Package ‘gbm.auto’

October 1, 2021

Title Automated Boosted Regression Tree Modelling and Mapping Suite

Version 1.5.0

Description Automates delta log-normal boosted regression tree abundance prediction. Loops through parameters provided (LR (learning rate), TC (tree complexity), BF (bag fraction)), chooses best, simplifies, & generates line, dot & bar plots, & outputs these & predictions & a report, makes predicted abundance maps, and Unrepresentativeness surfaces.

Depends R (>= 3.5.0)

License MIT + file LICENSE

Encoding UTF-8

Language en-GB

LazyData true

Imports gbm (>= 2.1.1), dismo (>= 1.0-15), beepr (>= 1.2), mapplots (>= 1.5), mapproj (>= 0.9-1), rgdal (>= 1.1-10), rgeos (>= 0.3-19), raster (>= 2.5-8), sf (>= 0.9-7), shapefiles (>= 0.7), stats (>= 3.3.1)

RoxygenNote 7.1.2

NeedsCompilation no

Author Simon Dedman [aut, cre], Hans Gerritsen [aut]

Maintainer Simon Dedman <simondedman@gmail.com>

Repository CRAN

Date/Publication 2021-10-01 04:20:02 UTC
Description

2137 capture events of adult female cuckoo, thornback, spotted and blonde rays in the Irish Sea from 1994 to 2014 by the ICES IBTS, including explanatory variables: Length Per Unit Effort in that area by the commercial fishery, depth, temperature, distance to shore, and current speed at the bottom.

Usage

data(Adult_Females)

Format

A data frame with 2137 rows and 13 variables:

- **Longitude** Decimal longitudes in the Irish Sea
- **Latitude** Decimal latitudes in the Irish Sea
- **Haul_Index** ICES IBTS area, survey, station, and year
- **F_LPUE** Commercial fishery LPUE in Kg/Hr
- **Depth** Metres, decimal
Temperature Degrees, decimal
Salinity PPM
Distance_to_Shore Metres, decimal
Current_Speed Metres per second at the seabed
Cuckoo Numbers of cuckoo rays caught, standardised to 1 hour
Thornback Numbers of thornback rays caught, standardised to 1 hour
Blonde Numbers of blonde rays caught, standardised to 1 hour
Spotted Numbers of spotted rays caught, standardised to 1 hour

Author(s)
Simon Dedman, <simondedman@gmail.com>

Source
http://datras.ices.dk

AllPreds_E

Data: Predicted abundances of 4 ray species generated using gbm.auto

Description
Predicted abundances of 4 ray species generated using gbm.auto, and Irish commercial beam trawler effort 2012.

Usage
data(AllPreds_E)

Format
A data frame with 378570 rows and 7 variables:

Latitude Decimal latitudes in the Irish Sea
Longitude Decimal longitudes in the Irish Sea
Cuckoo Predicted abundances of cuckoo rays in the Irish Sea, generated using gbm.auto
Thornback Predicted abundances of thornback rays in the Irish Sea, generated using gbm.auto
Blonde Predicted abundances of blonde rays in the Irish Sea, generated using gbm.auto
Spotted Predicted abundances of spotted rays in the Irish Sea, generated using gbm.auto
Effort Irish commercial beam trawler effort 2012

Author(s)
Simon Dedman, <simondedman@gmail.com>
AllScaledData

Data: Scaled abundance data for 2 subsets of 4 rays in the Irish Sea, by gbm.cons

Description

A dataset containing the output of the gbm.cons example run, conservation priority areas within the Irish Sea for juvenile and adult female cuckoo, blonde, thornback and spotted rays.

Usage

```
data(AllScaledData)
```

Format

A data frame with 378570 rows and 3 variables:

- **Longitude** Decimal longitudes in the Irish Sea
- **Latitude** Decimal latitudes in the Irish Sea
- **allscaled** Relative abundance. Each juvenile and adult female cuckoo, blonde, thornback and spotted ray scaled to 1 and added together

Author(s)

Simon Dedman, <simondedman@gmail.com>

breaks.grid

Defines breakpoints for draw.grid and legend.grid; mapplots fork

Description

Defines breakpoints from values in grd with options to exclude outliers, set number of bins, and include a dedicated zero column. Forked by SD 05/01/2019 to add 'lo', else bins always begin at 0, killing plotting when all data are in a tight range at high values e.g. 600:610

Usage

```
b breaks.grid(grd, quantile = 0.975, ncol = 12, zero = TRUE)
```
Arguments

- **grd**: An array produced by `make.grid` or a list produced by `make.multigrid` or a vector of positive values.

- **quantile**: The maximum value of the breaks will be determined by the quantile given here. This can be used to deal with outlying values in `grd`. If `quantile = 1` then the maximum value of the breaks will be the same as the maximum value in `grd`.

- **ncol**: Number of colours to be used, always one more than the number of breakpoints. Defaults to 12.

- **zero**: Logical, should zero be included as a separate category? Defaults to TRUE.

Value

A vector of breakpoints for `draw.grid` in `mapplots`.

Author(s)

Simon Dedman, <simondedman@gmail.com>

Hans Gerritsen

Examples

```r
breaks.grid(100, ncol=6)
b Breaks grid(100, ncol = 5, zero = FALSE)

# Create breaks on the log scale
exp(breaks.grid(log(10000), ncol = 4, zero = FALSE))
```

Description

Internal use only. Jane Elith/John Leathwick 17th March 2005. Calculates calibration statistics for either binomial or count data but the family argument must be specified for the latter a conditional test for the latter will catch most failures to specify the family.

Usage

```r
calibration(obs, preds, family = c("binomial", "bernoulli", "poisson"))
```

Arguments

- **obs**: Observed data.

- **preds**: Predicted data.

- **family**: Statistical distribution family. Choose one.
Value
roc & calibration stats internally within gbm runs e.g. in gbm.auto.

Author(s)
Simon Dedman, <simondedman@gmail.com>

Description
Automates delta log normal boosted regression trees abundance prediction. Loops through all permutations of parameters provided (learning rate, tree complexity, bag fraction), chooses the best, then simplifies it. Generates line, dot and bar plots, and outputs these and the predictions and a report of all variables used, statistics for tests, variable interactions, predictors used and dropped, etc. If selected, generates predicted abundance maps, and Unrepresentativeness surfaces. See www.GitHub.com/SimonDedman/gbm.auto for issues, feedback, and development suggestions. See SimonDedman.com for links to walkthrough paper, and papers and thesis published using this package.

Usage
gbm.auto(
 grids = NULL,
 samples,
 expvar,
 resvar,
 tc = c(2),
 lr = c(0.01, 0.005),
 bf = 0.5,
 n.trees = 50,
 ZI = "CHECK",
 fam1 = c("bernoulli", "binomial", "poisson", "laplace", "gaussian"),
 fam2 = c("gaussian", "bernoulli", "binomial", "poisson", "laplace"),
 simp = TRUE,
 gridslat = 2,
 gridslon = 1,
 multiplot = TRUE,
 cols = grey.colors(1, 1, 1),
 linesfiles = TRUE,
 smooth = FALSE,
 savedir = tempdir(),
 savegbm = TRUE,
 loadgbm = NULL,
 varint = TRUE,
 map = TRUE,
shape = NULL,
RSB = TRUE,
BnW = TRUE,
alerts = TRUE,
pngtype = c("cairo-png", "quartz", "Xlib"),
gaus = TRUE,
MLEvaluate = TRUE,
brv = NULL,
grv = NULL,
Bin_Preds = NULL,
Gaus_Preds = NULL,
...
}

Arguments

grids Explanatory data to predict to. Import with (e.g.) read.csv and specify object name. Defaults to NULL (won’t predict to grids).
samples Explanatory and response variables to predict from. Keep col names short (~17 characters max), no odd characters, spaces, starting numerals or terminal periods. Spaces may be converted to periods in directory names, underscores won’t. Can be a subset of a large dataset.
expvar List of names or column numbers of explanatory variables in 'samples': c(1,3,6) or c("Temp","Sal"). No default.
resvar Name or column number(s) of response variable in samples: 12, c(1,4), "Rock-fish". No default. Column name is ideally species name.
tc Permutations of tree complexity allowed, can be vector with the largest sized number no larger than the number of explanatory variables e.g. c(2,7), or a list of 2 single numbers or vectors, the first to be passed to the binary BRT, the second to the Gaussian, e.g. tc = list(c(2,6), 2) or list(6, c(2,6)).
lr Permutations of learning rate allowed. Can be a vector or a list of 2 single numbers or vectors, the first to be passed to the binary BRT, the second to the Gaussian, e.g. lr = list(c(0.01,0.02),0.0001) or list(0.01,c(0.001, 0.0005)).
bf Permutations of bag fraction allowed, can be single number, vector or list, per tc and lr. Defaults to 0.5.
n.trees From gbm.step, number of initial trees to fit. Can be single or list but not vector i.e. list(fam1,fam2).
ZI Are data zero-inflated? TRUE FALSE "CHECK". Choose one. TRUE: delta BRT, log-normalised Gaus, reverse log-norm and bias corrected. FALSE: do Gaussian only, no log-normalisation. CHECK: Tests data for you. Default is CHECK.
fam1 Probability distribution family for 1st part of delta process, defaults to "bernoulli". Choose one.
fam2 Probability distribution family for 2nd part of delta process, defaults to "gaussian". Choose one.
simp Try simplifying best BRTs?
gbm.auto

gridslat Column number for latitude in 'grids'.
grids.lon Column number for longitude in 'grids'.
multiplot Create matrix plot of all line files? Default true. turn off if big n of exp vars causes an error due to margin size problems.
cols Barplot colour vector. Assignment in order of explanatory variables. Default 1*white: white bars black borders. '1*' repeats.
linesfiles Save individual line plots' data as csv's? Default TRUE.
smooth Apply a smoother to the line plots? Default FALSE.
savedir Save outputs to a temporary directory (default) else change to current directory e.g. "/home/me/folder". Do not use getwd() here.
savegbm Save gbm objects and make available in environment after running? Open with load("Bin_Best_Model") Default TRUE.
loadgbm Relative or absolute location of folder containing Bin_Best_Model and Gaus_Best_Model. If set will skip BRT calculations and do predicted maps and csvs. Avoids re-running BRT models again (the slow bit), can run normally once with savegbm=T then multiple times with new grids & loadgbm to predict to multiple grids e.g. different seasons, areas, etc. Default NULL, character vector, "/." for working directory.
varint Calculate variable interactions? Default:TRUE, FALSE for error: "contrasts can be applied only to factors with 2 or more levels".
map Save abundance map png files?
shape Set coast shapefile, else bounds calculated by gbm.map which then calls gbm.basemap to download and auto-generate the base map. Read in existing files by installing the shapefiles package then DesiredMapName <- read.shapefile("ShapeFileName") omitting the .shp extension.
RSB Run Unrepresentativeness surface builder? Default TRUE.
BnW Repeat maps in black and white e.g. for print journals. Default TRUE.
alerts Play sounds to mark progress steps. Default TRUE but running multiple small BRTs in a row (e.g. gbm.loop) can cause RStudio to crash.
pngtype Filetype for png files, alternatively try "quartz" on Mac. Choose one.
gaus Do family2 (typically Gaussian) runs as well as family1 (typically Bin)? Default TRUE.
MLEvaluate do machine learning evaluation metrics & plots? Default TRUE.
brv Dummy param for package testing for CRAN, ignore.
grv Dummy param for package testing for CRAN, ignore.
Bin_Preds Dummy param for package testing for CRAN, ignore.
Gaus_Preds Dummy param for package testing for CRAN, ignore.
... Optional arguments for zero in breaks.grid in gbm.map, legend in legend.grid in gbm.map, and gbm.step (dismo package) arguments n.trees and max.trees, both of which can be added in list(1,2) format to pass to fam1 and 2.
Details

Errors and their origins:

0. install ERROR: dependencies ‘rgdal’, ‘rgeos’ are not available for package ‘gbm.auto’ For Linux/*buntu systems, in terminal, type sudo apt install libgeos-dev sudo apt install libproj-dev sudo apt install libgdal-dev

1. Error in FUN(X[[i]], ...) : only defined on a data frame with all numeric variables > Check your variable types are correct, e.g. numerics haven’t been imported as factors because there’s an errant first row of text information before the data. Remove NA rows from the response variable if present: convert blank cells to NA on import with read.csv(x, na.strings = ””) then samples2 <- samples1[which(!is.na(samples[,resvar_column_number])),]

2. At bf=0.5, if nrows <= 42 gbm.step will crash > Use gbm.bfcheck to determine optimal viable bf size

3. Maps/plots don’t work/output > If on a Mac, try changing pngtype to "quartz"

4. Error in while (delta.deviance > tolerance.test AMPERSAND n.fitted < max.trees): missing value where TRUE/FALSE needed > If running a zero-inflated delta model (bernoulli/bin & gaussian/gaus), Data are expected to contain zeroes (lots of them in zero-inflated cases), have you already filtered them out, i.e. are only testing the positive cases? Or do you only have positive cases? If so only run (e.g.) Gaussian: set ZI to FALSE

5. Error in round(gbm.object$cv.statistics$deviance.mean, 4) : non-numeric argument to mathematical function > LR or BF probably too low in earlier BRT (normally Gaus run with highest TC)

6. Error in if (n.trees > x$n.trees) : argument is of length zero > LR or BF probably too low in earlier BRT (normally Gaus run with highest TC)

7. Error in gbm.fit(x, y, offset = offset, distribution = distribution, w = w) The dataset size is too small or subsampling rate is too large: nTrain*bag.fraction <= n.minobsinnode > LR or BF probably too low in earlier BRT (normally Gaus run with highest TC) It may be that you don’t have enough positive samples to run BRT modelling Run gbm.bfcheck to check recommended minimum BF size

8. Warning message: In cor(y_i, u_i) : the standard deviation is zero > LR or BF probably too low in earlier BRT (normally Gaus run with highest TC) It may be that you don’t have enough positive samples to run BRT modelling Run gbm.bfcheck to check recommended minimum BF size

9. Anomalous values can obfuscate clarity in line plots e.g. salinity range 32:35ppm but dataset has errant 0 value: plot axis will be 0:35 and 99.99 of the data will be in the tiny bit at the right. Clean your data beforehand

10. Error in plot.new() : figure margins too large: > In RStudio, adjust plot frame (usually bottom right) to increase its size Still fails? Set multiplot=FALSE

11. Error in dev.print(file = paste0(“/", names(samples[i]), "/pred_dev_bin.jpeg")) : can only print from a screen device > An earlier failed run (e.g. LR/BF too low) left a plotting device open. Close it with: dev.off()

12. RStudio crashed: set alerts=F and pause cloud sync programs if outputting to a synced folder

13. Error in grDevices::dev.copy(device = function (filename = "Rplot (or similar) > Your resvar column name contains an illegal character e.g. / & ‘ _ Fix with colnames(samples)[n] <- "Better-Name"
gbm.basemap

Value

Line, dot and bar plots, a report of all variables used, statistics for tests, variable interactions, predictors used and dropped, etc. If selected generates predicted abundance maps, and Unrepresentativeness surface

Author(s)

Simon Dedman, <simondedman@gmail.com>

Examples

Not run. Note: grids file was heavily cropped for CRAN upload so output map
predictions only cover patchy chunks of the Irish Sea, not the whole area.
Full versions of these files:
https://drive.google.com/file/d/1WHYpftP3roozVKwi_R IpW7tlZ1hZA7r
/view?usp=sharing
library(gbm.auto)
data(grids)
data(samples)
Set your working directory
gbm.auto(grids = grids, samples = samples, expvar = c(4:8, 10), resvar = 11,
tc = c(2,7), lr = c(0.005, 0.001), ZI = TRUE, savegbm = FALSE)

gbm.basemap

Creates Basemaps for Gbm.auto mapping from your data range

Description

Downloads unzips crops & saves NOAAs global coastline shapefiles to user-set box. Use for 'shape' in gbm.map. If downloading in RStudio uncheck "Use secure download method for HTTP" in Tools > Global Options > Packages. Simon Dedman, 2015/6 simondedman@gmail.com GitHub.com/SimonDedman/gbm.auto

Usage

gbm.basemap(
 bounds = NULL,
 grids = NULL,
 gridslat = NULL,
 gridslon = NULL,
 getzip = TRUE,
 zipvers = "2.3.7",
 savedir = tempdir(),
 savename = "Crop_Map",
 res = "CALC",
 extrabounds = FALSE
)
gbm.basemap

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bounds</td>
<td>Region to crop to: c(xmin,xmax,ymin,ymax).</td>
</tr>
<tr>
<td>grids</td>
<td>If bounds unspecified, name your grids database here.</td>
</tr>
<tr>
<td>gridslat</td>
<td>If bounds unspecified, specify which column in grids is latitude.</td>
</tr>
<tr>
<td>gridslon</td>
<td>If bounds unspecified, specify which column in grids is longitude.</td>
</tr>
<tr>
<td>getzip</td>
<td>Download & unpack GSHHS data to WD? "TRUE" else absolute/relative reference to GSHHS_shp folder, including that folder.</td>
</tr>
<tr>
<td>zipvers</td>
<td>GSHHS version, in case it updates. Please email developer (SD) if this is incorrect.</td>
</tr>
<tr>
<td>savedir</td>
<td>Save outputs to a temporary directory (default) else change to current directory e.g. "/home/me/folder". Do not use getwd() here.</td>
</tr>
<tr>
<td>savename</td>
<td>Shapefile save-name, no shp extension, default is "Crop_Map"</td>
</tr>
<tr>
<td>res</td>
<td>Resolution, 1:5 (low:high) OR c,l,i,h,f (coarse, low, intermediate, high, full) or "CALC" to calculate based on bounds. Choose one.</td>
</tr>
<tr>
<td>extrabounds</td>
<td>Grow bounds 16pct each direction to expand rectangular datasets basemaps over the entire square area created by basemap in mapplots.</td>
</tr>
</tbody>
</table>

Details

errors and their origins: 1. Error in setwd(getzip) : cannot change working directory If you’ve specified the location of the local GSHHS_shp folder, ensure you’re in the correct directory relative to it. This error means it looked for the folder and couldn’t find it.

2. Error in writeSpatialShape(cropshp, savename) x is a NULL object, not a compatible Spatial*DataFrame. Ensure that your lats and longs are the the right way around

3. If rgdal install fails in Linux try: sudo apt-get install libgdal-dev & & sudo apt-get install libproj-dev"

4. Error in as.environment(pos):no item called "package:shapefiles" on the search list: strange error occurring despite shapefiles being coded like all other packages. Correct output produced regardless.

Value

basemap coastline file for gbm.map in gbm.auto. "cropshp" SpatialPolygonsDataFrame in in local environment & user-named files in "CroppedMap" folder. Load later with maptools function: MyMap <- readShapePoly("./CroppedMap/Crop_Map")

Author(s)

Simon Dedman, <simondedman@gmail.com>

Examples

Not run: downloads and saves external data.
data(samples)
gbm.bfcheck

Calculates minimum Bag Fraction size for gbm.auto

Description

Provides minimum bag fractions for gbm.auto, preventing failure due to bf & samples rows limit. Simon Dedman, 2016, simondedman@gmail.com, GitHub.com/SimonDedman/gbm.auto

Usage

```r
gbm.bfcheck(samples, resvar, ZI = "CHECK", grv = NULL)
```

Arguments

- `samples`: Samples dataset, same as gbm.auto.
- `resvar`: Response variable column in samples.
- `ZI`: Are samples zero-inflated? TRUE/FALSE/"CHECK".
- `grv`: Dummy param for package testing for CRAN, ignore.

Value

Prints minimum Bag Fraction size for gbm.auto.

Author(s)

Simon Dedman, <simondedman@gmail.com>

Examples

```r
data(samples)
gbm.bfcheck(samples = samples, resvar = "Cuckoo")
```
gbm.cons

Conservation Area Mapping

Description

Runs gbm.auto for multiple subsets of the same overall dataset and scales the combined results, leading to maps which highlight areas of high conservation importance for multiple species in the same study area e.g. using juvenile and adult female subsets to locate candidate nursery grounds and spawning areas respectively.

Usage

```r
gbm.cons(
  mygrids,
  subsets,
  alerts = TRUE,
  map = TRUE,
  BnW = TRUE,
  resvars,
  gbmautos = TRUE,
  savedir = tempdir(),
  expvars,
  tcs = NULL,
  lrs = rep(list(c(0.01, 0.005)), length(resvars)),
  bfs = rep(0.5, length(resvars)),
  ZIs = rep("CHECK", length(resvars)),
  colss = rep(list(grey.colors(1, 1, 1)), length(resvars)),
  linesfiless = rep(FALSE, length(resvars)),
  savegbms = rep(TRUE, length(resvars)),
  varints = rep(TRUE, length(resvars)),
  maps = rep(TRUE, length(resvars)),
  RSBs = rep(TRUE, length(resvars)),
  BnWs = rep(TRUE, length(resvars)),
  zeroes = rep(TRUE, length(resvars)),
  shape = NULL,
  pngtype = c("cairo-png", "quartz", "Xlib"),
  gridslat = 2,
  gridslon = 1,
  grids = NULL
)
```

Arguments

- **mygrids**: Gridded lat+long+data object to predict to.
- **subsets**: Subset name(s): character; single or vector, corresponding to matching-named dataset objects e.g. read in by read.csv().
alerts Play sounds to mark progress steps.
map Produce maps.
BnW Also produce B&W maps?
resvars Vector of resvars cols from dataset objects for gbm.autos, length(subsets)*species, no default.
gbmautos Do gbm.auto runs for species? Default TRUE, set FALSE if already run and output files in expected directories.
savedir Save outputs to a temporary directory (default) else change to current directory e.g. "/home/me/folder". Do not use getwd() here.
expvars List object of expvar vectors for gbm.autos, length = no. of subsets * no. of species. No default.
tcs Gbm.auto parameters, auto-calculated below if not provided by user.
lrs Gbm.auto parameter, uses defaults if not provided by user.
bfs Gbm.auto parameter, uses defaults if not provided by user.
ZIs Gbm.auto parameter, autocalculated below if not provided by user. Choose one entry.
colss Gbm.auto parameter, uses defaults if not provided by user.
linesfiless Gbm.auto parameter, uses defaults if not provided by user.
savegbms Gbm.auto parameter, uses defaults if not provided by user.
varints Gbm.auto parameter, uses defaults if not provided by user.
maps Gbm.auto parameter, uses defaults if not provided by user.
RSBs Gbm.auto parameter, uses defaults if not provided by user.
BnWs Gbm.auto parameter, uses defaults if not provided by user.
zeroes For breaks.grid, include zero-only category in colour breakpoints and subsequent legend. Defaults to TRUE.
shape Coastline file for gbm.map.
pngtype File-type for png files, alternatively try "quartz" on Mac. Choose one.
gridslat Per Gbm.auto defaults to 2.
gridslon Per Gbm.auto defaults to 1.
grids Dummy param for package testing for CRAN, ignore.

Value
Maps via gbm.map & saved data as csv file.

Author(s)
Simon Dedman, <simondedman@gmail.com>
gbm.loop

Examples

Not run: downloads and saves external data.
data(grids)
gbm.cons(mygrids = grids, subsets = c("Juveniles", "Adult_Females"),
resvars = c(44:47, 11:14),
expvars = list(c(4:11, 15, 17, 21, 25, 29, 37),
 c(4:11, 15, 18, 22, 26, 30, 38),
 c(4:11, 15, 19, 23, 27, 31),
 c(4:11, 15, 20, 24, 28, 32, 39),
 4:10, 4:10, 4:10, 4:10),
tcs = list(c(2, 14), c(2, 14), 13, c(2, 14), c(2, 6), c(2, 6), 6,
c(2, 6)),
lrs = list(c(0.01, 0.005), c(0.01, 0.005), 0.005, c(0.01, 0.005),
 0.005, 0.005, 0.001, 0.005),
ZIs = rep(TRUE, 8),
savegbms = rep(FALSE, 8),
varints = rep(FALSE, 8),
RSBs = rep(FALSE, 8),
BnWs = rep(FALSE, 8),
zeroes = rep(FALSE, 8))

Description

Bagging introduces stochasticity which can result in sizeable variance in output predictions by gbm.auto for small datasets. This function runs a user-specified number of loops through the same gbm.auto parameter combinations and calculates the Coefficient Of Variation in the predicted abundance scores for each site aka cell. This can be mapped, to spatially demonstrate the output variance range.

Usage

gbm.loop(
 loops = 10,
 savedir = tempdir(),
 savecsv = TRUE,
 calcpreds = TRUE,
 varmap = TRUE,
 measure = "CPUE",
 cleanup = FALSE,
 grids = NULL,
 samples,
 expvar,
resvar,
tc = c(2),
lr = c(0.01),
bf = 0.5,
n.trees = 50,
ZI = "CHECK",
fam1 = c("bernoulli", "binomial", "poisson", "laplace", "gaussian"),
fam2 = c("gaussian", "bernoulli", "binomial", "poisson", "laplace"),
simp = TRUE,
gridslat = 2,
gridslon = 1,
multiplot = FALSE,
cols = grey.colors(1, 1, 1),
linesfiles = TRUE,
smooth = FALSE,
savegbm = FALSE,
loadgbm = NULL,
varint = FALSE,
map = TRUE,
shape = NULL,
RSB = FALSE,
BnW = FALSE,
alerts = FALSE,
pngtype = c("cairo-png", "quartz", "Xlib"),
gaus = TRUE,
MLEvaluate = TRUE,
runautos = TRUE,
Min.Inf = NULL,
...)

Arguments

loops The number of loops required, integer.
savedir Save outputs to a temporary directory (default) else change to current directory
e.g. "/home/me/folder". Do not use getwd() here.
savecsv Save coefficients of variation in simple & extended format.
calcpreds Calculate coefficients of variation of predicted abundance?
varmap Create a map of the coefficients of variation outputs?
measure Map legend, coefficients of variation of what? Default CPUE.
cleanup Remove gbm.auto-generated directory each loop? Default FALSE.
grids See gbm.auto help for all subsequent params.
samples See gbm.auto help.
expvar See gbm.auto help.
resvar See gbm.auto help.
tc See gbm.auto help.
gbm.loop

lr See gbm.auto help.
bf See gbm.auto help.
n.trees See gbm.auto help.
ZI See gbm.auto help. Choose one.
fam1 See gbm.auto help. Choose one.
fam2 See gbm.auto help. Choose one.
simp See gbm.auto help.
gridslat See gbm.auto help.
gridslon See gbm.auto help.
multiplot See gbm.auto help. Default False
cols See gbm.auto help.
linesfiles See gbm.auto help; TRUE or linesfiles calculations fail.
smooth See gbm.auto help.
savegbm See gbm.auto help.
loadgbm See gbm.auto help.
varint See gbm.auto help.
map See gbm.auto help.
shape See gbm.auto help.
RSB See gbm.auto help.
BnW See gbm.auto help.
alerts See gbm.auto help; default FALSE as frequent use can crash RStudio.
pngtype See gbm.auto help. Choose one.
gaus See gbm.auto help.
MLEvaluate See gbm.auto help.
runautos Run gbm.autos, default TRUE, turn off to only collate numbered-folder results.
Min.Inf Dummy param for package testing for CRAN, ignore.
... Additional params for gbm.auto sub-functions including gbm.step.

Value

Returns a data frame of lat, long, 1 predicted abundance per loop, and a final variance score per cell.

Author(s)

Simon Dedman, <simondedman@gmail.com>
Examples

```r
# Not run: downloads and saves external data.
library("gbm.auto")
data(grids) # load grids
data(samples) # load samples
gbm.loopexample <- gbm.loop(loops = 2, samples = samples,
grids = grids, expvar = c(4:10), resvar = 11, simp = F)
```

Description

Generates maps from the outputs of gbm.step then Gbm.predict.grids, handled automatically within gbm.auto but can be run alone, and generates representativeness surfaces from the output of gbm.rsb.

Usage

```r
gbm.map(
  x,
  y,
  z,
  byx = NULL,
  byy = NULL,
  grdfun = mean,
  mapmain = "Predicted CPUE (numbers per hour): ",
  species = "Response Variable",
  heatcolours = c("white", "yellow", "orange", "red", "brown4"),
  colournumber = 8,
  shape = NULL,
  landcol = "grey80",
  mapback = "lightblue",
  legendloc = "bottomright",
  legendtitle = "CPUE",
  lejback = "white",
  zero = TRUE,
  quantile = 1,
  byxout = FALSE,
  breaks = NULL,
  byxport = NULL,
  ...
)
```
Arguments

x Vector of longitudes, from make.grid in mapplots; x. Order by this (descending) SECOND.
y Vector of latitudes, from make.grid in mapplots; grids[,gridslat]. Order by this (descending) first.
z Vector of abundances generated by gbm.predict.grids, from make.grid in mapplots; grids[,predabund].
byx Longitudinal width of grid cell, from make.grid in mapplots. Autogenerated if left blank.
byy Latitudinal height of grid cell, from make.grid in mapplots. Autogenerated if left blank.
grdfun make.grid operand for >=2 values per cell. Default:mean, other options: sum prod min max sd se var.
mapmain Plot title, has species value appended. Default "Predicted CPUE (numbers per hour): ".
species Response variable name, from basemap in mapplots; names(samples[i]). Defaults to "Response Variable".
heatcolours Vector for abundance colour scale, defaults to the heatcol from legend.grid and draw.grid in mapplots which is c("white", "yellow", "orange", "red", "brown4").
colournumber Number of colours to spread heatcol over, default:8.
shape Basemap shape to draw, from draw.shape in mapplots. Defaults to NULL which calls gbm.basemap to generate it for you.
landcol Colour for 'null' area of map (for marine plots, this is land), from draw.shape in mapplots. Default "grey80" (light grey).
mapback Basemap background colour, defaults to lightblue (ocean for marine plots).
legendloc Location on map of legend box, from legend.grid in mapplots, default bottom-right.
legendtitle The metric of abundance, e.g. CPUE for fisheries, from legend.grid in mapplots. Default "CPUE".
lejback Background colour of legend, from legend.grid in mapplots. Default "white".
zero Force include 0-only bin in breaks.grid and thus legend? Default TRUE.
quantile Set max quantile of data to include in bins, from breaks.grid in mapplots; lower to e.g. 0.975 cutoff outliers; default 1.
byxout Export byx to use elsewhere? Default:FALSE.
breaks Vector of breakpoints for colour scales; default blank, generated automatically.
byxport Dummy param for package testing for CRAN, ignore.
... Additional arguments for legend.grid’s ... which passes to legend.

Details

Errors and their origins: Error in seq.default(xlim[1], xlim[2], by = byx): wrong sign in 'by' argument. Check that your lat & long columns are the right way around. Ensure grids data are gridded.
Suggested parameter values: z = rsbdf[,"Unrepresentativeness"] mapmain = "Unrepresentativeness: " legendtitle = "UnRep 0-1"
Species abundance maps using data provided by `gbm.auto`, and Representativeness Surface Builder maps using data provided by `gbm.rsb`, to be run in a `png/par/gbm.map/dev.off` sequence.

Author(s)
Simon Dedman, <simondedman@gmail.com>
Hans Gerritsen

Examples

```r
# Not run: downloads and saves external data.
# Suggested code for outputting to png:
data(grids)
# set working directory somewhere suitable
png(filename = "gbmmap.png", width = 7680, height = 7680, units = "px",
     pointsize = 192, bg = "white", res = NA, family = "", type = "cairo-png")
par(mar = c(3.2,3.1,3.0,1), las = 1, mgp = c(2.1,0.5,0), xpd = FALSE)
gbm.map(x = grids[,"Longitude"], y = grids[,"Latitude"], z = grids[,"Effort"],
         species = "Effort")
dev.off()
```

Description

Loops through explanatory variables comparing their histogram in 'samples' to their histogram in 'grids' to see how well the explanatory variable range in samples represents the range being predicted to in grids. Assigns a representativeness score per variable per site in grids, and takes the average score per site if there's more than 1 expvar. Saves this to a CSV; it's plotted by `gbm.map` if called in `gbm.auto`. This shows you which areas have the most and least representative coverage by samples, therefore where you can have the most/least confidence in the predictions from `gbm.predict.grids`. Can be called directly, and choosing a subset of expvars allows one to see their individual / collective representativeness.

Usage

```r
gbm.rsb(samples, grids, expvarnames, gridslat, gridslon)
```

Arguments

- **samples**: Data frame with response and explanatory variables.
- **grids**: Data frame of (more/different) explanatory variables and no response variable, to be predicted to by `gbm.predict.grids`.
gbm.subset

expvarnames Vector of column names of explanatory variables being tested. Can be length 1. Names must match in samples and grids.

gridslat Column number for latitude in ‘grids’.

gridslon Column number for longitude in ‘grids’.

Value
Gridded data table of representativeness values which is then mapped with gbm.map and also saved as a csv

Author(s)
Simon Dedman, <simondedman@gmail.com>

Examples

data(samples)
data(grids)
rsbdf_bin <- gbm.rsb(samples, grids, expvarnames = names(samples[c(4:8, 10)]), gridslat = 2, gridslon = 1)

Description
Set your working directory to the output folder of a gbm.auto/gbm.loop run. This function returns the variable value corresponding to the 0 value on the lineplots, which should be the optimal place to split the dataset into 2 subsets, low and high. IF the relationship doesn’t cross 0 more than once. Function is similarly useful to quickly get the 0-point value in these cases, i.e. where values below are detrimental, values above beneficial (check plots though)

Usage

gbm.subset(x, fams = c("Bin", "Gaus"), loop = FALSE)

Arguments

x Vector of variable names.

fams Vector of statistical data distribution family names to be modelled by gbm.

loop Is the folder a gbm.loop output?
Details

loop varnames are BinLineLoop_VAR.csv & GausLineLoop_VAR.csv normal varnames are Bin_Best_line_VAR.csv & Gaus_Best_line_VAR.csv

Just use average between the last negative & first positive point unless any points fall on zero

Value

a list of breakpoint values which datasets can be subjetted using.

Author(s)

Simon Dedman, <simondedman@gmail.com>

Examples

Not run: requires completed gbm.auto run.
having run gbm.auto (with linesfiles=TRUE), set working directory there
data(samples)
gbm.subset(x = names(samples[c(4:8, 10)]), fams = c("Bin", "Gaus"))
gbm.valuemap

```r
savedir = tempdir(),
savethis = TRUE,
HRMSY = 0.15,
goodweight = NULL,
badweight = NULL,
m = 1,
alerts = TRUE,
BnW = TRUE,
shape = NULL,
pngtype = c("cairo-png", "quartz", "Xlib"),
byxport = NULL,
```

...}

Arguments

- **dbase**: Data.frame to load. Expects Lon, Lat & data columns: predicted abundances, fishing effort etc. E.g.: Abundance_Preds_All.csv from gbm.auto.
- **loncolno**: Column number in dbase which has longitudes.
- **latcolno**: Column number in dbase which has latitudes.
- **goodcols**: Which column numbers are abundances (where higher = better)? List them in order of highest conservation importance first e.g. c(3,1,2,4).
- **badcols**: Which cols are 'negative' e.g. fishing (where higher = worse)?
- **conservecol**: Conservation column, from gbm.cons.
- **plotthis**: Vector of variable types to plot. Delete any or all w/ NULL.
- **maploops**: Vector of sort loops to run.
- **savedir**: Save outputs to a temporary directory (default) else change to current directory e.g. "\home\me\folder". Do not use getwd() here.
- **savethis**: Export all data as csv?
- **HRMSY**: Maximum percent of each goodcols stock which can be removed yearly, as decimal (0.15 = 15 pct). Must protect remainder: 1-HRMSY. Single number or vector. If vector, same order as goodcols. Required.
- **goodweight**: Single/vector weighting multiple(s) for goodcols array.
- **badweight**: Ditto for badcols array.
- **m**: Multiplication factor for Bpa units. 1000 to convert tonnes to kilos, 0.001 kilos to tonnes. Assumedly the same for all goodcols.
- **alerts**: Play sounds to mark progress steps.
- **BnW**: Also produce greyscale images for print publications.
- **shape**: Set coastline shapefile, else uses British Isles. Generate your own with gbm.basemap.
- **pngtype**: File-type for png files, alternatively try "quartz" on Mac. Choose one.
- **byxport**: Dummy param for package testing for CRAN, ignore.
- **...**: Optional terms for gbm.map.
Value

Species abundance, abundance vs avoid variable, and MPA maps per species and sort type, in b&w if set. CSVs of all maps if set.

Author(s)

Simon Dedman, <simondedman@gmail.com>

Data: Explanatory variables for rays in the Irish Sea

A dataset containing explanatory variables for environment, fishery and predators of rays including juveniles in the Irish Sea.

Usage

data(grids)

Format

A data frame with 378570 rows and 43 variables:

- **Longitude** Decimal longitudes in the Irish Sea
- **Latitude** Decimal latitudes in the Irish Sea
- **Depth** Metres, decimal
- **Temperature** Degrees, decimal
- **Salinity** PPM
- **Current_Speed** Metres per second at the seabed
- **Distance_to_Shore** Metres, decimal
- **F_LPUE** Commercial fishery LPUE in Kg/Hr
- **Scallop** Average KwH Scallop effort from logbooks, Marine Institute and MMO combined
- **MI_Av_E_Hr** Average effort hours, Marine Institute Scallop VMS, 0.03*0.02 rectangles, all Irish Sea, 2006-14
- **MI_Av_LPUE** Average scallop CPUE, Marine Institute Scallop VMS, 0.03*0.02 rectangles, all Irish Sea, 2006-14
- **MI_Sum_Liv** Sum of live weight. Average scallop CPUE, Marine Institute Scallop VMS, 0.03*0.02 rectangles, all Irish Sea, 2006-14
- **Whelk** MMO Whelk LPUE 2009-12, pivot, polygons to points
- **MmoAvScKwh** MMO Scallop Effort 2009-12, pivot, polygons to points. ICES rectangles
- **HubDist** map calc, distance of grid point to nearest datras point representing it (for preds)
Cod_C ICES IBTS CPUE of cod caught between 1994 - 2014 large enough to predate upon <= year 1 cuckoo rays
Cod_T As Cod_C for yr1 thornback rays
Cod_B As Cod_C for yr1 blonde rays
Cod_S As Cod_C for yr1 spotted rays
Haddock_C As Cod_C, haddock predating upon cuckoo rays
Haddock_T As Cod_C, haddock predating upon thornback rays
Haddock_B As Cod_C, haddock predating upon blonde rays
Haddock_S As Cod_C, haddock predating upon spotted rays
Plaice_C As Cod_C, plaice predating upon cuckoo rays
Plaice_T As Cod_C, plaice predating upon thornback rays
Plaice_B As Cod_C, plaice predating upon blonde rays
Plaice_S As Cod_C, plaice predating upon spotted rays
Whiting_C As Cod_C, whiting predating upon cuckoo rays
Whiting_T As Cod_C, whiting predating upon thornback rays
Whiting_B As Cod_C, whiting predating upon blonde rays
Whiting_S As Cod_C, whiting predating upon spotted rays
ComSkt_C As Cod_C, common skate predating upon cuckoo rays
ComSkt_T As Cod_C, common skate predating upon thornback rays
ComSkt_B As Cod_C, common skate predating upon blonde rays
ComSkt_S As Cod_C, common skate predating upon spotted rays
Blonde_C As Cod_C, blonde ray predating upon cuckoo rays
Blonde_T As Cod_C, blonde ray predating upon thornback rays
Blonde_S As Cod_C, blonde ray predating upon spotted rays
C_Preds All predator CPUEs combined for cuckoo rays
T_Preds All predator CPUEs combined for thornback rays
B_Preds All predator CPUEs combined for blonde rays
S_Preds All predator CPUEs combined for spotted rays
Effort Irish commercial beam trawler effort 2012

Author(s)
Simon Dedman, <simondedman@gmail.com>

Source
http://oar.marine.ie/handle/10793/958
Description

A dataset containing explanatory variables for environment, fishery and predators of juvenile rays in the Irish Sea, and the response variables, abundance CPUEs of cuckoo, thornback, blonde and spotted rays.

Usage

data(Juveniles)

Format

A data frame with 2136 rows and 46 variables:

- **Survey_StNo_HaulNo_Year**: Index column of combined Survey number, station number, haul number, and year
- **Latitude**: Decimal latitudes in the Irish Sea
- **Longitude**: Decimal longitudes in the Irish Sea
- **Depth**: Metres, decimal
- **Temperature**: Degrees, decimal
- **Salinity**: PPM
- **Current_Speed**: Metres per second at the seabed
- **Distance_to_Shore**: Metres, decimal
- **F_LPUE**: Commercial fishery LPUE in Kg/Hr
- **Scallop**: Average kWh Scallop effort from logbooks, Marine Institute and MMO combined
- **MI_Av_E_Hr**: Average effort hours, Marine Institute Scallop VMS, 0.03*0.02 rectangles, all Irish Sea, 2006-14
- **MI_Av_LPUE**: Average scallop CPUE, Marine Institute Scallop VMS, 0.03*0.02 rectangles, all Irish Sea, 2006-14
- **MI_Sum_Liv**: Sum of live weight. Average scallop CPUE, Marine Institute Scallop VMS, 0.03*0.02 rectangles, all Irish Sea, 2006-14
- **Whelk**: MMO Whelk LPUE 2009-12, pivot, polygons to points
- **MmoAvScKwh**: MMO Scallop Effort 2009-12, pivot, polygons to points. ICES rectangles
- **Cod_C**: ICES IBTS CPUE of cod caught between 1994 - 2014 large enough to predate upon <= year 1 cuckoo rays
- **Cod_T**: As Cod_C for yr1 thornback rays
- **Cod_B**: As Cod_C for yr1 blonde rays
- **Cod_S**: As Cod_C for yr1 spotted rays
Juveniles

Haddock_C As Cod_C, haddock predating upon cuckoo rays
Haddock_T As Cod_C, haddock predating upon thornback rays
Haddock_B As Cod_C, haddock predating upon blonde rays
Haddock_S As Cod_C, haddock predating upon spotted rays
Plaice_C As Cod_C, plaice predating upon cuckoo rays
Plaice_T As Cod_C, plaice predating upon thornback rays
Plaice_B As Cod_C, plaice predating upon blonde rays
Plaice_S As Cod_C, plaice predating upon spotted rays
Whiting_C As Cod_C, whiting predating upon cuckoo rays
Whiting_T As Cod_C, whiting predating upon thornback rays
Whiting_B As Cod_C, whiting predating upon blonde rays
Whiting_S As Cod_C, whiting predating upon spotted rays
ComSkt_C As Cod_C, common skate predating upon cuckoo rays
ComSkt_T As Cod_C, common skate predating upon thornback rays
ComSkt_B As Cod_C, common skate predating upon blonde rays
ComSkt_S As Cod_C, common skate predating upon spotted rays
Blonde_C As Cod_C, blonde ray predating upon cuckoo rays
Blonde_T As Cod_C, blonde ray predating upon thornback rays
Blonde_S As Cod_C, blonde ray predating upon spotted rays
C_Preds All predator CPUEs combined for cuckoo rays
T_Preds All predator CPUEs combined for thornback rays
B_Preds All predator CPUEs combined for blonde rays
S_Preds All predator CPUEs combined for spotted rays
Cuckoo Numbers of juvenile cuckoo rays caught, standardised to 1 hour
Thornback Numbers of juvenile thornback rays caught, standardised to 1 hour
Blonde Numbers of juvenile blonde rays caught, standardised to 1 hour
Spotted Numbers of juvenile spotted rays caught, standardised to 1 hour

Author(s)

Simon Dedman, <simondedman@gmail.com>
 roc roc

Description

Internal use only. Adapted from Ferrier, Pearce and Watson’s code, by J.Elith, see: Hanley, J.A. & McNeil, B.J. (1982) The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. Radiology, 143, 29-36. Also Pearce, J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225-245. This is the non-parametric calculation for area under the ROC curve, using the fact that a MannWhitney U statistic is closely related to the area. In dismo, this is used in the gbm routines, but not elsewhere (see evaluate).

Usage

roc(obsdat, preddat)

Arguments

obsdat Observed data.
preddat Predicted data.

Value

roc & calibration stats internally within gbm runs e.g. in gbm.auto.

Author(s)

Simon Dedman, <simondedman@gmail.com>

Examples

roc(obsdat = rbinom(100, size = 1, prob = 0.5), preddat = runif(100))

samples Data: Numbers of 4 ray species caught in 2137 Irish Sea trawls, 1994 to 2014

Description

2244 capture events of cuckoo, thornback, spotted and blonde rays in the Irish Sea from 1994 to 2014 by the ICES IBTS, including explanatory variables: Length Per Unit Effort in that area by the commercial fishery, fishing effort by same, depth, temperature, distance to shore, and current speed at the bottom.
Usage

data(samples)

Format

A data frame with 2244 rows and 14 variables:

Survey_StNo_HaulNo_Year Index column of combined Survey number, station number, haul number, and year
Latitude Decimal latitudes in the Irish Sea
Longitude Decimal longitudes in the Irish Sea
Depth Metres, decimal
Temperature Degrees, decimal
Salinity PPM
Current_Speed Metres per second at the seabed
Distance_to_Shore Metres, decimal
F_LPUE Commercial fishery LPUE in Kg/Hr
Effort Irish commercial beam trawler effort 2012
Cuckoo Numbers of juvenile cuckoo rays caught, standardised to 1 hour
Thornback Numbers of juvenile thornback rays caught, standardised to 1 hour
Blonde Numbers of juvenile blonde rays caught, standardised to 1 hour
Spotted Numbers of juvenile spotted rays caught, standardised to 1 hour

Author(s)

Simon Dedman, <simondedman@gmail.com>

Source

http://oar.marine.ie/handle/10793/958
Index

* datasets
 Adult_Females, 2
 AllPreds_E, 3
 AllScaledData, 4
 grids, 24
 Juveniles, 26
 samples, 28

 Adult_Females, 2
 AllPreds_E, 3
 AllScaledData, 4

 breaks.grid, 4

 calibration, 5

 gbm.auto, 6
 gbm.basemap, 10
 gbm.bfcheck, 12
 gbm.cons, 13
 gbm.loop, 15
 gbm.map, 18
 gbm.rsb, 20
 gbm.subset, 21
 gbm.valuemap, 22
 grids, 24

 Juveniles, 26

 roc, 28

 samples, 28