Package ‘gamm4.test’
February 12, 2018

Type Package
Title Comparing Nonlinear Curves and Surface Estimations by Semiparametric Methods
Version 0.1.0
Author Shi Zhao <shizhao@iu.edu>
Maintainer Shi Zhao <shizhao@iu.edu>
Description To compare nonlinear curves and surface estimations between groups using semiparametric methods for cross-sectional and longitudinal dataset.
Date 2018-02-09
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Depends R (>= 2.14.0)
Imports gamm4, mgcv, doParallel, foreach, parallel, plotly, Matrix, RColorBrewer
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-02-12 10:10:48 UTC

R topics documented:

gam.grptest ... 2
gamm4.grptest .. 4
outchild ... 7
plot.gamtest ... 9
print.gamtest .. 11
T,L2c ... 11

Index 14
gam.grptest

Test the equality of nonlinear curves and surface estimations by semi-parametric method

Description

This function tests the equality of nonlinear curves and surface estimations based on L2 distance. The semiparametric estimation uses ‘mgcv’ package. The specific model considered here is

Usage

gam.grptest(formula, test, data, N.boot = 200, m = 225, parallel = FALSE)

Arguments

formula
A GAM formula. This is like the formula for a glm except that smooth terms (s and t2 but not te) can be added to the right hand side of the formula.

test
An indicator of variable for testing nonlinear curves or surface estimations

data
A data frame or list containing the model response variable and covariates required by the formula.

N.boot
the number of bootstrap replicates. This should be a single positive integer.

m
the number of the sampling points for the Monte-Carlo integration.

parallel
Parallel computation of semiparametric estimations with bootstrap samples for getting test statistics under null hypothesis.

Details

\[y_{ij} = m_i(x_{ij}) + e_{ij}, \]

where \(m_i(.) \), are semiparametric smooth functions; \(e_{ij} \) are subject-specific errors. The errors \(e_{ij} \) do not have to be independent \(N(0, \sigma^2) \) errors. The errors can be heteroscedastic, i.e., \(e_{ij} = \sigma_i(x_{ij}) \ast u_{ij} \), where \(u_{ij} \) are independent identically distributed errors with mean 0 and variance 1.

We are interested in the problem of testing the equality of the regression curves (when \(x \) is one-dimensional) or surfaces (when \(x \) is two-dimensional),

\[H_0: m_1(.) = m_2(.) = ... \]
\[v.s. \] \[H_1: \] otherwise

The problem can also be viewed as the test of the equality in the one-sample problem for functional data.

A bootstrap algorithm is applied to test the equality of semiparametric curves or surfaces based on L2 distance.

See Also

gam gam4.grptest plot.gamtest T.L2c
Examples

```r
n1 <- 200
x1 <- runif(n1, min=0, max=3)
sd1 <- 0.2
e1 <- rnorm(n1, sd=sd1)
y1 <- sin(2*x1) + cos(2*x1) + e1

t1 <- gam.grptest(y~s(x), test=~group, data=data.frame(x1, y1))
plot(t1)
```

```r
n2 <- 120
x2 <- runif(n2, min=0, max=3)
sd2 <- 0.25
e2 <- rnorm(n2, sd=sd2)
y2 <- sin(2*x2) + cos(2*x2) + x2 + e2
data.bind <- rbind(cbind(x1, y1), cbind(x2, y2))
data.bind <- data.frame(data.bind)
colnames(data.bind) = c('x', 'y', 'group')
```

```r
t1 <- gam.grptest(y-s(x, bs="cr"), test=~group, data=data.frame(x1, y1))
t1
```

Semiparametric test the equality for regression surfaces
Simulate data sets

```r
n1 <- 500
x11 <- runif(n1, min=0, max=3)
x12 <- runif(n1, min=0, max=3)
sd1 <- 0.2
e1 <- rnorm(n1, sd=sd1)
y1 <- 2*x11^2 + 3*x12^2 + e1
	n2 <- 420
x21 <- runif(n2, min=0, max=3)
x22 <- runif(n2, min=0, max=3)
sd2 <- 0.25
e2 <- rnorm(n2, sd=sd2)
y2 <- 2*x21^2 + 3*x22^2 + 6*sin(2*pi*x21) + e2

n3 <- 550
x31 <- runif(n3, min=0, max=3)
x32 <- runif(n3, min=0, max=3)
sd3 <- 0.2
e3 <- rnorm(n3, sd=sd3)
y3 <- 2*x31^2 + 3*x32^2 + e3
data.bind <- rbind(cbind(x11, x12, y1), cbind(x21, x22, y2), cbind(x31, x32, y3))
data.bind <- data.frame(data.bind)
colnames(data.bind) = c('x1', 'x2', 'y', 'group')
```
gamm4.grptest

Test the equality of nonlinear curves and surface estimations by semiparametric methods with correlated data

description

This function tests the equality of nonlinear curves and surface estimations with correlated data based on L2 distance. The semiparametric estimation uses `gamm4` package with a compound symmetry correlation structure to adjust correlated observations. The specific model considered here is

usage

```
gamm4.grptest(formula, random, test, data, N.boot = 200, m = 225, parallel = TRUE)
```

arguments

- formula: A GAM formula. This is like the formula for a glm except that smooth terms (s and t2 but not te) can be added to the right hand side of the formula. Note that ids for smooths and fixed smoothing parameters are not supported.
random
An optional formula specifying the random effects structure in lmer style.

test
An indicator of variable for testing nonlinear curves or surface estimations

data
A data frame or list containing the model response variable and covariates required by the formula.

N.boot
the number of bootstrap replicates. This should be a single positive integer.

m
the number of the sampling points for the Monte-Carlo integration.

parallel
Parallel computation of semiparametric estimations with bootstrap samples for getting test statistics under null hypothesis

Details

\[y_{ij} = m_i(x_{ij}) + b_i + e_{ij}, \]

where \(m_i(.), \) are semiparametric smooth functions; \(b_i \) are subject-specific random intercept; \(e_{ij} \) are subject-specific errors. The errors \(e_{ij} \) do not have to be independent \(N(0, \sigma^2) \) errors. The errors can be heteroscedastic, i.e., \(e_{ij} = \sigma_j(x_{ij}) * u_{ij} \), where \(u_{ij} \) are independent identically distributed errors with mean 0 and variance 1.

We are interested in the problem of testing the equality of the regression curves (when \(x \) is one-dimensional) or surfaces (when \(x \) is two-dimensional),

\[H_0: m_1(.) = m_2(.) = ... \text{v.s.} H_1: \text{otherwise} \]

The problem can also be viewed as the test of the equality in the one-sample problem for functional data.

A bootstrap algorithm is applied to test the equality of semiparametric curves or surfaces based on L2 distance.

See Also

\textit{gamm4, gamNgrptest, plotNgamtest}

Examples

```r
#Test the equality of three nonlinear curves
m1 <- 120  #number of subjects in group 1
m2 <- 100  #number of subjects in group 2
m3 <- 110  #number of subjects in group 3
n1 <- 3    #number of repeated measurements for each subject in group 1
n2 <- 4    #number of repeated measurements for each subject in group 2
n3 <- 2    #number of repeated measurements for each subject in group 3
sigma1 <- 0.3
sigma2 <- 0.2
sigma3 <- 0.2
sigma.noise1 <- sigma.noise2 <- sigma.noise3 <- 0.1
f1 <- function(u) sin(2*pi*u)
f2 <- f3 <- function(u) sin(2*pi*u)+u/3
N1 <- m1*n1
N2 <- m2*n2
N3 <- m3*n3
```
x11 <- runif(N1, 0, 1)
b1i <- rnorm(m1, 0, sigma1)
b1 <- rep(b1i, each=n1)
id1 <- rep(1:m1, each=n1)
y1 <- f1(x11) + b1 + rnorm(N1, 0, sigma_noise1)

x21 <- runif(N2, 0, 1)
b2i <- rnorm(m2, 0, sigma2)
b2 <- rep(b2i, each=n2)
id2 <- rep((m1+1):(m1+m2), each=n2)
y2 <- f2(x21) + b2 + rnorm(N2, 0, sigma_noise2)

x31 <- runif(N3, 0, 1)
b3i <- rnorm(m3, 0, sigma3)
b3 <- rep(b3i, each=n3)
id3 <- rep((m1+m2+1):(m1+m2+m3), each=n3)
y3 <- f3(x31) + b3 + rnorm(N3, 0, sigma_noise3)

dat <- data.frame(rbind(cbind(id1, x11, y1, 1), cbind(id2, x21, y2, 2), cbind(id3, x31, y3, 3)))
colnames(dat)=c('id', 'x', 'y', 'grp')
testout <- gamm4.grptest(formula=y~s(x,k=6,bs="cr"), test=grp,
 random=~(1|id), data=dat, N.boot=200, m=225, parallel = TRUE)
testout
plot(testout)

dat0 <- data.frame(rbind(cbind(id3, x31, y3, 3), cbind(id2, x21, y2, 2)))
colnames(dat0)=c('id', 'x', 'y', 'grp')
testout0 <- gamm4.grptest(formula=y~s(x,k=6,bs="cr"), test=grp,
 random=~(1|id), data=dat0, N.boot=200, m=225, parallel = TRUE)
testout0$p.value
plot(testout0, test.statistic = TRUE)

#######
Semiparametric test the equality for regression surfaces with longitudinal data
Simulate data sets
f1 <- function(u,v) 2*u^2+3*v^2
f2 <- function(u,v) 2*u^2+3*v^2+sin(2*pi*u)

m1 <- 100 #number of subjects in group 1
n1 <- 4 #number of repeated measurements for each subject in group 1
m2 <- 120 #number of subjects in group 2
n2 <- 3 #number of repeated measurements for each subject in group 2
N1 <- m1*n1
N2 <- m2*n2
sigma1 <- 0.2
sigma2 <- 0.15
sigma_noise1 <- 0.04
sigma_noise2 <- 0.05
x11 <- runif(N1, 0, 1)
x12 <- runif(N1, 0, 1)
b11 <- rnorm(m1, 0, sigma1)
b1 <- rep(b1i, each=n1)
Data analyses with internal "outchild" dataset

data("outchild")

outchild1016 <- outchild[(outchild$age<=16 & outchild$age>=10),]

child.repw <- outchild1016[(outchild1016$RACE==1),]

child.reptest1 <- gamm4.grp testimula=HEIGHT-s(age), random=-1|SID).

 test=SEX, data=child.repw, parallel = TRUE)

child.reptest1

plot(child.reptest1)

plot(child.reptest1,test.statistic = FALSE)

child.reptest2 <- gamm4.grp testimula=HEIGHT-t2(age,HEIGHT), random=-1|SID).

 test=SEX, data = child.repw, parallel = TRUE)

plot(child.reptest2,type="plotly.persp")
plot(child.reptest2,type="contour")

Outchild

Longitudinal health data of 1065 children from age 6 to 15.
Description

A dataset containing the demographic and health related data of 1065 children.

Usage

data(outchild)

Format

A data frame with 6681 rows and 21 variables:

SID Child ID
SEX 1=male,2=female
RACE 1=white,2=black
WEIGHT Weight of the child
HEIGHT Height of the child
age Age of a child
dias Diastolic blood pressure
sys Systolic blood pressure
hearrate Heart rate
pulse Blood pulse
BMI Body Mass Index (BMI)
HeightZ Normalized height
HeightPct Percentile of height over standardized population
WeightZ Normalized weight
WeightPct Percentile of weight over standardized population
BMIZ Normalized BMI
BMIPCT Percentile of BMI over standardized population
SBPpct Systolic blood pressure percentile
DBPpct Diastolic blood pressure percentile
HTN_ANY 1=Hypertension 0=No hypertension
HTNpre_ANY 1=Pre-hypertension 0=No pre-hypertension
Description

This function plots the semiparametric estimation of nonlinear curves and surface.

Usage

```r
## S3 method for class 'gamtest'
plot(x, test.statistic = FALSE,
     test.stat.type = "density", main = "", n = 256,
     legend.position = "topright", se.est = FALSE, data.pts = FALSE,
     type = "contour", ...)  
```

Arguments

- `x` A gamtest object.
- `test.statistic` If TRUE, plot the density of the test statistic under null hypothesis; if FALSE, plot the estimated curves/surfaces.
- `test.stat.type` must have "test.statistic=TRUE". Default is "test.stat.type=density". If "test.stat.type=hist", plot the histogram of the test statistic under null.
- `main` The title of the plot.
- `n` The number of points that are used to draw the curves or surfaces in the plot.
- `legend.position` the position of legend in the plot: "topright", "topleft", "bottomright", "bottomleft", etc.
- `se.est` If TRUE, plot the pointwise 95% confidence intervals of curves; if FALSE, don’t plot the pointwise confidence intervals.
- `data.pts` If TRUE, plot raw data points. If FALSE, only plot estimated curves/surfaces.
- `type` Only used for plotting surfaces. If "type=contour", then contour plot from vis.gam function in mgcv package; if "type=persp", then plot persp from vis.gam function; if "type=plotly.persp", then plot persp from plotly package.
- `...` Other options from package “mgcv” “vis.gam()” function.

Details

This function is to plot a gamtest object. If "test.statistic=TRUE", a density plot of the test statistic under null hypothesis will be generated; if "test.statistic=FALSE", the estimated curves/surfaces for all groups are drawn.

See Also

gam gam4 gamm4.grptest gam.grptest
Examples

n1 <- 200
x1 <- runif(n1, min=0, max=3)
sd1 <- 0.2
e1 <- rnorm(n1, sd=sd1)
y1 <- sin(2*x1) + cos(2*x1) + e1

n2 <- 120
x2 <- runif(n2, min=0, max=3)
sd2 <- 0.25
e2 <- rnorm(n2, sd=sd2)
y2 <- sin(2*x2) + cos(2*x2) + x2 + e2

data.bind <- rbind(cbind(x1, y1, 1), cbind(x2, y2, 2))
data.bind <- data.frame(data.bind)
colnames(data.bind) = c('x', 'y', 'group')
t1 <- gam.grptest(y~s(x, bs="cr"), test="group", data=data.bind)
t1
plot(t1)
plot(t1, test.statistic=TRUE)

Semiparametric test the equality for regression surfaces
Simulate data sets

n1 <- 200
x11 <- runif(n1, min=0, max=3)
x12 <- runif(n1, min=0, max=3)
sd1 <- 0.2
e1 <- rnorm(n1, sd=sd1)
y1 <- 2*x11^2 + 3*x12^2 + e1

n2 <- 120
x21 <- runif(n2, min=0, max=3)
x22 <- runif(n2, min=0, max=3)
sd2 <- 0.25
e2 <- rnorm(n2, sd=sd2)
y2 <- 2*x21^2 + 3*x22^2 + 4*sin(2*pi*x21) + e2

n3 <- 150
x31 <- runif(n3, min=0, max=3)
x32 <- runif(n3, min=0, max=3)
sd3 <- 0.2
e3 <- rnorm(n3, sd=sd3)
y3 <- 2*x31^2 + 3*x32^2 + e3

data.bind <- rbind(cbind(x11, x12, y1, 1), cbind(x21, x22, y2, 2), cbind(x31, x32, y3, 3))
data.bind <- data.frame(data.bind)
colnames(data.bind) = c('x1', 'x2', 'y', 'group')
print.gamtest

Print a gamtest Object

Description

This function print the semiparametric estimation of nonlinear curves and surface.

Usage

S3 method for class 'gamtest'
print(x, digits = 4, ...)

Arguments

- `x` - A gamtest object.
- `digits` - Number of digits for test statistic and p-value.
- `...` - Other generic options.

T.L2c

Test the equality of nonparametric curves or surfaces based on L2 distance

Description

This function tests the equality of nonparametric curves and surface estimations based on L2 distance. The specific model considered here is

Usage

T.L2c(formula, test, data, N.boot = 200, degree = 1, criterion = c("aicc", "gcv"), family = c("gaussian", "symmetric"), m = 225, user.span = NULL, ...)
Arguments

- **formula**: A regression formula. This is like the formula for a `lm`.
- **test**: An indicator of variable for testing nonparametric curves or surface estimations.
- **data**: A data frame or list containing the model response variable and covariates required by the formula.
- **N.boot**: The number of bootstrap replicates. This should be a single positive integer.
- **degree**: The degree of the local polynomials to be used. It can be 0, 1 or 2.
- **criterion**: The criterion for automatic smoothing parameter selection: “aicc” denotes bias-corrected AIC criterion, “gcv” denotes generalized cross-validation.
- **family**: If “gaussian” fitting is by least-squares, and if “symmetric” a re-descending M estimator is used with Tukey’s biweight function.
- **m**: The number of the sampling points for the Monte-Carlo integration.
- **user.span**: The user-defined parameter which controls the degree of smoothing.
- **...**: Other options from “loess” package.

Details

\[y_{ij} = m_i(x_{ij}) + e_{ij}, \]

where \(m_i(.) \), are semiparametric smooth functions; \(e_{ij} \) are subject-specific errors. The errors \(e_{ij} \) do not have to be independent \(N(0, \sigma^2) \) errors. The errors can be heteroscedastic, i.e., \(e_{ij} = \sigma_i(x_{ij}) u_{ij} \), where \(u_{ij} \) are independent identically distributed errors with mean 0 and variance 1.

We are interested in the problem of testing the equality of the regression curves (when \(x \) is one-dimensional) or surfaces (when \(x \) is two-dimensional),

\[H_0: m_1(.) = m_2(.) = ... \text{ vs. } H_1: \text{ otherwise} \]

The problem can also be viewed as the test of the equality in the one-sample problem for functional data.

A bootstrap algorithm is applied to test the equality of semiparametric curves or surfaces based on L2 distance.

See Also

- `gam.grptest`

Examples

```r
n1 <- 200
x1 <- runif(n1, min=0, max=3)
sd1 <- 0.2
e1 <- rnorm(n1, sd=sd1)
y1 <- sin(2*x1) + cos(2*x1) + e1

n2 <- 120
x2 <- runif(n2, min=0, max=3)
sd2 <- 0.25
```
e2 <- rnorm(n2, sd=sd2)
y2 <- sin(2*x2) + cos(2*x2) + x2 + e2

dat <- data.frame(rbind(cbind(x1,y1,1), cbind(x2,y2,2)))
colnames(dat)=c('x','y','group')

t1 <- T.L2c(formula=y~x, test='group', data=dat)
t1$p.value

Semiparametric test the equality for regression surfaces
Simulate data sets

n1 <- 200
x11 <- runif(n1, min=0, max=3)
x12 <- runif(n1, min=0, max=3)
sd1 <- 0.2
e1 <- rnorm(n1, sd=sd1)
y1 <- 2*x11^2 + 3*x12^2 + e1

n2 <- 120
x21 <- runif(n2, min=0, max=3)
x22 <- runif(n2, min=0, max=3)
sd2 <- 0.25
e2 <- rnorm(n2, sd=sd2)
y2 <- 2*x21^2 + 3*x22^2 + sin(2*pi*x21) + e2

n3 <- 150
x31 <- runif(n3, min=0, max=3)
x32 <- runif(n3, min=0, max=3)
sd3 <- 0.2
e3 <- rnorm(n3, sd=sd1)
y3 <- 2*x31^2 + 3*x32^2 + e3

data.bind <- data.frame(rbind(cbind(x11, x12,y1,1), cbind(x21, x22, y2,2), cbind(x31, x32, y3,3)))
colnames(data.bind)=c('x1', 'x2', 'y', 'group')

T.L2c(formula=y~x1+x2, test='group', data=data.bind)
Index

*Topic **datasets**
 outchild, 7

 gam, 2, 9
 gam.grptest, 2, 5, 9, 12
 gamm4, 5, 9
 gamm4.grptest, 2, 4, 9

 outchild, 7

 plot.gamtest, 2, 5, 9
 print.gamtest, 11

 T.L2c, 2, 11