Package ‘gbm’

September 16, 2018

Version 2.1.4
Title Generalized Boosted Regression Models
Depends R (>= 2.9.0)
Imports gridExtra, lattice, parallel, survival
Suggests knitr, pdp, RUnit, splines, viridis
License GPL (>= 2) | file LICENSE
URL https://github.com/gbm-developers/gbm
BugReports https://github.com/gbm-developers/gbm/issues
RoxygenNote 6.1.0
VignetteBuilder knitr
NeedsCompilation yes
Author Brandon Greenwell [aut, cre] (<https://orcid.org/0000-0002-8120-0084>), Bradley Boehmke [aut] (<https://orcid.org/0000-0002-3611-8516>), Jay Cunningham [aut], GBM Developers [aut] (https://github.com/gbm-developers)
Maintainer Brandon Greenwell <greenwell.brandon@gmail.com>
Repository CRAN
Date/Publication 2018-09-16 08:20:11

R topics documented:

 gbm-package .. 2
 basehaz.gbm .. 3
 calibrate.plot ... 4
gbm-package

Description

This package implements extensions to Freund and Schapire’s AdaBoost algorithm and J. Friedman’s gradient boosting machine. Includes regression methods for least squares, absolute loss, logistic, Poisson, Cox proportional hazards partial likelihood, multinomial, t-distribution, AdaBoost exponential loss, Learning to Rank, and Huberized hinge loss.

Details

Further information is available in vignette: `browseVignettes(package = "gbm")`

Author(s)

Greg Ridgeway <gregridgeway@gmail.com> with contributions by Daniel Edwards, Brian Kriegler, Stefan Schroedl and Harry Southworth.
References

basehaz.gbm

Baseline hazard function

Description

Computes the Breslow estimator of the baseline hazard function for a proportional hazard regression model.

Usage

```r
basehaz.gbm(t, delta, f.x, t.eval = NULL, smooth = FALSE, cumulative = TRUE)
```

Arguments

- `t` The survival times.
- `delta` The censoring indicator.
- `f.x` The predicted values of the regression model on the log hazard scale.
- `t.eval` Values at which the baseline hazard will be evaluated.
- `smooth` If TRUE basehaz.gbm will smooth the estimated baseline hazard using Friedman’s super smoother `supsmu`.
- `cumulative` If TRUE the cumulative survival function will be computed.

Details

The proportional hazard model assumes $h(t|x) = \lambda(t) \exp(f(x))$. *gbm* can estimate the $f(x)$ component via partial likelihood. After estimating $f(x)$, basehaz.gbm can compute the a nonparametric estimate of $\lambda(t)$.
Value

A vector of length equal to the length of t (or of length t.eval if t.eval is not NULL) containing the baseline hazard evaluated at t (or at t.eval if t.eval is not NULL). If cumulative is set to TRUE then the returned vector evaluates the cumulative hazard function at those values.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

See Also

survfit, gbm

calibrate.plot Calibration plot

Description

An experimental diagnostic tool that plots the fitted values versus the actual average values. Currently only available when distribution = "bernoulli".

Usage

calibrate.plot(y, p, distribution = "bernoulli", replace = TRUE, line.par = list(col = "black"), shade.col = "lightyellow", shade.density = NULL, rug.par = list(side = 1), xlab = "Predicted value", ylab = "Observed average", xlim = NULL, ylim = NULL, knots = NULL, df = 6, ...)

Arguments

y The outcome 0-1 variable.
p The predictions estimating E(y|x).
distribution The loss function used in creating p. bernoulli and poisson are currently the only special options. All others default to squared error assuming gaussian.
replace Determines whether this plot will replace or overlay the current plot. replace=FALSE is useful for comparing the calibration of several methods.
line.par Graphics parameters for the line.
shade.col Color for shading the 2 SE region. shade.col=NA implies no 2 SE region.
shade.density The density parameter for polygon.
rug.par Graphics parameters passed to rug.
xlab x-axis label corresponding to the predicted values.
ylab y-axis label corresponding to the observed average.
xlim, ylim x- and y-axis limits. If not specified the function will select limits.
knots, df These parameters are passed directly to ns for constructing a natural spline smoother for the calibration curve.
... Additional optional arguments to be passed onto plot

Details

Uses natural splines to estimate E(y|p). Well-calibrated predictions imply that E(y|p) = p. The plot also includes a pointwise 95

Value

No return values.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

Examples

Don't want R CMD check to think there is a dependency on rpart
so comment out the example
#library(rpart)
data(kyphosis)
y <- as.numeric(kyphosis$Kyphosis)-1
x <- kyphosis$Age
glm1 <- glm(y~poly(x,2),family=binomial)
p <- predict(glm1,type="response")
calibrate.plot(y, p, xlim=c(0,0.6), ylim=c(0,0.6))
gbm

Generalized Boosted Regression Modeling (GBM)

Description

Fits generalized boosted regression models. For technical details, see the vignette: `utils::browseVignettes("gbm")`.

Usage

```r
gbm(formula = formula(data), distribution = "bernoulli", 
data = list(), weights, var.monotone = NULL, n.trees = 100, 
interaction.depth = 1, n.minobsinnode = 10, shrinkage = 0.1, 
bag.fraction = 0.5, train.fraction = 1, cv.folds = 0, 
keep.data = TRUE, verbose = FALSE, class.stratify.cv = NULL, 
n.cores = NULL)
```

Arguments

- `formula`: A symbolic description of the model to be fit. The formula may include an offset term (e.g. `y~offset(n)+x`). If `keep.data = FALSE` in the initial call to `gbm` then it is the user's responsibility to resupply the offset to `gbm` more.
- `distribution`: Either a character string specifying the name of the distribution to use or a list with a component `name` specifying the distribution and any additional parameters needed. If not specified, `gbm` will try to guess: if the response has only 2 unique values, bernoulli is assumed; otherwise, if the response is a factor, multinomial is assumed; otherwise, if the response has class "Surv", coxph is assumed; otherwise, gaussian is assumed. Currently available options are "gaussian" (squared error), "laplace" (absolute loss), "tdist" (t-distribution loss), "bernoulli" (logistic regression for 0-1 outcomes), "huberized" (huberized hinge loss for 0-1 outcomes), "adaboost" (the AdaBoost exponential loss for 0-1 outcomes), "poisson" (count outcomes), "coxph" (right censored observations), "quantile", or "pairwise" (ranking measure using the LambdaMart algorithm).

If quantile regression is specified, distribution must be a list of the form `list(name = "quantile", alpha = 0.25)` where alpha is the quantile to estimate. The current version's quantile regression method does not handle non-constant weights and will stop.

If "tdist" is specified, the default degrees of freedom is 4 and this can be controlled by specifying `distribution = list(name = "tdist", df = DF)` where DF is your chosen degrees of freedom.

If "pairwise" regression is specified, distribution must be a list of the form `list(name="pairwise",group=...,metric=...,max.rank=...)` (metric and max.rank are optional, see below). group is a character vector with the column names of data that jointly indicate the group an instance belongs to (typically a query in Information Retrieval applications). For training, only pairs of instances from the same group and with different target labels can be considered. metric is the IR measure to use, one of
list("conc") Fraction of concordant pairs; for binary labels, this is equivalent to the Area under the ROC Curve

list("mrr") Mean reciprocal rank of the highest-ranked positive instance

list("map") Mean average precision, a generalization of mrr to multiple positive instances

list("ndcg") Normalized discounted cumulative gain. The score is the weighted sum (DCG) of the user-supplied target values, weighted by log(rank+1), and normalized to the maximum achievable value. This is the default if the user did not specify a metric.

dcg and conc allow arbitrary target values, while binary targets 0,1 are expected for map and mrr. For ndcg and mrr, a cut-off can be chosen using a positive integer parameter max.rank. If left unspecified, all ranks are taken into account.

Note that splitting of instances into training and validation sets follows group boundaries and therefore only approximates the specified train_fraction ratio (the same applies to cross-validation folds). Internally, queries are randomly shuffled before training, to avoid bias.

Weights can be used in conjunction with pairwise metrics, however it is assumed that they are constant for instances from the same group.

For details and background on the algorithm, see e.g. Burges (2010).

data an optional data frame containing the variables in the model. By default the variables are taken from environment(formula), typically the environment from which gbm is called. If keep.data=TRUE in the initial call to gbm then gbm stores a copy with the object. If keep.data=FALSE then subsequent calls to gbm more must resupply the same dataset. It becomes the user’s responsibility to resupply the same data at this point.

weights an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data=FALSE in the initial call to gbm then it is the user’s responsibility to resupply the weights to gbm more.

var.monotone an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome.

n.trees Integer specifying the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. Default is 100.

interaction.depth Integer specifying the maximum depth of each tree (i.e., the highest level of variable interactions allowed). A value of 1 implies an additive model, a value of 2 implies a model with up to 2-way interactions, etc. Default is 1.

n.minobsinnode Integer specifying the minimum number of observations in the terminal nodes of the trees. Note that this is the actual number of observations, not the total weight.
shrinkage a shrinkage parameter applied to each tree in the expansion. Also known as
the learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller
learning rate typically requires more trees. Default is 0.1.

bag.fraction the fraction of the training set observations randomly selected to propose the
next tree in the expansion. This introduces randomnesses into the model fit. If
bag.fraction < 1 then running the same model twice will result in similar but
different fits. gbm uses the R random number generator so set.seed can ensure
that the model can be reconstructed. Preferably, the user can save the returned
gbm.object using save. Default is 0.5.

train.fraction The first train.fraction * nrows(data) observations are used to fit the gbm
and the remainder are used for computing out-of-sample estimates of the loss
function.

cv.folds Number of cross-validation folds to perform. If cv.folds>1 then gbm, in ad-
dition to the usual fit, will perform a cross-validation, calculate an estimate of
generalization error returned in cv.error.

keep.data a logical variable indicating whether to keep the data and an index of the data
stored with the object. Keeping the data and index makes subsequent calls to
gbm.more faster at the cost of storing an extra copy of the dataset.

verbose Logical indicating whether or not to print out progress and performance indica-
tors (TRUE). If this option is left unspecified for gbm.more, then it uses verbose
from object. Default is FALSE.

class.stratify.cv Logical indicating whether or not the cross-validation should be stratified by
class. Defaults to TRUE for distribution = "multinomial" and is only im-
plemented for "multinomial" and "bernoulli". The purpose of stratifying
the cross-validation is to help avoiding situations in which training sets do not
contain all classes.

n.cores The number of CPU cores to use. The cross-validation loop will attempt to send
different CV folds off to different cores. If n.cores is not specified by the user,
it is guessed using the detectCores function in the parallel package. Note
that the documentation for detectCores makes clear that it is not failsafe and
could return a spurious number of available cores.

Details
gbm.fit provides the link between R and the C++ gbm engine. gbm is a front-end to gbm.fit
that uses the familiar R modeling formulas. However, model.frame is very slow if there are many
predictor variables. For power-users with many variables use gbm.fit. For general practice gbm is
preferable.

This package implements the generalized boosted modeling framework. Boosting is the process
of iteratively adding basis functions in a greedy fashion so that each additional basis function fur-
ther reduces the selected loss function. This implementation closely follows Friedman’s Gradient
Boosting Machine (Friedman, 2001).

In addition to many of the features documented in the Gradient Boosting Machine, gbm offers addi-
tional features including the out-of-bag estimator for the optimal number of iterations, the ability to
store and manipulate the resulting `gbm` object, and a variety of other loss functions that had not previously had associated boosting algorithms, including the Cox partial likelihood for censored data, the poisson likelihood for count outcomes, and a gradient boosting implementation to minimize the AdaBoost exponential loss function.

Value

A `gbm.object` object.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

Quantile regression code developed by Brian Kriegler <bk@stat.ucla.edu>

t-distribution, and multinomial code developed by Harry Southworth and Daniel Edwards

Pairwise code developed by Stefan Schroedl <schroedl@a9.com>

References

See Also

`gbm.object`, `gbm.perf`, `plot.gbm`, `predict.gbm`, `summary.gbm`, and `pretty.gbm.tree`.

Examples

```r
# A least squares regression example
#

# Simulate data
set.seed(101)  # for reproducibility
N <- 1000
X1 <- runif(N)
```
X2 <- 2 * runif(N)
X3 <- ordered(sample(letters[1:4], N, replace = TRUE), levels = letters[4:1])
X4 <- factor(sample(letters[1:6], N, replace = TRUE))
X5 <- factor(sample(letters[1:3], N, replace = TRUE))
X6 <- 3 * runif(N)
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
SNR <- 10 # signal-to-noise ratio
Y <- X1^1.5 + 2 * (X2^0.5) + mu
sigma <- sqrt(var(Y) / SNR)
Y <- Y + rnorm(N, 0, sigma)
X1[sample(1:N, size=500)] <- NA # introduce some missing values
X4[sample(1:N, size=300)] <- NA # introduce some missing values
data <- data.frame(Y, X1, X2, X3, X4, X5, X6)

Fit a GBM
set.seed(102) # for reproducibility
gbm1 <- gbm(Y ~ ., data = data, var.monotone = c(0, 0, 0, 0, 0, 0),
 distribution = "gaussian", n.trees = 100, shrinkage = 0.1,
 interaction.depth = 3, bag.fraction = 0.5, train.fraction = 0.5,
 n.minobsinnode = 10, cv.folds = 5, keep.data = TRUE,
 verbose = FALSE, n.cores = 1)

Check performance using the out-of-bag (OOB) error; the OOB error typically
underestimates the optimal number of iterations
best.iter <- gbm.perf(gbm1, method = "OOB")
print(best.iter)

Check performance using the 50% heldout test set
best.iter <- gbm.perf(gbm1, method = "test")
print(best.iter)

Check performance using 5-fold cross-validation
best.iter <- gbm.perf(gbm1, method = "cv")
print(best.iter)

Plot relative influence of each variable
par(mfrow = c(1, 2))
summary(gbm1, n.trees = 1) # using first tree
summary(gbm1, n.trees = best.iter) # using estimated best number of trees

Compactly print the first and last trees for curiosity
print(pretty.gbm.tree(gbm1, i.tree = 1))
print(pretty.gbm.tree(gbm1, i.tree = gbm1$n.trees))

Simulate new data
set.seed(103) # for reproducibility
N <- 1000
X1 <- runif(N)
X2 <- 2 * runif(N)
X3 <- ordered(sample(letters[1:4], N, replace = TRUE))
X4 <- factor(sample(letters[1:6], N, replace = TRUE))
X5 <- factor(sample(letters[1:3], N, replace = TRUE))
X6 <- 3 * runif(N)
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
Y <- X1 ^ 1.5 + 2 * (X2 ^ 0.5) + mu + rnorm(N, 0, sigma)
data2 <- data.frame(Y, X1, X2, X3, X4, X5, X6)

Predict on the new data using the "best" number of trees; by default,
predictions will be on the link scale
Yhat <- predict(gbm1, newdata = data2, n.trees = best.iter, type = "link")

least squares error
print(sum((data2$Y - Yhat)^2))

Construct univariate partial dependence plots
p1 <- plot(gbm1, i.var = 1, n.trees = best.iter)
p2 <- plot(gbm1, i.var = 2, n.trees = best.iter)
p3 <- plot(gbm1, i.var = "X3", n.trees = best.iter) # can use index or name
grid.arrange(p1, p2, p3, ncol = 3)

Construct bivariate partial dependence plots
plot(gbm1, i.var = 1:2, n.trees = best.iter)
plot(gbm1, i.var = c("X2", "X3"), n.trees = best.iter)
plot(gbm1, i.var = 3:4, n.trees = best.iter)

Construct trivariate partial dependence plots
plot(gbm1, i.var = c(1, 2, 6), n.trees = best.iter,
 continuous.resolution = 20)
plot(gbm1, i.var = 1:3, n.trees = best.iter)
plot(gbm1, i.var = 2:4, n.trees = best.iter)
plot(gbm1, i.var = 3:5, n.trees = best.iter)

Add more (i.e., 100) boosting iterations to the ensemble
gbm2 <- gbm.more(gbm1, n.new.trees = 100, verbose = FALSE)

gbm.fit
Generalized Boosted Regression Modeling (GBM)

Description

Workhorse function providing the link between R and the C++ gbm engine. gbm is a front-end to gbm.fit that uses the familiar R modeling formulas. However, model.frame is very slow if there are many predictor variables. For power-users with many variables use gbm.fit. For general practice gbm is preferable.

Usage

gbm.fit(x, y, offset = NULL, misc = NULL, distribution = "bernoulli",
 w = NULL, var.monotone = NULL, n.trees = 100,
 interaction.depth = 1, n.minobsinnode = 10, shrinkage = 0.001,
 bag.fraction = 0.5, nTrain = NULL, train.fraction = NULL,
 keep.data = TRUE, verbose = TRUE, var.names = NULL,
 response.name = "y", group = NULL)
Arguments

x
A data frame or matrix containing the predictor variables. The number of rows in x must be the same as the length of y.

y
A vector of outcomes. The number of rows in x must be the same as the length of y.

offset
A vector of offset values.

misc
An R object that is simply passed on to the gbm engine. It can be used for additional data for the specific distribution. Currently it is only used for passing the censoring indicator for the Cox proportional hazards model.

distribution
Either a character string specifying the name of the distribution to use or a list with a component name specifying the distribution and any additional parameters needed. If not specified, gbm will try to guess: if the response has only 2 unique values, bernoulli is assumed; otherwise, if the response is a factor, multinomial is assumed; otherwise, if the response has class "Surv", coxph is assumed; otherwise, gaussian is assumed.

Currently available options are "gaussian" (squared error), "laplace" (absolute loss), "tdist" (t-distribution loss), "bernoulli" (logistic regression for 0-1 outcomes), "huberized" (huberized hinge loss for 0-1 outcomes), classes), "adaboost" (the AdaBoost exponential loss for 0-1 outcomes), "poisson" (count outcomes), "coxph" (right censored observations), "quantile", or "pairwise" (ranking measure using the LambdaMart algorithm).

If quantile regression is specified, distribution must be a list of the form listHname = "quantile", alpha = 0.25] where alpha is the quantile to estimate. The current version's quantile regression method does not handle non-constant weights and will stop.

If "tdist" is specified, the default degrees of freedom is 4 and this can be controlled by specifying distribution = list(name = "tdist", df = DF) where DF is your chosen degrees of freedom.

If "pairwise" regression is specified, distribution must be a list of the form listHname="pairwise", group=..., metric=..., max.rank=...I (metric and max.rank are optional, see below). group is a character vector with the column names of data that jointly indicate the group an instance belongs to (typically a query in Information Retrieval applications). For training, only pairs of instances from the same group and with different target labels can be considered. metric is the IR measure to use, one of

list("conc") Fraction of concordant pairs; for binary labels, this is equivalent to the Area under the ROC Curve

: Fraction of concordant pairs; for binary labels, this is equivalent to the Area under the ROC Curve

list("mrr") Mean reciprocal rank of the highest-ranked positive instance

: Mean reciprocal rank of the highest-ranked positive instance

list("map") Mean average precision, a generalization of mrr to multiple positive instances

: Mean average precision, a generalization of mrr to multiple positive instances
gbm.fit

list("ndcg") Normalized discounted cumulative gain. The score is the weighted sum (DCG) of the user-supplied target values, weighted by \log(\text{rank}+1), and normalized to the maximum achievable value. This is the default if the user did not specify a metric.

\text{ndcg} and \text{conc} allow arbitrary target values, while binary targets 0,1 are expected for \text{map} and \text{mrr}. For \text{ndcg} and \text{mrr}, a cut-off can be chosen using a positive integer parameter \text{max.rank}. If left unspecified, all ranks are taken into account.

Note that splitting of instances into training and validation sets follows group boundaries and therefore only approximates the specified \text{train.fraction} ratio (the same applies to cross-validation folds). Internally, queries are randomly shuffled before training, to avoid bias.

Weights can be used in conjunction with pairwise metrics, however it is assumed that they are constant for instances from the same group.

For details and background on the algorithm, see e.g. Burges (2010).

\textbf{w}
A vector of weights of the same length as the \text{y}.

\textbf{var.monotone}
an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome.

\textbf{n.trees}
the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion.

\textbf{interaction.depth}
The maximum depth of variable interactions. A value of 1 implies an additive model, a value of 2 implies a model with up to 2-way interactions, etc. Default is 1.

\textbf{n.minobsinnode}
Integer specifying the minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight.

\textbf{shrinkage}
The shrinkage parameter applied to each tree in the expansion. Also known as the learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller learning rate typically requires more trees. Default is 0.1.

\textbf{bag.fraction}
The fraction of the training set observations randomly selected to propose the next tree in the expansion. This introduces randomneses into the model fit. If bag.fraction < 1 then running the same model twice will result in similar but different fits. \text{gbm} uses the R random number generator so set.seed can ensure that the model can be reconstructed. Preferably, the user can save the returned \text{gbm.object} using \text{save}. Default is 0.5.

\textbf{nTrain}
An integer representing the number of cases on which to train. This is the preferred way of specification for \text{gbm.fit}; The option \text{train.fraction} in \text{gbm.fit} is deprecated and only maintained for backward compatibility. These two parameters are mutually exclusive. If both are unspecified, all data is used for training.

\textbf{train.fraction}
The first \text{train.fraction} * \text{nrows(data)} observations are used to fit the \text{gbm} and the remainder are used for computing out-of-sample estimates of the loss function.
keep.data
Logical indicating whether or not to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to **gbm.more** faster at the cost of storing an extra copy of the dataset.

verbose
Logical indicating whether or not to print out progress and performance indicators (TRUE). If this option is left unspecified for **gbm.more**, then it uses **verbose** from **object**. Default is **FALSE**.

var.names
Vector of strings of length equal to the number of columns of **x** containing the names of the predictor variables.

response.name
Character string label for the response variable.

group
The group to use when **distribution** = "pairwise".

Details
This package implements the generalized boosted modeling framework. Boosting is the process of iteratively adding basis functions in a greedy fashion so that each additional basis function further reduces the selected loss function. This implementation closely follows Friedman’s Gradient Boosting Machine (Friedman, 2001).

In addition to many of the features documented in the Gradient Boosting Machine, **gbm** offers additional features including the out-of-bag estimator for the optimal number of iterations, the ability to store and manipulate the resulting **gbm** object, and a variety of other loss functions that had not previously had associated boosting algorithms, including the Cox partial likelihood for censored data, the poisson likelihood for count outcomes, and a gradient boosting implementation to minimize the AdaBoost exponential loss function.

Value
A **gbm.object** object.

Author(s)
Greg Ridgeway <gregridgeway@gmail.com>
Quantile regression code developed by Brian Kriegler <bk@stat.ucla.edu>
t-distribution, and multinomial code developed by Harry Southworth and Daniel Edwards
Pairwise code developed by Stefan Schroedl <schroedl@a9.com>

References

See Also

gbm.object, gbm.perf, plot.gbm, predict.gbm, summary.gbm, and pretty.gbm.tree.

gbm.more

Generalized Boosted Regression Modeling (GBM)

Description

Adds additional trees to a gbm.object object.

Usage

```r
gbm.more(object, n.new.trees = 100, data = NULL, weights = NULL, offset = NULL, verbose = NULL)
```

Arguments

- `object`: A gbm.object object created from an initial call to `gbm`.
- `n.new.trees`: Integer specifying the number of additional trees to add to object. Default is 100.
- `data`: An optional data frame containing the variables in the model. By default the variables are taken from `environment(formula)`, typically the environment from which `gbm` is called. If `keep.data=TRUE` in the initial call to `gbm` then `gbm` stores a copy with the object. If `keep.data=FALSE` then subsequent calls to `gbm.more` must resupply the same dataset. It becomes the user’s responsibility to resupply the same data at this point.
- `weights`: An optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If `keep.data=FALSE` in the initial call to `gbm` then it is the user’s responsibility to resupply the weights to gbm.more.
- `offset`: A vector of offset values.
- `verbose`: Logical indicating whether or not to print out progress and performance indicators (TRUE). If this option is left unspecified for gbm.more, then it uses verbose from object. Default is FALSE.

Value

A gbm.object object.
Examples

A least squares regression example
#

Simulate data
set.seed(101) # for reproducibility
N <- 1000
X1 <- runif(N)
X2 <- 2 * runif(N)
X3 <- ordered(sample(letters[1:4], N, replace = TRUE), levels = letters[4:1])
X4 <- factor(sample(letters[1:6], N, replace = TRUE))
X5 <- factor(sample(letters[1:3], N, replace = TRUE))
X6 <- 3 * runif(N)
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
SNR <- 10 # signal-to-noise ratio
Y <- X1 ^ 1.5 + 2 * (X2 ^ 0.5) + mu
sigma <- sqrt(var(Y) / SNR)
Y <- Y + rnorm(N, 0, sigma)
X1[sample(1:N, size = 500)] <- NA # introduce some missing values
X4[sample(1:N, size = 300)] <- NA # introduce some missing values
data <- data.frame(Y, X1, X2, X3, X4, X5, X6)

Fit a GBM
set.seed(102) # for reproducibility
gbm1 <- gbm(Y ~ ., data = data, var.monotone = c(0, 0, 0, 0, 0, 0),
distribution = "gaussian", n.trees = 100, shrinkage = 0.1,
interaction.depth = 3, bag.fraction = 0.5, train.fraction = 0.5,
n.minobsinnode = 10, cv.folds = 5, keep.data = TRUE,
verbose = FALSE, n.cores = 1)

Check performance using the out-of-bag (OOB) error; the OOB error typically
underestimates the optimal number of iterations
best.iter <- gbm.perf(gbm1, method = "OOB")
print(best.iter)

Check performance using the 50% heldout test set
best.iter <- gbm.perf(gbm1, method = "test")
print(best.iter)

Check performance using 5-fold cross-validation
best.iter <- gbm.perf(gbm1, method = "cv")
print(best.iter)

Plot relative influence of each variable
par(mfrow = c(1, 2))
summary(gbm1, n.trees = 1) # using first tree
summary(gbm1, n.trees = best.iter) # using estimated best number of trees

Compactily print the first and last trees for curiosity
print(pretty.gbm.tree(gbm1, i.tree = 1))
print(pretty.gbm.tree(gbm1, i.tree = gbm1$n.trees))
gbm.object

```r
# Simulate new data
set.seed(103)  # for reproducibility
N <- 1000
X1 <- runif(N)
X2 <- 2 * runif(N)
X3 <- ordered(sample(letters[1:4], N, replace = TRUE))
X4 <- factor(sample(letters[1:6], N, replace = TRUE))
X5 <- factor(sample(letters[1:3], N, replace = TRUE))
X6 <- 3 * runif(N)
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
Y <- X1 ^ 1.5 + 2 * (X2 ^ 0.5) + mu + rnorm(N, 0, sigma)
data2 <- data.frame(Y, X1, X2, X3, X4, X5, X6)

# Predict on the new data using the "best" number of trees; by default,
# predictions will be on the link scale
Yhat <- predict(gbm1, newdata = data2, n.trees = best.iter, type = "link")

# least squares error
print(sum((data2$Y - Yhat)^2))

# Construct univariate partial dependence plots
p1 <- plot(gbm1, i.var = 1, n.trees = best.iter)
p2 <- plot(gbm1, i.var = 2, n.trees = best.iter)
p3 <- plot(gbm1, i.var = "X3", n.trees = best.iter)  # can use index or name
grid.arrange(p1, p2, p3, ncol = 3)

# Construct bivariate partial dependence plots
plot(gbm1, i.var = 1:2, n.trees = best.iter)
plot(gbm1, i.var = c("X2", "X3"), n.trees = best.iter)
plot(gbm1, i.var = 3:4, n.trees = best.iter)

# Construct trivariate partial dependence plots
plot(gbm1, i.var = c(1, 2, 6), n.trees = best.iter,
     continuous.resolution = 20)
plot(gbm1, i.var = 1:3, n.trees = best.iter)
plot(gbm1, i.var = 2:4, n.trees = best.iter)
plot(gbm1, i.var = 3:5, n.trees = best.iter)

# Add more (i.e., 100) boosting iterations to the ensemble
gbm2 <- gbm.more(gbm1, n.new.trees = 100, verbose = FALSE)
```

gbm.object

Generalized Boosted Regression Model Object

Description

These are objects representing fitted gbms.
Value

initF
the "intercept" term, the initial predicted value to which trees make adjustments

fit
a vector containing the fitted values on the scale of regression function (e.g. log-odds scale for bernoulli, log scale for poisson)

train.error
a vector of length equal to the number of fitted trees containing the value of the loss function for each boosting iteration evaluated on the training data

valid.error
a vector of length equal to the number of fitted trees containing the value of the loss function for each boosting iteration evaluated on the validation data

cv.error
if cv.folds<2 this component is NULL. Otherwise, this component is a vector of length equal to the number of fitted trees containing a cross-validated estimate of the loss function for each boosting iteration

oobag.improve
a vector of length equal to the number of fitted trees containing an out-of-bag estimate of the marginal reduction in the expected value of the loss function. The out-of-bag estimate uses only the training data and is useful for estimating the optimal number of boosting iterations. See gbm.perf

trees
a list containing the tree structures. The components are best viewed using pretty.gbm.tree

c.splits
a list of all the categorical splits in the collection of trees. If the trees[[i]] component of a gbm object describes a categorical split then the splitting value will refer to a component of c.splits. That component of c.splits will be a vector of length equal to the number of levels in the categorical split variable. -1 indicates left, +1 indicates right, and 0 indicates that the level was not present in the training data

cv.fitted
If cross-validation was performed, the cross-validation predicted values on the scale of the linear predictor. That is, the fitted values from the ith CV-fold, for the model having been trained on the data in all other folds.

Structure

The following components must be included in a legitimate gbm object.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

See Also

gbm
Description

Estimates the optimal number of boosting iterations for a `gbm` object and optionally plots various performance measures.

Usage

```
gbm.perf(object, plot.it = TRUE, oobag.curve = FALSE, overlay = TRUE, method)
```

Arguments

- `object`: A `gbm.object` created from an initial call to `gbm`.
- `plot.it`: An indicator of whether or not to plot the performance measures. Setting `plot.it = TRUE` creates two plots. The first plot plots `object$train.error` (in black) and `object$valid.error` (in red) versus the iteration number. The scale of the error measurement, shown on the left vertical axis, depends on the `distribution` argument used in the initial call to `gbm`.
- `oobag.curve`: Indicates whether to plot the out-of-bag performance measures in a second plot.
- `overlay`: If `TRUE` and `oobag.curve=TRUE` then a right y-axis is added to the training and test error plot and the estimated cumulative improvement in the loss function is plotted versus the iteration number.
- `method`: Indicate the method used to estimate the optimal number of boosting iterations. `method = "OOB"` computes the out-of-bag estimate and `method = "test"` uses the test (or validation) dataset to compute an out-of-sample estimate. `method = "cv"` extracts the optimal number of iterations using cross-validation if `gbm` was called with `cv.folds > 1`.

Value

`gbm.perf` Returns the estimated optimal number of iterations. The method of computation depends on the `method` argument.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

See Also

`gbm`, `gbm.object`
gbm.roc.area

Compute Information Retrieval measures.

Description

Functions to compute Information Retrieval measures for pairwise loss for a single group. The function returns the respective metric, or a negative value if it is undefined for the given group.

Usage

```r
gbm.roc.area(obs, pred)
```

```r
gbm.conc(x)
```

```r
ir.measure.conc(y, f, max.rank = 0)
```

```r
ir.measure.auc(y, f, max.rank = 0)
```

```r
ir.measure.mrr(y, f, max.rank)
```

```r
ir.measure.map(y, f, max.rank = 0)
```

```r
ir.measure.ndcg(y, f, max.rank)
```

```r
 perf.pairwise(y, f, group, metric = "ndcg", w = NULL, max.rank = 0)
```

Arguments

- `obs` Observed value.
- `pred` Predicted value.
- `x` ...
- `y, y.f, f, w, group, max.rank` Used internally.
- `metric` What type of performance measure to compute.

Details

For simplicity, we have no special handling for ties; instead, we break ties randomly. This is slightly inaccurate for individual groups, but should have only a small effect on the overall measure.

`gbm.conc` computes the concordance index: Fraction of all pairs (i,j) with i<j, x[i] != x[j], such that x[j] < x[i]

If `obs` is binary, then `gbm.roc.area(obs, pred) = gbm.conc(obs[order(-pred)])`.

`gbm.conc` is more general as it allows non-binary targets, but is significantly slower.
gbmCrossVal

Value

The requested performance measure.

Author(s)

Stefan Schroedl

References

See Also

gbm

Examples

```r
# Should be DIRECTLY executable !! ----
#-- ==> Define data, use random, 
#--or do  help(data=index) for the standard data sets.
```

gbmCrossVal

Cross-validate a gbm

Description

Functions for cross-validating gbm. These functions are used internally and are not intended for end-user direct usage.

Usage

```r
gbmCrossVal(cv.folds, nTrain, n.cores, class.stratify.cv, data, x, y, 
offset, distribution, w, var.monotone, n.trees, interaction.depth, 
n.minobsinnode, shrinkage, bag.fraction, var.names, response.name, group)
gbmCrossValErr(cv.models, cv.folds, cv.group, nTrain, n.trees)
gbmCrossValPredictions(cv.models, cv.folds, cv.group, best.iter.cv, 
distribution, data, y)
gbmCrossValModelBuild(cv.folds, cv.group, n.cores, i.train, x, y, offset, 
distribution, w, var.monotone, n.trees, interaction.depth, 
n.minobsinnode, shrinkage, bag.fraction, var.names, response.name, group)
gbmDoFold(X, i.train, x, y, offset, distribution, w, var.monotone, n.trees, 
interaction.depth, n.minobsinnode, shrinkage, bag.fraction, cv.group, 
var.names, response.name, group, s)
```
Arguments

- **cv.folds**: The number of cross-validation folds.
- **nTrain**: The number of training samples.
- **n.cores**: The number of cores to use.
- **class.stratify.cv**: Whether or not stratified cross-validation samples are used.
- **data**: The data.
- **x**: The model matrix.
- **y**: The response variable.
- **offset**: The offset.
- **distribution**: The type of loss function. See `gbm`.
- **w**: Observation weights.
- **var.monotone**: See `gbm`.
- **n.trees**: The number of trees to fit.
- **interaction.depth**: The degree of allowed interactions. See `gbm`.
- **n.minobsinnode**: See `gbm`.
- **shrinkage**: See `gbm`.
- **bag.fraction**: See `gbm`.
- **var.names**: See `gbm`.
- **response.name**: See `gbm`.
- **group**: Used when `distribution` = "pairwise". See `gbm`.
- **cv.models**: A list containing the models for each fold.
- **cv.group**: A vector indicating the cross-validation fold for each member of the training set.
- **best.iter.cv**: The iteration with lowest cross-validation error.
- **i.train**: Items in the training set.
- **X**: Index (cross-validation fold) on which to subset.
- **s**: Random seed.

Details

These functions are not intended for end-user direct usage, but are used internally by `gbm`.

Value

A list containing the cross-validation error and predictions.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>
References

See Also

gbm

guessDist

gbm internal functions

Description

Helper functions for preprocessing data prior to building a "gbm" object.

Usage

guessDist(y)

defCVgroup(distribution, class.stratify.cv, y, i.train, cv.folds, group)

defStratify(strat, d)

ccheckMissing(x, y)

ccheckWeights(w, n)

ccheckID(id)

ccheckOffset(o, y)

defVarNames(x)

gbmCluster(n)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>The response variable.</td>
</tr>
<tr>
<td>class.stratify.cv</td>
<td>Whether or not to stratify, if provided by the user.</td>
</tr>
<tr>
<td>i.train</td>
<td>Computed internally by gbm.</td>
</tr>
<tr>
<td>cv.folds</td>
<td>The number of cross-validation folds.</td>
</tr>
<tr>
<td>group</td>
<td>The group, if using distribution = "pairwise".</td>
</tr>
<tr>
<td>strat</td>
<td>Whether or not to stratify.</td>
</tr>
</tbody>
</table>
d, distribution
The distribution, either specified by the user or implied.

x
The design matrix.

w
The weights.

n
The number of cores to use in the cluster.

id
The interaction depth.

o
The offset.

Details
These are functions used internally by gbm and not intended for direct use by the user.

interact.gbm
Estimate the strength of interaction effects

Description
Computes Friedman’s H-statistic to assess the strength of variable interactions.

Usage
interact.gbm(x, data, i.var = 1, n.trees = x$n.trees)

Arguments

x
A gbm.object fitted using a call to gbm.

data
The dataset used to construct x. If the original dataset is large, a random sub-
sample may be used to accelerate the computation in interact.gbm.

i.var
A vector of indices or the names of the variables for compute the interaction
effect. If using indices, the variables are indexed in the same order that they
appear in the initial gbm formula.

n.trees
The number of trees used to generate the plot. Only the first n.trees trees will
be used.

Details
interact.gbm computes Friedman’s H-statistic to assess the relative strength of interaction effects
in non-linear models. H is on the scale of [0-1] with higher values indicating larger interaction
effects. To connect to a more familiar measure, if x_1 and x_2 are uncorrelated covariates with mean
0 and variance 1 and the model is of the form

$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

then

$H = \frac{\beta_3}{\sqrt{\beta_1^2 + \beta_2^2 + \beta_3^2}}$
Note that if the main effects are weak, the estimated H will be unstable. For example, if (in the case of a two-way interaction) neither main effect is in the selected model (relative influence is zero), the result will be $0/0$. Also, with weak main effects, rounding errors can result in values of $H > 1$ which are not possible.

Value

Returns the value of H.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

See Also

`gbm`, `gbm.object`

plot.gbm

Marginal plots of fitted gbm objects

Description

Plots the marginal effect of the selected variables by “integrating” out the other variables.

Usage

```r
## S3 method for class 'gbm'
plot(x, i.var = 1, n.trees = x$n.trees,
     continuous.resolution = 100, return.grid = FALSE, type = c("link",
     "response"), level.plot = TRUE, contour = FALSE, number = 4,
     overlap = 0.1, col.regions = viridis::viridis, ...)
```

Arguments

- **x** A `gbm.object` that was fit using a call to `gbm`.
- **i.var** Vector of indices or the names of the variables to plot. If using indices, the variables are indexed in the same order that they appear in the initial `gbm` formula. If `length(i.var)` is between 1 and 3 then `plot.gbm` produces the plots. Otherwise, `plot.gbm` returns only the grid of evaluation points and their average predictions.
- **n.trees** Integer specifying the number of trees to use to generate the plot. Default is to use `x$n.trees` (i.e., the entire ensemble).
continuous.resolution

Integer specifying the number of equally space points at which to evaluate continuous predictors.

return.grid

Logical indicating whether or not to produce graphics FALSE or only return the grid of evaluation points and their average predictions TRUE. This is useful for customizing the graphics for special variable types, or for higher dimensional graphs.

type

Character string specifying the type of prediction to plot on the vertical axis. See predict.gbm for details.

level.plot

Logical indicating whether or not to use a false color level plot (TRUE) or a 3-D surface (FALSE). Default is TRUE.

contour

Logical indicating whether or not to add contour lines to the level plot. Only used when level.plot = TRUE. Default is FALSE.

number

Integer specifying the number of conditional intervals to use for the continuous panel variables. See co.intervals and equal.count for further details.

overlap

The fraction of overlap of the conditioning variables. See co.intervals and equal.count for further details.

col.regions

Color vector to be used if level.plot is TRUE. Defaults to the wonderful Matplotlib ‘viridis’ color map provided by the viridis package. See viridis for details.

... Additional optional arguments to be passed onto plot.

Details

plot.gbm produces low dimensional projections of the gbm.object by integrating out the variables not included in the i.var argument. The function selects a grid of points and uses the weighted tree traversal method described in Friedman (2001) to do the integration. Based on the variable types included in the projection, plot.gbm selects an appropriate display choosing amongst line plots, contour plots, and lattice plots. If the default graphics are not sufficient the user may set return.grid=TRUE, store the result of the function, and develop another graphic display more appropriate to the particular example.

Value

If return.grid = TRUE, a grid of evaluation points and their average predictions. Otherwise, a plot is returned.

Note

More flexible plotting is available using the partial and plotPartial functions.

References

predict.gbm

See Also

partial.plot, partial.gbm, and gbm.object.

predict.gbm

Predict method for GBM Model Fits

Description

Predicted values based on a generalized boosted model object

Usage

```r
## S3 method for class 'gbm'
predict(object, newdata, n.trees, type = "link",
     single.tree = FALSE, ...)
```

Arguments

- `object`: Object of class inheriting from (`gbm.object`)
- `newdata`: Data frame of observations for which to make predictions
- `n.trees`: Number of trees used in the prediction. `n.trees` may be a vector in which case predictions are returned for each iteration specified
- `type`: The scale on which gbm makes the predictions
- `single.tree`: If `single.tree`=TRUE then `predict.gbm` returns only the predictions from tree(s) `n.trees`
- `...`: further arguments passed to or from other methods

Details

`predict.gbm` produces predicted values for each observation in `newdata` using the first `n.trees` iterations of the boosting sequence. If `n.trees` is a vector then the result is a matrix with each column representing the predictions from `gbm` models with `n.trees[1]` iterations, `n.trees[2]` iterations, and so on.

The predictions from `gbm` do not include the offset term. The user may add the value of the offset to the predicted value if desired.

If `object` was fit using `gbm.fit` there will be no `Terms` component. Therefore, the user has greater responsibility to make sure that `newdata` is of the same format (order and number of variables) as the one originally used to fit the model.

Value

Returns a vector of predictions. By default the predictions are on the scale of $f(x)$. For example, for the Bernoulli loss the returned value is on the log odds scale, poisson loss on the log scale, and coxph is on the log hazard scale.

If `type="response"` then `gbm` converts back to the same scale as the outcome. Currently the only effect this will have is returning probabilities for bernoulli and expected counts for poisson. For the other distributions "response" and "link" return the same.
pretty.gbm.tree

Print gbm tree components

Description

gbm stores the collection of trees used to construct the model in a compact matrix structure. This function extracts the information from a single tree and displays it in a slightly more readable form. This function is mostly for debugging purposes and to satisfy some users’ curiosity.

Usage

```r
## S3 method for class 'gbm.tree'
pretty(object, i.tree = 1)
```

Arguments

- `object` a `gbm.object` initially fit using `gbm`
- `i.tree` the index of the tree component to extract from `object` and display

Value

`pretty.gbm.tree` returns a data frame. Each row corresponds to a node in the tree. Columns indicate:

- **SplitVar** index of which variable is used to split. -1 indicates a terminal node.
- **SplitCodePred** if the split variable is continuous then this component is the split point. If the split variable is categorical then this component contains the index of `object$c.split` that describes the categorical split. If the node is a terminal node then this is the prediction.
- **LeftNode** the index of the row corresponding to the left node.
- **RightNode** the index of the row corresponding to the right node.
- **ErrorReduction** the reduction in the loss function as a result of splitting this node.
- **Weight** the total weight of observations in the node. If weights are all equal to 1 then this is the number of observations in the node.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>
See Also

`gbm`, `gbm.object`

print.gbm

Print model summary

Description

Display basic information about a `gbm` object.

Usage

```r
## S3 method for class 'gbm'
print(x, ...)
```

```r
show.gbm(x, ...)
```

Arguments

- `x`: an object of class `gbm`.
- `...`: arguments passed to `print.default`.

Details

Prints some information about the model object. In particular, this method prints the call to `gbm()`, the type of loss function that was used, and the total number of iterations.

If cross-validation was performed, the 'best' number of trees as estimated by cross-validation error is displayed. If a test set was used, the 'best' number of trees as estimated by the test set error is displayed.

The number of available predictors, and the number of those having non-zero influence on predictions is given (which might be interesting in data mining applications).

If multinomial, bernoulli or adaboost was used, the confusion matrix and prediction accuracy are printed (objects being allocated to the class with highest probability for multinomial and bernoulli). These classifications are performed on the entire training data using the model with the 'best' number of trees as described above, or the maximum number of trees if the 'best' cannot be computed.

If the 'distribution' was specified as gaussian, laplace, quantile or t-distribution, a summary of the residuals is displayed. The residuals are for the training data with the model at the 'best' number of trees, as described above, or the maximum number of trees if the 'best' cannot be computed.

Author(s)

Harry Southworth, Daniel Edwards

See Also

`gbm`
Examples

```r
data(iris)
iris.mod <- gbm(Species ~ ., distribution="multinomial", data=iris,
               n.trees=2000, shrinkage=0.01, cv.folds=5,
               verbose=FALSE, n.cores=1)
iris.mod

# data(lung)
#lung.mod <- gbm(Surv(time, status) ~ ., distribution="coxph", data=lung,
# n.trees=2000, shrinkage=0.01, cv.folds=5, verbose =FALSE)
#lung.mod
```

quantile.rug Quantile rug plot

Description

Marks the quantiles on the axes of the current plot.

Usage

```r
## S3 method for class 'rug'
quantile(x, prob = 0:10/10, ...)
```

Arguments

- `x` A numeric vector.
- `prob` The quantiles of `x` to mark on the x-axis.
- `...` Additional optional arguments to be passed onto `rug`.

Value

No return values.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>.

See Also

`plot`, `quantile`, `jitter`, `rug`.

Examples

```r
x <- rnorm(100)
y <- rnorm(100)
plot(x, y)
quantile.rug(x)
```
reconstructGBMdata
Reconstruct a GBM's Source Data

Description
Helper function to reconstitute the data for plots and summaries. This function is not intended for the user to call directly.

Usage

```r
gbm_data <- reconstructGBMdata(x)
```

Arguments

- `x`: a `gbm.object` initially fit using `gbm`

Value
Returns a data used to fit the gbm in a format that can subsequently be used for plots and summaries

Author(s)
Harry Southworth

See Also

- `gbm`, `gbm.object`

relative.influence
Methods for estimating relative influence

Description
Helper functions for computing the relative influence of each variable in the gbm object.

Usage

```r
relative.influence(object, n.trees, scale = FALSE, sort = FALSE)
```

- `permutation.test.gbm(object, n.trees)`

- `gbm.loss(y, f, w, offset, dist, baseline, group = NULL, max.rank = NULL)`
Arguments

- **object**: a `gbm` object created from an initial call to `gbm`.
- **n.trees**: the number of trees to use for computations. If not provided, the function will guess: if a test set was used in fitting, the number of trees resulting in lowest test set error will be used; otherwise, if cross-validation was performed, the number of trees resulting in lowest cross-validation error will be used; otherwise, all trees will be used.
- **scale.**: whether or not the result should be scaled. Defaults to `FALSE`.
- **sort.**: whether or not the results should be (reverse) sorted. Defaults to `FALSE`.
- **y, f, w, offset, dist, baseline**: For `gbm.loss`: These components are the outcome, predicted value, observation weight, offset, distribution, and comparison loss function, respectively.
- **group, max.rank**: Used internally when `distribution = \'pairwise\'`.

Details

This is not intended for end-user use. These functions offer the different methods for computing the relative influence in `summary.gbm`. `gbm.loss` is a helper function for `permutation.test.gbm`.

Value

By default, returns an unprocessed vector of estimated relative influences. If the `scale.` and `sort.` arguments are used, returns a processed version of the same.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

See Also

`summary.gbm`
Description
Performs recursive shrinkage in each of the trees in a GBM fit using different shrinkage parameters for each variable.

Usage
shrink.gbm(object, n.trees, lambda = rep(10, length(object$var.names)), ...)

Arguments
- object: A `gbm.object`
- n.trees: Integer specifying the number of trees to use.
- lambda: Vector of length equal to the number of variables containing the shrinkage parameter for each variable.
- ...: Additional optional arguments. (Currently ignored.)

Details
This function is currently experimental. Used in conjunction with a gradient ascent search for inclusion of variables.

Value
- predF: Predicted values from the shrunken tree
- objective: The value of the loss function associated with the predicted values
- gradient: A vector with length equal to the number of variables containing the derivative of the objective function with respect to beta, the logit transform of the shrinkage parameter for each variable

Note
Warning: This function is experimental.

Author(s)
Greg Ridgeway <gregridgeway@gmail.com>

References
shrink.gbm.pred

Predictions from a shrunked GBM

Description

Makes predictions from a shrunken GBM model.

Usage

shrink.gbm.pred(object, newdata, n.trees, lambda = rep(1, length(object$var.names)), ...)

Arguments

 object a gbm.object
 newdata dataset for predictions
 n.trees the number of trees to use
 lambda a vector with length equal to the number of variables containing the shrinkage parameter for each variable
 ... other parameters (ignored)

Value

 A vector with length equal to the number of observations in newdata containing the predictions

Warning

 This function is experimental

Author(s)

 Greg Ridgeway <gregridgeway@gmail.com>

See Also

 shrink.gbm, gbm
Summary of a gbm object

Description

Computes the relative influence of each variable in the gbm object.

Usage

```r
## S3 method for class 'gbm'
summary(object, cBars = length(object$var.names),
         n.trees = object$n.trees, plotit = TRUE, order = TRUE,
         method = relative.influence, normalize = TRUE, ...)
```

Arguments

- `object`: a gbm object created from an initial call to `gbm`
- `cBars`: the number of bars to plot. If `order=TRUE` the only the variables with the `cBars` largest relative influence will appear in the barplot. If `order=FALSE` then the first `cBars` variables will appear in the plot. In either case, the function will return the relative influence of all of the variables.
- `n.trees`: the number of trees used to generate the plot. Only the first `n.trees` trees will be used.
- `plotit`: an indicator as to whether the plot is generated.
- `order`: an indicator as to whether the plotted and/or returned relative influences are sorted.
- `method`: The function used to compute the relative influence. `relative.influence` is the default and is the same as that described in Friedman (2001). The other current (and experimental) choice is `permutation.test.gbm`. This method randomly permutes each predictor variable at a time and computes the associated reduction in predictive performance. This is similar to the variable importance measures Breiman uses for random forests, but gbm currently computes using the entire training dataset (not the out-of-bag observations).
- `normalize`: if `FALSE` then `summary.gbm` returns the unnormalized influence.
- `...`: other arguments passed to the plot function.

Details

For `distribution="gaussian"` this returns exactly the reduction of squared error attributable to each variable. For other loss functions this returns the reduction attributable to each variable in sum of squared error in predicting the gradient on each iteration. It describes the relative influence of each variable in reducing the loss function. See the references below for exact details on the computation.
Value

Returns a data frame where the first component is the variable name and the second is the computed relative influence, normalized to sum to 100.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

See Also

gbm

test.gbm

Description

Test the gbm package.

Usage

test.gbm()

Details

The function uses functionality in the RUnit package. A fairly small validation suite is executed that checks to see that relative influence identifies sensible variables from simulated data, and that predictions from GBMs with Gaussian, Cox or binomial distributions are sensible.

Value

An object of class RUnitTestData. See the help for RUnit for details.

Note

The test suite is not comprehensive.

Author(s)

Harry Southworth
See Also
gbm

Examples

Uncomment the following lines to run - commented out to make CRAN happy
#library(RUnit)
#val <- validate.texmex()
#printHTMLProtocol(val, "texmexReport.html")
Index

*Topic **aplot**
 quantile.rug, 30

*Topic **bplot**
 calibrate.plot, 4
 relative.influence, 31
 summary.gbm, 35

*Topic **manip**
 reconstructGBMdata, 31

*Topic **methods**
 basehaz.gbm, 3
 gbm.object, 17
 interact.gbm, 24
 shrink.gbm, 33
 shrink.gbm.pred, 34

*Topic **models**
 gbm.roc.area, 20
 gbmCrossVal, 21
 predict.gbm, 27
 print.gbm, 29
 test.gbm, 36

*Topic **nonlinear**
 gbm.perf, 19
 print.gbm, 29

*Topic **nonparametric**
 gbm.perf, 19
 print.gbm, 29

*Topic **package**
 gbm-package, 2

*Topic **print**
 pretty.gbm.tree, 28

*Topic **regression**
 predict.gbm, 27

*Topic **survival**
 basehaz.gbm, 3
 gbm.perf, 19
 print.gbm, 29

*Topic **tree**
 gbm.perf, 19

basehaz.gbm, 3

calibrate.plot, 4
checkID(guessDist), 23
checkMissing(guessDist), 23
checkOffset(guessDist), 23
checkWeights(guessDist), 23
co.intervals, 26
equal.count, 26
gbm, 3, 4, 6, 15, 18, 19, 21–25, 27–29, 31, 32, 34–37
gbm-package, 2
gbm.conc(gbm.roc.area), 20
gbm.fit, 11, 27
gbm.loss(relative.influence), 31
gbm.more, 6–8, 14, 15, 15
gbm.object, 8, 9, 13–15, 17, 19, 24–29, 31, 33, 34
gbm.perf, 9, 15, 18, 19
gbm.roc.area, 20
gbmCluster(guessDist), 23
gbmCrossVal, 21
gbmCrossValErr(gbmCrossVal), 21
gbmCrossValModelBuild(gbmCrossVal), 21
gbmCrossValPredictions(gbmCrossVal), 21
gbmDoFold(gbmCrossVal), 21
getCVGroup(guessDist), 23
getStratify(guessDist), 23
getVarNames(guessDist), 23
guessDist, 23

interact.gbm, 24
ir.measure.auc(gbm.roc.area), 20
ir.measure.conc(gbm.roc.area), 20
ir.measure.map(gbm.roc.area), 20
ir.measure.mrr(gbm.roc.area), 20
ir.measure.ndcg(gbm.roc.area), 20

jitter, 30

lattice, 26
INDEX

model.frame, 8, 11

ns, 5

partial, 26, 27
perf.pairwise(gbm.roc.area), 20
permutation.test.gbm, 35
permutation.test.gbm
(relative.influence), 31
plot, 5, 26, 30
plot.gbm, 9, 15, 25
plotPartial, 26, 27
polygon, 5
predict.gbm, 9, 15, 26, 27
pretty.gbm.tree, 9, 15, 18, 28
print.gbm, 29

quantile, 30
quantile.rug, 30

reconstructGBMdata, 31
relative.influence, 31, 35
rug, 5, 30

save, 8, 13
show.gbm(print.gbm), 29
shrink.gbm, 33, 34
shrink.gbm.pred, 34, 34
summary.gbm, 9, 15, 32, 35
supsmu, 3
survfit, 4

test.gbm, 36
test.relative.influence(test.gbm), 36

validate.gbm(test.gbm), 36
viridis, 26