", "BEo", "BE-INF0", "BEINF1", "BE01", "BE1", "BEINF", "GB1".


The `gamlss.family` distributions for binomial type data are "BI", "BB", "DB", "ZIB1", "ZIBB", "ZABI", "ZABB".

The function `fitDist()` uses the function `gamlssML()` to fit the different models, the function `fitDistPred()` uses `gamlssMLpred()` and the function `chooseDist()` uses `update.gamlss()`.

**Value**

For the functions `fitDist()` and `fitDistPred()` a `gamlssML` object is returned (the one which minimised the GAIC or VDEV respectively) with two extra components:

- `fits` an ordered list according to the GAIC of the fitted distribution
- `failed` the distributions where the `gamlssML()` (or `gamlss()`) fits have failed

For the function `chooseDist()` a matrix is returned, with rows the different distributions and columns the different GAIC's set by `k`.

**Author(s)**

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby, Vlasis Voudouris and Majid Djenad.

**References**


(see also https://www.gamlss.com/).
See Also

gamlss, gamlssML

Examples

```r
y <- rt(100, df=1)
m1<-fitDist(y, type="realline")
m1$fits
m1$failed
an example of using extra
Not run:
#---------------------------------------
Example of using the argument extra
library(gamlss.tr)
data(tensile)
gen.trun(par=1,family="GA", type="right")
gen.trun(par=1,"LOGNO", type="right")
gen.trun(par=c(0,1),"TF", type="both")
ma<-fitDist(str, type="real0to1", trace=T,
 extra=c("GAtr", "LOGNOtr", "TFtr"),
data=tensile)
ma$fits
ma$failed
#-------------------------------------
selecting model using the prediction global deviance
Using fitDistPred
creating training data
y <- rt(1000, df=2)
m1 <- fitDist(y, type="realline")
m1$fits
m1$fails
create validation data
yn <- rt(1000, df=2)
choose distribution which fits the new data best
p1 <- fitDistPred(y, type="realline", newdata=yn)
p1$fits
p1$failed
#---------------------------------------
using the function chooseDist()
fitting normal distribution model
m1 <- gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom)
choose a distribution on the real line
and save GAIC(k=c(2,4,6,4)), i.e. AIC, Chi-square and BIC.
t1 <- chooseDist(m1, type="realline", parallel="snow", ncpus=4)
the GAIC's
nt1
the distributions which failed are with NA's
ordering according to BIC
getOrder(t1,3)
fm<-update(m1, family=names(getOrder(t1,3)[1]))
End(Not run)
```
fitted.gamlss

Extract Fitted Values For A GAMLSS Model

Description

fitted.gamlss is the GAMLSS specific method for the generic function fitted which extracts fitted values for a specified parameter from a GAMLSS object. fitted.values is an alias for it. The function fv() is similar to fitted.gamlss() but allows the argument what not to be character

Usage

## S3 method for class 'gamlss'
fitted(object, what = c("mu", "sigma", "nu", "tau"),
       parameter = NULL, ...)
fv(obj, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, ...)

Arguments

- **object**: a GAMLSS fitted model
- **obj**: a GAMLSS fitted model
- **what**: which parameter fitted values are required, default what="mu"
- **parameter**: equivalent to what
- **...**: for extra arguments

Value

Fitted values extracted from the GAMLSS object for the given parameter.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also https://www.gamlss.com/).
See Also

print.gamlss, summary.gamlss, fitted.gamlss, coef.gamlss, residuals.gamlss, update.gamlss, plot.gamlss, deviance.gamlss, formula.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
fitted(h)
rm(h)

fittedPlot

Plots The Fitted Values of a GAMLSS Model

Description

This function, applicable only to models with a single explanatory variable, plots the fitted values for all the parameters of a GAMLSS model against the (one) explanatory variable. It is also useful for comparing the fits for more than one model.

Usage

fittedPlot(object, ..., x = NULL, color = TRUE, line.type = FALSE, xlab = NULL)

Arguments

object a fitted GAMLSS model object(with only one explanatory variable)
... optionally more fitted GAMLSS model objects
x The unique explanatory variable
color whether the fitted lines plots are shown in colour, color=TRUE (the default) or not color=FALSE
line.type whether the line type should be different or not. The default is color=FALSE
xlab the x-label

Value

A plot of the fitted values against the explanatory variable

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Calliope Akantziliotou
References


(see also https://www.gamlss.com/).

See Also
gamlss, centiles, centiles.split

Examples

data(abdom)
h1<-gamlss(y~pb(x), sigma.formula=~x, family=BCT, data=abdom)
h2<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
fittedPlot(h1,h2,x=abdom$x)
rm(h1,h2)

formula.gamlss

Extract the Model Formula in a GAMLSS fitted model

Description

formula.gamlss is the GAMLSS specific method for the generic function formula which extracts the model formula from objects returned by modelling functions.

Usage

## S3 method for class 'gamlss'
formula(x, what = c("mu", "sigma", "nu", "tau"),
        parameter = NULL, ... )

Arguments

x a GAMLSS fitted model
what which parameter coefficient is required, default what="mu"
parameter equivalent to what
... for extra arguments
Value

Returns a model formula

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also https://www.gamlss.com/).

See Also

gamlss, deviance.gamlss, fitted.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
formula(h,"mu")
rm(h)

gamlss

Generalized Additive Models for Location Scale and Shape

Description

Returns an object of class "gamlss", which is a generalized additive model for location scale and shape (GAMLSS). The function gamlss() is very similar to the gam() function in S-plus (now also in R in package gam), but can fit more distributions (not only the ones belonging to the exponential family) and can model all the parameters of the distribution as functions of the explanatory variables (e.g. using linear, non-linear, smoothing, loess and random effects terms).

This implementation of gamlss() allows modelling of up to four parameters in a distribution family, which are conventionally called mu, sigma, nu and tau.

The function gamlssNews() shows what is new in the current implementation.
gamlss

Usage

gamlss(formula = formula(data), sigma.formula = ~1,
        nu.formula = ~1, tau.formula = ~1, family = NO(),
        data, weights = NULL,
        contrasts = NULL, method = RS(), start.from = NULL,
        mu.start = NULL, sigma.start = NULL,
        nu.start = NULL, tau.start = NULL,
        mu.fix = FALSE, sigma.fix = FALSE, nu.fix = FALSE,
        tau.fix = FALSE, control = glmlss.control(...),
        i.control = glim.control(...), ...)

is.gamlss(x)
gamlssNews()

Arguments

formula a formula object, with the response on the left of an ~ operator, and the terms,
separated by + operators, on the right. Nonparametric smoothing terms are
indicated by pb() for penalised beta splines, cs for smoothing splines, lo for loess
smooth terms and random or ra for random terms, e.g. y~cs(x, df=5)+x1+x2*x3.
Additional smoothers can be added by creating the appropriate interface. Inter-
actions with nonparametric smooth terms are not fully supported, but will not
produce errors; they will simply produce the usual parametric interaction

sigma.formula a formula object for fitting a model to the sigma parameter, as in the formula
above, e.g. sigma.formula=~cs(x, df=5). It can be abbreviated to sigma.fo=~cs(x, df=5).

nu.formula a formula object for fitting a model to the nu parameter, e.g. nu.fo=~x

tau.formula a formula object for fitting a model to the tau parameter, e.g. tau.fo=~cs(x, df=2)

family a `gamlss.family` object, which is used to define the distribution and the link
functions of the various parameters. The distribution families supported by
gamlss() can be found in `gamlss.family`. Functions such as BI() (binomial)
produce a family object. Also can be given without the parentheses i.e. BI.
Family functions can take arguments, as in BI(mu.link=probit)

data a data frame containing the variables occurring in the formula, e.g. data=aids.
If this is missing, the variables should be on the search list.

weights a vector of weights. Note that this is not the same as in the glm() or gam() function. Here weights can be used to weight out observations (like in subset)
or for a weighted likelihood analysis where the contribution of the observations
to the likelihood differs according to weights. The length of weights must be
the same as the number of observations in the data. By default, the weight is set
to one. To set weights to vector w use weights=w

contrasts list of contrasts to be used for some or all of the factors appearing as variables in
the model formula. The names of the list should be the names of the corresponding
variables. The elements should either be contrast-type matrices (matrices
with as many rows as levels of the factor and with columns linearly independent
of each other and of a column of ones), or else they should be functions that
compute such contrast matrices.
the current algorithms for GAMLSS are RS(), CG() and mixed(). i.e. method=RS() will use the Rigby and Stasinopoulos algorithm, method=CG() will use the Cole and Green algorithm and mixed(2,10) will use the RS algorithm twice before switching to the Cole and Green algorithm for up to 10 extra iterations

start.from a fitted GAMLSS model which the fitted values will be used as staring values for the current model

mu.start vector or scalar of initial values for the location parameter mu e.g. mu.start=4
sigma.start vector or scalar of initial values for the scale parameter sigma e.g. sigma.start=1
nu.start vector or scalar of initial values for the parameter nu e.g. nu.start=3
tau.start vector or scalar of initial values for the location parameter tau e.g. tau.start=2
mu.fix whether the mu parameter should be kept fixed in the fitting processes e.g. mu.fix=FALSE
sigma.fix whether the sigma parameter should be kept fixed in the fitting processes e.g. sigma.fix=FALSE
nu.fix whether the nu parameter should be kept fixed in the fitting processes e.g. nu.fix=FALSE
tau.fix whether the tau parameter should be kept fixed in the fitting processes e.g. tau.fix=FALSE
control this sets the control parameters of the outer iterations algorithm. The default setting is the gamlss.control function
i.control this sets the control parameters of the inner iterations of the RS algorithm. The default setting is the glim.control function

for extra arguments
x an object

Details
The Generalized Additive Model for Location, Scale and Shape is a general class of statistical models for a univariate response variable. The model assumes independent observations of the response variable \( y \) given the parameters, the explanatory variables and the values of the random effects. The distribution for the response variable in the GAMLSS can be selected from a very general family of distributions including highly skew and/or kurtotic continuous and discrete distributions, see gamlss.family. The systematic part of the model is expanded to allow modelling not only of the mean (or location) parameter, but also of the other parameters of the distribution of \( y \), as linear parametric and/or additive nonparametric (smooth) functions of explanatory variables and/or random effects terms. Maximum (penalized) likelihood estimation is used to fit the (non)parametric models. A Newton-Raphson/Fisher scoring algorithm is used to maximize the (penalized) likelihood. The additive terms in the model are fitted using a backfitting algorithm.
is.gamlss is a short version is is(object,"gamlss")

Value
Returns a gamlss object with components

family the distribution family of the gamlss object (see gamlss.family)
parameters the name of the fitted parameters i.e. \( \mu, \sigma, \nu, \tau \)
call the call of the gamlss function
y the response variable
control the gamlss fit control settings
weights the vector of weights
G.deviance the global deviance
N the number of observations in the fit
rqres a function to calculate the normalized (randomized) quantile residuals of the object
iter the number of external iterations in the fitting process
type the type of the distribution or the response variable (continuous or discrete)
method which algorithm is used for the fit, RS(), CG() or mixed()
converged whether the model fitting has have converged
residuals the normalized (randomized) quantile residuals of the model
mu.fv the fitted values of the mu model, also sigma.fv, nu.fv, tau.fv for the other parameters if present
mu.lp the linear predictor of the mu model, also sigma.lp, nu.lp, tau.lp for the other parameters if present
mu.wv the working variable of the mu model, also sigma.wv, nu.wv, tau.wv for the other parameters if present
mu.wt the working weights of the mu model, also sigma.wt, nu.wt, tau.wt for the other parameters if present
mu.link the link function for the mu model, also sigma.link, nu.link, tau.link for the other parameters if present
mu.terms the terms for the mu model, also sigma.terms, nu.terms, tau.terms for the other parameters if present
mu.x the design matrix for the mu, also sigma.x, nu.x, tau.x for the other parameters if present
mu.qr the QR decomposition of the mu model, also sigma.qr, nu.qr, tau.qr for the other parameters if present
mu.coefficients the linear coefficients of the mu model, also sigma.coefficients, nu.coefficients, tau.coefficients for the other parameters if present
mu.formula the formula for the mu model, also sigma.formula, nu.formula, tau.formula for the other parameters if present
mu.df the mu degrees of freedom also sigma.df, nu.df, tau.df for the other parameters if present
mu.nl.df the non linear degrees of freedom, also sigma.nl.df, nu.nl.df, tau.nl.df for the other parameters if present
df.fit the total degrees of freedom use by the model
df.residual the residual degrees of freedom left after the model is fitted
aic the Akaike information criterion
sbc the Bayesian information criterion
Warning

Respect the parameter hierarchy when you are fitting a model. For example a good model for \( \mu \) should be fitted before a model for \( \sigma \) is fitted.

Note

The following generic functions can be used with a GAMLSS object: `print`, `summary`, `fitted`, `coef`, `residuals`, `update`, `plot`, `deviance`, `formula`.

Author(s)

Mikis Stasinopoulos `<d.stasinopoulos@londonmet.ac.uk>`, Bob Rigby, Calliope Akantziliotou and Vlasios Voudouris `<vlasios.voudouris@abm-analytics.com>`

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

`gamlss.family`, `pdf.plot`, `find.hyper`

Examples

data(abdom)
mod<-gamlss(y~pb(x),sigma.fo=~pb(x),family=BCT, data=abdom, method=mixed(1,20))
plot(mod)
rm(mod)
gamlss.control

Auxiliary for Controlling GAMLSS Fitting

Description

Auxiliary function as user interface for gamlss fitting. Typically only used when calling gamlss function with the option control.

Usage

gamlss.control(c.crit = 0.001, n.cyc = 20, mu.step = 1, sigma.step = 1, nu.step = 1, tau.step = 1, gd.tol = Inf, iter = 0, trace = TRUE, autostep = TRUE, save = TRUE, ...)

Arguments

c.crit the convergence criterion for the algorithm
n.cyc the number of cycles of the algorithm
mu.step the step length for the parameter mu
sigma.step the step length for the parameter sigma
nu.step the step length for the parameter nu
tau.step the step length for the parameter tau
gd.tol global deviance tolerance level (set more recently to Inf to allow the algorithm to converged even if the global deviance change dramatically during the iterations)
iter starting value for the number of iterations, typically set to 0 unless the function refit is used
trace whether to print at each iteration (TRUE) or not (FALSE)
autostep whether the steps should be halved automatically if the new global deviance is greater that the old one, the default is autostep=TRUE
save save=TRUE, (the default), saves all the information on exit. save=FALSE saves only limited information as the global deviance and AIC. For example fitted values, design matrices and additive terms are not saved. The latest is useful when gamlss() is called several times within a procedure.

... for extra arguments

Details

The step length for each of the parameters mu, sigma, nu or tau is very useful to aid convergence if the parameter has a fully parametric model. However using a step length is not theoretically justified if the model for the parameter includes one or more smoothing terms, (even thought it may give a very approximate result).

The c.crit can be increased to speed up the convergence especially for a large set of data which takes longer to fit. When ‘trace’ is TRUE, calls to the function cat produce the output for each outer iteration.
Value

A list with the arguments as components.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
con<-gamlss.control(mu.step=0.1)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids, control=con) #
rm(h,con)

---

gamlss.cs | Support for Function cs() and scs()

Description

This is support for the functions cs(), and scs(). It is not intended to be called directly by users. The function gamlss.cs is using the R function smooth.spline

Usage

gamlss.cs(x, y, w, df = NULL, spar = NULL, xeval = NULL, ...)

Arguments

- x: the design matrix
- y: the response variable
- w: prior weights
- df: effective degrees of freedom
- spar: spar the smoothing parameter
- xeval: used in prediction
- ...: for extra arguments

Value

Returns a class "smooth.spline" object with

- residuals: The residuals of the fit
- fitted.values: The smoothing values
- var: the variance for the fitted smoother
- lambda: the final value for spar
- n1.df: the smoothing degrees of freedom excluding the constant and linear terms, i.e. (df-2)
- coefSmo: this is a list containing among others the knots and the coefficients

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

See Also

gamlss, cs

Description

Those are support for the functions fp() and pp. It is not intended to be called directly by users.

Usage

```
gamlss.fp(x, y, w, npoly = 2, xeval = NULL)
gamlss.pp(x, y, w)
```
Arguments

- **x**: the x for function `gamlss.fp` is referred to the design matrix of the specific parameter model (not to be used by the user).
- **y**: the y for function `gamlss.fp` is referred to the working variable of the specific parameter model (not to be used by the user).
- **w**: the w for function `gamlss.fp` is referred to the iterative weight variable of the specific parameter model (not to be used by the user).
- **npoly**: a positive indicating how many fractional polynomials should be considered in the fit. Can take the values 1, 2 or 3 with 2 as default.
- **xeval**: used in prediction.

Value

Returns a list with

- **fitted.values**: fitted
- **residuals**: residuals
- **var**: the trace of the smoothing matrix
- **nl.df**: the value of the smoothing parameter
- **coefSmo**: the coefficients from the smoothing fit
- **varcoeff**: the variance of the coefficients

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

References

(see also https://www.gamlss.com/).

See Also

- `gamlss.fp`
Support for Function lo()

Description

This is support for the loess function lo(). It is not intended to be called directly by users. The function gamlss.lo is calling the R function loess.

Usage

```
gamlss.lo(x, y, w, xeval = NULL, ...)
```

Arguments

- `x`: the design matrix
- `y`: the response variable
- `w`: prior weights
- `xeval`: used in prediction
- `...`: further arguments passed to or from other methods.

Value

Returns an object

- `fitted`: the smooth values
- `residuals`: the residuals
- `var`: the variance of the smoother
- `nl.df`: the non-linear degrees of freedom
- `coefSmo`: with value NULL
- `lambda`: the value of span

Author(s)

Mikis Stasinopoulos based on Brian Ripley implementation of loess function in R

See Also

- `gamlss`, `lo`
Support for Functions for smoothers

Description

Those functions are support for the functions pb(), pbo(), ps(), ridge(), ri(), cy(), pvc(), and pbm(). The functions are not intended to be called directly by users.

Usage

\begin{verbatim}
gamlss.pb(x, y, w, xeval = NULL, ...)
gamlss.pbo(x, y, w, xeval = NULL, ...)
gamlss.ps(x, y, w, xeval = NULL, ...)
gamlss.ri(x, y, w, xeval = NULL, ...)
gamlss.cy(x, y, w, xeval = NULL, ...)
gamlss.pvc(x, y, w, xeval = NULL, ...)
gamlss.pbm(x, y, w, xeval = NULL, ...)
gamlss.pbz(x, y, w, xeval = NULL, ...)
gamlss.pbc(x, y, w, xeval = NULL, ...)
gamlss.pbp(x, y, w, xeval = NULL, ...)
\end{verbatim}

Arguments

- **x**: the \( x \) for function \texttt{gamlss.fp} is referred to the design matric of the specific parameter model (not to be used by the user)
- **y**: the \( y \) for function \texttt{gamlss.fp} is referred to the working variable of the specific parameter model (not to be used by the user)
- **w**: the \( w \) for function \texttt{gamlss.fp} is referred to the iterative weight variable of the specific parameter model (not to be used by the user)
- **xeval**: used in prediction
- **...**: further arguments passed to or from other methods.

Value

All function return fitted smoothers.

Author(s)

Mikis Stasinopoulos \texttt{<d.stasinopoulos@londonmet.ac.uk>}, Bob Rigby

References


(see also https://www.gamlss.com/).

See Also
gamlss.pb, ps, ri, ridge, cy, pvc, pbm

gamlss.random

Support for Functions random() and re()

Description
This is support for the functions random() and re() respectively. It is not intended to be called directly by users.

Usage
gamlss.random(x, y, w, xeval = NULL, ...)
gamlss.re(x, y, w, xeval = NULL, ...)

Arguments
\(x\) the explanatory design matrix
\(y\) the response variable
\(w\) iterative weights
\(xeval\) it used internally for prediction
\(\ldots\) for extra arguments

Value
Returns a list with
\(y\) the fitted values
\(\text{residuals}\) the residuals
\(\text{var}\) the variance of the fitted values
\(\lambda\) the final lambda, the smoothing parameter
\(\text{coefSmo}\) with value NULL
gamlss.scope

Generate a Scope Argument for Stepwise GAMLSS

Description

Generates a scope argument for a stepwise GAMLSS.

Usage

gamlss.scope(frame, response = 1, smoother = "cs", arg = NULL, form = TRUE)

Arguments

frame a data or model frame
response which variable is the response; the default is the first
smoother what smoother to use; default is cs
arg any additional arguments required by the smoother
form should a formula be returned (default), or else a character version of the formula

Details

Each formula describes an ordered regimen of terms, each of which is eligible on their own for inclusion in the gam model. One of the terms is selected from each formula by step.gam. If a 1 is selected, that term is omitted.

See Also

gamlss, random

Author(s)

Mikis Stasinopoulos, based on Trevor Hastie function gam.random

References


(see also https://www.gamlss.com/).
Value

A list of formulas is returned, one for each column in frame (excluding the response). For a numeric variable, say x1, the formula is

\(~ 1 + x1 + cs(x1)\)

If x1 is a factor, the last smooth term is omitted.

Author(s)

Mikis Stasinopoulos: a modified function from Statistical Models in S

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

*stepGAIC*

Examples

data(usair)
gs1<-gamlss.scope(model.frame(y~x1+x2+x3+x4+x5+x6, data=usair))
gs2<-gamlss.scope(model.frame(usair))
gs1
gs2
gs3<-gamlss.scope(model.frame(usair), smooth="fp", arg="3")
gs3
Maximum Likelihood estimation of a simple GAMLSS model

Description

The function `gamlssML()` fits a `gamlss.family` distribution to a single data set using a non-linear maximisation algorithm in R. This is relevant only when explanatory variables do not exist.

The function `gamlssMLpred()` is similar to `gamlssML()` but it saves the *predictive* global deviance for the new data. The new data in `gamlssMLpred()` can be given with the arguments `newdata` or defining the factor `rand`. `rand` should be a binary factor `rand` splitting the original data set into a training set (value 1) and a validation/test set (values 2), see also `gamlssVGD`.

Usage

```r
gamlssML
gamlssML(formula, family = NO, weights = NULL, mu.start = NULL,
 sigma.start = NULL, nu.start = NULL, tau.start = NULL,
 mu.fix = FALSE, sigma.fix = FALSE, nu.fix = FALSE,
 tau.fix = FALSE, data, start.from = NULL, ...)

gamlssMLpred
gamlssMLpred(response = NULL, data = NULL, family = NO,
 rand = NULL, newdata = NULL, ...)
```

Arguments

- **formula, response**
  a vector of data requiring the fit of a `gamlss.family` distribution or (only for the function `gamlssML`) a formula, for example, `y~1`, with no explanatory variables because they are ignored.

- **family**
  a `gamlss.family` object, which is used to define the distribution and the link functions of the various parameters. The distribution families supported by `gamlssML()` can be found in `gamlss.family`.

- **weights**
  a vector of weights. Here weights can be used to weight out observations (like in subset) or for a weighted likelihood analysis where the contribution of the observations to the likelihood differs according to weights. The length of weights must be the same as the number of observations in the data. By default, the weight is set to one. To set weights to vector say w use weights=w.

- **mu.start**
  a scalar of initial values for the location parameter mu e.g. `mu.start=4`.

- **sigma.start**
  a scalar of initial values for the scale parameter sigma e.g. `sigma.start=1`.

- **nu.start**
  scalar of initial values for the parameter nu e.g. `nu.start=3`.

- **tau.start**
  scalar of initial values for the parameter tau e.g. `tau.start=3`.

- **mu.fix**
  whether the mu parameter should be kept fixed in the fitting processes e.g. `mu.fix=FALSE`.

- **sigma.fix**
  whether the sigma parameter should be kept fixed in the fitting processes e.g. `sigma.fix=FALSE`.
nu.fix  whether the nu parameter should be kept fixed in the fitting processes e.g. nu.fix=FALSE

tau.fix  whether the tau parameter should be kept fixed in the fitting processes e.g. tau.fix=FALSE

data  a data frame containing the variable y, e.g. data=aids. If this is missing, the variable should be on the search list.

start.from  a gamlss object to start from the fitting or vector of length as many parameters in the distribution

rand  For gamlssMLpred() a factor with values 1 (for fitting) and 2 (for predicting).

newdata  The prediction data set (validation or test).

...  for extra arguments

Details

The function gamlssML() fits a gamlss.family distribution to a single data set is using a non linear maximisation. in fact it uses the internal function MLE() which is a copy of the mle() function of package stat4. The function gamlssML() could be for large data faster than the equivalent gamlss() function which is designed for regression type of models.

The function gamlssMLpred() uses the function function gamlssML() to fit the model but then uses predict.gamlssML() to predict for newdata and saves the the prediction i) deviance increments, ii) global deviance iii) residuals.

Value

Returns a gamlssML object which behaves like a gamlss fitted objected

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby, Vlasis Voudouris and Majid Djennad

References


(see also https://www.gamlss.com/).

See Also

gamlss.family, gamlss
Examples

#-------- negative binomial 1000 observations
y<- rNBI(1000)
system.time(m1<-gamlss(y~1, family=NBI))
system.time(m1a<-gamlss(y~1, family=NBI, trace=FALSE))
system.time(m11<-gamlssML(y, family=NBI))
AIC(m1,m1a,m11, k=0)

# neg. binomial  n=10000
y<- rNBI(10000)
system.time(m1<-gamlss(y~1, family=NBI))
system.time(m1a<-gamlss(y~1, family=NBI, trace=FALSE))
system.time(m11<-gamlssML(y, family=NBI))
AIC(m1,m1a,m11, k=0)

# binomial type data
data(aep)
m1 <- gamlssML(aep$y, family=BB) # ok
m2 <- gamlssML(y, data=aep, family=BB) # ok
m3 <- gamlssML(y~1, data=aep, family=BB) # ok
m4 <- gamlssML(aep$y~1, family=BB) # ok
AIC(m1,m2,m3,m4)

## Not run:
#-----------------------------------------------------------
# neg. binomial n=10000
y<- rNBI(10000)
rand <- sample(2, length(y), replace=TRUE, prob=c(0.6,0.4))
table(rand)
  Y <- subset(y, rand==1)
  YVal <- subset(y, rand==2)
  length(Y)
  length(YVal)
da1 <- data.frame(y=y)
dim(da1)
da2 <- data.frame(y=Y)
dim(da2)
danew <- data.frame(y=YVal)
# using gamlssVGD to fit the models
g1 <- gamlssVGD(y~1, rand=rand, family=NBI, data=da1)
g2 <- gamlssVGD(y~1, family=NBI, data=da2, newdata=dan)
AIC(g1,g2)
VGD(g1,g2)
# using gamlssMLpred to fit the models
p1 <- gamlssMLpred(y, rand=rand, family=NBI)
p2 <- gamlssMLpred(Y, family=NBI, newdata=YVal)
# AIC and VGD should produce identical results
AIC(p1,p2,g1,g2)
VGD(p1,p2, g1,g2)
# the fitted residuals
wp(p1, ylim.all=1)
# the prediction residuals
wp(resid=p1$residVal, ylim.all=.5)
# choosing between distributions
```r
p2 <- gamlssMLpred(y, rand = rand, family = PO)
p3 <- gamlssMLpred(y, rand = rand, family = PIG)
p4 <- gamlssMLpred(y, rand = rand, family = BNB)
AIC(p1, p2, p3, p4)
VGD(p1, p2, p3, p4)
#--
End(Not run)
```

gamlssVGD A Set of Functions for selecting Models using Validation or Test Data Sets and Cross Validation

Description

This is a set of function useful for selecting appropriate models.

The functions `gamlssVGD`, `VGD`, `getTGD`, `TGD` can be used when a subset of the data is used for validation or testing.

The function `stepVGD()` is a stepwise procedure for selecting an appropriate model for any of the parameters of the model minimising the test global deviance. The function `stepVGDAll.A()` can select a model using strategy A for all the parameters.

The functions `gamlssCV`, `CV` can be used for a k-fold cross validation.

Usage

```r
gamlssVGD(formula = NULL, sigma.formula = ~1, nu.formula = ~1,
 tau.formula = ~1, data = NULL, family = NO,
 control = gamlss.control(trace = FALSE),
 rand = NULL, newdata = NULL, ...)
VGD(object, ...)
getTGD(object, newdata = NULL, ...)
TGD(object, ...)
```

```r
gamlssCV(formula = NULL, sigma.formula = ~1, nu.formula = ~1,
 tau.formula = ~1, data = NULL, family = NO,
 control = gamlss.control(trace = FALSE),
 K.fold = 10, set.seed = 123, rand = NULL,
 parallel = c("no", " multicore", "snow"),
 ncpus = 1L, cl = NULL, ...)
CV(object, ...)
```

```r
drop1TGD(object, scope, newdata, parameter = c("mu", "sigma", "nu", "tau"),
```

sorted = FALSE, trace = FALSE,
parallel = c("no", "multicore", "snow"),
cpus = 1L, cl = NULL, ...)

add1TGD(object, scope, newdata, parameter = c("mu", "sigma", "nu", "tau"),
sorted = FALSE, trace = FALSE,
parallel = c("no", "multicore", "snow"),
cpus = 1L, cl = NULL, ...)

stepTGD(object, scope, newdata,
direction = c("both", "backward", "forward"),
trace = TRUE, keep = NULL, steps = 1000,
parameter = c("mu", "sigma", "nu", "tau"),
parallel = c("no", "multicore", "snow"),
cpus = 1L, cl = NULL, ...)

stepTGDAll.A(object, scope = NULL, newdata = NULL,
steps = 1000, sigma.scope = NULL, nu.scope = NULL,
tau.scope = NULL, mu.try = TRUE, sigma.try = TRUE,
uu.try = TRUE, tau.try = TRUE,
parallel = c("no", "multicore", "snow"),
cpus = 1L, cl = NULL, ...)

Arguments

formula A gamlss mu formula.
sigma.formula Formula for sigma.
nu.formula Formula for nu.
tau.formula Formula for tau.
data The data frame required for the fit.
family The gamlss.family distribution.
control The control for fitting the gamlss model.
rand For gamlssVGD a variable with values 1 (for fitting) and 2 (for predicting). For
gamlssCV a variable with k values indicating the cross validation sets.
newdata The new data set (validation or test) for prediction.
object A relevant R object.
scope defines the range of models examined in the stepwise selection similar to stepGAIC() where you can see examples
sigma.scope defines the range of models examined in the stepwise selection for sigma
nu.scope defines the range of models examined in the stepwise selection for nu
tau.scope defines the range of models examined in the stepwise selection for tau
mu.try whether should try fitting models for mu
sigma.try whether should try fitting models for sigma
nu.try whether should try fitting models for nu
tau.try whether should try fitting models for tau
parameter which distribution parameter is required, default what="mu"
sorted should the results be sorted on the value of TGD
trace if TRUE additional information may be given on the fits as they are tried.
direction The mode of stepwise search, can be one of both, backward, or forward, with a default of both. If the scope argument is missing the default for direction is backward
keep see stepGAIC() for explanation
steps the maximum number of steps to be considered. The default is 1000.
K.fold the number of subsets of the data used
set.seed the seed to be used in creating rand
parallel The type of parallel operation to be used (if any). If missing, the default is "no".
cpus integer: number of processes to be used in parallel operation: typically one would chose this to the number of available CPUs.
cl An optional parallel or snow cluster for use if parallel = "snow". If not supplied, a cluster on the local machine is created for the duration of the call.
...
... further arguments to be pass in the gamlss fit

Details

The function `gamlssVGD()` fits a gamlss model to the training data set determined by the arguments `rand` or `newdata`. The results is a `gamlssVGD` object which contains the gamlss fit to the training data plus three extra components: i) VGD the global deviance applied to the validation data sets. ii) predictError which is VGD divided with the number of observations in the validation data set and iii) residVal the residuals for the validation data set.

The function `VGD()` extract the validated global deviance from one or more fitted `gamlssVGD` objects and can be used foe model comparison.

The function `getTGD()` operates different from the function `gamlssVGD()`. It assumes that the users already have fitted models using `gamlss()` and now he/she wants to evaluate the global deviance at a new (validation or test) data set.

The function `TGD()` extract the validated/test global deviance from one or more fitted `gamlssTGD` objects and can be use to compare models.

The `gamlssCV()` performs a k-fold cross validation on a gamlss models.

The function `CV()` extract the cross validated global deviance from one or more fitted `gamlssCV` objects and can be use to compare models.

The functions `add1TGD()`, `drop1TGD()` and `stepTGD` behave similar to `add1()`, `drop1()` and `stepGAIC()` functions respectively but they used validation or test deviance as the selection criterion rather than the GAIC.

Value

A fitted models of a set of global deviances.
Author(s)

Mikis Stasinopoulos

References


See Also

stepGAIC

Examples

data(abdom)
# generate the random split of the data
rand <- sample(2, 610, replace=TRUE, prob=c(0.6,0.4))
# the proportions in the sample
table(rand)/610
olddata<abdom[rand==1,] # training data
newdata<abdom[rand==2,] # validation data
#---------------------------------------------------------------
# gamlssVGD
#---------------------------------------------------------------
# Using rand
v1 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=abdom, family=NO, rand=rand)
v2 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=abdom, family=LO, rand=rand)
v3 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=abdom, family=TF, rand=rand)
VGD(v1,v2,v3)
#---------------------------------------------------------------
## Not run:
#---------------------------------------------------------------
# using two data set
v11 <- gamlssVGD(y~pb(x,df=2),sigma.formula=~pb(x,df=1), data=olddata, family=NO, newdata=newdata)
v12 <- gamlssVGD(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=LO, newdata=newdata)
v13 <- gamlssVGD(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=TF, newdata=newdata)
VGD(v11,v12,v13)

# function getTGD

# fit gamlss models first
g1 <- gamlss(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=NO)
g2 <- gamlss(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=LO)
g3 <- gamlss(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=olddata, family=TF)
# and then use
gg1 <- getTGD(g1, newdata=newdata)
gg2 <- getTGD(g2, newdata=newdata)
gg3 <- getTGD(g3, newdata=newdata)
TGD(gg1,gg2,gg3)

# function gamlssCV

set.seed(123)
rand1 <- sample(10,610,replace=TRUE)
g1 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=NO, rand=rand1)
g2 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=LO, rand=rand1)
g3 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=TF, rand=rand1)
CV(g1,g2,g3)
CV(g1)
# using parallel
set.seed(123)
rand1 <- sample(10,610,replace=TRUE)
nc <- detectCores()

system.time(g21 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=NO, rand=rand1, parallel="no", ncpus=nc ))

system.time(g22 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=LO, rand=rand1, parallel="multicore", ncpus=nc ))

system.time(g23 <- gamlssCV(y~pb(x,df=2), sigma.formula=~pb(x,df=1), data=abdom, family=TF, rand=rand1, parallel="snow", ncpus=nc ))

CV(g21,g22,g23)

# functions add1TGD() drop1TGD() and stepTGD()

# the data
data(rent)
gen.likelihood

A function to generate the likelihood function from a GAMLSS object

Description

This function generate a function with argument the parameters of the GAMLSS model which can evaluate the log-likelihood function.

Usage

gen.likelihood(object)

Arguments

object A gamlss fitted model
getPEF

Details

The purpose of this function is to help the function vcov() to get the right Hessian matrix after a model has fitted. Note that at the moment smoothing terms are considered as fixed.

Value

A function of the log-likelihood

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> Bob Rigby and Vlasios Voudouris

References


(see also https://www.gamlss.com/).

See Also

vcov

Examples

data(aids)
m1 <- gamlss(y~x+qrt, data=aids, family=NBI)
logL<-gen.likelihood(m1)
logL()
logLik(m1)

getPEF

Getting the partial effect function from a continuous term in a GAMLSS model
Description

This function can be used to calculate the partial effect and the elasticity of a continuous explanatory variable \( x \).

By 'partial effect' function we mean how \( x \) is influence the parameter of interest given that the rest of explanatory terms for this parameter are on (specified) fixed values.

The function takes a GAMLSS object and for the range of the continuous variable \( x \), (by fixing the rest of the explanatory terms at specified values), calculates the effect that \( x \) has on the specific distribution parameter (or its predictor). The resulting function shows the effect that \( x \) has on the distribution parameter. The partial effect function which is calculated on a finite grit is then approximated using the `splinefun()` in R and its is saved.

The saved function can be used to calculate the elasticity of \( x \). The elasticity is the first derivative of the partial effect function and shows the chance of the parameter of interest for a small change in \( x \), by fixing the rest of the explanatory variables at specified values.

Usage

```r
getPEF(obj = NULL, term = NULL, data = NULL, n.points = 100,
 parameter = c("mu", "sigma", "nu", "tau"),
 type = c("response", "link"), how = c("median", "last"),
 fixed.at = list(), plot = FALSE)
```

Arguments

- `obj`: A `gamlss` object
- `term`: the continuous explanatory variable
- `data`: the data.frame (not needed if is declared on `obj`)
- `n.points`: the number of points in which the influence function for \( x \) need to be evaluated
- `parameter`: which distribution parameter
- `type`: whether against the parameter, "response", or the predictor "link"
- `how`: whether for continuous variables should use the median or the last observation in the data
- `fixed.at`: a list indicating at which values the rest of the explanatory terms should be fixed
- `plot`: whether to the plot the influence function and its first derivatives

Value

A function is created which can be used to evaluate the partial effect function at different values of \( x \).

Author(s)

Mikis Stasinopoulos, Vlasios Voudouris, Daniil Kiose
References


(see also https://www.gamlss.com/).

See Also

gamlss

Examples

m1 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA)
# getting the Partial Efect function
pef <- getPEF(obj=m1,term="A", plot=TRUE)
# the value at 1980
pef(1980)
# the first derivative at 1980
pef(1980, deriv=1)
# the second derivative at 1980
pef(1980, deriv=2)
# plotting the first derivative
curve(pef(x, deriv=1), 1900,2000)

describe getQuantile

Getting the partial quantile function for a term

Description

This function can be used to calculate the partial effect that an explanatory variable has on a specific quantile.

By ‘partial effect’ function we mean how the term influence the quantile given that the rest of explanatory terms are constant.

The function takes a GAMLSS object and for the range of a specified explanatory (by fixing the rest of the terms at specified values), calculates the effect that this term has on the a quantile of the distribution. That is, it shows the effect that the particular term has on the quantile. The ‘partial’
quantile is calculated on a finite grid of values and then the function is approximated (using the `splinefun()`) and saved. The saved function can be used to calculate the first derivative. This first derivatives shows the chance of the quantile function for a small change in the explanatory variable, by fixing the rest of the explanatory variables at a constant values.

Usage

```r
getQuantile(obj = NULL, term = NULL, quantile = 0.9, data = NULL, n.points = 100, how = c("median", "last"), fixed.at = list(), plot = FALSE)
```

Arguments

- `obj` A `gamlss` object
- `term` an explanatory variable (at the moment works with with continuous)
- `quantile` the required quantile of the distribution
- `data` the data.frame (not needed if is declared on `obj`)
- `n.points` the number of points in which the quantile function needs evaluation
- `how` whether for extra continuous explanatory variables should fixed at the median or the last observation in the data
- `fixed.at` a list indicating at which values the rest of the explanatory terms should be fixed
- `plot` whether to the plot the partial quantile function and its first derivatives

Details

The function `getQuantile()` relies on the `predictAll()` function to evaluate the distribution parameters at a grid (default 100 points) of the specified term (given that the the rest of the terms are fixed). Then the inverse cdf is used to calculate the partial quantile. The function then is approximated using `splinefun()` and saved.

Value

A function is created which can be used to evaluate the partial effect of the explanatory variable on a specified quantile.

Author(s)

Mikis Stasinopoulos

References


(see also https://www.gamlss.com/).

See Also
gamlss, getPEF

Examples

library(gamlss)
data(rent)
m1 <- gamlss(R~pb(Fl)+pb(A)+B+loc, data=rent, family=GA)
FF<-getQuantile(m1, quantile=0.9, term="A", plot=TRUE)
FF(1960)
FF(1060, deriv=1)
FF(1060, deriv=2)
## Not run:
# plotting partial quantile
# .05, 0.25, 0.5, 0.75, 0.95
# at the default values
# Fl = median(Fl), B=0, and loc=2
plot(R~A, data=rent, col="lightgray", pch=20)
for (i in c(.05, 0.25, 0.5, 0.75, 0.95))
{
  Qua <- getQuantile(m1, quantile=i,term="A")
  curve(Qua, 1900, 1985, lwd=1, lty=1, add=T)
}
# plotting at values Fl=60, B=1, and loc=1.
for (i in c(.05, 0.25, 0.5, 0.75, 0.95))
{
  Qua <- getQuantile(m1, quantile=i,term="A",
                   fixed.at=list(Fl=60, B=1, loc=1))
  curve(Qua, 1900, 1985, lwd=1, lty=2, col="red", add=T)
}
# plotting at Fl=60, B=1 and loc=1.
for (i in c(.05, 0.25, 0.5, 0.75, 0.95))
{
  Qua <- getQuantile(m1, quantile=i,term="A",
                   fixed.at=list(Fl=120, B=0, loc=3))
  curve(Qua, 1900, 1985, lwd=1, lty=3, col="blue", add=T)
}
## End(Not run)
**Description**

The function `getSmo()` extracts information from a fitted smoothing additive term.

**Usage**

```r
getSmo(object, what = c("mu", "sigma", "nu", "tau"),
 parameter = NULL, which = 1)
```

**Arguments**

- `object`: a GAMLSS fitted model
- `what`: which distribution parameter is required, default what="mu"
- `parameter`: equivalent to `what`
- `which`: which smoothing term i.e. 1, 2 etc. Note that 0 means all.

**Details**

This function facilitates the extraction of information from a fitted additive terms. For example `getSmo(m1,"sigma",2)` is equivalent of `m1$sigma.coefSmo[[2]]`. To get the actual fitted values type `m1$sigma.s[[2]]`

**Value**

A list containing information about a fitted smoother or a fitted objects

**Author(s)**

Mikis Stasinopoulos and Bob Rigby

**References**


(see also [https://www.gamlss.com/](https://www.gamlss.com/).)
glim.control

Examples

data(usair)
t1<-gamlss(y~x1+pb(x5)+pb(x6), data=usair, family=GA)
# get the value for lambda for the second fitted term in mu
getSmo(t1, parameter="mu", 2)$lambda

---

glim.control

Auxiliary for Controlling the inner algorithm in a GAMLSS Fitting

Description

Auxiliary function used for the inner iteration of gamlss algorithm. Typically only used when calling gamlss function through the option i.control.

Usage

glim.control(cc = 0.001, cyc = 50, glm.trace = FALSE,
bf.cyc = 30, bf.tol = 0.001, bf.trace = FALSE,
...)

Arguments

cc      the convergence criterion for the algorithm
ccyc    the number of cycles of the algorithm
glm.trace whether to print at each iteration (TRUE) or not (FALSE)
bf.cyc   the number of cycles of the backfitting algorithm
bf.tol   the convergence criterion (tolerance level) for the backfitting algorithm
bf.trace whether to print at each iteration (TRUE) or not (FALSE, the default)
...      for extra arguments

Value

A list with the arguments as components

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby
References


(see also https://www.gamlss.com/).

See Also
gamlss

Examples

data(aids)
con<-glm.control(glm.trace=TRUE)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids, i.control=con) #
rm(h,con)

```
histDist(y, family = NO, freq = NULL, density = FALSE, nbins = 10, xlim = NULL, ylim = NULL, main = NULL, xlab = NULL, ylab = NULL, data = NULL, col.hist = "gray", border.hist = "blue", fg.hist = rainbow(12)[9], line.wd = 2, line.ty = c(1, 2), line.col = c(2, 3), col.main = "blue4", col.lab = "blue4", col.axis = "blue", ...)
```

This function plots the histogram and a fitted (GAMLSS family) distribution to a variable

Description

This function fits constants to the parameters of a GAMLSS family distribution and them plot the histogram and the fitted distribution.

Usage

```
histDist(y, family = NO, freq = NULL, density = FALSE, nbins = 10, xlim = NULL, ylim = NULL, main = NULL, xlab = NULL, ylab = NULL, data = NULL, col.hist = "gray", border.hist = "blue", fg.hist = rainbow(12)[9], line.wd = 2, line.ty = c(1, 2), line.col = c(2, 3), col.main = "blue4", col.lab = "blue4", col.axis = "blue", ...)
```
**Arguments**

- **y**  
  a vector for the response variable
- **family**  
  a `gamlss.family` distribution
- **freq**  
  the frequencies of the data in `y` if exist. `freq` is used as weights in the `gamlss` fit
- **density**  
  default value is FALSE. Change to `TRUE` if you would like a non-parametric density plot together with the parametric fitted distribution plot (for continuous variable only)
- **nbins**  
  The suggested number of bins (argument passed to `truehist()` of package MASS). Either a positive integer, or a character string naming a rule: "Scott" or "Freedman-Diaconis" or "FD". (Case is ignored.)
- **xlim**  
  the minimum and the maximum x-axis value (if the default values are out of range)
- **ylim**  
  the minimum and the maximum y-axis value (if the default values are out of range)
- **main**  
  the main title for the plot
- **xlab**  
  the label in the x-axis
- **ylab**  
  the label in the y-axis
- **data**  
  the data.frame
- **col.hist**  
  the colour of the histogram or barplot
- **border.hist**  
  the colour of the border of the histogram or barplot
- **fg.hist**  
  the colour of axis in the histogram or barplot
- **line.wd**  
  the line width of the fitted distribution
- **line.ty**  
  the line type of the fitted distribution
- **line.col**  
  the line color of the fitted distribution
- **col.main**  
  the colour for the main title
- **col.lab**  
  the colour of the labels
- **col.axis**  
  the color of the axis
- **...**  
  for extra arguments to be passed to the `gamlss` function

**Details**

This function first fits constants for each parameters of a GAMLSS distribution family using the `gamlss` function and then plots the fitted distribution together with the appropriate plot according to whether the `y` variable is of a continuous or discrete type. Histogram is plotted for continuous and barplot for discrete variables. The function `truehist` of Venables and Ripley’s MASS package is used for the histogram plotting.

**Value**

returns a plot
**Author(s)**

Mikis Stasinopoulos

**References**


**See Also**

`gamlss, gamlss.family`

**Examples**

```r
data(abdom)
histDist(y,family="NO", data=abdom)
use the ylim
histDist(y,family="NO", ylim=c(0, 0.005), data=abdom)
bad fit use PE
histDist(y,family="PE", ymax=0.005, data=abdom, line.col="blue")
discere data counts
Hand at al. p150 Leptinotarsa decemlineata
y <- c(0,1,2,3,4,6,7,8,10,11)
freq <- c(33,12,5,6,5,2,2,2,1,2)
histDist(y, "NBI", freq=freq)
the same as
histDist(rep(y,freq), "NBI")
```

**histSmo**

`Density estimation using the Poisson trick`

**Description**

This set of functions use the old Poisson trick of discretising the data and then fitting a Poisson error model to the resulting frequencies (Lindsey, 1997). Here the model fitted is a smooth cubic spline curve. The result is a density estimator for the data.
histSmo

Usage

histSmo(y, lambda = NULL, df = NULL, order = 3, lower = NULL, upper = NULL, type = c("freq", "prob"), plot = FALSE, breaks = NULL, discrete = FALSE, ...)

histSmoC(y, df = 10, lower = NULL, upper = NULL, type = c("freq", "prob"), plot = FALSE, breaks = NULL, discrete = FALSE, ...)

histSmoO(y, lambda = 1, order = 3, lower = NULL, upper = NULL, type = c("freq", "prob"), plot = FALSE, breaks = NULL, discrete = FALSE, ...)

histSmoP(y, lambda = NULL, df = NULL, order = 3, lower = NULL, upper = NULL, type = c("freq", "prob"), plot = FALSE, breaks = NULL, discrete = FALSE, ...)

Arguments

y
the variable of interest
lambda
the smoothing parameter
df
the degrees of freedom
order
the order of the P-spline
lower
the lower limit of the y-variable
upper
the upper limit of the y-variable
type
the type of histogram
plot
whether to plot the resulting density estimator
breaks
the number of break points to be used in the histogram and consequently the number of observations in the Poisson fit
discrete
whether to treat the fitting density as a discrete distribution or not
...
进一步 arguments passed to or from other methods.

Details

Here are the methods used here:

i) The function histSmoO() uses Penalised discrete splines (Eilers, 2003). This function is appropriate when the smoothing parameter is fixed.

ii) The function histSmoC() uses smooth cubic splines and fits a Poisson error model to the frequencies using the cs() additive function of GAMLSS. This function is appropriate if the effective degrees of freedom are fixed in the model.

iii) The function histSmoP() uses Penalised cubic splines (Eilers and Marx 1996). It is fitting a Poisson model to the frequencies using the pb() additive function of GAMLSS. This function is appropriate if automatic selection of the smoothing parameter is required.

iv) The function histSmo() combines all the above functions in the sense that if lambda is fixed it uses histSmoO(), if the df’s are fixed it uses codehistSmoC() and if none of these is specified it uses histSmoP().
Value

Returns a histSmo S3 object. The object has the following components:

- `x` the middle points of the discretise data
- `counts` how many observation are on the discretise intervals
- `density` the density value for each discrete interval
- `hist` the hist object used to discretise the data
- `cdf` The resulting cumulative distribution function useful for calculating probabilities from the estimate density
- `nvcdf` The inverse cumulative distribution function
- `model` The fitted Poisson model only for histSmoP() and histSmoC()

Author(s)

Mikis Stasinopoulos, Paul Eilers, Bob Rigby and Vlasios Voudouris

References


(see also https://www.gamlss.com/).

See Also

- pb, cs

Examples

# creating data from Pareto 2 distribution
set.seed(153)
Y <- rPARETO2(1000)
## Not run:
# getting the density
histSmo(Y, lower=0, plot=TRUE)
# more breaks a bit slower
histSmo(Y, breaks=200, lower=0, plot=TRUE)
# quick fit using lambda
histSmoO(Y, lambda=1, breaks=200, lower=0, plot=TRUE)
# or
histSmo(Y, lambda=1, breaks=200, lower=0, plot=TRUE)
# quick fit using df
histSmoC(Y, df=15, breaks=200, lower=0, plot=TRUE)
# or
histSmo(Y, df=15, breaks=200, lower=0)
# saving results
m1 <- histSmo(Y, lower=0, plot=T)
pplot(m1)
pplot(m1, "cdf")
pplot(m1, "invcdf")
# using with a histogram
library(MASS)
truehist(Y)
lines(m1, col="red")

#---------------------------
# now generate from SHASH distribution
YY <- rSHASH(1000)
m1 <- histSmo(YY)
# calculate Pr(YY>10)
1-m1$cdf(10)
# calculate Pr(-10<YY<10)
1-(1-m1$cdf(10)) - m1$cdf(-10)

#---------------------------
# from discrete distribution
YYY <- rNBI(1000, mu=5, sigma=4)
histSmo(YYY, discrete=TRUE, plot=T)
#
YYY <- rPO(1000, mu=5)
histSmo(YYY, discrete=TRUE, plot=T)
#
YYY <- rNBI(1000, mu=5, sigma=.1)
histSmo(YYY, discrete=TRUE, plot=T)
# generating from beta distribution
YYY <- rBE(1000, mu=.1, sigma=.3)
histSmo(YYY, lower=0, upper=1, plot=T)
# from truncated data
Y <- with(stylo, rep(word, freq))
histSmo(Y, lower=1, plot=T)
histSmo(Y, lower=1, discrete=TRUE, plot=T, type="prob")
## End(Not run)
Description

The function \texttt{GAIC()} calculates the Generalised Akaike information criterion (GAIC) for a given penalty $k$ for a fitted GAMLSS object.

The function \texttt{AIC.gamlss()} is the method associated with a GAMLSS object of the generic function \texttt{AIC()}. Note that \texttt{GAIC()} is a synonymous of the function \texttt{AIC.gamlss}.

The function \texttt{IC()} is an old version of \texttt{GAIC()}. The function \texttt{GAIC.table()} produces a table with different models as rows and different penalties, $k$, as columns.

The function \texttt{GAIC.scaled()} produces, for a given set of different fitted models or for a table produced by \texttt{chooseDist()}, the scaled Akaike values (see Burnham and Anderson (2002) section 2.9 for a similar concept the GAIC weights. The scaled Akaike should not be interpreted as posterior probabilities of models given the data but for model selection purpose they produce a scaled ranking of the model using their relative importance i.e. from the worst to the best model.

The function \texttt{extractAIC} is a method associated a GAMLSS object of the generic function \texttt{extractAIC} and it is mainly used in the \texttt{stepAIC} function.

The function \texttt{Rsq} compute a generalisation of the R-squared for not normal models.

Usage

\begin{verbatim}
IC(object, k = 2)
## S3 method for class 'gamlss'
AIC(object, ..., k = 2, c = FALSE)
GAIC(object, ..., k = 2, c = FALSE)
GAIC.table(object, ..., k = c(2, 3.84, round(log(length(object$y)), 2)),
  text.to.show=NULL)
GAIC.scaled(object,..., k = 2, c = FALSE, plot = TRUE,
  text.cex = 0.7, which = 1, diff.dev = 1000,
  text.to.show = NULL, col = NULL, horiz = FALSE)
## S3 method for class 'gamlss'
extractAIC(fit, scale, k = 2, c = FALSE, ...)
\end{verbatim}

Arguments

- \texttt{object} an \texttt{gamlss} fitted model(s) \[or for \texttt{GAIC.scaled()} a table produced by \texttt{chooseDist()}\].
- \texttt{fit} an \texttt{gamlss} fitted model
- \texttt{...} allows several GAMLSS object to be compared using a GAIC
- \texttt{k} the penalty with default $k=2.5$
- \texttt{c} whether the corrected AIC, i.e. AICc, should be used, note that it applies only when $k=2$
- \texttt{scale} this argument is not used in \texttt{gamlss}
- \texttt{plot} whether to plot the ranking in \texttt{GAIC.scaled()}
- \texttt{text.cex} the size of the models/families in the text of the plot of \texttt{GAIC.scaled()}
- \texttt{diff.dev} this argument prevents models with a difference in deviance greater than \texttt{diff.dev} from the ‘best’ model to be considered (or plotted).
which column of GAIC scaled to plot in GAIC.scaled().

text.to.show if NULL, GAIC.scaled() shows the model names otherwise the character in this list

col The colour of the bars in GAIC.scaled()
horiz whether to plot the bars vertically (default) or horizontaly

Value

The function IC() returns the GAIC for given penalty k of the GAMLSS object. The function AIC() returns a matrix contains the df’s and the GAIC’s for given penalty k. The function GAIC() returns identical results to AIC. The function GAIC.table() returns a table which its rows showing different models and its columns different k’s. The function extractAIC() returns vector of length two with the degrees of freedom and the AIC criterion.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also https://www.gamlss.com/).

See Also

gamlss

Examples

data(abdom)
m1 <- gamlss(y~x, family=NO, data=abdom)
IC(m1)
extractAIC(m1,k=2)
m2 <- gamlss(y~x, sigma.fo=~x, family=NO, data=abdom)
m3 <- gamlss(y~pb(x), sigma.fo=~x, family=NO, data=abdom)
m4 <- gamlss(y~pb(x), sigma.fo=~pb(x), family=NO, data=abdom)
AIC(m1,m2, m3, m4)
### Description

This function is designed to help the user easily construct growth curve centile estimation. It is applicable when only "one" explanatory variable is available (usually age).

### Usage

```r
lms(y, x, families = LMS, data = NULL, k = 2,
 cent = c(0.4, 2, 10, 25, 50, 75, 90, 98, 99.6),
 calibration = TRUE, trans.x = FALSE,
 fix.power = NULL, lim.trans = c(0, 1.5),
 prof = FALSE, step = 0.1, legend = FALSE,
 mu.df = NULL, sigma.df = NULL, nu.df = NULL,
 tau.df = NULL, c.crit = 0.01,
 method.pb = c("ML", "GAIC"), ...)
```

### Arguments

- **y**: The response variable
- **x**: The unique explanatory variable
- **families**: A list of `gamlss.family` with default `LMS=c("BCCGo","BCPEo","BCTo")`
- **data**: The data frame
- **k**: The penalty to be used in the GAIC
- **cent**: A vector with elements the % centile values for which the centile curves have to be evaluated
- **calibration**: Whether calibration is required with default `TRUE`
- **trans.x**: Whether to check for transformation in `x` with default `FALSE`
- **fix.power**: If set it fix the power of the transformation for `x`
- **lim.trans**: The limits for the search of the power parameter for `x`
- **prof**: Whether to use the profile GAIC of the power transformation
- **step**: If `codeprof=TRUE` is used this determine the step for the profile GAIC
legend  whether a legend is required in the plot with default FALSE
mu.df  mu effective degrees of freedom if required otherwise are estimated
sigma.df  sigma effective degrees of freedom if required otherwise are estimated
nu.df  nu effective degrees of freedom if required otherwise are estimated
tau.df  tau effective degrees of freedom if required otherwise are estimated
c.crit  the convergence criterion to be pass to gamlss()
method.pb  the method used in the pb() for estimating the smoothing parameters. The default is local maximum likelihood "ML". "GAIC" is also permitted where k is taken from the k argument of the function.
...
extra argument which can be passed to gamlss()

Details
This function should be used if the construction of the centile curves involves only one explanatory variable.

The model assumes that the response variable has a flexible distribution i.e. \( y \sim D(\mu, \sigma, \nu, \tau) \) where the parameters of the distribution are smooth functions of the explanatory variable i.e. \( g(\mu) = s(x) \), where \( g() \) is a link function and \( s() \) is a smooth function. Occasionally a power transformation in the x-axis helps the construction of the centile curves. That is, in this case the parameters are modelled by \( x^p \) rather than just \( x \), i.e. \( g(\mu) = s(x^p) \). The function \( \text{lms()} \) uses P-splines (pb()) as a smoother.

If a transformation is needed for \( x \) the function \( \text{lms()} \) starts by finding an optimum value for \( p \) using the simple model \( NO(\mu = s(x^p)) \). (Note that this value of \( p \) is not the optimum for the final chosen model but it works well in practice.)

After fitting a Normal error model for staring values the function proceeds by fitting several "appropriate" distributions for the response variable. The set of \text{gamlss.family} distributions to fit is specified by the argument families. The default families arguments is \text{LMS=c("BCCGo","BCPto","BCTo"}) that is the LMS class of distributions, Cole and Green (1992). Note that this class is only appropriate when \( y \) is positive (with no zeros). If the response variable contains negative values and zeros then use the argument \text{families=theSHASH} where \text{theSHASH <-c("NO","SHASHo"}) or add any other list of distributions which you may think is appropriate. Justification of using the specific centile \( (0.38, 2.27, 9.121220, 25.25, 50, 74.75, 90.88, 97.72, 99.62) \) is given in Cole (1994).

Value
It returns a \text{gamlss} fitted object

Note
The function is fitting several models and for large data can be slow

Author(s)
Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Vlasios Voudouris <vlasios.voudouris@abm-analytics.com>
References


(see also https://www.gamlss.com/).

See Also

gamlss, centiles, calibration

Examples

```r
Not run:
data(abdom)
m1 <- lms(y,x , data=abdom, n.cyc=30)
m2 <- lms(y,x ,data=abdom, method.pb="GAIC", k=log(610))
this example takes time
data(db)
m1 <- lms(y=head, x=age, data=db, trans.x=TRUE)

End(Not run)
```

---

**lo**

*Specify a loess fit in a GAMLSS formula*

Description

Allows the user to specify a loess fit within a GAMLSS model. This function is similar to the `lo` function in the `gam` implementation of package `gam` see Chambers and Hastie (1991).

The function `vis.lo()` allows plotting the results.
**Usage**

lo(formula, control = lo.control(...), ...)
lo.control(span = 0.75, enp.target = NULL,
degree = 2, parametric = FALSE, drop.square = FALSE,
normalize = TRUE, family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
surface = c("interpolate", "direct"),
statistics = c("approximate", "exact", "none"),
trace.hat = c("exact", "approximate"),
cell = 0.2, iterations = 4, iterTrace = FALSE, ...)
vis.lo(obj, se = -1, rug = FALSE, partial.resid = FALSE,
col.term = "darkred", col.shaded = "gray",
col.res = "lightblue", col.rug = "gray", lwd.term = 1.5,
cex.res = 1, pch.res = par("pch"),
type = c("persp", "contour"), col.surface = "gray",
nlevels = 30, n.grid = 30, image = TRUE, ...)

**Arguments**

**formula**
a formula specifying the explanatory variables

**control**
a control to be passed to the loess function

**...**
extra arguments

**span**
the number of observations in a neighbourhood. This is the smoothing parameter for a loess fit.

**enp.target**
an alternative way to specify span, as the approximate equivalent number of degrees of freedom to be used. See also the help file of the R function loess. For consistency with the older version of lo the effective degrees of freedom df can be also specified instead of span, e.g. df=5

**degree**
the degree of local polynomial; can be 1 or 2. See also the help file of loess

**parametric**
should any terms be fitted globally rather than locally? See the help file of loess

**drop.square**
for fits with more than one predictor and degree=2, should the quadratic term be dropped for particular predictors?. See also help file of loess

**normalize**
should the predictors be normalized to a common scale if there is more than one? See the help file of loess

**family**
if "gaussian" fitting is by least-squares, and if "symmetric" a re-descending M estimator is used with Tukey's biweight function. See the help file of loess

**method**
fit the model or just extract the model frame. See the help file of loess

**surface**
should the fitted surface be computed exactly or via interpolation from a kd tree? See also the help file of loess.control

**statistics**
should the statistics be computed exactly or approximately? See the help file of loess.control

**trace.hat**
should the trace of the smoother matrix be computed exactly or approximately? See the help file of loess.control
cell  if interpolation is used this controls the accuracy of the approximation via the maximum number of points in a cell in the kd tree. See the help file of loess.control
iterations  the number of iterations used in robust fitting. See the help file of loess.control
iterTrace  logical (or integer) determining if tracing information during the robust iterations (iterations>= 2) is produced. See the help file of loess.control
obj  an loess object fitted within gamlss
se  if se>0 then standard error surfaces are drawn in the 3-dimentional plot. Set se at the required level i.e se=1.96 will be an approximated 95% CI.
rug  whether to plot a rug in the plot
partial.resid  whether to plot the partial residuals
col.term  the colour of the line of fitted term
cex.res  the shading of standard
col.shaded  the shading of standard error intervals
col.res  the colour of partial residuals
col.rug  the colour of the rug
lwd.term  the width of the line
pch.res  The character for the partial residuals
type  The type of the plot if the x’s are two dimensional
col.surface  the colour of the fitted surface
nlevels  the number of levels used in contour() plot.
n.grid  The number of points to evaluate the surface
image  whether to use image() or just contour

Details

Note that lo itself does no smoothing; it simply sets things up for the function gamlss.lo() which is used by the backfitting function gamlss.add().

Value

a loess object is returned.

Warning

In this version the first argument is a formula NOT a list as in the previous one

Note

Note that lo itself does no smoothing; it simply sets things up for gamlss.lo() to do the backfitting.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby, (The original lo() function was based on the Trevor Hastie’s S-plus lo() function. See also the documentation of the loess function for the authorship of the function.)
loglogSurv

Survival function plots for checking the tail behaviour of the data

Description

The log-log Survival functions are design for checking the tails of a single response variable (no explanatory should be involved). There are three different function:

a) the function loglogSurv1() which plot the right tails of the empirical log-log Survival function against loglog(y), where y is the variable of interest. The coefficient of a linear fit to the plot can be used as an estimated for Type I tails (see Chapter 17 in Rigby et al. (2019) for definition of the different types of tails.)

References


(see also https://www.gamlss.com/).

See Also

cs, random,

Examples

# fitting a loess curve with span=0.4 plus the a quarterly effect
aids1<-gamlss(y~lo(~x,span=0.4)+qrt,data=aids,family=PO) #
term.plot(aids1, page=1)
## Not run:
r1 <- gamlss(R~lo(~F1)+lo(~A), data=rent, family=GA)
term.plot(r1, pages=1)
vis.lo(getSmo(r1, which=1), partial=T)
r2 <- gamlss(R~lo(~F1+A), data=rent, family=GA)
term.plot(r2, pages=1)
vis.lo(getSmo(r2, which=1))
vis.lo(getSmo(r2, which=1), se=1.97)
vis.lo(getSmo(r2, which=1), partial.res=T)
## End(Not run)
b) the function `loglogSurv2()` which plot the right tails of the empirical log-log Survival function against \( \log(y) \). The coefficient of a linear fit to the plot can be used as an estimated for Type II tails.

c) the function `loglogSurv3()` which plot the (left or right) tails of the empirical log-log Survival function against \( y \). The coefficient of a linear fit to the plot can be used as an estimated for Type III tails.

The function `loglogSurv()` combines all the above functions.

The function `logSurv()` is design for exploring the heavy tails of a single response variable. It plots the empirical log-survival function of the right tail of the distribution or the empirical log-cdf function of the left tail against \( \log(y) \) for a specified probability of the tail. Then fits a linear, a quadratic and an exponential curve to the points of the plot. For distributions defined on the positive real line a good linear fit would indicate a Pareto type tail, a good quadratic fit a log-normal type tail and good exponential fit a Weibull type tail. Note that this function is only appropriate to investigate rather heavy tails and it is not very good to discriminate between different type of tails, as the `loglogSurv()` function plots but do not fit the curves.

The function `loglogplot()` plot the empirical log-survival function of all data against \( \log(y) \). The function `ECDF()` calculates the empirical commutative distribution function. It is similar to `ecdf()` but divides by \( n+1 \) rather \( n \), the number of conservations.

**Usage**

```r
loglogSurv(y, prob = 0.9, print = TRUE, title = NULL, lcol = gray(0.1), ltype = 1, plot = TRUE, ...)
loglogSurv1(y, prob = 0.9, print = TRUE, title = NULL, lcol = gray(0.1), ltype = 1, ...)
loglogSurv2(y, prob = 0.9, print = TRUE, title = NULL, lcol = gray(0.1), ltype = 1, ...)
loglogSurv3(y, prob = 0.9, print = TRUE, title = NULL, lcol = gray(0.1), ltype = 1, ...)
logSurv(y, prob = 0.9, tail = c("right", "left"), plot = TRUE, lines = TRUE, print = TRUE, title = NULL, lcol = c(gray(0.1), gray(0.2), gray(0.3)), ltype = c(1, 2, 3), ...)
logSurv0(y, prob = 0.9, tail = c("right", "left"), plot = TRUE, title = NULL, ...)
ECDF(y, weights=NULL)
loglogplot(y, nplus1 = TRUE, ...)
```
Arguments

- **y**: a vector, the variable of interest
- **prob**: what probability. The default is 0.90 which means 10% for "right" tail 90% for "left" tail
- **tail**: which tail needs checking the right (default) of the left
- **plot**: whether to plot with default equal TRUE
- **print**: whether to print the coefficients with default equal TRUE
- **title**: if a different title rather the default is needed
- **lcol**: The line colour in the plot
- **lines**: whether to plot the fitted lines
- **ltype**: The line type in the plot
- **nplus1**: whether to divide by n+1 or n when calculating the ecdf
- **weights**: prior weights for ECDF()
- **...**: for extra argument in the plot command

Details

The functions `loglogSurv1()`, `loglogSurv3()` and `loglogSurv3()` take the upper part of an ordered variable, create its empirical survival function, and plot the log-log of this functions against log(log(y)), log(y) and y, respectively. Then they fit a line to the plot. The coefficients of the line can be interpreted as parameters determined the behaviour of the tail. The function `loglogSurv()` fits all three models and displays the best. The function `logSurv()` takes the upper (or lower) part of an ordered variable and plots the log empirical survival function against log(y). Also display three curves i) linear ii) quadratic and iii) exponential to determine what kind of tail relationship exist. Plotting the log empirical survival function against log(y) often call in the literature the "log-log plot". The function `loglogplot()` plots the whole log empirical survival function against log(y) (not just the tail). The function `ECDF()` calculate the step function of the empirical cumulative distribution function.

More details can be found in Chapter 17 of "Rigby et al. (2019) book an old version on which can be found in [https://www.gamlss.com/](https://www.gamlss.com/)

Value

The functions create plots.

Author(s)

Bob Rigby, Mikis Stasinopoulos and Vlassios Voudouris
References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

Examples

data(film90)
y <- film90$lborev1
op<-par(mfrow=c(3,1))
loglogSurv1(y)
loglogSurv2(y)
loglogSurv3(y)
par(op)
loglogSurv(y)

logSurv(y)

loglogplot(y)

plot(ECDF(y), main="ECDF")

lpred

Extract Linear Predictor Values and Standard Errors For A GAMLSS Model

Description

lpred is the GAMLSS specific method which extracts the linear predictor and its (approximate) standard errors for a specified parameter from a GAMLSS objects. The lpred can be also used to extract the fitted values (with its approximate standard errors) or specific terms in the model (with its approximate standard errors) in the same way that the predict.lm() and predict.glm() functions can be used for lm or glm objects. The function lp extract only the linear predictor. If prediction is required for new data values then use the function predict.gamlss().
Usage

lpred(obj, what = c("mu", "sigma", "nu", "tau"), parameter = NULL,
       type = c("link", "response", "terms"),
       terms = NULL, se.fit = FALSE, ...)
lp(obj, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, ...)

Arguments

obj a GAMLSS fitted model
what which distribution parameter is required, default what="mu"
parameter equivalent to what
type type="link" (the default) gets the linear predictor for the specified distribution parameter.
type="response" gets the fitted values for the parameter while
type="terms" gets the fitted terms contribution
terms if type="terms", which terms to be selected (default is all terms)
se.fit if TRUE the approximate standard errors of the appropriate type are extracted
... for extra arguments

Value

If se.fit=FALSE a vector (or a matrix) of the appropriate type is extracted from the GAMLSS object for the given parameter in what. If se.fit=TRUE a list containing the appropriate type, fit, and its (approximate) standard errors, se.fit.

Author(s)

Mikis Stasinopoulos

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

predict.gamlss
Example

```r
data(aids)
mod<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
mod.t <- lpred(mod, type = "terms", terms= "qrt")
mod.t
mod.lp <- lp(mod)
mod.lp
rm(mod, mod.t,mod.lp)
```

---

**LR.test**

*Likelihood Ratio test for nested GAMLSS models*

**Description**

The function performs a likelihood ratio test for two nested fitted model.

**Usage**

```r
LR.test(null, alternative, print = TRUE)
```

**Arguments**

- `null` The null hypothesis (simpler) fitted model
- `alternative` The alternative hypothesis (more complex) fitted model
- `print` whether to print or save the result

**Details**

Warning: no checking whether the models are nested is performed.

**Value**

If `print=FALSE` a list with chi, df and p.val is produced.

**Author(s)**

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

**References**


model.frame.gamlss


(see also https://www.gamlss.com/).

See Also
gamlss, dropterm

Examples

data(usair)
m0<-gamlss(y~x1+x2, data=usair)
m1<-gamlss(y~x1+x2+x3+x4, data=usair)
LR.test(m0,m1)

---

model.frame.gamlss

Extract a model.frame, a model matrix or terms from a GAMLSS object for a given distributional parameter

Description

model.frame.gamlss, model.matrix.gamlss and terms.gamlss are the gamlss versions of the generic functions model.frame, model.matrix and terms respectively.

Usage

```r
S3 method for class 'gamlss'
model.frame(formula, what = c("mu", "sigma", "nu", "tau"),
 parameter= NULL, ...)

S3 method for class 'gamlss'
terms(x, what = c("mu", "sigma", "nu", "tau"),
 parameter= NULL, ...)

S3 method for class 'gamlss'
model.matrix(object, what = c("mu", "sigma", "nu", "tau"),
 parameter= NULL, ...)
```

Arguments

- `formula` a gamlss object
- `x` a gamlss object
- `object` a gamlss object
- `what` for which parameter to extract the model.frame, terms or model.frame
- `parameter` equivalent to what
- `...` for extra arguments
numeric.deriv

An internal GAMLSS function for numerical derivatives

Description

A function to calculate numerical derivatives.

Usage

numeric.deriv(expr, theta, delta = NULL, rho = sys.frame(sys.parent()))
Arguments

expr  The expression to be differentiated  
theta A character vector  
delta constant for the accuracy  
rho environment

Details

This function is used by several GAMLSS functions but it is not for general use since there are more reliable functions to do that in R.

Value

A vector of numerical derivatives

Note

Do not use this function unless you know what you are doing

Author(s)

Mikis Stasinopoulos

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).
par.plot  

A function to plot parallel plot for repeated measurement data

Description

This function can be used to plot parallel plots for each individual in a repeated measurement study. It is based on the coplot() function of R.

Usage

par.plot(formula = NULL, data = NULL, subjects = NULL, color = TRUE, show.given = TRUE, ...)

Arguments

formula  a formula describing the form of conditioning plot. A formula of the form y ~ x | a indicates that plots of y versus x should be produced conditional on the variable a. A formula of the form y ~ x | a * b indicates that plots of y versus x should be produced conditional on the two variables a and b.

data  a data frame containing values for any variables in the formula. This argument is compulsory.

subjects  a factor which distinguish between the individual participants

color  whether the parallel plot are shown in colour, color=TRUE (the default) or not color=FALSE

show.given  logical (possibly of length 2 for 2 conditioning variables): should conditioning plots be shown for the corresponding conditioning variables (default 'TRUE')

...  for extra arguments

Value

It returns a plot.

Note

Note that similar plot can be fount in the library nlme by Pinheiro and Bates

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

`gamlss`

Examples

```r
library(nlme)
data(Orthodont)
par.plot(distance~age,data=Orthodont,subject=Subject)
par.plot(distance~age|Sex,data=Orthodont,subject=Subject)
par.plot(distance~age|Subject,data=Orthodont,subject=Subject,show.given=FALSE)
```

**pcat**

*Reduction for the Levels of a Factor.*

**Description**

The function is trying to merged similar levels of a given factor. Its based on ideas given by Tutz (2013).

**Usage**

```r
pcat(fac, df = NULL, lambda = NULL, method = c("ML", "GAIC"), start = 0.001,
Lp = 0, kappa = 1e-05, iter = 100, c.crit = 1e-04, k = 2)
```

```r
gamlss.pcat(x, y, w, xeval = NULL, ...)
```

```r
plotDF(y, factor = NULL, formula = NULL, data, along = seq(0, nlevels(factor)),
kappa = 1e-06, Lp = 0, ...)
```

```r
plotLambda(y, factor = NULL, formula = NULL, data, along = seq(-2, 2, 0.1),
kappa = 1e-06, Lp = 0, ...)
```
Arguments

- **fac, factor**: a factor to reduce its levels
- **df**: the effective degrees of freedom df
- **lambda**: the smoothing parameter
- **method**: which method is used for the estimation of the smoothing parameter, "ML" or "GAIC" are allowed.
- **start**: starting value for lambda if it estimated using "ML" or "GAIC"
- **Lp**: The type of penalty required, Lp=0 is the default. Use Lp=1 for lasso type and different values for different required penalty.
- **kappa**: a regulation parameters used for the weights in the penalties.
- **iter**: the number of internal iteration allowed
- **c.crit**: the convergent criterion
- **k**: the penalty if "GAIC" method is used.
- **x**: explanatory factor
- **y**: the response or iterative response variable
- **w**: iterative weights
- **xeval**: indicator whether to predict
- **formula**: A formula
- **data**: A data frame
- **along**: a sequence of values
- **...**: for extra variables

Details

The `pcat()` is used for the fitting of the factor. The function shrinks the levels of the categorical factor (not towards the overall mean as the function `random()` is doing) but towards each other. This results to a reduction of the number if levels of the factors. Different norms can be used for the shrinkage by specifying the argument Lp.

Value

The function `pcat` reruns a vector endowed with a number of attributes. The vector itself is used in the construction of the model matrix, while the attributes are needed for the backfitting algorithms `additive.fit()`. The backfitting is done in `gamlss.pcat`.

Note

Note that `pcat` itself does no smoothing; it simply sets things up for `gamlss.pcat()` to do the smoothing within the backfitting.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Paul Eilers and Marco Enea
References


(see also https://www.gamlss.com/).

See Also

random

Examples

```r
Simulate data 1
n <- 10 # number of levels
m <- 200 # number of observations
set.seed(2016)
level <- as.factor(floor(runif(m) * n) + 1)
a0 <- rnorm(n)
sigma <- 0.4
mu <- a0[level]
y <- mu + sigma * rnorm(m)
plot(y~level)
points(1:10,a0, col="red")
da1 <- data.frame(y, level)
#------------------
ms <- gamlss(y~level-1, data=da1) # saturated model
m1 <- gamlss(y~pcat(level), data=da1) # calculating lambda ML
AIC(mn, ms, m1)
Not run:
m11 <- gamlss(y~pcat(level, method="GAIC", k=log(200)), data=da1) # GAIC
AIC(mn, ms, m1, m11)
geting the fitted object ---
getSmo(m1)
coef(getSmo(m1))
fitted(getSmo(m1))[1:10]
plot(getSmo(m1)) #
After the fit a new factor is created this factor has the reduced levels
levels(getSmo(m1)$factor)
--

End(Not run)
```
pdf.plot

Plots Probability Distribution Functions for GAMLSS Family

Description

A function to plot probability distribution functions (pdf) belonging to the gamlss family of distributions. This function allows either plotting of the fitted distributions for up to eight observations or plotting specified distributions belonging in the gamlss family.

Usage

```r
pdf.plot(obj = NULL, obs = c(1), family = NO(), mu = NULL,
 sigma = NULL, nu = NULL, tau = NULL, from = 0,
 to = 10, min = NULL, max = NULL, no.points = 201,
 no.title = FALSE, col = gray(0.4), y.axis.lim = 1.1,
 frame.plot = TRUE, ...)
```

Arguments

- **obj** An gamlss object e.g. `obj=model1` where model1 is a fitted gamlss object
- **obs** A number or vector of up to length eight indicating the case numbers of the observations for which fitted distributions are to be displayed, e.g. `obs=c(23,58)` will display the fitted distribution for the 23th and 58th observations
- **family** This must be a gamlss family i.e. `family=NO`
- **mu** The value(s) of the location parameter mu for which the distribution has to be evaluated e.g. `mu=c(3,7)`
- **sigma** The value(s) the scale parameter sigma for which the distribution has to be evaluated e.g. `sigma=c(3,7)`
- **nu** The value(s) the parameter nu for which the distribution has to be evaluated e.g. `nu=3`
- **tau** The value(s) the parameter tau for which the distribution has be evaluated e.g. `tau=5`
- **from** Minimum value of the random variable y (identical to `min`)
- **to** Maximum value of the random variable y (identical to `max`)
- **min** Minimum value of the random variable y e.g. `min=0`
- **max** Maximum value of y e.g. `max=10`
- **no.points** the number fo point in which the function will be evaluated
- **no.title** Whether you need title in the plot, default is `no.title=FALSE`
- **col** the color of the lines
- **y.axis.lim** the limits for the y-axis
- **frame.plot** whether to frame the individual plots
- **...** for extra arguments, Note tha usufull argument can be `col.axis`, `col.lab`, `cex.axis`, `cex.lab` etc.
Details

This function can be used to plot distributions of the GAMLSS family. If the first argument `obj` is specified and it is a GAMLSS fitted object, then the fitted distribution of this model at specified observation values (given by the second argument `obs`) is plotted for a specified y-variable range (arguments `min`, `max`, and `step`).

If the first argument is not given then the `family` argument has to be specified and the pdf is plotted at specified values of the parameters `mu`, `sigma`, `nu`, `tau`. Again the range of the y-variable has to be given.

Value

plot(s) of the required pdf(s) are returned

Warning

The range of some distributions depends on the fitted parameters

Note

The range of the y values given by min, max and step are very important in the plot

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Calliope Akantziliotou

References


(see also https://www.gamlss.com/).

See Also

gamlss
Examples

```
pdf.plot(family=BCT, min=1, max=20, mu=10, sigma=0.15, nu=-1, tau=c(4,10,20,40))
Not run:
now using an gamlss object
data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom) # fits
pdf.plot(obj=h , obs=c(23,67), min=50, max=150)
End(Not run)
```

plot.gamlss

Plot Residual Diagnostics for an GAMLSS Object

Description

This function provides four plots for checking the normalized (randomized for a discrete response distribution) quantile residuals of a fitted GAMLSS object, referred to as residuals below: a plot of residuals against fitted values, a plot of the residuals against an index or a specific explanatory variable, a density plot of the residuals and a normal Q-Q plot of the residuals. If argument ts=TRUE then the first two plots are replaced by the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the residuals.

Usage

```
S3 method for class 'gamlss'
plot(x, xvar = NULL, parameters = NULL, ts = FALSE, summaries = TRUE, ...)
```

Arguments

- **x**: a GAMLSS fitted object
- **xvar**: an explanatory variable to plot the residuals against
- **parameters**: plotting parameters can be specified here
- **ts**: set this to TRUE if ACF and PACF plots of the residuals are required
- **summaries**: set this to FALSE if no summary statistics of the residuals are required
- **...**: further arguments passed to or from other methods.

Details

This function provides four plots for checking the normalized (randomized) quantile residuals (called residuals) of a fitted GAMLSS object. Randomization is only performed for discrete response variables. The four plots are:

- residuals against the fitted values (or ACF of the residuals if ts=TRUE)
- residuals against an index or specified x-variable (or PACF of the residuals if ts=TRUE)
• kernel density estimate of the residuals
• QQ-normal plot of the residuals

For time series response variables option ts=TRUE can be used to plot the ACF and PACF functions of the residuals.

Value

Returns four plots related to the residuals of the fitted GAMLSS model and prints summary statistics for the residuals if the summary=T

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Kalliope Akantziliotou

References


(see also https://www.gamlss.com/).

See Also

gamlss

Examples

data(aids)
a<-gamlss(y~pb(x)+qrt,family=P0,data=aids)
plot(a)
rm(a)
plot.histSmo  

A Plotting Function for density estimator object histSmo

Description

Plots the estimated density or its c.d.f function or its inverse c.d.f function.

Usage

## S3 method for class 'histSmo'
plot(x, type = c("hist", "cdf", "invcdf"), ...)

Arguments

- **x**  
  An histSmo object
- **type**  
  Different plots: a histogram and density estimator, a cdf function or an inverse c.d.f function.
- **...**  
  for further arguments

Value

returns the relevant plot

Author(s)

Mikis Stasinopoulos, Paul Eilers, Bob Rigby, Vlasios Voudouris and Majid Djennad

References

(see also https://www.gamlss.com/).
plot2way

See Also

histSmo

Examples

Y <- rPARETO2(1000)
plot(m1, "cdf")
plot(m1, "invcdf")

plot2way

Function to plot two interaction in a GAMLSS model

Description

This function is designed to plot a factor to factor interaction in a GAMLSS model.

Usage

plot2way(obj, terms = list(), what = c("mu", "sigma", "nu", "tau"),
     parameter= NULL, show.legend = TRUE, ...)

Arguments

obj          A gamlss model
terms        this should be a character vector with the names of the two factors to be plotted
what         which parameters? mu, sigma, nu, or tau
parameter     equivalent to what
show.legend   whether to show the legend in the two way plot
...           Further arguments

Details

This is an experimental function which should be use with prudence since no other check is done on whether this interaction interfere with other terms in the model

Value

The function creates a 2 way interaction plot

Author(s)

Mikis Stasinopoulos
References


(see also https://www.gamlss.com/).

See Also

*term.plot*,

Examples

data(aids)
ti <- factor(c(rep(1,18),rep(2,27)))
m1 <- gamlss(y~x+qrt*ti, data=aids, family=NBI)
m2 <- gamlss(y~x+qrt*ti, data=aids, family=NO)
plot2way(m1, c("qrt","ti"))
plot2way(m1, c("ti", "qrt"))

polyS

*Auxiliary support for the GAMLSS*

Description

These two functions are similar to the poly and polym in R. Are needed for the gamlss.lo function of GAMLSS and should not be used on their own.

Usage

polyS(x, ...)
poly.matrix(m, degree = 1)

Arguments

* x a variable
* m a variable
* degree the degree of the polynomial
* ... for extra arguments
predict.gamlss

Value

Returns a matrix of orthogonal polynomials

Warning

Not be use by the user

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also https://www.gamlss.com/).

See Also

gamlss, gamlss.lo

predict.gamlss  Extract Predictor Values and Standard Errors For New Data In a GAMLSS Model

Description

predict.gamlss is the GAMLSS specific method which produce predictors for a new data set for a specified parameter from a GAMLSS objects. The predict.gamlss can be used to extract the linear predictors, fitted values and specific terms in the model at new data values in the same way that the predict.lm() and predict.glm() functions can be used for lm or glm objects. Note that linear predictors, fitted values and specific terms in the model at the current data values can also be extracted using the function lpredd() (which is called from predict if new data is NULL).
predict.gamlss

Usage

```r
S3 method for class 'gamlss'
predict(object, what = c("mu", "sigma", "nu", "tau"),
 parameter = NULL,
 newdata = NULL, type = c("link", "response", "terms"),
 terms = NULL, se.fit = FALSE, data = NULL, ...)
predictAll(object, newdata = NULL, type = c("response", "link", "terms"),
 terms = NULL, se.fit = FALSE, use.weights = FALSE,
 data = NULL, y.value = "median",
 set.to = .Machine$double.xmin,
 output = c("list", "matrix"), ...)
```

Arguments

- `object`: a GAMLSS fitted model
- `what`: which distribution fitted parameter is required, default `what="mu"`
- `parameter`: equivalent to `what`
- `newdata`: a data frame containing new values for the explanatory variables used in the model
- `type`: the default, gets the linear predictor for the specified distribution parameter. `type="response"` gets the fitted values for the parameter while `type="terms"` gets the fitted terms contribution
- `terms`: if `type="terms"`, which terms to be selected (default is all terms)
- `se.fit`: if `TRUE` the approximate standard errors of the appropriate type are extracted if exist
- `use.weights`: if `use.weights=TRUE` the old data and the `newdata` are merged and the model is refitted with weights equal to the prior weights for the old data observations and equal to a very small value (see option `set.to`) for the `newdata` values. This trick allows to obtain standard errors for all parameters
- `data`: the data frame used in the original fit if is not defined in the call
- `y.value`: how to get the response values for the `newdata` if they do not exist. The default is taking the median, `y.value="median"`. Other function like "max", "min" are allowed. Also numerical values.
- `set.to`: what values the weights for the `newdata` should take
- `output`: whether the output to be a 'list' (default) or a 'matrix'
- `...`: for extra arguments

Details

The predict function assumes that the object given in `newdata` is a data frame containing the right x-variables used in the model. This could possible cause problems if transformed variables are used in the fitting of the original model. For example, let us assume that a transformation of age is needed in the model i.e. `nage<-age^.5`. This could be fitted as `mod<-gamlss(y ~ cs(age^.5), data=mydata)` or as `nage<-age^.5; mod<-gamlss(y ~ cs(nage), data=mydata)`. The later could more efficient if the data are in thousands rather in hundreds. In the first case, the code `predict(mod, newdata=data.frame(age=c(34,56)))`...
would produce the right results. In the second case a new data frame has to be created containing the old data plus any new transform data. This data frame has to be declared in the data option. The option newdata should contain a data.frame with the new names and the transformed values in which prediction is required, (see the last example).

**Value**

A vector or a matrix depending on the options.

**Note**

This function is under development

**Author(s)**

Mikis Stasinopoulos

**References**


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

**See Also**

`lp`, `lpred`

**Examples**

data(aids)
a<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) 
newaids<-data.frame(x=c(45,46,47), qrt=c(2,3,4))
ap <- predict(a, newdata=newaids, type = "response")
ap 
# now getting all the parameters
predictAll(a, newdata=newaids)
rm(a, ap)
data(abdom)
# transform x
aa<-gamlss(y=cs(x*.5),data=abdom)
# predict at old values
predict(aa)[610]
# predict at new values
predict(aa,newdata=data.frame(x=42.43))
# now transform x first
nx<-abdom$x^.5
aaa<-gamlss(y~cs(nx),data=abdom)
# create a new data frame
newd<-data.frame( abdom, nx=abdom$x^.5)
# predict at old values
predict(aaa)[610]
# predict at new values
predict(aaa,newdata=data.frame(nx=42.43^.5), data=newd)

---

**print.gamlss**

Prints a GAMLSS fitted model

---

**Description**

print.gamlss is the GAMLSS specific method for the generic function print which prints objects returned by modelling functions.

**Usage**

```r
S3 method for class 'gamlss'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

**Arguments**

- `x` a GAMLSS fitted model
- `digits` the number of significant digits to use when printing
- `...` for extra arguments

**Value**

Prints a gamlss object

**Author(s)**

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Calliope Akantziliotou

**References**


(see also https://www.gamlss.com/).

See Also

gamlss, deviance.gamlss, fitted.gamlss

Examples

data(aids)

h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids)
print(h) # or just h
rm(h)

prof.dev

---

**prof.dev**

*Plotting the Profile Deviance for one of the Parameters in a GAMLSS model*

Description

This function plots the profile deviance of one of the (four) parameters in a GAMLSS model. It can be used if one of the parameters mu, sigma, nu or tau is a constant (not a function of explanatory variables) to obtain a profile confidence intervals.

Usage

```r
prof.dev(object, which = NULL, min = NULL, max = NULL, step = NULL, length = 7, startlastfit = TRUE, plot = TRUE, perc = 95, col="darkgreen")
```

Arguments

- **object**: A fitted GAMLSS model
- **which**: which parameter to get the profile deviance e.g. which="tau"
- **min**: the minimum value for the parameter e.g. min=1
- **max**: the maximum value for the parameter e.g. max=20
- **step**: how often to evaluate the global deviance (defines the step length of the grid for the parameter) e.g. step=1
- **length**: the length if step is not set, default equal 7
- **startlastfit**: whether to start fitting from the last fit or not, default value is startlastfit=TRUE
- **plot**: whether to plot, plot=TRUE or save the results, plot=FALSE
- **perc**: what % confidence interval is required
- **col**: The colour of the profile line
Details

This function can be used to provide likelihood based confidence intervals for a parameter for which a constant model (i.e. no explanatory model) is fitted and consequently for checking the adequacy of a particular values of the parameter. This can be used to check the adequacy of one distribution (e.g. Box-Cox Cole and Green) nested within another (e.g. Box-Cox power exponential). For example one can test whether a Box-Cox Cole and Green (Box-Cox-normal) distribution or a Box-Cox power exponential is appropriate by plotting the profile of the parameter \( \tau \). A profile deviance showing support for \( \tau=2 \) indicates adequacy of the Box-Cox Cole and Green (i.e. Box-Cox normal) distribution.

Value

Return a profile plot (if the argument \( \text{plot}=\text{TRUE} \)) and a \text{ProfLikelihood.gamlss} object if saved. The object contains:

- **values**: the values at the grid where the parameter was evaluated
- **fun**: the function which approximates the points using splines
- **min**: the minimum values in the grid
- **max**: the maximum values in the grid
- **max.value**: the value of the parameter maximising the Profile deviance (or GAIC)
- **CI**: the profile confidence interval (if global deviance is used)
- **criterion**: which criterion was used

Warning

A dense grid (i.e. small step) evaluation of the global deviance can take a long time, so start with a sparse grid (i.e. large step) and decrease gradually the step length for more accuracy.

Author(s)

Calliope Akantziliotou, Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Bob Rigby

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/).)
prof.term

See Also

gamlss, prof.term

Examples

## Not run:
data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
prof.dev(h,"nu",min=-2.000,max=2)
rm(h)
## End(Not run)

prof.term  Plotting the Profile: deviance or information criterion for one of the
terms (or hyper-parameters) in a GAMLSS model

Description

This functions plots the profile deviance for a chosen parameter included in the linear predictor of
any of the mu,sigma, nu or tau models so profile confidence intervals can be obtained. In can also
be used to plot the profile of a specified information criterion for any hyper-parameter when smooth
additive terms are used.

Usage

prof.term(model = NULL, criterion = c("GD", "GAIC"), penalty = 2.5,
other = NULL, min = NULL, max = NULL, step = NULL,
length = 7, xlabel = NULL, plot = TRUE, perc = 95,
start.prev = TRUE, col="darkgreen")

Arguments

model  this is a GAMLSS model, e.g.
model=gamlss(y~cs(x,df=this),sigma.fo=~cs(x,df=3),data=abdom), where
this indicates the (hyper)parameter to be profiled
criterion  whether global deviance ("GD") or information criterion ("GAIC") is profiled.
The default is global deviance criterion="GD"
penalty  The penalty value if information criterion is used in criterion, default penalty=2.5
other  this can be used to evaluate an expression before the actual fitting of the model
(Make sure that those expressions are well define in the global environment)
min  the minimum value for the parameter e.g. min=1
max  the maximum value for the parameter e.g. max=20
step  how often to evaluate the global deviance (defines the step length of the grid for
the parameter) e.g. step=1
length if the step is left NULL then length is considered for evaluating the grid for the parameter. It has a default value of 11
xlabel if a label for the axis is required
plot whether to plot, plot=TRUE the resulting profile deviance (or GAIC)
perc what % confidence interval is required
start.prev whether to start from the previous fitted model parameters values or not (default is TRUE)
col the color of the profile line

Details

This function can be use to provide likelihood based confidence intervals for a parameter involved in terms in the linear predictor(s). These confidence intervals are more accurate than the ones obtained from the parameters’ standard errors. The function can also be used to plot a profile information criterion (with a given penalty) against a hyper-parameter. This can be used to check the uniqueness in hyper-parameter determination using for example find.df.

Value

Return a profile plot (if the argument plot=TRUE) and an ProfLikelihood.gamlss object if saved. The object contains:

values the values at the grid where the parameter was evaluated
fun the function which approximates the points using splines
min the minimum values in the grid
max the maximum values in the grid
max.value the value of the parameter maximising the Profile deviance (or GAIC)
CI the profile confidence interval (if global deviance is used)
criterion which criterion was used

Warning

A dense grid (i.e. small step) evaluation of the global deviance can take a long time, so start with a sparse grid (i.e. large step) and decrease gradually the step length for more accuracy.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Bob Rigby

References


(see also https://www.gamlss.com/).

See Also
gamlss, prof.dev

Examples

data(aids)
# fitting a linear model
gamlss(y~x+qrt,family=NBI,data=aids)
# testing the linear beta parameter
mod<-'quote(gamlss(y ~ offset(this * x) + qrt, data = aids, family = NBI))
prof.term(mod, min=0.06, max=0.11)
# find the hyper parameter using cubic splines smoothing
mod1<-'quote(gamlss(y ~ cs(x,df=this) + qrt, data = aids, family = NBI))
prof.term(mod1, min=1, max=15, step=1, criterion="GAIC", penalty=log(45))
# find a break point in x
mod2 <- quote(gamlss(y ~ x+I((x>this)*(x-this))+qrt,family=NBI,data=aids))
prof.term(mod2, min=1, max=45, step=1, criterion="GD")
rm(mod,mod1,mod2)

Description

There are several function which use P-spline methodology:

a) pb(), the current version of P-splines which uses SVD in the fitting and therefore is the most reliable
b) pbo() and pbp(), older versions of P-splines. The first uses a simple matrix algebra in the fits. The second is the last version of pb() with SVD but uses different method for prediction.
c) pbc() the new version of cycle P-splines (using SVD)
d) cy() the older version of cycle P-splines.
e) pbm() for fitting monotonic P-splines (using SVD)
f) pbz() for fitting P-splines which allow the fitted curve to shrink to zero degrees of freedom
g) ps() the original P-splines with no facility of estimating the smoothing parameters and
j) pvc() penalised varying coefficient models.
k) pvp() older version of pb() where the prediction was different (it is here in case someone would like to compare the results).
Theoretical explanation of the above P-splines can be found in Eilers et al. (2016)

The functions take a vector and return it with several attributes. The vector is used in the construction of the design matrix $X$ used in the fitting. The functions do not do the smoothing, but assign the attributes to the vector to aid gamlss in the smoothing. The functions doing the smoothing are `gamlss.pb()`, `gamlss.pbo()`; `gamlss.pbc()` `gamlss.cy()` `gamlss.pvc()`, `gamlss.pbm()`, `gamlss.pbz` and `gamlss.ps()` which are used in the backfitting function `additive.fit`.

The function `pb()` is more efficient and faster than the original penalised smoothing function `ps()`. After December 2014 the `pb()` has changed radically to improved performance. The older version of the `pb()` function is called now `pbo()`. `pb()` allows the estimation of the smoothing parameters using different local (performance iterations) methods. The method are "ML", "ML-1", "EM", "GAIC" and "GCV".

The function `pbo()` fits monotonic smooth functions, that is functions which increase or decrease monotonically depending on the value of the argument `mono` which takes the values "up" or "down".

The function `pbz()` is similar to `pb()` with the extra property that when lambda becomes very large the resulting smooth function goes to a constant rather than to a linear function. This is very useful for model selection. The function is based on Maria Durban idea of using a double penalty, one of order 2 and one of order 1. The second penalty only applies if the effective df are close to 2 (that is if a linear is already selected).

The function `pbc()` fits a cycle penalised beta regression spline such as the last fitted value of the smoother is equal to the first fitted value. `cy()` is the older version.

The function `pvc()` fits varying coefficient models see Hastie and Tibshirani(1993) and it is more general and flexible than the old `vc()` function which was based on cubic splines.

The function `getZmatrix()` creates a (random effect) design matrix $Z$ which can be used to fit a P-splines smoother using the `re()` function. (The `re()` is an interface with the random effect function `lme` of the package `nlme`.

**Usage**

```r
pb(x, df = NULL, lambda = NULL, max.df=NULL, control = pb.control(...), ...)
pbo(x, df = NULL, lambda = NULL, control = pbo.control(...), ...)
pbp(x, df = NULL, lambda = NULL, control = pbp.control(...), ...)
pbo.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE, method = c("ML", "GAIC", "GCV", "EM", "ML-1"), k = 2, ...)
pb.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE, method = c("ML", "GAIC", "GCV"), k = 2, ...)
pbp.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE, method = c("ML", "GAIC", "GCV"), k = 2, ...)
pbc(x, df = NULL, lambda = NULL, max.df=NULL, control = pbc.control(...), ...)
pbc.control(inter = 20, degree = 3, order = 2, start = 10, method = c("ML", "GAIC", "GCV"), k = 2, sin = TRUE, ...)
cy(x, df = NULL, lambda = NULL, control = cy.control(...), ...)
cy.control(inter = 20, degree = 3, order = 2, start = 10, method = c("ML", "GAIC", "GCV", "EM", "ML-1"), k = 2, ts=FALSE, ...)
pvc(x, df = NULL, lambda = NULL, by = NULL, control = pvc.control(...), ...)
pvc.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE, ...)
```
method = c("ML", "GAIC", "GCV"), k = 2, ...)
pbm(x, df = NULL, lambda = NULL, mono = c("up", "down"),
    control = pbm.control(...), ...)
pbm.control(inter = 20, degree = 3, order = 2, start = 10, quantiles = FALSE,
    method = c("ML", "GAIC", "GCV"), k = 2, kappa = 1e10, ...)
pbz(x, df = NULL, lambda = NULL, control = pbz.control(...), ...)
pbz.control(inter = 20, degree = 3, order = 2, start = c(1e-04, 1e-04),
    quantiles = FALSE, method = c("ML", "GAIC", "GCV"), k = 2, lim = 3, ...)
ps(x, df = 3, lambda = NULL, ps.intervals = 20, degree = 3, order = 3)
getZmatrix(x, xmin = NULL, xmax = NULL, inter = 20, degree = 3, order = 3)

Arguments

x          the univariate predictor
df         the desired equivalent number of degrees of freedom (trace of the smoother matrix minus two for the constant and linear fit)
lambda     the smoothing parameter
max.df     the limit of how large the effective degrees of freedom should be allowed to be
control    setting the control parameters
by         a factor, for fitting different smoothing curves to each level of the factor or a continuous explanatory variable in which case the coefficients of the by variable change smoothly according to x i.e. beta(x)*z where z is the by variable.
...         for extra arguments
inter      the no of break points (knots) in the x-axis
degree     the degree of the piecewise polynomial
order      the required difference in the vector of coefficients
start      the lambda starting value if the local methods are used, see below
quantiles if TRUE the quantile values of x are use to determine the knots
ts         if TRUE assumes that it is a seasonal factor
method     The method used in the (local) performance iterations. Available methods are "ML", "ML-1", "EM", "GAIC" and "GCV"
k         the penalty used in "GAIC" and "GCV"
mono       for monotonic P-splines whether going "up" or "down"
kappa     the smoothing hyper-parameter for the monotonic part of smoothing
ps.intervals the no of break points in the x-axis
xmin       minimum value for creating the B-spline
xmax       maximum value for creating the B-spline
sin         whether to use the sin penalty or not
lim         at which level the second penalty of order 1 should start
Details

The `ps()` function is based on Brian Marx function which can be found in his website. The `pb()`, `cy()`, `pvc()` and `pbm()` functions are based on Paul Eilers’s original R functions. Note that `ps()` and `pb()` functions behave differently at their default values if df and lambda are not specified. `ps(x)` by default uses 3 extra degrees of freedom for smoothing `x`. `pb(x)` by default estimates lambda (and therefore the degrees of freedom) automatically using a "local" method. The local (or performance iterations) methods available are: (i) local Maximum Likelihood, "ML", (ii) local Generalized Akaike information criterion, "GAIC", (iii) local Generalized Cross validation "GCV" (iv) local EM-algorithm, "EM" (which is very slow) and (v) a modified version of the ML, "ML-1" which produce identical results with "EM" but faster.

The function `pb()` fits a P-spline smoother.

The function `pbm()` fits a monotonic (going up or down) P-spline smoother.

The function `pbc()` fits a P-spline smoother where the beginning and end are the same.

The `pvc()` fits a varying coefficient model.

Note that the local (or performance iterations) methods can occasionally make the convergence of `gamlss` less stable compared to models where the degrees of freedom are fixed.

Value

the vector `x` is returned, endowed with a number of attributes. The vector itself is used in the construction of the model matrix, while the attributes are needed for the backfitting algorithms `additive.fit()`.

Warning

There are occasions where the automatic local methods do not work. One accusation which came to our attention is when the range of the response variable values is very large. Scaling the response variable will solve the problem.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Paul Eilers

References


See Also
gamlss, gamlss.ps.cs

Examples

#-------------------------------
# pb() and ps() functions
data(aids)
# fitting a smoothing cubic spline with 7 degrees of freedom
# plus the a quarterly effect
aids1<-gamlss(y~ps(x,df=7)+qrt, data=aids, family=PO) # fix df's
aids2<-gamlss(y~pb(x,df=7)+qrt, data=aids, family=PO) # fix df's
aids3<-gamlss(y~pb(x)+qrt, data=aids, family=PO) # estimate lambda
with(aids, plot(x,y))
with(aids, lines(x,fitted(aids1),col="red"))
with(aids, lines(x,fitted(aids2),col="green"))
with(aids, lines(x,fitted(aids1),col="yellow"))
rm(aids1, aids2, aids3)
#-------------------------------
## Not run:
# pbc()
# simulate data
set.seed(555)
x = seq(0, 1, length = 100)
y = sign(cos(1 * x * 2 * pi + pi / 4)) + rnorm(length(x)) * 0.2
plot(y~x)
m1<-gamlss(y~pbc(x))
lines(fitted(m1)~x)
rm(y,x,m1)
#-------------------------------
# the pvc() function
# function to generate data
genData <- function(n=200)
{
  f1 <- function(x)-60+15*x-0.10*x^2
  f2 <- function(x)-120+10*x+0.08*x^2
  set.seed(1441)
x1 <- runif(n/2, min=0, max=55)
x2 <- runif(n/2, min=0, max=55)
y1 <- f1(x1)+rNO(n=n/2,mu=0,sigma=20)
y2 <- f2(x2)+rNO(n=n/2,mu=0,sigma=30)
y <- c(y1,y2)
x <- c(x1,x2)
f <- gl(2,n/2)
```r
da<-data.frame(y,x,f)
da
}
da<-genData(500)
plot(y~x, data=da, pch=21,bg=c("gray","yellow3"[unclass(f)]))
fitting models
smoothing x
m1 <- gamlss(y~pb(x), data=da)
parallel smoothing lines
m2 <- gamlss(y~pb(x)+f, data=da)
linear interaction
m3 <- gamlss(y~pb(x)+f*x, data=da)
varying coefficient model
m4 <- gamlss(y~pvc(x, by=f), data=da)
GAIC(m1,m2,m3,m4)
plotting the fit
lines(fitted(m4)[da$f==1][order(da$x[da$f==1])]~da$x[da$f==1][order(da$x[da$f==1])], col="blue", lwd=2)
lines(fitted(m4)[da$f==2][order(da$x[da$f==2])]~da$x[da$f==2][order(da$x[da$f==2])], col="red", lwd=2)
rm(da,m1,m2,m3,m4)
#=================================
the rent data
first with a factor
data(rent)
plot(R~Fl, data=rent, pch=21,bg=c("gray","blue")[unclass(rent$B)])
r1 <- gamlss(R~pb(Fl), data=rent)
identical to model
r11 <- gamlss(R~pvc(Fl), data=rent)
now with the factor
r2 <- gamlss(R-pvc(Fl, by=B), data=rent)
lines(fitted(r2)[rent$B==1][order(rent$Fl[rent$B==1])]~rent$Fl[rent$B==1][order(rent$Fl[rent$B==1])], col="blue", lwd=2)
lines(fitted(r2)[rent$B==0][order(rent$Fl[rent$B==0])]~rent$Fl[rent$B==0][order(rent$Fl[rent$B==0])], col="red", lwd=2)
probably not very sensible model
rm(r1,r11,r2)
#-----------
now with a continuous variable
additive model
h1 <-gamlss(R-pb(Fl)+pb(A), data=rent)
varying-coefficient model
h2 <-gamlss(R-pb(Fl)+pb(A)+pvc(A,by=Fl), data=rent)
AIC(h1,h2)
rm(h1,h2)
#-----------
monotone function
set.seed(1334)
x = seq(0, 1, length = 100)
p = 0.4
y = sin(2 * pi * p * x) + rnorm(100) * 0.1
plot(y~x)
m1 <- gamlss(y~pbm(x))
```

points(fitted(m1)-x, col="red")
yy <- -y
plot(yy~x)
m2 <- gamlss(yy-pbm(x, mono="down"))
points(fitted(m2)-x, col="red")

# the pbz() function
# creating uncorrelated data
set.seed(123)
y<-rNO(100)
x<-1:100
plot(y~x)

#---
# ML estimation
m1<-gamlss(y-pbz(x))
m2 <-gamlss(y-pb(x))
AIC(m1,m2)
op <- par( mfrow=c(1,2))
term.plot(m1, partial=T)
term.plot(m2, partial=T)
par(op)

# GAIC estimation
m11<-gamlss(y-pbz(x, method="GAIC", k=2))
m21 <-gamlss(y-pb(x, method="GAIC", k=2))
AIC(m11,m21)
op <- par( mfrow=c(1,2))
term.plot(m11, partial=T)
term.plot(m21, partial=T)
par(op)

# GCV estimation
m12<-gamlss(y-pbz(x, method="GCV"))
m22 <-gamlss(y-pb(x, method="GCV"))
AIC(m12,m22)
op <- par( mfrow=c(1,2))
term.plot(m12, partial=T)
term.plot(m22, partial=T)
par(op)

# fixing df is more trycky since df are the extra df
m13<-gamlss(y-pbz(x, df=0))
m23 <-gamlss(y-pb(x, df=0))
AIC(m13,m23)

# here the second penalty is not take effect therefore identical results
m14<-gamlss(y-pbz(x, df=1))
m24 <-gamlss(y-pb(x, df=1))
AIC(m14,m24)

# fixing lambda
m15<-gamlss(y-pbz(x, lambda=1000))
m25 <-gamlss(y-pb(x, lambda=1000))
AIC(m15,m25)

# prediction
m1<-gamlss(y-pbz(x), data=data.frame(y,x))
m2 <-gamlss(y-pb(x), data=data.frame(y,x))
AIC(m1,m2)
predict(m1, newdata=data.frame(x=c(80, 90, 100, 110)))
predict(m2, newdata=data.frame(x=c(80, 90, 100, 110)))
#---------------------------------------------------
## End(Not run)

Q.stats

A function to calculate the Q-statistics

Description

This function calculates and prints the Q-statistics (or Z-statistics) which are useful to test normality of the residuals within a range of an independent variable, for example age in centile estimation, see Royston and Wright (2000).

Usage

Q.stats(obj = NULL, xvar = NULL, resid = NULL, xcut.points = NULL, n.inter = 10, zvals = TRUE, save = TRUE, plot = TRUE, digits.xvar = getOption("digits"), ...)

Arguments

obj a GAMLSS object
xvar a unique explanatory variable
resid quantile or standardised residuals can be given here instead of a GAMLSS object in obj. In this case the function behaves differently (see details below)
xcut.points the x-axis cut off points e.g. c(20,30). If xcut.points=NULL then the n.inter argument is activated
n.inter if xcut.points=NULL this argument gives the number of intervals in which the x-variable will be split, with default 10
zvals if TRUE the output matrix contains the individual Z-statistics rather that the Q statistics
save whether to save the Q-statistics or not with default equal to TRUE. In this case the functions produce a matrix giving individual Q (or z) statistics and the final aggregate Q’s
plot whether to plot a visual version of the Q statistics (default is TRUE)
digits.xvar to control the number of digits of the xvar in the plot
... for extra arguments
Details

Note that the function Q.stats behaves differently depending whether the obj or the resid argument is set. The obj argument produces the Q-statistics (or Z-statistics) table appropriate for centile estimation (therefore it expect a reasonable large number of observations). The argument resid allows any model residuals, (not necessary GAMLSS), suitable standardised and is appropriate for any size of data. The resulting table contains only the individuals Z-statistics.

Value

A table containing the Q-statistics or Z-statistics. If plot=TRUE it produces also an graphical representation of the table.

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby with contributions from Elaine Borghie

References


(see also https://www.gamlss.com/).

See Also

gamlss, centiles.split, wp

Examples

data(abdom)
h<-gamlss(y~pb(x), sigma.formula~pb(x), family=BCT, data=abdom)
Q.stats(h,xvar=abdom$x, n.inter=8)
Q.stats(h,xvar=abdom$x, n.inter=8,zvals=FALSE)
Q.stats(resid=resid(h), xvar=abdom$x, n.inter=5)
rm(h)
quantSheets

Quantile Sheets

Description

The quantile sheets function quantSheets() is based on the work of Sabine Schnabe and Paul Eiler (see references below). The estimation of the quantile curves is done simultaneously by also smoothing in the direction of y as well as x. This avoids (but do not eliminate completely) the problem of crossing quantiles.

Usage

```r
quantSheets(y, x, x.lambda = 1, p.lambda = 1, data = NULL,
 cent = 100 * pnorm((-4:4) * 2/3),
 control = quantSheets.control(...), print = TRUE, ...)
quantSheets.control(x.inter = 10, p.inter = 10, degree = 3, logit = FALSE,
 order = 2, kappa = 0, n.cyc = 100, c.crit = 1e-05, plot = TRUE,
 power = NULL, ...)
findPower(y, x, data = NULL, lim.trans = c(0, 1.5), prof = FALSE,
 k = 2, c.crit = 0.01, step = 0.1)
```

```r
z.scoresQS(object, y, x, plot = FALSE, tol = NULL)
```

Arguments

- `y` the y variable
- `x` the x variable
- `x.lambda` smoothing parameter in the direction of x
- `p.lambda` smoothing parameter in the direction of y (probabilities)
- `data` the data frame
- `cent` the centile values where the quantile sheets is evaluated
- `control` for the parameters controlling the algorithm
- `print` whether to print the sample percentages
- `x.inter` number of intervals in the x direction for the B-splines
- `p.inter` number of intervals in the probabilities (y-direction) for the B-splines
- `degree` the degree of the B-splines
- `logit` whether to use logit(p) instead of p (probabilities) for the y-axis
- `order` the order of the penalty
- `kappa` is a ridge parameter set to zero (for no ridge effect)
- `n.cyc` number of cycles of the algorithm
**Details**

The advantage of quantile sheets is that they estimate simultaneously all the quantiles. This almost eliminates the problem of crossing quantiles. The method is very fast and useful for exploratory tool. The function needs two smoothing parameters. Those two parameters have to specified by the user. They are *not* estimated automatically. They can be selected by visual inspection.

The disadvantages of quantile sheets comes from the fact that like all non-parametric techniques do not have a goodness of fit measure to change how good is the models and the residuals based diagnostics are not existence since it is difficult to define residuals in this set up.

In this implementation we do provide residuals by using the `flexDist()` function from package `gamlss.dist`. This is based on the idea that by knowing the quantiles of the distribution we can reconstruct non parametrically the distribution itself and this is what `flexDist()` is doing. As a word of caution, such a construct is based on several assumptions and depends on several smoothing parameters. Treat those residuals with caution. The same caution should apply to the function `z.scoresQS()`.

**Value**

Using the function `quantSheets()` a `quantSheets` object is returned having the following methods: `print()`, `fitted()`, `predict()` and `resid()`.

Using `findPower()` a single values of the power parameter is returned.

Using `z.scoresQS` a vector of z-scores is returned.

**Author(s)**

Mikis Stasinopoulos based on function provided by Paul Eiler and Sabine Schnabe

**References**


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

- `lms`: for a parametric equivalent results.

Examples

```r
data(abdom)
m1 <- quantSheets(y,x, data=abdom)
head(fitted(m1))
p1 <- predict(m1, newdata=c(20,30,40))
matpoints(c(20,30,40), p1)
z.scoresQS(m1,y=c(150, 300),x=c(20, 30))
If we needed a power transformation not appropriate for this data
findPower(y,x, data=abdom)
```

### random

Specify a random intercept model in a GAMLSS formula

**Description**

They are two functions for fitting random effects within a GAMLSS model, `random()` and `re()`.

The function `random()` is based on the original `random()` function of Trevor Hastie in the package `gam`. In our version the function has been modified to allow a "local" maximum likelihood estimation of the smoothing parameter `lambda`. This method is equivalent to the PQL method of Breslow and Clayton (1993) applied at the local iterations of the algorithm. In fact for a GLM model and a simple random effect it is equivalent to `glmmPQL()` function in the package `MASS` see Venables and Ripley (2002). Venables and Ripley (2002) claimed that this iterative method was first introduced by Schall (1991). Note that in order for the "local" maximum likelihood estimation procedure to operate both argument `df` and `lambda` has to be `NULL`.

The function `re()` is an interface for calling the `lme()` function of the package `nlme`. This gives the user the ability to fit complicated random effect models while the assumption of the normal distribution for the response variable is relaxed. The theoretical justification comes again from the fact that this is a PQL method, Breslow and Clayton (1993).
random

Usage

random(x, df = NULL, lambda = NULL, start=10)

re(fixed = ~1, random = NULL, correlation = NULL, method = "ML",
level = NULL, ...)

Arguments

x

a factor
df

the target degrees of freedom
lambda

the smoothing parameter lambda which can be viewed as a shrinkage parameter.
start

starting value for lambda if local Maximul likelihood is used.
fixed

a formula specify the fixed effects of the lme() model. This, in most cases can be also included in the gamlss parameter formula
random

a formula or list specifying the random effect part of the model as in lme() function
correlation

the correlation structure of the lme() model
method

which method, "ML" (the default), or "REML"
level

this argument has to be set to zero (0) if when use predict() you want to get the marginal contribution
...

this can be used to pass arguments for lmeControl()

Details

The function random() can be seen as a smoother for use with factors in gamlss(). It allows the fitted values for a factor predictor to be shrunk towards the overall mean, where the amount of shrinking depends either on lambda, or on the equivalent degrees of freedom or on the estimated sigma parameter (default). Similar in spirit to smoothing splines, this fitting method can be justified on Bayesian grounds or by a random effects model. Note that the behaviour of the function is different from the original Hastie function. Here the function behaves as follows: i) if both df and lambda are NULL then the PQL method is used ii) if lambda is not NULL, lambda is used for fitting iii) if lambda is NULL and df is not NULL then df is used for fitting.

Since factors are coded by model.matrix() into a set of contrasts, care has been taken to add an appropriate "contrast" attribute to the output of random(). This zero contrast results in a column of zeros in the model matrix, which is aliased with any column and is hence ignored.

The use of the function re() requires knowledge of the use of the function lme() of the package nlme for the specification of the appropriate random effect model. Some care should betaken whether the data set is

Value

x is returned with class "smooth", with an attribute named "call" which is to be evaluated in the backfitting additive.fit() called by gamlss()
Author(s)

For `re()` Mikis Stasinopoulos and Marco Enea and for `random()` Trevor Hastie (amended by Mikis Stasinopoulos).

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).


See Also

gamlss, `gamlss.random`

Examples

```r
#------------- Example 1 from Pinheiro and Bates (2000) page 15-------------
bring nlme
library(nlme)
data(ergoStool)
lme model
l1<-lme(effort~Type, data=ergoStool, random=~1|Subject, method="ML")
use random()
t1<-gamlss(effort~Type+random(Subject), data=ergoStool)
use re() with fixed effect within re()
t2<-gamlss(effort~re(fixed=~Type, random=~1|Subject), data=ergoStool)
use re() with fixed effect in gamlss formula
t3<-gamlss(effort~Type+re(random=~1|Subject), data=ergoStool)
compare lme fitted values with random
plot(fitted(l1), fitted(t1))
compare lme fitted values with random
plot(fitted(l1), fitted(t2))
```
lines(fitted(l1), fitted(t3), col=2)
# getting the fitted coefficients
getSmo(t2)

### Not run:
#-------------------Example 2 Hodges data-----------------------------
data(hodges)
plot(prind~state, data=hodges)
m1<- gamlss(prind~random(state), sigma.fo=~random(state), nu.fo=~random(state),
           tau.fo=~random(state), family=BCT, data=hodges)
m2<- gamlss(prind~re(random=~1|state), sigma.fo=~re(random=~1|state),
           nu.fo=~re(random=~1|state), tau.fo=~re(random=~1|state), family=BCT,
           data=hodges)
# comparing the fitted effective degrees of freedom
m1$mu.df
m2$mu.df
m1$sigma.df
m2$sigma.df
m1$nu.df
m2$nu.df
m1$tau.df
m2$tau.df
# random effect for tau is not needed
m3<- gamlss(prind~random(state), sigma.fo=~random(state), nu.fo=~random(state),
             family=BCT, data=hodges, start.from=m1)
plot(m3)
# term plots work for random but not at the moment for re()
op <- par(mfrow=c(2,2))
term.plot(m3, se=TRUE)
term.plot(m3, se=TRUE, what="sigma")
term.plot(m3, se=TRUE, what="nu")
par(op)
# getting information from a fitted lme object
coeff(getSmo(m2))
ranef(getSmo(m2))
VarCorr(getSmo(m2))
summary(getSmo(m2))
intervals(getSmo(m2))
fitted(getSmo(m2))
fixef(getSmo(m2))
# plotting
plot(getSmo(m2))
qqnorm(getSmo(m2))

#-------------------Example 3 from Pinheiro and Bates (2000) page 42-------------------
data(Pixel)
l1 <- lme(pixel~ day+I(day^2), data=Pixel, random=list(Dog=~day, Side=~1),
           method="ML")
# this will fail
t1< gamlss(pixel~re(fixed=~day+I(day^2), random=list(Dog=~day, Side=~1)),
           data=Pixel)
# but this is working
t1< gamlss(pixel~re(fixed=~day+I(day^2), random=list(Dog=~day, Side=~1),
             opt="optim"), data=Pixel)
```r
plot(fitted(l1)~fitted(t1))
#-------------------Example 4 from Pinheiro and Bates (2000) page 146-------------------
data(Orthodont)
l1 <- lme(distance~ I(age-11), data=Orthodont, random=~I(age-11)|Subject,
method="ML")
t1<-gamlss(distance~I(age-11)+re(random=~I(age-11)|Subject), data=Orthodont)
plot(fitted(l1)~fitted(t1))
checking the model
plot(t1)
wp(t1, ylim.all=2)
two observation fat try LO
t2<-gamlss(distance~I(age-11)+re(random=~I(age-11)|Subject, opt="optim",
numIter=100), data=Orthodont, family=LO)
plot(t2)
wp(t2, ylim.all=2)
a bit better but not satisfactory Note that 3 parameters distributions fail
#-------------------example 5 from Venable and Ripley (2002)--------------------------
library(MASS)
data(bacteria)
summary(glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
family = binomial, data = bacteria))
s1 <- gamlss(y ~ trt + I(week > 2)+random(ID), family = BI, data = bacteria)
s2 <- gamlss(y ~ trt + I(week > 2)+re(random=~1|ID), family = BI,
data = bacteria)
s3 <- gamlss(y ~ trt + I(week > 2)+re(random=~1|ID, method="REML"), family = BI,
data = bacteria)
the estimate of the random effect sd sigma_b
sqrt(getSmo(s1)$tau2)
getSmo(s2)
getSmo(s3)
#-------------------Example 6 from Pinheiro and Bates (2000) page 239-244-------------------
using corAR1()
data(Ovary)
AR1
l1 <- lme(follicles~sin(2*pi*Time)+cos(2*pi*Time), data=Ovary,
random=pdDiag(~sin(2*pi*Time)), correlation=corAR1())
ARMA
l2 <- lme(follicles~sin(2*pi*Time)+cos(2*pi*Time), data=Ovary,
random=pdDiag(~sin(2*pi*Time)), correlation=corARMA(q=2))
now gamlss
AR1
t1 <- gamlss(follicles=re(fixed=-sin(2*pi*Time)+cos(2*pi*Time),
random=pdDiag(~sin(2*pi*Time)), correlation=corAR1()), data=Ovary)
plot(fitted(l1)~fitted(t1))
ARMA
t2 <- gamlss(follicles=re(fixed=-sin(2*pi*Time)+cos(2*pi*Time),
random=pdDiag(~sin(2*pi*Time)),
correlation=corARMA(q=2)), data=Ovary)
plot(fitted(l2)~fitted(t2))
AIC(t1,t2)
wp(t2, ylim.all=1)
```
refit

---

### End(Not run)

refit

**Refit a GAMLSS model**

---

**Description**

This function refits a GAMLSS model. It is useful when the algorithm has not converged after 20 outer iteration (the default value).

**Usage**

```r
refit(object, ...)
```

**Arguments**

- `object`: a GAMLSS fitted model which has not converged
- `...`: for extra arguments

**Details**

This function is useful when the iterations have reach the maximum value set by the code(n.cyc) of the `gamlss.control` function and the model has not converged yet.

**Value**

Returns a GAMLSS fitted model

**Note**

The function `update` does a very similar job.

**Author(s)**

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

**References**


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

`gamlss, update.gamlss`

Examples

```r
data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
refit(h)
rm(h)
```

---

**residuals.gamlss**

*Extract Residuals from GAMLSS model*

**Description**

`residuals.gamlss` is the GAMLSS specific method for the generic function `residuals` which extracts the residuals for a fitted model. The abbreviated form `resid` is an alias for `residuals`.

**Usage**

```r
S3 method for class 'gamlss'
residuals(object, what = c("z-scores", "mu", "sigma", "nu", "tau"),
type = c("simple", "weighted", "partial"),
terms=NULL, ...)
```

**Arguments**

- `object`: a GAMLSS fitted model
- `what`: specify whether the standardized residuals are required, called here the "z-scores", or residuals for a specific parameter
- `type`: the type of residual if residuals for a parameter are required
- `terms`: if type is "partial" this specifies which term is required
- `...`: for extra arguments

**Details**

The "z-scores" residuals saved in a GAMLSS object are the normalized (randomized) quantile residuals (see Dunn and Smyth, 1996). Randomization is only needed for the discrete family distributions, see also `rqres.plot`. Residuals for a specific parameter can be "simple" = (working variable - linear predictor), "weighted" = sqrt(working weights)*(working variable - linear predictor) or "partial" = (working variable - linear predictor)+contribution of specific terms.
Value

A vector or a matrix of the appropriate residuals of a GAMLSS model. Note that when weights are
used in the fitting the length of the residuals can be different from N the length of the fitted values.
Observations with weights equal to zero are not appearing in the residuals. Also observations with
frequencies as weights will appear more than once according to their frequencies.

Note

The "weighted" residuals of a specified parameter can be zero and one if the square of first derivative
have been used in the fitting of this parameter

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> and Bob Rigby

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and

modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older
version can be found in https://www.gamlss.com/.

jstatsoft.org/v23/i07/.

Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

(see also https://www.gamlss.com/).

See Also

print.gamlss, summary.gamlss, fitted.gamlss, coef.gamlss, residuals.gamlss, update.gamlss,
plot.gamlss, deviance.gamlss, formula.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=NBI, data=aids) #
plot(aids$x,resid(h))
plot(aids$x,resid(h,"sigma") )
rm(h)
Specify ridge or lasso Regression within a GAMLSS Formula

Description

The function `ri()` allows the user to fit a ridge regression within GAMLSS. It allows the coefficients of a set of explanatory variables to be shrunk towards zero. The amount of shrinking depends either on lambda, or on the equivalent degrees of freedom (df). The type of shrinking depends on the argument `Lp` see example.

Usage

```r
ri(X = NULL, x.vars = NULL, df = NULL, lambda = NULL,
 method = c("ML", "GAIC"), order = 0, start = 10, Lp = 2,
 kappa = 1e-05, iter = 100, c.crit = 1e-06, k = 2)
```

Arguments

- `X`: A matrix of explanatory variables `X` which is standardised (mean=0, sd=1) automatically. Note that in order to get predictions you should use the option `x.vars` which variables from the `data.frame` declared in `data` needs to be included. This is a way to fit the model if predictions are required.
- `df`: the effective degrees of freedom `df`
- `lambda`: the smoothing parameter `lambda`
- `method`: which method is used for the estimation of the smoothing parameter, ‘ML’ or ‘GAIC’ are allowed.
- `order`: the order of the difference applied to the coefficients with default zero. (Do not change this unless there is some ordering in the explanatory variables.)
- `start`: starting value for lambda if it estimated using ‘ML’ or ‘GAIC’
- `Lp`: The type of penalty required. `Lp=2` a proper ridge regression is the default. Use code`Lp=1` for lasso and different values for different penalties.
- `kappa`: a regulation parameters used for the weights in the penalties.
- `iter`: the number of internal iteration allowed see details.
- `c.crit`: `c.crit` is the convergent criterion
- `k`: `k` is the penalty if ‘GAIC’ method is used.

Details

This implementation of ridge and related regressions is based on an idea of Paul Eilers which used weights in the penalty matrix. The type of weights are defined by the argument `Lp`. `Lp=2` is the standard ridge regression. `Lp=1` fits a lasso regression while `Lp=0` allows a "best subset" regression see Hastie et al (2009) page 71.
Value

x is returned with class "smooth", with an attribute named "call" which is to be evaluated in the backfitting additive.fit() called by gamlss()

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Paul Eilers

References


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also

gamlss

Examples

```r
USAIR DATA
standarise data 1---
ridge
m1<- gamlss(y~ri(x.vars=c("x1","x2","x3","x4","x5","x6")),
 data=usair)
lasso
m2<- gamlss(y~ri(x.vars=c("x1","x2","x3","x4","x5","x6"), Lp=1),
 data=usair)
best subset
m3<- gamlss(y~ri(x.vars=c("x1","x2","x3","x4","x5","x6"), Lp=0),
 data=usair)
#------ plotting the coefficients
op <- par(mfrow=c(3,1))
plot(getSmo(m1)) #
plot(getSmo(m2))
plot(getSmo(m3))
par(op)
```
Description

This function plots worm plots, van Buuren and Fredriks M. (2001), or QQ-plots of the normalized randomized quantile residuals (Dunn and Smyth, 1996) for a model using a discrete GAMLSS family distribution.

Usage

rqres.plot(obj = NULL, howmany = 6, plot.type = c("few", "all"), type = c("wp", "QQ"), xlim = NULL, ylim = NULL, ...) 
get.rqres(obj = NULL, howmany = 10, order = FALSE)

Arguments

- **obj**: a fitted GAMLSS model object from a "discrete" type of family
- **howmany**: The number randomise quantile residuals required i.e. howmany=6
- **plot.type**: whether to plot few of the randomised quantile residual realisations, "few" in a separate plots (there must be less than 8) or all "all" in one plot (with their median)
- **type**: whether to plot worm plots "wp" or QQ plots "QQ" with default worm plots
- **xlim**: setting manually the xlim of the graph
- **ylim**: setting manually the ylim of the graph
- **order**: whether to order the ealization of randomised quantile residuals
- **...**: for extra arguments to be passed to wp()

Details

For discrete family distributions, the `gamlss()` function saves on exit one realization of randomized quantile residuals which can be plotted using the generic function `plot` which calls the `plot.gamlss`. Looking at only one realization can be misleading, so the current function creates QQ-plots for several realizations. The function allows up to 10 QQ-plots to be plotted. Occasionally one wishes to create a lot of realizations and then take a median of them (separately for each ordered value) to create a single median realization. The option `all` in combinations with the option howmany creates a QQ-plot of the medians of the normalized randomized quantile residuals. These 'median' randomized quantile residuals can be saved using the option (save=TRUE).

Value

If `save` it is TRUE then the vector of the median residuals is saved.
Description

This function gives the generalised R-squared of Nagelkerke (1991) for a GAMLSS model.

Usage

Rsq(object, type = c("Cox Snell","Cragg Uhler","both"))
Arguments

object  a GAMLSS object
type    which definition of R squared. Can be the “Cox Snell” or the Nagelkerke, "Cragg Uhler" or "both".

Details

The Rsq() function uses the definition for R-squared:

\[
R^2 = 1 - \left( \frac{L(0)}{L(\hat{\theta})} \right)^{2/n}
\]

where \( L(0) \) is the null model (only a constant is fitted to all parameters) and \( L(\hat{\theta}) \) is the current fitted model. This definition sometimes is referred to as the Cox & Snell R-squared. The Nagelkerke /Cragg & Uhler’s definition divides the above with

\[
1 - L(0)^{2/n}
\]

Value

The Rsq() produces a single value if type="Cox Snell" or "Cragg Uhler" and a list if type="both".

Note

The null model is fitted using the function gamlssML() which can create warning messages

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References


(see also https://www.gamlss.com/).

See Also

GAIC
Examples

```r
data(aids)
m1 <- gamlss(y~x+qrt, data=aids, family=NBI)
Rsq(m1)
Rsq(m1, type="both")
```

---

**rvcov**

Robust Variance-Covariance matrix of the parameters from a fitted GAMLSS model

---

Description

The function `rvcov()` is designed for providing robust standard errors for the parameters estimates of a GAMLSS fitted model. The same result can be achieved by using `vcov(fitted_model, robust=TRUE)`. The function `get.K()` gets the $K$ matrix (see details below).

Usage

```r
rvcov(object, type = c("vcov", "cor", "se", "coef", "all"),
 hessian.fun = c("R", "PB")
)
get.K(object, what = c("K", "Deriv"))
```

Arguments

- `object`: a GAMLSS fitted object
- `type`: this argument for `rvcov()` function whether variance-covariance matrix, correlation matrix, standard errors or all of them
- `what`: this an argument for the function `get.K()` allowing to get either $K$ or the first derivative of the likelihood with respect to the parameters (the $\beta$’s in the GAMLSS notation).
- `hessian.fun`: How to obtain numerically the Hessian i) using `optimHess()`, option "R" ii) using a function by Pinheiro and Bates taken from package `nlme`, option "PB".

Details

The robust standard errors are calculated for the robust sandwich estimator of the variance-covariance given by $S = VKV$ where $V$ is the standard variance-covariance matrix (the inverse of the information matrix) and $K$ is an estimate of the variance of he first derivatives of he likelihood. The function `get.K()` is use the get the required $K$ matrix.

Value

A variance covariance matrix or other relevant output

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Vlasis Voudouris
stepGAIC

Choose a model by GAIC in a Stepwise Algorithm

Description

The function `stepGAIC()` performs stepwise model selection using a Generalized Akaike Information Criterion (GAIC). It is based on the function `stepAIC()` given in the library MASS of Venables and Ripley (2002). The function has been changed recently to allow parallel computation. The parallel computations are similar to the ones performed in the function `boot()` of the `boot` package.
Note that since version 4.3-5 of \texttt{gamlss} the \texttt{stepGAIC()} do not have the option of using the function \texttt{stepGAIC.CH} through the argument additive.

Note that \texttt{stepGAIC()} is relying to the \texttt{dropterm()} and \texttt{addterm()} methods applied to \texttt{gamlss} objects. \texttt{drop1()} and \texttt{add1()} are equivalent methods to the \texttt{dropterm()} and \texttt{addterm()} respectively but with different default arguments (see the examples).

The function \texttt{stepGAIC.VR()} is the old version of \texttt{stepGAIC()} with no parallel computations.

The function \texttt{stepGAIC.CH} is based on the S function \texttt{step.gam()} (see Chambers and Hastie (1991)) and it is more suited for model with smoothing additive terms when the degrees of freedom for smoothing are fixed in advance. This is something which rarely used these days, as most of the smoothing functions allow the calculations of the smoothing parameter, see for example the additive function \texttt{pb()}.

The functions \texttt{stepGAIC.VR()} and \texttt{stepGAIC.CH()} have been adapted to work with \texttt{gamlss} objects and the main difference is the scope argument, see below.

While the functions \texttt{stepGAIC()} is used to build models for individual parameters of the distribution of the response variable, the functions \texttt{stepGAICA11.A()} and \texttt{stepGAICA11.A()} are building models for all the parameters.

The functions \texttt{stepGAICA11.A()} and \texttt{stepGAICA11.B()} are based on the \texttt{stepGAIC()} function but use different strategies for selecting a appropriate final model.

\texttt{stepGAICA11.A()} has the following strategy:

\textbf{Strategy A:}

i) build a model for \texttt{mu} using a forward approach.

ii) given the model for \texttt{mu} build a model for \texttt{sigma} (forward)

iii) given the models for \texttt{mu} and \texttt{sigma} build a model for \texttt{nu} (forward)

iv) given the models for \texttt{mu}, \texttt{sigma} and \texttt{nu} build a model for \texttt{tau} (forward)

v) given the models for \texttt{mu}, \texttt{sigma}, \texttt{nu} and \texttt{tau} check whether the terms for \texttt{nu} are needed using backward elimination.

vi) given the models for \texttt{mu}, \texttt{sigma}, \texttt{nu} and \texttt{tau} check whether the terms for \texttt{sigma} are needed (backward).

vii) given the models for \texttt{mu}, \texttt{sigma}, \texttt{nu} and \texttt{tau} check whether the terms for \texttt{mu} are needed (backward).

Note for this strategy to work the \texttt{scope} argument should be set appropriately.

\texttt{stepGAICA11.B()} uses the same procedure as the function \texttt{stepGAIC()} but each term in the scope is fitted to all the parameters of the distribution, rather than the one specified by the argument \texttt{what} of \texttt{stepGAIC()}. The \texttt{stepGAICA11.B()} relies on the \texttt{add1All()} and \texttt{drop1All()} functions for the selection of variables.

\textbf{Usage}

\begin{verbatim}
stepGAIC(object, scope, direction = c("both", "backward", "forward"),
    trace = T, keep = NULL, steps = 1000, scale = 0,
    what = c("mu", "sigma", "nu", "tau"), parameter= NULL, k = 2,
    parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL,
    
\end{verbatim}
...)

stepGAIC.VR(object, scope, direction = c("both", "backward", "forward"),
              trace = T, keep = NULL, steps = 1000, scale = 0,
              what = c("mu", "sigma", "nu", "tau"), parameter= NULL, k = 2, ...
)

stepGAIC.CH(object, scope = gamlss.scope(model.frame(object)),
              direction = c("both", "backward", "forward"), trace = T,
              keep = NULL, steps = 1000, what = c("mu", "sigma", "nu", "tau"),
              parameter= NULL, k = 2, ...
)

stepGAICAll.A(object, scope = NULL, sigma.scope = NULL, nu.scope = NULL,
                tau.scope = NULL, mu.try = TRUE, sigma.try = TRUE,
                nu.try = TRUE, tau.try = TRUE, direction = NULL,
                parallel = c("no", "multicore", "snow"), ncpus = 1L,
                cl = NULL, ...)

stepGAICAll.B(object, scope, direction = c("both", "backward", "forward"),
                trace = T, keep = NULL, steps = 1000, scale = 0, k = 2,
                parallel = c("no", "multicore", "snow"), ncpus = 1L,
                cl = NULL, ...)

drop1All(object, scope, test = c("Chisq", "none"), k = 2, sorted = FALSE,
         trace = FALSE, parallel = c("no", "multicore", "snow"),
         ncpus = 1L, cl = NULL, ...)

add1All(object, scope, test = c("Chisq", "none"), k = 2, sorted = FALSE,
        trace = FALSE, parallel = c("no", "multicore", "snow"),
        ncpus = 1L, cl = NULL, ...)

Arguments

object
scope
direction
trace

an gamlss object. This is used as the initial model in the stepwise search.
defines the range of models examined in the stepwise search. For the function
stepAIC() this should be either a single formula, or a list containing com-
ponents upper and lower, both formulae. See the details for how to specify the
formulae and how they are used. For the function stepGAIC the scope defines
the range of models examined in the step-wise search. It is a list of formulas,
with each formula corresponding to a term in the model. A 1 in the formula
allows the additional option of leaving the term out of the model entirely. +
the mode of stepwise search, can be one of both, backward, or forward, with a
default of both. If the scope argument is missing the default for direction is
backward.
if positive, information is printed during the running of stepAIC. Larger values
may give more information on the fitting process.
stepGAIC

keep a filter function whose input is a fitted model object and the associated 'AIC' statistic, and whose output is arbitrary. Typically 'keep' will select a subset of the components of the object and return them. The default is not to keep anything.

steps the maximum number of steps to be considered. The default is 1000 (essentially as many as required). It is typically used to stop the process early.

scale scale is not used in gamlss

what which distribution parameter is required, default what="mu"

parameter equivalent to what

k the multiple of the number of degrees of freedom used for the penalty. Only 'k = 2' gives the genuine AIC: 'k = log(n)' is sometimes referred to as BIC or SBC.

parallel The type of parallel operation to be used (if any). If missing, the default is "no".

ncpus integer: number of processes to be used in parallel operation: typically one would choose this to the number of available CPUs.

c1 An optional parallel or snow cluster for use if parallel = "snow". If not supplied, a cluster on the local machine is created for the duration of the call.

sigma.scope scope for sigma if different to scope in stepGAICA11.A()

nu.scope scope for nu if different to scope in stepGAICA11.A()

tau.scope scope for tau if different to scope in stepGAICA11.A()

mu.try The default value is is TRUE, set to FALSE if no model for mu is needed

sigma.try The default value is TRUE, set to FALSE if no model for sigma is needed

nu.try The default value is TRUE, set to FALSE if no model for nu is needed

tau.try The default value is TRUE, set to FALSE if no model for tau is needed

test whether to print the chi-square test or not

sorted whether to sort the results

... any additional arguments to 'extractAIC'. (None are currently used.)

Details

The set of models searched is determined by the scope argument.

For the function stepGAIC.VR() the right-hand-side of its lower component is always included in the model, and right-hand-side of the model is included in the upper component. If scope is a single formula, it specifies the upper component, and the lower model is empty. If scope is missing, the initial model is used as the upper model.

Models specified by scope can be templates to update object as used by update.formula.

For the function stepGAIC.CH() each of the formulas in scope specifies a "regimen" of candidate forms in which the particular term may enter the model. For example, a term formula might be

~ x1 + log(x1) + cs(x1, df=3)

This means that x1 could either appear linearly, linearly in its logarithm, or as a smooth function estimated non-parametrically. Every term in the model is described by such a term formula, and the final model is built up by selecting a component from each formula.
The function `gamlss.scope` similar to the S `gam.scope()` in Chambers and Hastie (1991) can be used to create automatically term formulae from specified data or model frames.

The supplied model object is used as the starting model, and hence there is the requirement that one term from each of the term formulas of the parameters be present in the formula of the distribution parameter. This also implies that any terms in formula of the distribution parameter not contained in any of the term formulas will be forced to be present in every model considered.

When the smoother used in `gamlss` modelling belongs to the new generation of smoothers allowing the determination of the smoothing parameters automatically (i.e. `pb()`, `cy()`), then the function `stepGAIC.VR()` can be used for model selection (see example below).

**Value**

the stepwise-selected model is returned, with up to two additional components. There is an "anova" component corresponding to the steps taken in the search, as well as a "keep" component if the 'keep' argument was supplied in the call. The "Resid. Dev" column of the analysis of deviance table refers to a constant minus twice the maximized log likelihood.

The function `stepGAICA11.A()` returns with a component "anovaAll" containing all the different anova tables used in the process.

**Author(s)**

Mikis Stasinopoulos based on functions in MASS library and in Statistical Models in S

**References**


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).


**See Also**

`gamlss.scope`
Examples

```r
Not run:
data(usair)
null model
mod0<-gamlss(y~1, data=usair, family=GA)
all the explanatory variables x1:x6 fitted linearly
mod1<-gamlss(y-, data=usair, family=GA)
dropping terms
dropterm(mod1)
with chi-square information
drop1(mod1)
for parallel computations use something like
nC <- detectCores()
drop1(mod1, parallel="snow", ncpus=nC)
drop1(mod1, parallel="multicore", ncpus=nC)
adding terms
addterm(mod0, scope=as.formula(paste("-", paste(names(usair[-1]),
collapse="+"),sep="")))
with chi-square information
add1(mod0, scope=as.formula(paste("-", paste(names(usair[-1]),
collapse="+"),sep="")))
for parallel computations
nC <- detectCores()
ad1(mod0, scope=as.formula(paste("-", paste(names(usair[-1]),
collapse="+"),sep="")), parallel="snow", ncpus=nC)
stepGAIC
find the best subset for the mu
mod2 <- stepGAIC(mod1)
mod2$anova
find the best subset for sigma
mod3<-stepGAIC(mod2, what="sigma", scope=~x1+x2+x3+x4+x5+x6)
mod3$anova
find the best model using pb() smoother
only three variables are used here for simplicity
mod20<-stepGAIC(mod0, scope=list(lower=~1, upper=~pb(x1)+pb(x2)+pb(x5)))
edf(mod20)
note that x1 and x2 enter linearly
the stepGAIC.CH function (no parallel here)
creating a scope from the usair model frame
gs<-gamlss.scope(model.frame(y=x1+x2+x3+x4+x5+x6, data=usair))
```
gs
mod5<-stepGAIC.CH(mod0,gs)
mod5$anova
#---------------------------------------------------------------
# now stepGAICAll.A
mod7<-stepGAICAll.A(mod0, scope=list(lower=~1,upper=~x1+x2+x3+x4+x5+x6))
#---------------------------------------------------------------
# now stepGAICAll.B
drop1All(mod1, parallel="snow", ncpus=nC)
add1All(mod0, scope=as.formula(paste("~", paste(names(usair[-1]),
collapse="+"))), parallel="snow", ncpus=nC)
mod8<-stepGAICAll.B(mod0, scope=list(lower=~1,upper=~x1+x2+x3+x4+x5+x6))
#---------------------------------------------------------------
## End(Not run)

summary.gamlss  Summarizes a GAMLSS fitted model

**Description**

`summary.gamlss` is the GAMLSS specific method for the generic function `summary` which summarize objects returned by modelling functions.

**Usage**

```r
S3 method for class 'gamlss'
summary(object, type = c("vcov", "qr"),
 robust=FALSE, save = FALSE,
 hessian.fun = c("R", "PB"),
 digits = max(3, getOption("digits") - 3),...)
```

**Arguments**

- `object`  
  a GAMLSS fitted model

- `type`  
  the default value `vcov` uses the `vcov()` method for gamlss to get the variance-covariance matrix of the estimated beta coefficients, see details below. The alternative `qr` is the original method used in gamlss to estimated the standard errors but it is not reliable since it do not take into the account the inter-correlation between the distributional parameters `mu`, `sigma`, `nu` and `tau`.

- `robust`  
  whether robust (sandwich) standard errors are required

- `save`  
  whether to save the environment of the function so to have access to its values

- `hessian.fun`  
  whether when calculate the Hessian should use the "R" function `optimHess()` or a function based on Pinheiro and Bates nlme package, "PB".

- `digits`  
  the number of digits in the output

- `...`  
  for extra arguments
Details

Using the default value type="vcov", the vcov() method for gamlss is used to get the variance covariance matrix (and consequently the standard errors) of the beta parameters. The variance covariance matrix is calculated using the inverse of the numerical second derivatives of the observed information matrix. This is a more reliable method since it takes into the account the inter-correlation between all the parameters. The type="qr" assumes that the parameters are fixed at the estimated values. Note that both methods are not appropriate and should be used with caution if smoothing terms are used in the fitting.

Value

Print summary of a GAMLSS object

Author(s)

Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby and Calliope Akantziliotou

References


(see also https://www.gamlss.com/).

See Also

gamlss, deviance.gamlss, fitted.gamlss

Examples

data(aids)
h<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
summary(h)
rm(h)
term.plot

Plot regression terms for a specified parameter of a fitted GAMLSS object

Description

Plots regression terms against their predictors, optionally with standard errors and partial residuals added. It is based on the R function termplot but is suitably changed to apply to GAMLSS objects.

Usage

term.plot(object, what = c("mu", "sigma", "nu", "tau"),
          parameter = NULL, data = NULL,
          envir = environment(formula(object)), partial.resid = FALSE,
          rug = FALSE, terms = NULL, se = TRUE, ylim = c("common", "free"),
          scheme = c("shaded", "lines"), xlabs = NULL, ylabs = NULL,
          main = NULL, pages = 0, col.term = "darkred",
          col.se = "orange", col.shaded = "gray", col.res = "lightblue",
          col.rug = "gray", lwd.term = 1.5, lty.se = 2, lwd.se = 1,
          cex.res = 1, pch.res = par("pch"),
          ask = interactive() && nb.fig < n.tms && .Device != "postscript",
          use.factor.levels = TRUE, surface.gam = FALSE,
          polys = NULL, polys.scheme = "topo",...)

Arguments

object a fitted GAMLSS object
what the required parameter of the GAMLSS distribution i.e. "mu"
parameter equivalent to what
data data frame in which variables in object can be found
envir environment in which variables in object can be found
partial.resid logical; should partial residuals be plotted or not
rug add rug plots (jitter 1-d histograms) to the axes?
terms which terms to be plotted (default ’NULL’ means all terms)
se plot point-wise standard errors?
ylim there are two options here a) "common" and b) "free". The "common" option plots all figures with the same ylim range and therefore allows the viewer to check the relative contribution of each terms compare to the rest. In the 'free' option the limits are computed for each plot seperately.
scheme whether the se’s should appear shaded or as lines
xlabs vector of labels for the x axes
ylabs vector of labels for the y axes
main
logical, or vector of main titles; if 'TRUE', the model’s call is taken as main
title, 'NULL' or 'FALSE' mean no titles.

pages
in how many pages the plot should appear. The default is 0 which allows different
page for each plot

col.term
the colour of the term line

col.se
the colour of the se's lines

col.shaded
the colour of the shaded area

col.res
the colour of the partial residuals

col.rug
the colour of the rug

lwd.term
line width of the fitted terms

lty.se
line type for standard errors

lwd.se
line width for the standard errors

cex.res
plotting character expansion for the partial residuals

cpch.res
characters for points in the partial residuals

ask
logical; if 'TRUE', the user is asked before each plot, see 'par(ask=.)'.

use.factor.levels
Should x-axis ticks use factor levels or numbers for factor terms?
surface.gam
whether to use surface plot if a ga() term is fitted
polys
The polygone information file for MRF models
polys.scheme
Color scheme for polygones for RMF models

... other graphical parameters

Details
The function uses the lpr ed function of GAMLSS. The 'data' argument should rarely be needed,
but in some cases 'termplot' may be unable to reconstruct the original data frame. Using 'na.action=na.exclude'
makes these problems less likely. Nothing sensible happens for interaction terms.

Value
a plot of fitted terms.

Author(s)
Mikis Stasinopoulos based on the existing termplot() function

References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and

modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older
version can be found in https://www.gamlss.com/.
update.gamlss


(see also [https://www.gamlss.com/](https://www.gamlss.com/)).

See Also
termplot

Examples
data(aids)
a<-gamlss(y~pb(x)+qrt,data=aids,family=NBI)
term.plot(a, pages=1)
rm(a)

---

**update.gamlss**  
*Update and Re-fit a GAMLSS Model*

**Description**

update.gamlss is the GAMLSS specific method for the generic function update which updates and (by default) refits a GAMLSS model.

**Usage**

```r
S3 method for class 'gamlss'
update(object, formula., ...,
what = c("mu", "sigma", "nu", "tau", "All"),
parameter=NULL, evaluate=TRUE)
```

**Arguments**

- `object`  
a GAMLSS fitted model
- `formula.`  
the formula to update
- `...`  
for updating argument in `gamlss()`
- `what`  
the parameter in which the formula needs updating for example "mu", "sigma", "nu" "tau" or "All". If "All" all the formulae are updated. Note that the what argument has an effect only if only if the argument `formula.` is set
- `parameter`  
equivalent to what
- `evaluate`  
whether to evaluate the call or not

**Value**

Returns a GAMLSS call or fitted object.
VC.test

Author(s)
Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby

References
(see also https://www.gamlss.com/).

See Also
print.gamlss, summary.gamlss, fitted.gamlss, coef.gamlss, residuals.gamlss, plot.gamlss, deviance.gamlss, formula.gamlss

Examples

data(aids)
# fit a poisson model
h.po <- gamlss(y~pb(x)+qrt, family=PO, data=aids)
# update with a negative binomial
h.nb <- update(h.po, family=NBI)
# update the smoothing
h.nb1 <- update(h.nb, ~cs(x,8)+qrt)
# remove qrt
h.nb2 <- update(h.nb1,~-qrt)
# put back qrt take log of y and fit a normal distribution
h.nb3 <- update(h.nb1, log(.)~.+qrt, family=NO)
# verify that it is the same
h.no<-gamlss(log(y)~cs(x,8)+qrt, data=aids)

VC.test

Vuong and Clarke tests

Description
The Vuong and Clarke tests for GAMLSS fitted models.

Usage

VC.test(obj1, obj2, sig.lev = 0.05)
Arguments

obj1 The first fitted gamlss object
obj2 The second fitted gamlss object
sig.lev Significance level used for testing.

Details

The Vuong (1989) and Clarke (2007) tests are likelihood-ratio-based tests for model selection that use the Kullback-Leibler information criterion. The implemented tests can be used for choosing between two bivariate models which are non necessary nested.

In the Vuong test, the null hypothesis is that the two models are equally close to the actual model, whereas the alternative is that one model is closer. The test follows asymptotically a standard normal distribution under the null. Assume that the critical region is \((-c, c)\), where \(c\) is typically set to 1.96. If the value of the test is greater than \(c\) then we reject the null hypothesis that the models are equivalent in favour of the model in \(\text{obj1}\). Vice-versa if the value is smaller than \(-c\) we reject the null hypothesis that the models are equivalent in favour of the model in \(\text{obj2}\). If the value falls within \((-c, c)\) then we cannot discriminate between the two competing models given the data.

In the Clarke test, if the two models are statistically equivalent then the log-likelihood ratios of the observations should be evenly distributed around zero and around half of the ratios should be larger than zero. The test follows asymptotically a binomial distribution with parameters \(n\) and 0.5. Critical values can be obtained as shown in Clarke (2007). Intuitively, the model in \(\text{obj1}\) is preferred over that in \(\text{obj2}\) if the value of the test is significantly larger than its expected value under the null hypothesis \('\text{coden/2}'\), and vice versa. If the value is not significantly different from \(n/2\) then \(\text{obj1}\) can be thought of as equivalent to \(\text{obj2}\).

Value

For the Vuong test it returns its value and the decision and for the Clarke test returns the value the p-value and the decision. Decisions criteria are as discussed above.

Author(s)

Mikis Stasinopoulos and Giampiero Marra

References


(see also https://www.gamlss.com/).


See Also

LR.test

Examples

```r
library(gamlss)
fitting different models
m0 <- gamlss(y~x+qrt, data=aids, family=PO)
m1 <- gamlss(y~pb(x)+qrt, data=aids, family=PO)
m2 <- gamlss(y~pb(x)+qrt, data=aids, family=NBI)
comparison of the models
VC.test(m0,m2)
VC.test(m0,m1)
VC.test(m1,m2)
```

Description

Provides a single plot or multiple worm plots for a GAMLSS fitted or more general for any fitted models where the method `resid()` exist and the residuals are defined sensibly. The worm plot (a de-trended QQ-plot), van Buuren and Fredriks M. (2001), is a diagnostic tool for checking the residuals within different ranges (by default not overlapping) of the explanatory variable(s).

Usage

```r
wp(object = NULL, xvar = NULL, resid = NULL, n.inter = 4,
 xcut.points = NULL, overlap = 0, xlim.all = 4,
 xlim.worm = 3.5, show.given = TRUE, line = TRUE,
 ylim.all = 12 * sqrt(1/length(resid)),
 ylim.worm = 12 * sqrt(n.inter/length(resid)),
 cex = 1, cex.lab = 1, pch = 21, bg = "wheat",
 col = "red", bar.bg = c(num = "light blue"), ...
)
```

Arguments

- **object**: a GAMLSS fitted object or any other fitted model where the `resid()` method works (preferably it should be standardised or quantile residuals)
- **xvar**: the explanatory variable(s) against which the worm plots will be plotted. If only one variable is involved use `xvar=x1` if two variables are involved use `xvar=x1+x2`. See also note below for use of formula if the data argument is not found in the fitted model
resid if object is missing this argument can be used to specify the residual vector
(again it should be assumed to come from a normal distribution)
n.inter the number of intervals in which the explanatory variable xvar will be cut
xcut.points the x-axis cut off points e.g. c(20, 30). If xcut.points=NULL then the n.inter
argument is activated
overlap how much overlapping in the xvar intervals. Default value is overlap=0 for
non overlapping intervals
xlim.all for the single plot, this value is the x-variable limit, default is xlim.all=4
xlim.worm for multiple plots, this value is the x-variable limit, default is xlim.worm=3.5
show.given whether to show the x-variable intervals in the top of the graph, default is
show.given=TRUE
line whether to plot the polynomial line in the worm plot, default value is line=TRUE
ylim.all for the single plot, this value is the y-variable limit, default is ylim.all=12*sqrt(1/length(fitted(object)))
ylim.worm for multiple plots, this value is the y-variable limit, default is ylim.worm=12*sqrt(n.inter/length(fitted(object)))
cex the cex plotting parameter for changing the side of worm with default cex=1
cex.lab the cex plotting parameter for changing the size of the axis labels
pch the pch plotting parameter with default pch=21
bg The background colour of the worm plot points
col the colour of the fitted (and horizontal and vertical) lines
bar.bg the colour of the bars when xvar is used
... for extra arguments

Details

If the xvar argument is not specified then a single worm plot is used. In this case a worm plot is a
de-trended normal QQ-plot so departure from normality is highlighted.

If a single xvar is specified (with or without the use of a formula) i.e. xvar=x1 or xvar=~x1) then
we have as many worm plot as n.iter. In this case the x-variable is cut into n.iter intervals with
an equal number observations and de-trended normal QQ (i.e. worm) plots for each interval are
plotted. This is a way of highlighting failures of the model within different ranges of the single
explanatory variable. The fitted coefficients from fitting cubic polynomials to the residuals (within
each x-variable interval) can be obtain by e.g. coeffs<-wp(model1, xvar=x, n.iter=9). van Bu-
uren and Fredriks M. (2001) used these residuals to identify regions (intervals) of the explanatory
variable within which the model does not fit adequately the data (called "model violation")

Two variables can be displayed with the use of a formula, i.e. xvar=~x1*x2. In this case the
n.iter can be a vector with two values.

Value

For multiple plots the xvar intervals and the coefficients of the fitted cubic polynomials to the
residuals (within each xvar interval) are returned.
Note

Note that the \texttt{wp()} function, if the argument object is used, is looking for the data argument of the object. If the argument data exists it uses its environment to find \texttt{xvar} (whether it is a formula or not). As a result if data exists within object \texttt{xvar=\texttt{-x\*f}} can be used (assuming that \texttt{x} and \texttt{f} are in the data) otherwise the variable should be explicitly defined i.e. \texttt{xvar=\texttt{-data$x*data$f}}.

Author(s)

Mikis Stasinopoulos and Bob Rigby

References


(see also \url{https://www.gamlss.com/}).


See Also

gamlss, plot.gamlss

Examples

data(abdom)
# with data
a<-gamlss(y~pb(x),sigma.fo=~pb(x,1),family=LO,data=abdom)
wp(a)
coeff1<-wp(a,xvar=x)
coeff1
## Not run:
# no data argument
b <- gamlss(abdom$y~pb(abdom$x),sigma.fo=~pb(abdom$x),family=LO)
wp(b)
wp(b, xvar=abdom$x)# not wp(b, xvar=x)
# using the argument resid
# this will work
wp(resid=resid(a), xvar=abdom$x)
# not this
# wp(resid=resid(a), xvar=x)
# this example uses the rent data
m1 <- gamlss(R~pb(Fl)+pb(A)+loc, sigma.fo=~pb(Fl)+pb(A), data=rent, family=GA)
# a single worm plot
wp(m1, ylim.all=.5)
# a single continuous x variable
wp(m1, xvar=Fl, ylim.worm=.8)
# a single x variable changing the default number of intervals
wp(m1, xvar=Fl, ylim.worm=1.5, n.inter=9)
# different x variable changing the default number of intervals
B1<-wp(m1, xvar=A, ylim.worm=1.2, n.inter=9)
B1
# the number five plot has intervals
# [5,] 1957.5 1957.5
# rather disappoining
# try formula for xvar
wp(m1, xvar=~A, ylim.worm=1.2, n.inter=9)
# better in this case using formula
# now using a factor included in the model
wp(m1, xvar=~loc, ylim.worm=1.2, n.inter=9)
# using a factor not in the model
wp(m1, xvar=~B, ylim.worm=1.5, n.inter=9)
# level 2 (with B=1) did not fit well
# trying two continuous variable
wp(m1, xvar=~Fl*A, ylim.worm=1.5, n.inter=4)
# one continuous and one categorical
wp(m1, xvar=~Fl*loc, ylim.worm=1.5, n.inter=4)
# two categorical
wp(m1, xvar=~B*loc, ylim.worm=1.5, n.inter=4)

## End(Not run)

---

z.scores  

Z-scores for lms objects

Description

This creates z-scores for new values of y and x given a fitted lms object.

Usage

z.scores(object, y, x)

Arguments

object  
a lms fitted object

y  
new y values

x  
new x values
Details

This is simply a job that can be also done by `centiles.pred()`.

Value

the required z-scores

Author(s)

Mikis Stasinopoulos

References


(see also https://www.gamlss.com/).

See Also

centiles.pred

Examples

```r
Not run:
IND<-sample.int(7040, 1000, replace=FALSE)
db1 <- db[IND,]
plot(head~age, data=db1)
m0 <- lms(head, age, data=db1,trans.x=TRUE)
z.scores(m0, x=c(2,15,30,40),y=c(45,50,56,63))
End(Not run)
```
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Statistical Models</td>
</tr>
<tr>
<td>getQuantile, 71</td>
</tr>
<tr>
<td>* diagnostic</td>
</tr>
<tr>
<td>bp, 12</td>
</tr>
<tr>
<td>* distribution</td>
</tr>
<tr>
<td>fitDist, 39</td>
</tr>
<tr>
<td>gamlss-package, 3</td>
</tr>
<tr>
<td>histSmo, 78</td>
</tr>
<tr>
<td>loglogSurv, 89</td>
</tr>
<tr>
<td>plot.histSmo, 106</td>
</tr>
<tr>
<td>* package</td>
</tr>
<tr>
<td>gamlss-package, 3</td>
</tr>
<tr>
<td>* regression</td>
</tr>
<tr>
<td>pcat, 99</td>
</tr>
<tr>
<td>* regression</td>
</tr>
<tr>
<td>additive.fit, 8</td>
</tr>
<tr>
<td>bfp, 10</td>
</tr>
<tr>
<td>bp, 12</td>
</tr>
<tr>
<td>calibration, 14</td>
</tr>
<tr>
<td>centiles, 16</td>
</tr>
<tr>
<td>centiles.com, 18</td>
</tr>
<tr>
<td>centiles.pred, 20</td>
</tr>
<tr>
<td>centiles.split, 23</td>
</tr>
<tr>
<td>coef.gamlss, 25</td>
</tr>
<tr>
<td>cs, 27</td>
</tr>
<tr>
<td>deviance.gamlss, 30</td>
</tr>
<tr>
<td>devianceIncr, 31</td>
</tr>
<tr>
<td>dtop, 33</td>
</tr>
<tr>
<td>edf, 35</td>
</tr>
<tr>
<td>find.hyper, 36</td>
</tr>
<tr>
<td>fitDist, 39</td>
</tr>
<tr>
<td>fitted.gamlss, 43</td>
</tr>
<tr>
<td>fittedPlot, 44</td>
</tr>
<tr>
<td>formula.gamlss, 45</td>
</tr>
<tr>
<td>gamlss, 46</td>
</tr>
<tr>
<td>gamlss-package, 3</td>
</tr>
<tr>
<td>gamlss.control, 51</td>
</tr>
<tr>
<td>gamlss.cs, 52</td>
</tr>
<tr>
<td>gamlss.fp, 53</td>
</tr>
<tr>
<td>gamlss.lo, 55</td>
</tr>
<tr>
<td>gamlss.ps, 56</td>
</tr>
<tr>
<td>gamlss.random, 57</td>
</tr>
<tr>
<td>gamlss.scope, 58</td>
</tr>
<tr>
<td>gamlssML, 60</td>
</tr>
<tr>
<td>gamlssVGD, 63</td>
</tr>
<tr>
<td>gen.likelihood, 68</td>
</tr>
<tr>
<td>getPEF, 69</td>
</tr>
<tr>
<td>getQuantile, 71</td>
</tr>
<tr>
<td>getSmo, 74</td>
</tr>
<tr>
<td>glm.control, 75</td>
</tr>
<tr>
<td>histDist, 76</td>
</tr>
<tr>
<td>IC, 81</td>
</tr>
<tr>
<td>lms, 84</td>
</tr>
<tr>
<td>lo, 86</td>
</tr>
<tr>
<td>lpred, 92</td>
</tr>
<tr>
<td>LR.test, 94</td>
</tr>
<tr>
<td>model.frame.gamlss, 95</td>
</tr>
<tr>
<td>numeric.deriv, 96</td>
</tr>
<tr>
<td>par.plot, 98</td>
</tr>
<tr>
<td>pdf.plot, 102</td>
</tr>
<tr>
<td>plot.gamlss, 104</td>
</tr>
<tr>
<td>plot2way, 107</td>
</tr>
<tr>
<td>polyS, 108</td>
</tr>
<tr>
<td>predict.gamlss, 109</td>
</tr>
<tr>
<td>print.gamlss, 112</td>
</tr>
<tr>
<td>prof.dev, 113</td>
</tr>
<tr>
<td>prof.term, 115</td>
</tr>
<tr>
<td>ps, 117</td>
</tr>
<tr>
<td>Q.stats, 124</td>
</tr>
<tr>
<td>quantSheets, 126</td>
</tr>
<tr>
<td>random, 128</td>
</tr>
<tr>
<td>refit, 133</td>
</tr>
<tr>
<td>residuals.gamlss, 134</td>
</tr>
<tr>
<td>ri, 136</td>
</tr>
<tr>
<td>rqres.plot, 138</td>
</tr>
<tr>
<td>Rsq, 139</td>
</tr>
<tr>
<td>rvcov, 141</td>
</tr>
<tr>
<td>stepGAIC, 142</td>
</tr>
</tbody>
</table>
gamllsML, 42, 60
gamlssMLpred (gamlssML), 60
gamlssNews (gamlss), 46
gamlssVGD, 60, 63
gen.likelihood, 68
get.K (rvcov), 141
get.rqres (rqres.plot), 138
getAddress (fitDist), 39
getPEF, 69, 73
getCode (gamlssVGD), 63
getZmatrix (ps), 117
glim.control, 48, 75
histDist, 76
histSmo, 78, 107
histSmoC (histSmo), 78
histSmoO (histSmo), 78
histSmoP (histSmo), 78

IC, 81
is.gamlss (gamlss), 46

lms, 84, 128
lo, 55, 86
loglogplot (loglogSurv), 89
loglogplot0 (loglogSurv), 89
loglogSurv, 89
loglogSurv1 (loglogSurv), 89
loglogSurv2 (loglogSurv), 89
loglogSurv3 (loglogSurv), 89
logSurv (loglogSurv), 89
logSurv0 (loglogSurv), 89
lp, 111
lp (lpred), 92
lpred, 92, 111
LR.test, 94, 155

model.frame.gamlss, 95
model.matrix.gamlss
(model.frame.gamlss), 95
numeric.deriv, 96

optim, 38

par.plot, 98
pb, 29, 57, 80
pb (ps), 117
pbc (ps), 117
pbo (ps), 117
pbo (ps), 117
pbo (ps), 117
pcat, 99
dpdf.plot, 50, 102
plot.gamlss, 38, 44, 104, 135, 139, 153, 157
plot.histSmo, 106
plot2way, 107
plotDF (pcat), 99
plotLambda (pcat), 99
poly.matrix (polyS), 108
polyS, 108
pp (bfp), 10
predict.gamlss, 93, 109
predictAll (predict.gamlss), 109
print.gamlss, 44, 112, 135, 153
prof.dev, 113, 117
prof.term, 115, 115
ps, 57, 117
pvc, 29, 57
pvc (ps), 117
Q.stats, 14, 124
quantSheets, 126

random, 58, 89, 101, 128
re (random), 128
refit, 57, 133
residuals.gamlss, 44, 134, 135, 153
ri, 57, 136
ridge, 57
rqres.plot, 134, 138
Rsq, 139
rvcov, 141

scs (cs), 27
stepGAIC, 59, 66, 142
stepGAICA11.A (stepGAIC), 142
stepGAICA11.B (stepGAIC), 142
stepTGDA (gamlssVGD), 63
stepTGDA11.A (gamlssVGD), 63
summary.gamlss, 44, 135, 148, 153

term.plot, 108, 150
termplot, 152
terms.gamlss (model.frame.gamlss), 95
TGD (gamlssVGD), 63

update, 133
update.gamlss, 44, 134, 135, 152

VC.test, 153
vcov, 69, 142
VGD (gamlssVGD), 63
vis.lo(lo), 86

wp, 14, 34, 125, 155

z.scores, 158
z.scoresQS (quantSheets), 126