Package ‘gclm’

October 13, 2022

Type Package
Title Graphical Continuous Lyapunov Models
Version 0.0.1
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
URL https://github.com/gerardovarando/gclm
BugReports https://github.com/gerardovarando/gclm/issues
Suggests testthat
NeedsCompilation yes
Author Gherardo Varando [aut, cre, cph]
 (<https://orcid.org/0000-0002-6708-1103>),
 Niels Richard Hansen [aut] (<https://orcid.org/0000-0003-3883-365X>)
Maintainer Gherardo Varando <gherardo.varando@gmail.com>
Repository CRAN
Date/Publication 2020-06-04 08:40:07 UTC

R topics documented:

\begin{itemize}
 \item B0 \hfill 2
 \item clyap \hfill 2
 \item gclm \hfill 3
 \item gclm.lowertri \hfill 5
\end{itemize}

Index 6
B0

Generate a naive stable matrix

Description

Generate a naive stable matrix

Usage

\[B0(p) \]

Arguments

- \(p \)
 dimension of the matrix

Value

a stable matrix with off-diagonal entries equal to 1 and diagonal entries equal to \(-p\)

clyap

Solve continuous-time Lyapunov equations

Description

clyap solve the continuous-time Lyapunov equations

\[
BX + XB' + C = 0
\]

Using the Bartels-Stewart algorithm with Hessenberg–Schur decomposition. Optionally the Hessenberg-Schur decomposition can be returned.

Usage

\[clyap(B, C, Q = NULL, all = FALSE) \]

Arguments

- \(B \)
 Square matrix
- \(C \)
 Square matrix
- \(Q \)
 Square matrix, the orthogonal matrix used to transform the original equation
- \(all \)
 logical
Details

If the matrix Q is set then the matrix B is assumed to be in upper quasi-triangular form (Hessenberg-Schur canonical form), as required by LAPACK subroutine DTRSYL and Q is the orthogonal matrix associated with the Hessenberg-Schur form of B. Usually the matrix Q and the appropriate form of B are obtained by a first call to clyap(B, C, all = TRUE).

clyap uses lapack subroutines:

- DGEES
- DTRSYL
- DGEMM

Value

The solution matrix X if all = FALSE. If all = TRUE a list with components X, B and Q. Where B and Q are the Hessenberg-Schur form of the original matrix B and the orthogonal matrix that performed the transformation.

Examples

```r
B <- matrix(data = rnorm(9), nrow = 3)
## make B negative diagonally dominant, thus stable:
diag(B) <- - 3 * max(B)
C <- diag(runif(3))
X <- clyap(B, C)
## check X is a solution:
max(abs(B %*% X + X %*% t(B) + C))
```

gclm

II penalized loss estimation for GCLM

Description

Estimates a sparse continuous time Lyapunov parametrization of a covariance matrix using a lasso (L1) penalty.

Usage

```r
gclm(
  Sigma,
  B = -0.5 * diag(ncol(Sigma)),
  C = rep(1, ncol(Sigma)),
  C0 = rep(1, ncol(Sigma)),
  loss = "loglik",
  eps = 0.01,
  alpha = 0.5,
  maxIter = 100,
  lambda = 0,
)```

lambdac = 0,
job = 0
)

gclm.path(
    Sigma,
    lambdas = NULL,
    B = -0.5 * diag(ncol(Sigma)),
    C = rep(1, ncol(Sigma)),
    ...
)

Arguments

Sigma       covariance matrix
B           initial B matrix
C           diagonal of initial C matrix
C0          diagonal of penalization matrix
loss        one of "loglik" (default) or "frobenius"
eps         convergence threshold
alpha       parameter line search
maxIter     maximum number of iterations
lambda      penalization coefficient for B
lambdac     penalization coefficient for C
job         integer 0,1,10 or 11
lambdas     sequence of lambda
...         additional arguments passed to gclm

Details

\texttt{gclm} performs proximal gradient descent for the optimization problem

$$\text{argmin}_L(\Sigma(B,C)) + \lambda \rho(B) + \lambda_C \| C - C_0 \|^2_F,$$

subject to \(B\) stable and \(C\) diagonal, where \(\rho(B)\) is the 11 norm of the off-diagonal element of \(B\).

\texttt{gclm.path} simply calls iteratively \texttt{gclm} with different \texttt{lambda} values. Warm start is used, that is in the \(i\)-th call to \texttt{gclm} the \(B\) and \(C\) matrices are initialized as the one obtained in the (i-1)th call.

Value

for \texttt{gclm}: a list with the result of the optimization

for \texttt{gclm.path}: a list of the same length of \texttt{lambdas} with the results of the optimization for the different \texttt{lambda} values
Examples

```r
x <- matrix(rnorm(50*20), ncol=20)
S <- cov(x)

l1 penalized log-likelihood
res <- gclm(S, eps = 0, lambda = 0.1, lambdac = 0.01)

l1 penalized log-likelihood with fixed C
res <- gclm(S, eps = 0, lambda = 0.1, lambdac = -1)

l1 penalized frobenius loss
res <- gclm(S, eps = 0, lambda = 0.1, loss = "frobenius")
```

---

**gclm.lowertri**  
*Recover lower triangular GCLM*

Description

Recover the only lower triangular stable matrix B such that Sigma (\(\Sigma\)) is the solution of the associated continuous Lyapunov equation:

\[
B\Sigma + \Sigma B' + C = 0
\]

Usage

```r
gclm.lowertri(Sigma, P = solve(Sigma), C = diag(nrow = nrow(Sigma)))
```

Arguments

- **Sigma**  
covariance matrix
- **P**  
the inverse of the covariance matrix
- **C**  
symmetric positive definite matrix

Value

A stable lower triangular matrix
Index

B0, 2
clyap, 2
gclm, 3
gclm.lowertri, 5