Package ‘gastempt’

March 6, 2019

Version 0.4.4
Type Package
Title Analyzing Gastric Emptying from MRI or Scintigraphy
Description Fits gastric emptying time series from MRI or scintigraphic measurements using nonlinear mixed-model population fits with ‘nlme’ and Bayesian methods with Stan; computes derived parameters such as t50 and AUC.
License GPL (>= 3)
LazyData TRUE
NeedsCompilation yes
URL http://github.com/dmenne/gastempt
BugReports http://github.com/dmenne/gastempt/issues
Depends R (>= 3.4.0)
Imports nlme, Rcpp (>= 0.12.19), dplyr, tibble, ggplot2 (>= 3.0.0), rstan (>= 2.18.1), rstantools (>= 1.5.1), assertthat, stringr, methods, shiny
Suggests rmarkdown, knitr, covr, testthat
LinkingTo StanHeaders (>= 2.18.0), rstan (>= 2.18.1), BH (>= 1.66.0-1), Rcpp (>= 0.12.19), RcppEigen (>= 0.3.3.4.0)
RoxygenNote 6.1.1
VignetteBuilder knitr
Encoding UTF-8
SystemRequirements GNU make
Author Dieter Menne [aut, cre]
Maintainer Dieter Menne <dieter.menne@menne-biomed.de>
Repository CRAN
Date/Publication 2019-03-06 16:32:41 UTC
R topics documented:

- `coef.nlme_gastempt` ... 2
- `coef.stan_gastempt` ... 3
- `gastemptfunc` .. 3
- `nlme_gastempt` ... 5
- `plot.nlme_gastempt` ... 6
- `plot.stan_gastempt` ... 7
- `run_shiny` .. 7
- `simulate_gastempt` ... 8
- `stan_gastempt` .. 9
- `stan_model_names` .. 10
- `t50` .. 11

Index 12

coef.nlme_gastempt

Extract coefficients from `nlme_gastempt` result

Description

Extract coefficients from `nlme_gastempt` result

Usage

```r
## S3 method for class 'nlme_gastempt'
coef(object, ...)
```

Arguments

- `object` Result of a call to `nlme_gastempt`
- `...` other arguments

Value

A data frame with coefficients. See `nlme_gastempt` for an example.
coef.stan_gastempt

Extract coefficients from stan_gastempt result

Description
Extract coefficients from stan_gastempt result

Usage

```r
## S3 method for class 'stan_gastempt'
coef(object, ...)
```

Arguments

- `object`: Result of a call to `stan_gastempt`
- `...`: other arguments

Value

A data frame with coefficients. See `nlme_gastempt` for an example.

gastemptfunc

Functions for gastric emptying analysis

Description

The linexp and the power exponential (powexp) functions can be used to fit gastric emptying curves.

Usage

```r
linexp(t, v0 = 1, tempt = NULL, kappa = NULL, pars = NULL)
linexp_slope(t, v0 = 1, tempt = NULL, kappa = NULL, pars = NULL)
linexp_auc(v0 = 1, tempt = NULL, kappa = NULL, pars = NULL)
powexp(t, v0 = 1, tempt = NULL, beta = NULL, pars = NULL)
powexp_slope(t, v0 = 1, tempt = NULL, beta = NULL, pars = NULL)
linexp_log(t, v0 = 1, logtempt = NULL, logkappa = NULL, pars = NULL)
powexp_log(t, v0 = 1, logtempt = NULL, logbeta = NULL, pars = NULL)
```
Arguments

- t
 Time after meal or start of scan, in minutes; can be a vector.
- v0
 Initial volume at t=0.
- tempt
 Emptying time constant in minutes (scalar).
- kappa
 Overshoot term for linexp function (scalar).
- pars
 Default NULL. If not NULL, the other parameters with exception of t are not used and are retrieved as named parameters from the numeric vector pars instead.
- beta
 Power term for power exponential function (scalar).
- logtempt
 Logarithm of emptying time constant in minutes (scalar).
- logkappa
 Logarithm of overshoot term for linexp function (scalar).
- logbeta
 Logarithm of power term for power exponential function (scalar).

Details

The linexp function can have an initial overshoot to model secretion.

\[
vol(t) = v0 \times \left(1 + \frac{kappa \times t}{tempt}\right) \times \exp(-t / tempt)
\]

The powexp function introduced by Elashof et al. is monotonously decreasing but has more freedom to model details in the function tail.

\[
vol(t) = v0 \times \exp\left(-\frac{t}{tempt}\right)^\beta
\]

The _slope functions return the first derivatives of linexp and powexp. Use the _log functions to enforce positive parameters tempt and beta. Rarely required for gastric emptying curves.

Value

Vector of length(t) for computed volume.

Examples

```r
t = seq(0,100, by=5)
kappa = 1.3
tempt = 60
v0 = 400
beta = 3
pars = c(v0 = v0, tempt = tempt, kappa = kappa)
par(mfrow=c(1,3))
plot(t, linexp(t, v0, tempt, kappa), type = "l", ylab = "volume", main = "linexp\nkappa = 1.3 and 1.0")
lines(t, linexp(t, v0, tempt, 1), type = "l", col = "green")
# This should give the same plot as above
plot(t, linexp(t, pars = pars), type = "l", ylab = "volume", main = "linexp\nkappa = 1.3 and 1.0\nwith vectored parameters")
lines(t, linexp(t, v0, tempt, 1), type = "l", col = "green")
plot(t, powexp(t, v0, tempt, beta), type = "l", ylab = "volume", main = "powexp\nbeta = 2 and 1")
lines(t, powexp(t, v0, tempt, 1), type = "l", col = "green")
```
Description

Compute coefficients v0, tempt and kappa of a mixed model fit to a linexp function with one grouping variable.

Usage

```r
nlme_gastempt(d, pnlstol = 0.001, model = linexp, variant = 1)
```

Arguments

- `d` A data frame with columns
 - `record` Record descriptor as grouping variable, e.g. patient ID
 - `minute` Time after meal or start of recording.
 - `vol` Volume of meal or stomach
- `pnlstol` The value of pnlsTol at the initial iteration. See `nlmeControl` When the model does not converge, pnlsTol is multiplied by 5 and the iteration repeated until convergence or pnlsTol >= 0.5. The effective value of pnlsTol is returned in a separate list item. When it is known that a data set converges badly, it is recommended to set the initial pnlsTol to a higher value, but below 0.5, for faster convergence.
- `model` `linexp` (default) or `powexp`
- `variant` For both models, there are 3 variants
 - `variant = 1` The most generic version with independent estimates of all three parameters per record (`random = v0 + tempt + kappa ~ 1 | record`). The most likely to fail for degenerate cases. If this variant converges, use it.
 - `variant = 2` Diagonal random effects (`random = pdDiag(v0 + tempt + kappa) ~ 1; groups = record`). Better convergence in critical cases. Note: I never found out why I have to use the `groups` parameter instead of the `|`; see also p. 380 of Pinheiro/Bates.
 - `variant = 3` Since parameters kappa and beta respectively are the most difficult to estimate, these are fixed in this variant (`random = v0 + tempt ~ 1`). This variant converges in all reasonable cases, but the estimates of kappa and beta cannot be use for secondary between-group analysis. If you are only interested in t50, you can use this safe version.

Value

A list of class `nlme_gastempt` with elements `coef`, `summary`, `plot`, `pnlstol`, `message`

- `coef` is a data frame with columns:
 - `record` Record descriptor, e.g. patient ID
Description

Plot data points and fit curve of an nlme_gastempt fit

Usage

```r
## S3 method for class 'nlme_gastempt'
plot(x, ...)
```

Arguments

- `x` Result of a call to nlme_gastempt
- `...` other arguments
plot.stan_gastempt

Value

a ggplot object. Use print() if used non-interactively to show the curve

plot.stan_gastempt

Plot data points and fit curve of an stan_gastempt fit

Description

Plot data points and fit curve of an stan_gastempt fit

Usage

S3 method for class 'stan_gastempt'
plot(x, ...)

Arguments

x Result of a call to stan_gastempt
...
other arguments

Value

a ggplot object. Use print() if used non-interactively to show the curve

run_shiny

Run shiny app demonstrating fit strategies with simulated data

Description

Run shiny app demonstrating fit strategies with simulated data

Usage

run_shiny()

Value

Not used, starts shiny app
simulate_gastempt
Simulate gastric emptying data following a linexp or powexp function

Description
Simulate gastric emptying data following a linexp or powexp function.

Usage
```r
simulate_gastempt(n_records = 10L, v0_mean = 400L, v0_std = 50L,  
tempt_mean = ifelse(identical(model, linexp), 60L, 120L),  
tempt_std = tempt_mean/3, kappa_mean = 0.7L,  
kappa_std = kappa_mean/3, beta_mean = 0.7L, beta_std = beta_mean/3,  
noise = 20, student_t_df = NULL, missing = 0, model = linexp,  
seed = NULL, max_minute = NULL)
```

Arguments
- **n_records**: Number of records
- **v0_mean, v0_std**: Mean and between-record standard deviation of initial volume, typically in ml.
- **tempt_mean, tempt_std**: Mean and between-record standard deviation of parameter t_{empt}, typically in minutes.
- **kappa_mean, kappa_std**: For linexp only: Mean and between-record standard deviation of overshoot parameter κ. For values of κ above 1, curve has an overshoot that can be used to follow volume time series with secretion.
- **beta_mean, beta_std**: For powexp only: Mean and between-record standard deviation of the so called lag parameter.
- **noise**: Standard deviation of normal noise when student_t_df = NULL; scaling of noise when student_t_df >= 2.
- **student_t_df**: When NULL (default), Gaussian noise is added; when >= 2, Student_t distributed noise is added, which generates more realistic outliers. Values from 2 to 5 are useful, when higher values are used the result comes close to that of Gaussian noise. Values below 2 are rounded to 2.
- **missing**: When 0 (default), all curves have the same number of data points. When > 0, this is the fraction of points that were removed randomly to simulate missing points. Maximum value is 0.5.
- **model**: linexp(default) or powexp
- **seed**: optional seed; not set if seed = NULL (default)
- **max_minute**: Maximal time in minutes; if NULL, a sensible default rounded to hours is used
Value

A list with 3 elements:

- **record** Data frame with columns `record(chr)`, `v0`, `tempt`, `kappa/beta` giving the effective `linexp` or `powexp` parameters for the individual record. `v0` is rounded to nearest integer.

- **data** Data frame with columns `record(chr)`, `minute(dbl)`, `vol(dbl)` giving the time series and grouping parameters. `vol` is rounded to nearest integer.

- **stan_data** A list for use as data in Stan-based fits with elements `prior_v0`, `n`, `n_record`, `record`, `minute`, `volume`.

A comment is attached to the return value that can be used as a title.

Examples

```r
suppressWarnings(RNGversion("3.5.0"))
set.seed(4711)
library(ggplot2)

vol_linexp = simulate_gastempt(n_records = 4, noise = 0)
ggplot(vol_linexp$data, aes(x = minute, y = vol)) + geom_point() +
  facet_wrap(~record) + ggtitle("linexp, noise = 0, no missing")

vol_powexp = simulate_gastempt(n_records = 4, missing = 0.2, student_t_df = 2)
ggplot(vol_powexp$data, aes(x = minute, y = vol)) + geom_point() +
  facet_wrap(~record) + ggtitle("powexp, noise = 10 (default), 20% missing, 
  Student-t (df = 2) noise")
```

Description

Fit gastric emptying curves with Stan

Usage

```r
stan_gastempt(d, model_name = "linexp_gastro_2b", lkj = 2,
  student_df = 5L, init_r = 0.2, chains = 4, ...)
```

Arguments

- **d** A data frame with columns
 - `rec` Record descriptor as grouping variable, e.g. patient ID
 - `minute` Time after meal or start of recording.
 - `vol` Volume of meal or stomach

- **model_name** Name of predefined model in gastempt/exec. Use `stan_model_names()` to get a list of available models.
stan_model_names

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lkj</td>
<td>LKJ prior for kappa/temp correlation, only required for model linexp_gastro_2b. Values from 1.5 (strong correlation) to 50 (almost independent) are useful. See http://www.psychstatistics.com/2014/12/27/d-lkj-priors/ for examples.</td>
</tr>
<tr>
<td>student_df</td>
<td>Student-t degrees of freedom for residual error; default 5. Use 3 for strong outliers; values above 10 are close to gaussian residual distribution.</td>
</tr>
<tr>
<td>init_r</td>
<td>For stan, default = 0.2; Stan's own default is 2, which often results in stuck chains.</td>
</tr>
<tr>
<td>chains</td>
<td>For stan; default = 4. For debugging, use 1.</td>
</tr>
<tr>
<td>...</td>
<td>Additional parameter passed to sampling</td>
</tr>
</tbody>
</table>

Value

A list of class stan_gastempt with elements coef, fit, plot

- coef is a data frame with columns:
 - rec Record descriptor, e.g. patient ID
 - v0 Initial volume at t=0
 - tempt Emptying time constant
 - kappa Parameter kappa for model = linexp
 - beta Parameter beta for model = powexp
 - t50 Half-time of emptying
 - slope_t50 Slope in t50; typically in units of ml/minute On error, coef is NULL
- fit Result of class 'stanfit'
- plot A ggplot graph of data and prediction. Plot of raw data is returned even when convergence was not achieved.

Examples

```r
## Not run:
 dd = simulate_gastempt(n_records = 6, seed = 471)
 d = dd$data
 ret = stan_gastempt(d)
 print(ret$coef)

## End(Not run)
```

Description

By default, line 2 and 3 of comments starting with # or // in Stan file are returned.
Usage

stan_model_names(n_lines = 2, skip = 1, sep = "\n")

Arguments

n_lines Number of comment lines to retrieve
skip Number of lines to skip from beginning of Stan Model file
sep separator for multiline strings

Value

A data frame with model_name and the first n_lines comment lines in model as description

t50

Compute half-emptying time from nlme parameters

Description

No closed solution known for linexp, we use a Newton approximation.

Usage

t50(x)

Arguments

x Result of a nlme fit, with named components ‘tempt, beta, logbeta, kappa, logkappa’ depending on model. Function used ‘logbeta’ when it is present, in ‘x’, otherwise beta, and similar for logkappa/kappa.

Value

Half-emptying time. Name of evaluated function is returned as attribute fun. Negative of slope is returned as attribute slope.
Index

c coef.nlme_gastempt, 2
c coef.stan_gastempt, 3

gastemptfunc, 3

linexp, 11
linexp (gastemptfunc), 3
linexp_auc (gastemptfunc), 3
linexp_log (gastemptfunc), 3
linexp_slope (gastemptfunc), 3

nlme_gastempt, 2, 3, 5
nlmeControl, 5

plot.nlme_gastempt, 6
plot.stan_gastempt, 7
powexp (gastemptfunc), 3
powexp_log (gastemptfunc), 3
powexp_slope (gastemptfunc), 3

run_shiny, 7

simulate_gastempt, 8
stan_gastempt, 9
stan_model_names, 10

t50, 11