Package ‘gconsensus’

September 27, 2021

Type Package
Title Consensus Value Constructor
Version 0.3.1
Date 2021-09-27
Author Hugo Gasca-Aragon
Maintainer Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>
Description An implementation of the International Bureau of Weights and Measures (BIPM) generalized consensus estimators used to assign the reference value in a key comparison exercise. This can also be applied to any interlaboratory study. Given a set of different sources, primary laboratories or measurement methods this package provides an evaluation of the variance components according to the selected statistical method for consensus building. It also implements the comparison among different consensus builders and evaluates the participating method or sources against the consensus reference value. Based on a diverse set of references, DerSimonian-Laird (1986) <doi:10.1016/0197-2456(86)90046-2>, Vangel-Ruhkin (1999) <doi:10.1111/j.0006-341X.1999.00129.x>, for a complete list of references look at the reference section in the package documentation.
Depends R (>= 3.5), graphics (>= 3.5), stats (>= 3.5), MASS (>= 7.0), utils (>= 3.5), rjags (>= 4-10), coda (>= 0.13)
License GPL (>= 3)
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2021-09-27 19:50:05 UTC

R topics documented:

gconsensus-package .. 2
comparison.gconsensus .. 5
doe.gconsensus ... 6
gconsensus ... 7
plot.comparison ... 9
plot.doe ... 10
Description

An implementation of the International Bureau of Weights and Measures (BIPM) generalized consensus estimators used to assign the reference value in a key comparison exercise. This can also be applied to any interlaboratory study. Given a set of different sources, primary laboratories or measurement methods this package provides an evaluation of the variance components according to the selected statistical method for consensus building. It also implements the comparison among different consensus builders and evaluates the participating method or sources against the consensus reference value. Based on a diverse set of references, DerSimonian-Laird (1986) <doi:10.1016/0197-2456(86)90046-2>, Vangel-Ruhkin (1999) <doi:10.1111/j.0006-341X.1999.00129.x>, for a complete list of references look at the reference section in the package documentation. Partially based on the results published in Control clinical trials (1985). <https://doi.org/10.1016/0197-2456(86)90046-2> For a complete list of references see the reference section.

Details

The DESCRIPTION file:

- **Package:** gconsensus
- **Type:** Package
- **Title:** Consensus Value Constructor
- **Version:** 0.3.1
- **Date:** 2021-09-27
- **Author:** Hugo Gasca-Aragon
- **Maintainer:** Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>
- **Depends:** R (>= 3.5), graphics (>= 3.5), stats (>= 3.5), MASS (>= 7.0), utils (>= 3.5), rjags (>= 4-10), coda (>= 0.2)
- **License:** GPL (>=3)
- **Encoding:** UTF-8
- **NeedsCompilation:** no

Index of help topics:

- plot.gconsensus
- print.comparison
- print.doe
- print.gconsensus
- toString.comparison
- toString.doe
- toString.gconsensus
- vr.mle
comparison.gconsensus Obtains a set of generalized consensus estimates by different statistical methods for comparison purposes.

doe.gconsensus Obtains the unilateral degrees of equivalence out of a generalized consensus object.

gconsensus Generalized Consensus Constructor

gconsensus-package Consensus Value Constructor

plot.comparison Plot a gconsensus comparison object

plot.doe Plot a “degrees of equivalence” object

plot.gconsensus Plot a gconsensus object

print.comparison Prints a Comparison Object.

print.doe Prints a Doe Object.

print.gconsensus Prints a gconsensus object

toString.comparison Builds a detailed description string of the comparison object.

toString.doe Builds a detailed description string of the doe object.

toString.gconsensus Builds a detailed description string of the gconsensus object.

vr.mle Finds the maximum likelihood estimate solution described by Vangel-Rukhin for the one way random effects model.

Author(s)

Hugo Gasca-Aragon

Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

References

See Also

`gconsensus`

Examples

```r
ilab <- list(
  data = data.frame(
    participant = c("BAM", "IRMM", "LGC", "NARL", "NIST", "NMIJ", "NRC"),
    code = paste0("p", c(1:7)),
    method = rep(1, 7),
    mean = c(10.21, 10.9, 10.94, 10.58, 10.81, 9.62, 10.8),
    sd = c(0.381, 0.250, 0.130, 0.410, 0.445, 0.196, 0.093),
    n = rep(1, 7),
    kp = rep(2, 7),
    included = rep(1, 7)),
  info = list(variable = c("Software", "Institute", "Study", "Author", "Date", "Measurand", "Units"),
)

aConsensus <- gconsensus(ilab,
  method = "DL1",
  config = list(
    alpha = 0.05,
    expansion.factor.type = "small.sample",
    ...))
```
comparison.gconsensus

```r
unreliable.uncertainties = FALSE,
MC_samples = 1e5,
MC_seed = 12345,
MC_use.HKSJ.adjustment = FALSE,
filename = "hb_consensus_model.txt"
)
)
print(aConsensus)
```

comparison.gconsensus

Obtains a set of generalized consensus estimates by different statistical methods for comparison purposes.

Description

Obtains a set of generalized consensus estimates.

Usage

```r
comparison.gconsensus(x, methods, build.model = NULL, get.samples = NULL)
```

Arguments

- **x**: consensus object, containing the definition of the participants’ information.
- **methods**: vector of strings, containing the statistical methods to be used in obtaining the consensus values.
- **build.model**: function, NULL by default, the current function to build a JAGS measurand model.
- **get.samples**: function, NULL by default, the current function to obtain CORA samples out of the JAGS model.

Details

The default function requires the default parameters (x, ...), the next version will replace the formal parameters with the default signature.

Value

- **fit**: a data.frame object, consensus value estimates by the specified methods
- **gconsensus**: the current estimated gconsensus as provided in the x parameter
- **total.included.participants**: a numeric, the current number of included participating sources
doe.gconsensus

Author(s)
Hugo Gasca-Aragon
Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also
gconsensus, print.comparison, plot.comparison

doe.gconsensus

Obtains the unilateral degrees of equivalence out of a generalized consensus object.

Description
Obtains the unilateral degrees of equivalence from a generalized consensus object.

Usage
doe.gconsensus(x)

Arguments

x A generalized consensus object

Details
The unilateral degrees of equivalence are obtained from the participants data and the estimated generalized consensus value described in the gconsensus value.

Value
A doe object containing the unilateral degrees of equivalence.

fit a data.frame with the source code, source lab name, value, expanded uncertainty, unit, expansion factor, probability coverage and tau.
gconsensus the generalized consensus object the evaluation is based on.

Author(s)
Hugo Gasca-Aragon
Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also
gconsensus, print.doe, plot.doe
Generalized Consensus Constructor

Description
Compute a set of estimates for the generalized consensus value from a set of sources.

Usage
```r
gconsensus(ilab, method = "mean",
    build.model = NULL, get.samples = NULL,
    config = list(alpha = 0.05,
        expansion.factor.type = "naive",
        tau = mad(ilab$data$mean),
        unreliable.uncertainties = FALSE,
        MC_samples = 1e5,
        MC_seed = NA,
        MC_use.HKSJ.adjustment = FALSE,
        filename = "hb_consensus_model.txt"))
```

Arguments
- **ilab**: ilab object, containing the definition of the participating source/experts/laboratories.
- **method**: string, the current statistical method for estimating the consensus value. The list of current valid methods is: mean [15], grand.mean [15], median [15], h15 for Huber estimator [15], MCM.mean for Monte Carlo mean, MCM.median for Monte Carlo median, GD1 for the original Graybill-Deal estimator [1], GD2 for the modified Graybill-Deal estimator as described by Sinha [13], GD3 for the modified Graybill-Deal estimator as described by Zhang [14], GD4 for the modified Graybill-Deal estimator as described by Zhang [14], DL1 for original DerSimonian-Laird estimator [2], DL2 for the modified DerSimonian-Laird estimator as described by Horn-Horn-Duncan [3], PM for original Paul-Mandel estimator [5], MPM for the modified Paul-Mandel estimator [6], VRMLE for Vangel-Rukhin MLE [7, 8, 9, 10, 11], BOB for the type B on Bias estimator [4], SE for the Schieller-Eberhardt [12], MCM.LP for linear pool, HB for Hierarchical Bayesian
- **build.model**: a function (NULL by default) to build a JAGS model
- **get.samples**: a function (NULL by default) to obtain the CODA samples based on the JAGS model
- **config**: list, contains the configuration options used in the computational process. The complete list of options is: alpha for the significance level, default value = 0.05, expansion.factor.type for the type of coverage factor to be used: "naive" which use a coverage factor=2, "large sample" which uses a normal quantile, "small sample" which uses a t quantile, tau initial value for the between source uncertainty component, by default it is assigned the median of the absolute deviations of the reported values, unreliable.uncertainties an indicator for
unreliable uncertainties, if TRUE then adjustment is used [15], MC_samples the number of cycles used in the simple Monte Carlo simulation, MC_seed the seed used to initializing the random number generator in the Monte Carlo simulation, MC_use.HKSJ.adjustment a flag indicating if small sample adjustments are required [16], filename a string containing the name of the file for communication with JAGS package.

Details

The consensus estimation will vary with the specified method. Display can be customized by using the options mechanism. Available options are: display.signif.digits an integer representing the number of significant digits to be obtained in the adaptative approach of the Monte Carlo simulation, display.order a string ("name", "code", "location", "dispersion") representing the order to be used for displaying the uncertainty contribution, display.shownames a boolean, if true source names are used otherwise source codes are used, display.tab.size an integer representing the column width used in formating data tables, display.orientation a string ("horizontal", "vertical"), plot orientation.

Value

fit a data.frame with the value, expanded uncertainty, unit, expansion factor, probability coverage and tau, the between effect uncertainty.
method statistical method used to estimate the consensus value.
subset the subset of included values in the consensus value estimation.
ilab the current participants’ information.
config the current configuration options provided for the consensus value estimation process.
study the study the consensus belongs to.
measurand the measurand the consensus belongs to.

Author(s)

Hugo Gasca-Aragon

Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also
do.value.gconsensus, print.gconsensus, plot.gconsensus
Description

Shows the confidence intervals associated with the different gconsensus values specified in the comparison.

Usage

```r
## S3 method for class 'comparison'
plot(x, ...)
```

Arguments

- `x`: gconsensus comparison object, containing the estimates for a set of gconsensus value.
- `...`: any additional graphical parameter.

Details

The plot contains the confidence intervals associated with the set of gconsensus values under comparison.

Value

- a plot object

Author(s)

- Hugo Gasca-Aragon
 - Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

- `comparison.gconsensus`, `print.comparison`, `plot`
plot.doe

Description

Plots a char showing the confidence interval for the unilateral degrees of equivalence associated to each participating laboratory.

Usage

S3 method for class 'doe'
plot(x, ...)

Arguments

x A doe object
...
Any additional graphical parameter

Details

Plot a doe object using the options display.order and display.shownames

Value

A plot of the doe object using the options display.order and display.shownames, showing the confidence interval for the unilateral degree of equivalence attached to each participant.

Author(s)

Hugo Gasca-Aragon

Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

doe.gconsensus, plot, print.doe
plot.gconsensus

Plot a gconsensus object

Description

Shows the probability distribution of the estimated gconsensus value.

Usage

```r
## S3 method for class 'gconsensus'
plot(x, ...)  
```

Arguments

- `x`: gconsensus object, containing the estimated gconsensus value by the specified statistical method.
- `...`: any additional graphical parameter

Details

The plot shows the confidence interval for each of the participants’ values, the consensus value and its confidence interval, on the right side the probability distribution associated with the consensus value is showed and a normal distribution with the same expected value and variance. Formatting options of the plot: `display.order` a string, this is used to order the data source, valid values are: "location" for sorting based on the reported means, "dispersion" for sorting based on reported variances, any other value for sorting based on typing order. Default value is "location". `display.shownames` a logical, if true then the participants names are used to identify the plotted values, otherwise the code value is used instead. Default value is FALSE. `display.orientation` a string, this is used to build the plot vertically or horizontally, valid values are: "horizontal" otherwise vertical is assumed, default value is "horizontal". `display.length.out` a numeric, this represents the number of points to build the mixture distribution, default value = 101.

Value

a plot object.

Author(s)

Hugo Gasca-Aragon Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

gconsensus, print.gconsensus, plot
print.comparison

Prints a Comparison Object.

Description

Prints the consensus comparison object. One line for each selected geconsensus method.

Usage

```r
## S3 method for class 'comparison'
print(x, ...)
```

Arguments

- `x`: comparison, object to be described.
- `...`: any additional parameters.

Value

A displayed text containing a summary of the selected geconsensus methods.

Author(s)

Hugo Gasca-Aragon
Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

`comparison.gconsensus, plot.comparison, toString.comparison`

print.doe

Prints a Doe Object.

Description

Prints a doe (unilateral degrees of equivalence) object.

Usage

```r
## S3 method for class 'doe'
print(x, ...)
```

Arguments

- `x`: doe, object to be described.
- `...`: any additional parameters.
print.gconsensus

Value
A displayed text containing a detailed description of the object.

Author(s)
Hugo Gasca-Aragon
Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

gconsensus, doe.gconsensus, toString.doe

Description
Prints a gconsensus object

Usage
S3 method for class 'gconsensus'
print(x, ...)

Arguments
x a gconsensus object
... any additional parameter

Details
option digits is used.

Value
A displayed text containing a detailed description of the object.

Author(s)
Hugo Gasca-Aragon
Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

gconsensus, plot.gconsensus, toString.gconsensus
toString.comparison
Builds a detailed description string of the comparison object.

Description

This function converts a gconsensus comparison object into a string. The returned value contains a verbatim description of the object. This function is used to display the result of comparing several gconsensus values.

Usage

```r
## S3 method for class 'comparison'
toString(x, ...)
```

Arguments

- `x`: comparison, object to be described.
- `...`: any additional parameters.

Value

string, it contains a verbatim description of the comparison object.

Author(s)

Hugo Gasca-Aragon

Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

`comparison.gconsensus`, `print.comparison`

toString.doe
Builds a detailed description string of the doe object.

Description

This function converts a unilateral degrees of equivalence object into a string. The returned value contains a verbatim description of the object. This function is used to display the result of estimating the unilateral degrees of equivalence.

Usage

```r
## S3 method for class 'doe'
toString(x, ...)
```

Arguments

- `x`: doe, object to be described.
- `...`: any additional parameters.

Value

string, it contains a verbatim description of the doe object.
Arguments

x doe, object to be described.
... any additional parameters.

Value

string, it contains a verbatim description of the unilateral degrees of equivalence object.

Author(s)

Hugo Gasca-Aragon
Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

doe, gconsensus, print.doe

toString.gconsensus Builds a detailed description string of the gconsensus object.

Description

This function converts a gconsensus object into a string. The returned value contains a verbatim description of the object. This function is used to display the result of estimating the gconsensus value.

Usage

S3 method for class 'gconsensus'
toString(x, ...)

Arguments

x gconsensus, object to be described.
... any additional parameters.

Value

string, it contains a verbatim description of the gconsensus object.

Author(s)

Hugo Gasca-Aragon
Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

gconsensus, print.gconsensus
vr.mle

Finds the maximum likelihood estimate solution described by Vangel-Rukhin for the one way random effects model.

Description

This function finds the mle solution to the one way random effects model.

Usage

vr.mle(xi, si2, ni, labi=c(1:length(xi)),
max.iter=1000, tol=.Machine$double.eps^0.5,
init.mu=mean(xi), init.sigma2=var(xi),
trace=FALSE, alpha=0.05)

Arguments

xi numeric vector, represents the mean values.
si2 numeric vector, represents the variances associated with a single measurement.
ni integer vector, represents the number of observations associated with the reported mean values.
labi vector, containing the associated labels of the participating laboratories, source of the reported values (mean, variances, number of observations)
max.iter integer, maximum number of iterations allowed.
tol numeric, relative tolerance.
init.mu numeric, initial consensus value.
init.sigma2 numeric, initial between variance.
trace logic, indicates if traceable information must be shown during the execution.
alpha numeric, significance level.

Value

mu estimated consensus value by the method of maximum likelihood
u.mu standard uncertainty estimation attached to the consensus value
kp estimated expansion factor for the specified configuration options

Author(s)

Hugo Gasca-Aragon Maintainer: Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com>

See Also

See also gconsensus
Index

* **comparison.gconsensus**
 - comparison.gconsensus, 5
 - plot.comparison, 9
* **comparison**
 - print.comparison, 12
 - toString.comparison, 14
* **doe.gconsensus**
 - plot.doe, 10
 - print.doe, 12
 - toString.doe, 14
* **gconsensus**
 - doe.gconsensus, 6
 - gconsensus, 7
 - plot.comparison, 9
 - plot.gconsensus, 11
 - print.doe, 12
 - print.gconsensus, 13
 - toString.gconsensus, 15
 - vr.mle, 16
* **package**
 - gconsensus-package, 2
* **plot.gconsensus**
 - print.gconsensus, 13
* **plot**
 - plot.comparison, 9
 - plot.doe, 10
 - plot.gconsensus, 11
* **print.doe**
 - plot.doe, 10
* **print**
 - print.comparison, 12
 - print.doe, 12
* **toString**
 - toString.comparison, 14
 - toString.doe, 14
 - toString.gconsensus, 15

comparison.gconsensus, 5, 9, 12, 14
doe.gconsensus, 6, 8, 10, 13, 15
gconsensus, 4, 6, 7, 11, 13, 15, 16
gconsensus-package, 2
plot, 9–11
plot.comparison, 6, 9, 12
plot.doe, 6, 10
plot.gconsensus, 8, 11, 13
print.comparison, 6, 9, 12, 14
print.doe, 6, 10, 12, 15
print.gconsensus, 8, 11, 13, 15
toString.comparison, 12, 14
toString.doe, 13, 14
toString.gconsensus, 13, 15
vr.mle, 16