Package ‘genSEIR’

July 12, 2021

Type Package

Title Predict Epidemic Curves with Generalized SEIR Modeling

Version 0.1.1

Date 2021-07-12

Maintainer Selcuk Korkmaz <selcukkorkmaz@gmail.com>

Depends R (>= 3.5.0)

Imports pracma, minpack.lm, nlsr, ggplot2

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Author Selcuk Korkmaz [aut, cre] (<https://orcid.org/0000-0003-4632-6850>)

Repository CRAN

Date/Publication 2021-07-12 14:20:02 UTC

R topics documented:

 checkRates .. 2
 fit_SEIQRDP .. 3
 getA .. 5
 getDataCOVID ... 6
 getKappaFun ... 7
 getLambdaFun ... 9
 kappaFun .. 10
 lambdaFun ... 11
 modelFun ... 11
 plot_SEIQRDP ... 12
 predict_SEIQRDP .. 13
checkRates

Description

This function compares the fitted and calculated death and recovered ratios. The idea is to check whether the approximation of these ratios is appropriate.

Usage

checkRates(time, Q, R, D, kappaFun, lambdaFun, kappa, lambda, dt = 1)

Arguments

time time vector
Q time histories of the quarantined/active cases
R time histories of the recovered cases
D time histories of the deceased cases
kappaFun anonymous function approximating the death rate
lambdaFun anonymous function approximating the recovery rate
kappa mortality rate
lambda cure rate
dt a time step, default is 1/24. This oversample time to ensure that the algorithm converges.

Value

plots for death rate and recovery rate

Author(s)

Selcuk Korkmaz, <selcukkorkmaz@gmail.com>

References

See Also

SEIQRDP fit_SEIQRDP
Fit SEIQRDP function

Description

Fit SEIQRDP function parameters used in the SEIQRDP function, used to model the time-evolution of an epidemic outbreak.

Usage

```r
fit_SEIQRDP(
  Q,
  R,
  D,
  Npop,
  E0,
  I0,
  time,
  alpha = 0.05,
  dt = 1/24,
  guess,
  ftol = sqrt(.Machine$double.eps),
  ptol = sqrt(.Machine$double.eps),
  gtol = 0,
  diag = list(),
  epsfcn = 0,
  factor = 100,
  maxfev = integer(),
  maxiter = 1000,
  nprint = 1,
  trace = TRUE,
  ...
)
```

Arguments

- **Q**: time histories of the active cases
- **R**: time histories of the recovered cases
- **D**: time histories of the deceased cases
- **Npop**: total population of the country
- **E0**: initial number of exposed cases
- **I0**: initial number of predicted infectious cases
- **time**: a time vector
- **alpha**: type I error rate, default is 0.05
- **dt**: the time step. This oversamples time to ensure that the algorithm converges
guess initial guess parameters
ftol nls.lm.control object. non-negative numeric. Default is $1e-6$
ptol nls.lm.control object. non-negative numeric. Default is $1e-6$
gtol nls.lm.control object. non-negative numeric. Default is $1e-6$
diag nls.lm.control object. a list or numeric vector containing positive entries that serve as multiplicative scale factors for the parameters.
epsfcn nls.lm.control object. Default is 0.001
factor nls.lm.control object. Default is 100
maxfev nls.lm.control object. Default is 1000
maxiter nls.lm.control object. Default is 100
nprint nls.lm.control object. Default is 1
trace set TRUE to trace iteration results
...
 further arguments

Value
 a list of optimized parameters

Author(s)
 Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References
 https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also
 SEIQRDP predict_SEIQRDP

Examples

```r
start = "01/01/21"
finish = "04/01/21"
country = "Italy"
dt = 1
f=30
covidData = getDataCOVID(start = start, finish = finish, country = country)
Recovered = covidData$tableRecovered
Deaths = covidData$tableDeaths
Confirmed = covidData$tableConfirmed

if(nrow(Recovered) == 1){
```
getA

Compute the matrix A
Description

This function computes the matrix A that is found in: \(\frac{dY}{dt} = A*Y + F \)

Usage

geta(alpha, gamma, delta, lambda, kappa)

Arguments

alpha protection rate
gamma inverse of the average latent time
delta rate of people entering in quarantine
lambda cure rate
kappa mortality rate

Value

The matrix A that is found in: \(\frac{dY}{dt} = A*Y + F \)

Author(s)

Selcuk Korkmaz, <selcukkorkmaz@gmail.com>

References

See Also

SEIQRDP fit_SEIQRDP

Description

The function collects the updated COVID-19 data from the John Hopkins University.

Usage

gedataCOVID(country, start = NULL, finish = NULL)
getKappaFun

Arguments

country name of the country. It should be a character string.
start a start date in mm/dd/yy format. Start date can not be earlier than 01/22/20. Start date can not be later than finish date. If start date is NULL then start date will be 01/22/20.
finish a finish date in mm/dd/yy format. Finish date can not be earlier than start date. If finish date is NULL then finish date will be the latest date at John-Hopkins CSSE system.

Value

a list of COVID-19 historical data including confirmed, death and recovered cases in desired time ranges.

Author(s)

Selcuk Korkmaz, <selcukkorkmaz@gmail.com>

References

See Also

SEIQRDP fit_SEIQRDP

Examples

covidData = getDataCOVID(country = "Italy",
start = "05/01/20",
finish = "12/31/20")
recovered = covidData$tableRecovered
deaths = covidData$tableDeaths
deaths = covidData$tableDeaths
confirmed = covidData$tableConfirmed

getKappaFun Estimate Death Rate

Description

This function provides a first estimate of the death rate, to facilitate convergence of the main algorithm.
Usage

getKappaFun(
 tTarget,
 Q,
 D,
 guess,
 ftol,
 ptol,
 gtol,
 epsfcn,
 factor,
 maxfev,
 maxiter,
 nprint,
 trace
)

Arguments

tTarget time vector
Q target time-histories of the quarantined cases
D target time-histories of the dead cases
guess initial guess parameters for kappa
ftol nls.lm.control object. non-negative numeric. Default is 1e-6
ptol nls.lm.control object. non-negative numeric. Default is 1e-6
gtol nls.lm.control object. non-negative numeric. Default is 1e-6
epsfcn nls.lm.control object. Default is 0.001
factor nls.lm.control object. Default is 100
maxfev nls.lm.control object. Default is 1000
maxiter nls.lm.control object. Default is 100
nprint nls.lm.control object. Default is 1
trace Set TRUE to trace iteration results

Value

vector of estimation and optimization function for the death rate

Author(s)

Selcuk Korkmaz, <selcukkorkmaz@gmail.com>

References

getLambdaFun

See Also

SEIQRDP fit_SEIQRDP

getLambdaFun Estimate Recovery Rate

Description

This function provides a first estimate of the recovery rate, to facilitate convergence of the main algorithm.

Usage

getLambdaFun(
 tTarget,
 Q,
 R,
 guess,
 ftol,
 ptol,
 gtol,
 epsfcn,
 factor,
 maxfev,
 maxiter,
 nprint,
 trace
)

Arguments

tTarget target time vector
Q target time-histories of the quarantined cases
R target time-histories of the recovered cases
guess initial guess parameters for kappa
ftol nls.lm.control object. non-negative numeric. Default is 1e-6
ptol nls.lm.control object. non-negative numeric. Default is 1e-6
gtol nls.lm.control object. non-negative numeric. Default is 1e-6
epsfcn nls.lm.control object. Default is 0.001
factor nls.lm.control object. Default is 100
maxfev nls.lm.control object. Default is 1000
maxiter nls.lm.control object. Default is 100
nprint nls.lm.control object. Default is 1
trace set TRUE to trace iteration results
kappaFun

Value

vector of estimation and optimization function for the recovery rate

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

SEIQRDP fit_SEIQRDP

--

kappaFun Anonymous function approximating the death rate
--

Description

Anonymous function approximating the death rate

Usage

kappaFun(a, t)

Arguments

a parameter vector

 t time vector

Value

No return value, called for side effects
lambdaFun

Anonymous function approximating the recovery rate

Description

Anonymous function approximating the recovery rate

Usage

\[
\text{lambdaFun}(a, t)
\]

Arguments

- \(a\) : parameter vector
- \(t\) : time vector

Value

No return value, called for side effects

modelFun

Model function

Description

Model function

Usage

\[
\text{modelFun}(Y, A, K)
\]

Arguments

- \(Y\) : time vector
- \(A\) : the matrix \(A\) that is found in: \(dY/dt = A*Y + F\)
- \(K\) : the zero matrix for the seven states

Value

No return value, called for side effects
Description

This function creates plots for reported and predicted active, recovered and death cases.

Usage

```r
plot_SEIQRDP(
  object,
  reported = TRUE,
  sep = FALSE,
  show = c("S", "E", "I", "Q", "R", "D", "P"),
  ci = FALSE,
  title = NULL,
  checkRates = FALSE,
  ...
)
```

Arguments

- `object` a `predict_SEIQRDP` result.
- `reported` a logical argument. If `TRUE` reported official cases will be added to the plot.
- `sep` a logical argument. If `TRUE` separate plots will be plotted. If `FALSE` one plot with all desired states will be plotted.
- `show` select one or more desired state. S: Susceptible, E: Exposed, I: Infectious, Q: Quarantined, R: Recovered, D: Dead, P: Insusceptible.
- `ci` a logical argument. If `TRUE` a bootstrap confidence interval will be added to the plot.
- `title` an optional title for the plot.
- `checkRates` if `TRUE` compares the fitted and calculated death and recovered ratios through plots.
- `...` other plot options

Value

plots for epidemic curves: active cases, recovered and deaths

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>
Selcuk Korkmaz, <selcukorkmaz@gmail.com>
predict_SEIQRDP

See Also

SEIQRDP fit_SEIQRDP

Examples

alpha_guess = 0.45
beta_guess = 1
LT_guess = 2
Q_guess = 0.55
lambda_guess = c(0.01, 0.01, 30)
kappa_guess = c(0.01, 0.001, 30)

guess = list(alpha_guess,
 beta_guess,
 1/LT_guess,
 Q_guess,
 lambda_guess[1],
 lambda_guess[2],
 lambda_guess[3],
 kappa_guess[1],
 kappa_guess[2],
 kappa_guess[3])

pred = predict_SEIQRDP(country = "Germany", start = "10/15/20", finish = "12/15/20",
 dt = 1, f = 30, conf = 0.95, Npop = 80000000, guess, boot = TRUE,
 seed = 123, repeatNumber = 10, bootSample = NULL, type = "norm")

plot_SEIQRDP(object = pred, sep = FALSE, ci = TRUE, show = c("Q", "R", "D"), checkRates = TRUE)

predict_SEIQRDP

Predict cases using generalized SEIR model

Description

This function predicts cases of an outbreak using a generalized SEIR model

Usage

```r
predict_SEIQRDP(
  country,  
  start,    
  finish,   
  Npop = NULL,
```
predict_SEIQRDP

guess,
dt = 1,
f = 0,
boot = FALSE,
conf = 0.95,
seed = 123,
repeatNumber = 200,
bootSample = NULL,
type = "norm"
)

Arguments

country
name of the country. It should be a character string.

start
a start date in mm/dd/yy format. Start date can not be earlier than 01/22/20. Start date can not be later than finish date. If start date is NULL then start date will be 01/22/20.

finish
a finish date in mm/dd/yy format. Finish date can not be earlier than start date. If finish date is NULL then finish date will be the latest date at John-Hopkins CSSE system.

Npop
total population of the country

guess
initial guess parameters

dt
the time step. This oversamples time to ensure that the algorithm converges

f
number of days for future predictions

boot
if TRUE bootstrap will be performed to calculate confidence interval

conf
confidence level, default is 0.95.

seed
set a seed for reproducible results.

repeatNumber
number of iteration for bootstrap.

bootSample
number of sample for each bootstrap. If NULL then the number of sample is 80 percent of the original data.

type
a confidence interval type. If "norm" it calculates based on normal approximation, if "perc" it calculates based on percentile approximation.

Value

a list of predicted and actual cases.

Author(s)

Selcuk Korkmaz, <selcukkorkmaz@gmail.com>

References

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-
RK4

Runge-Kutta 4th Order Method to Solve Differential Equation

Description

Runge-Kutta 4th Order Method to Solve Differential Equation

Usage

RK4(Y, A, K, dt)

Arguments

Y initial values for seven states
A the matrix A that is found in: dY/dt = A*Y + F
K the zero matrix for the seven states
dt the time step. This oversamples time to ensure that the algorithm converges
SEIQRDP

Value
ordinary differential equation result for the seven states

Author(s)
Selcuk Korkmaz, <selcukkorkmaz@gmail.com>

References
https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also
SEIQRDP fit_SEIQRDP

SEIQRDP Simulate generalized SEIR model

Description
This function simulates the time-histories of an epidemic outbreak using a generalized SEIR model

Usage
SEIQRDP(
 alpha,
 beta,
 gamma,
 delta,
 lambda0,
 kappa0,
 Npop,
 E0,
 I0,
 Q0,
 R0,
 D0,
 lambdaFun,
 kappaFun,
 tstart,
 tfinish,
 dt = 1/24,
 f = 0
)
Arguments

- **alpha**: fitted protection rate
- **beta**: fitted infection rate
- **gamma**: fitted Inverse of the average latent time
- **delta**: fitted rate at which people enter in quarantine
- **lambda0**: fitted cure rate
- **kappa0**: fitted mortality rate
- **Npop**: Total population of the sample
- **E0**: Initial number of exposed cases
- **I0**: Initial number of infectious cases
- **Q0**: Initial number of quarantined cases
- **R0**: Initial number of recovered cases
- **D0**: Initial number of dead cases
- **lambdaFun**: anonymous function giving the time-dependant recovery rate
- **kappaFun**: anonymous function giving the time-dependant death rate
- **tstart**: start date
- **tfinish**: finish date
- **dt**: the time step. This oversamples time to ensure that the algorithm converges
- **f**: number of days for future predictions

Value

A list of predicted cases including susceptible, exposed, infectious, quarantined, recovered, dead and insusceptible.

Author(s)

Selcuk Korkmaz, <selcukkorkmaz@gmail.com>

References

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

fit_SEIQRDP
Examples

start = "01/01/21"
finish = "04/01/21"
country = "Italy"
dt = 1
f=30

covidData = getDataCOVID(start = start, finish = finish, country = country)
Recovered = covidData$tableRecovered
Deaths = covidData$tableDeaths
Confirmed = covidData$tableConfirmed

if(nrow(Recovered) == 1){
 name = Recovered$CountryRegion
}else{
 name = paste0(Recovered$ProvinceState, " (",Recovered$CountryRegion,")")
}

recovered = Recovered[,5:ncol(covidData$tableRecovered)]
deaths = Deaths[,5:ncol(covidData$tableDeaths)]
confirmed = Confirmed[,5:ncol(covidData$tableConfirmed)]

Npop = 60000000
alpha_guess = 0.05
beta_guess = 0.8
LT_guess = 7
Q_guess = 0.8
lambda_guess = c(0.01,0.001,10)
kappa_guess = c(0.001,0.001,10)

guess = list(alpha_guess,
 beta_guess,
 1/LT_guess,
 Q_guess,
 lambda_guess[1],
 lambda_guess[2],
 lambda_guess[3],
 kappa_guess[1],
 kappa_guess[2],
 kappa_guess[3])

Q0 = confirmed[1]-recovered[1]-deaths[1]
I0 = 0.3*Q0
E0 = 0.3*Q0
R0 = recovered[1]
D0 = deaths[1]

Active = confirmed-recovered-deaths
Active[Active<0] <- 0
Q = Active
R = recovered
D = deaths

time = seq(as.Date(start, format = "%m/%d/%y"), as.Date(finish, format = "%m/%d/%y"), by = "1 day")

params = fit_SEIQRDP(Q = Active, R = recovered, D = deaths, Npop = Npop, E0 = E0, I0 = I0,
 time = time, dt = dt, guess = guess, ftol = 1e-6, ptol = 1e-6, gtol = 1e-6,
 epsfcn = 0.001, factor = 100, maxfev = 1000, maxiter = 100, nprint = 1,
 trace = TRUE)

res = SEIQRDP(alpha = params$alpha1, beta = params$beta1,
 gamma = params$gamma1, delta = params$delta1,
 lambda0 = c(params$lambda01, params$lambda02, params$lambda03),
 kappa0 = c(params$kappa01, params$kappa02, params$kappa03),
 Npop, E0, I0, Q0, R0, D0, lambdaFun = params$lambdaFun,
 kappaFun = params$kappaFun, tstart = start, tfinish = finish,
 dt = dt, f = f)

SEIQRDP_for_fitting

Fitted Results for SEIQRDP

Description

Fitted Results for SEIQRDP

Usage

SEIQRDP_for_fitting(par, t, t0, Npop, E0, I0, Q, R, D, dt)

Arguments

- **par**: initial guess parameters
- **t**: historical time vector
- **t0**: target time vector
- **Npop**: total population of the country
- **E0**: initial number of exposed cases
- **I0**: initial number of infectious cases
- **Q**: actual number of quarantined cases
- **R**: actual number of recovered cases
- **D**: actual number of dead cases
- **dt**: the time step. This oversamples time to ensure that the algorithm converges

Value

a data frame for fitted quarantined, recovered and deaths
Author(s)

Selcuk Korkmaz, selcukkorkmaz@gmail.com

References

See Also

fit_SEIQRDP RK4
Index

checkRates, 2

fit_SEIQRDP, 2, 3, 6, 7, 9, 10, 13, 15–17, 20

geta, 5
dataCOVID, 6
getKappaFun, 7
getLambdaFun, 9

kappaFun, 10

lambdaFun, 11

modelFun, 11

plot_SEIQRDP, 12

predict_SEIQRDP, 4, 13

RK4, 15, 20

SEIQRDP, 2, 4, 6, 7, 9, 10, 13, 15, 16, 16

SEIQRDP_for_fitting, 19