Package ‘geneNetBP’

August 4, 2016

Type Package
Title Belief Propagation in Genotype-Phenotype Networks
Version 2.0.1
Date 2016-08-03
Author Janhavi Moharil
Maintainer Janhavi Moharil <janhavim@buffalo.edu>
Depends
- R (>= 3.1.0), Rgraphviz (>= 2.8.1), graph (>= 1.42.0), bnlearn (>= 3.7.1), gRain (>= 1.2-3)
Suggests RHugin
Imports igraph, scales, ggm
License GPL-2
Repository CRAN
Repository/R-Forge/Project genenetbp
Repository/R-Forge/Revision 181
Repository/R-Forge/DateTimeStamp 2016-08-03 19:36:09
Date/Publication 2016-08-04 00:57:41
NeedsCompilation no

R topics documented:

- geneNetBP-package .. 2
- absorb-methods .. 3
- fit-methods .. 5
- gen.evidence ... 8
- hdl ... 9
- mouse ... 10
- plot methods .. 11
- toy ... 13
- yeast ... 13
Description

The geneNetBP package implements algorithms to infer Conditional Gaussian Bayesian Networks (CG-BN) from genotype-phenotype or Quantitative Trait Loci (QTL) data, absorb evidence in the network and quantify and visualize the changes in network beliefs. Inference of Discrete Bayesian networks is also supported.

Details

Package: geneNetBP
Type: Package
Version: 1.0.0
Date: 2016-05-14
License: GPL-2

This package implements structure learning and conditional probability learning methods from the packages RHugin, gRain and bnlearn to Quantitative Trait Loci (QTL) data and provides functions to query and visualize the network beliefs. The function fit.gnbp can be used to learn conditional gaussian bayesian networks from genotype-phenotype data while and fit.dbn allows inferring discrete bayesian networks from categorical data. The main function for absorbing evidence and quantifying the changes in beliefs is absorb.gnbp for CG-BN and absorb.dbn for discrete networks. A generic plot method is available for visualizing network beliefs.

For belief propagation in CG-BN, the package makes extensive use of RHugin package that provides an R interface for the Hugin Decision Engine (commercial software for belief propagation). geneNetBP is compatible with demo versino of HuginLite. Note that the demo version of Hugin is restricted to 50 states and 500 cases. The package RHugin is not available on CRAN and can be obtained from R-Forge by accessing the link given below. Hugin Decision Engine should also be installed. Please visit the project homepage for installation instructions.

For discrete bayesian networks, algorithms from the package bnlearn are implemented for structural learning while belief propagation is implemented using gRain.

All the functions in the geneNetBP package are documented. For a complete list of functions, use the command ls(pos = "package:geneNetBP"). A vignette illustrating the use of geneNetBP is available.

Author(s)

Janhavi Moharil <janhavim@buffalo.edu>
Maintainer: Janhavi Moharil <janhavim@buffalo.edu>
References

The geneNetBP Homepage: http://genenetbp.r-forge.r-project.org/
The RHugin Homepage: http://rhugin.r-forge.r-project.org
HUGIN EXPERT website: http://www.hugin.com
HUGIN API Reference Manual

| absorb-methods | Absorb evidence and propagate beliefs in a genotype-phenotype network |

Description

Absorb a single piece or a spectrum of evidence for one or more phenotype nodes, propagate the beliefs, obtain the updated beliefs and quantify the effects.

Usage

For Conditional Gaussian Bayesian Networks
For Discrete Bayesian Networks (Implements RHugin)

```r
absorb.gnbp(object, node, evidence)
```

For Discrete Bayesian Networks (Implements gRain)

```r
absorb.dbn(object, node, evidence)
```

Arguments

- `object`: an object of class "gnfit" (output from `fit.gnbp`) for `absorb.gnbp` or an object of class "dbnfit" (output from `fit.dbn`) for `absorb.dbn`.
- `node`: a character vector specifying the names of the nodes for which the evidence is to be absorbed.
- `evidence`: a matrix or a numeric vector of evidence. number of rows of the matrix or the length of the vector should be equal to the length of `node`.

Details

The function `absorb.gnbp` is compatible with the output produced by `fit.gnbp`. It absorbs evidence in both conditional gaussian bayesian networks or discrete bayesian networks inferred by RHugin and propagates beliefs by the PC algorithm implemented in the RHugin package. Jeffrey’s Signed information is calculated to quantify the effects of the evidence absorption on the marginals. Note that the demo version of HuginLite is restricted to 50 states and 500 cases.

The function `absorb.dbn` is compatible with the output produced by `fit.dbn`. It absorbs evidence in only discrete bayesian networks that are inferred by bnlearn. Belief propagation is implemented using gRain package.
absorb-methods

Value

absorb.gnbp returns an object of class "gnbp" while absorb.dbn returns an object of class "dbn". An object of class "gnbp" or "dbn" is a list containing the following components.

- **gp**: an RHugin domain (for absorb.gnbp) or a grain object (for absorb.dbn) that is triangulated, compiled and with the latest absorbed evidence propagated.

- **gp_flag**: type of network.

- **node**: a character vector specifying the nodes for which evidence has been absorbed.

- **marginal**: a list of marginal probabilities for phenotypes (pheno) and genotypes (geno).

- **belief**: a list of updated beliefs for phenotypes (pheno) and genotypes (geno).

- **JSI**: a matrix of Jeffrey's signed information if network is Conditional Gaussian, otherwise NULL if network is Discrete Bayesian.

- **FC**: a list of two. a matrix FC of fold changes and a matrix pheno_state of phenotype node beliefs - state with maximum probability. If network is Conditional Gaussian, a NULL value is returned.

The marginals, beliefs and JSI or FC are calculated for only d-connected nodes.

If a sequence of evidence is absorbed for a single node in a Conditional Gaussian network, a plot of JSI vs evidence is produced.

Author(s)

Janhavi Moharil <janhavim@buffalo.edu>

See Also

gen.evidence, plot.gnbp, plot.dbn

Examples

```r
## load the mouse kidney eQTL dataset
data(mouse)

## get genotype and phenotype data
mousegeno<-mouse[,1:5]
mousepheno<-mouse[,6:19]

## Not run:
## Simple example: Fit a bayesian network to genotype-phenotype data
mouse.cgbn<-fit.gnbpmousegeno,mousepheno,alphainst=0.1)

## Absorb a single evidence for a single node
absorb.gnbp(mouse.cgbn,node="Tlr12",evidence=matrix(2.5))

## Absorb a sequence of evidence for a single node generated using \code{\link{gen.evidence}}
mouse.cgbn<-fit.gnbpmousegeno,mousepheno,alphainst=0.1)
evidence<-gen.evidence(mouse.cgbn,node="Tlr12")
```
fit-methods

Fit a Conditional Gaussian Bayesian Network or Discrete Bayesian Network to QTL data

Description

Learn the structure of a genotype-phenotype network from quantitative trait loci (QTL) data and the conditional probability table for each node in the network.

Usage

Fit a conditional gaussian or a discrete bayesian network using RHugin.
fit.gnbp(geno, pheno, constraints, learn = "TRUE", graph, type = "cg",
alpha = 0.001, tol = 1e-04, maxit = 0)

Fit a discrete bayesian network using bnlearn.
fit.dbn(geno, pheno, graph, learn = "TRUE", method = "hc", whitelist, blacklist)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>geno</td>
<td>a data frame of column vectors of class factor (or one that can be coerced to that class) and non-empty column names.</td>
</tr>
<tr>
<td>pheno</td>
<td>a data frame of column vectors of class numeric for fit.gnbp if type = "cg" or class factor if type = "db" and for fit.dbn. Non-empty column names.</td>
</tr>
<tr>
<td>constraints</td>
<td>an optional list of constraints on the edges for specifying required and forbidden edges for fit.dbn. See details.</td>
</tr>
<tr>
<td>learn</td>
<td>a boolean value. If TRUE (default), the network structure will be learnt. If FALSE, only conditional probabilities will be learnt (a graph must be provided in this case.)</td>
</tr>
<tr>
<td>graph</td>
<td>graph structure of class "graphNEL" or a data frame with two columns of (labeled "from" and "to"), containing a set of edges to be included in the graph to be provided if learn == FALSE. See details.</td>
</tr>
<tr>
<td>type</td>
<td>specify the type of network for fit.gnbp. "cg" for Conditional Gaussian (default) and "db" for Discrete Bayesian.</td>
</tr>
<tr>
<td>method</td>
<td>a character string. The score-based or constraint-based algorithms available in the package bnlearn. Valid options are "hc", "tabu", "gs", "iamb", "fast.iamb", "inter.iamb", "mmhc". See details below.</td>
</tr>
</tbody>
</table>
whitelist

- a data frame with two columns of (labeled "from" and "to"), containing a set of edges to be included in the graph.

blacklist

- a data frame with two columns (labeled "from" and "to"), containing a set of edges NOT to be included in the graph.

alpha

- a single numeric value specifying the significance level (for use with RHugin). Default is 0.001.

tol

- a positive numeric value (optional) specifying the tolerance for EM algorithm to learn conditional probability tables (for use with RHugin). Default value is 1e-04. See learn.cpt for details.

maxit

- a positive integer value (optional) specifying the maximum number of iterations of EM algorithm to learn conditional probability tables (for use with RHugin). See learn.cpt for details.

Details

The function `fit.gnbp` fits a conditional gaussian bayesian network or a discrete bayesian network at the specified level of significance alpha, to genotype-phenotype (QTL) data by the PC algorithm implemented in the RHugin package. The conditional probability tables are learnt for each node in the domain by the EM algorithm implemented in the RHugin package.

Edges between the genotypes at SNP markers are not allowed and the genotypes are constrained to precede the phenotypes. The phenotypes should be either all numeric or all discrete. The function does not currently support mixture of discrete and continuous phenotypes. Additional domain knowledge in terms of edges should be provided as a list of constraints, the structure of which is described in detail in `learn.structure`. Briefly, the constraints argument is a list of two elements: directed and undirected. Each of these elements in turn should be a list with two elements: required and forbidden. The elements of required and forbidden must be a character vector of length two specifying the names of the nodes. See learn.cpt for details.

Note that this function works on Hugin domains. Since Hugin domains are external pointers and cannot be saved in R workspace, the RHugin package provides functions `read.rhd` and `write.rhd` for loading and saving the Hugin domains. See RHugin documentation for more information.

The function `fit.dbn` infers a discrete bayesian network structure from genotype-phenotype (QTL) categorical data by implementing score based and constraint based algorithms from the `bnlearn` package. The conditional probability tables are learnt for each node in the inferred network. The phenotypes should be ALL discrete variables. Additional domain knowledge in terms of edges should be provided as a whitelist and blacklist. Edges between the genotypes at SNP markers are not allowed and the genotypes are constrained to precede the phenotypes.

The supported algorithms from `bnlearn` are

1. Score-based: Hill-Climbing (`hc`, default), Tabu Search (`tabu`)
2. Constraint-based: Grow-Shrink (`gs`), Incremental Association (`iamb`), Fast Incremental Association (`fast.iamb`), Interleaved Incremental Association (`inter.iamb`)

The algorithm can be specified by method. Structure learning functions are implemented with their default parameters. If different parameter values are desired, it is recommended to learn the network structure independently using the bnlearn package. The inferred structure can be input as a graph object to `fit.dbn` and then set `learn="FALSE"`.
Value

`fit.gnb` returns an object of class "gnbfit" containing the following components.

- `gp`: a pointer to a compiled RHugin domain that is the inferred network structure and the conditional probability tables for each node in the network.
- `marginal`: a list of marginal probabilities for phenotypes (pheno) and genotypes (geno).
- `gp_nodes`: a data frame containing information about nodes for internal use with other functions.
- `gp_flag`: a character string specifying the type of network: "cg" for Conditional Gaussian or "db" for Discrete Bayesian.

`fit.dbn` returns an object of class "dbnfit" containing the following components.

- `dbn`: an object of class `bn`. See `bn-class` for details. This object contains the inferred network structure and the conditional probability tables for each node in the network.
- `marginal`: a list of marginal probabilities for phenotypes (pheno) and genotypes (geno).
- `dbn_nodes`: a data frame containing information about nodes for internal use with other functions.
- `dbn_flag`: a character string specifying the type of network "dbn" for Discrete Bayesian.

Author(s)

Janhavi Moharil <janhavim@buffalo.edu>

See Also

`plot.gnp`, `plot.dbnfit`, `absorb.gnb`, For discrete bayesian networks: `fit.dbn`, `absorb.dbn`

Examples

```r
## Not run:
## load the mouse kidney eQTL dataset
data(mouse)

## get genotype and phenotype data
mousegeno<-mouse[,1:5]
mousepheno<-mouse[,6:19]

## Simple example : Fit a bayesian network to genotype-phenotype data using the default values
fit.gnb(mousegeno,mousepheno)

## Fit a bayesian network to genotype-phenotype data at a specified significance level and plot it
mouse.cgbn<-fit.gnb(mousegeno,mousepheno,alpha = 0.1)
plot(mouse.cgbn)

## load yeast dataset
data(yeast)
```
gen.evidence

Generate a sequence of evidence for a continuous node in a conditional gaussian bayesian network.

Description

The evidence for a node in an RHugin domain is generated as a linear sequence within the specified standard deviation from the marginal mean of the node. The evidence can be given as an input to `absorb.gnbp`.

Usage

```r
gen.evidence(gpfit, node, std = 2, length.out = 10, std.equal = TRUE)
```

Arguments

- `gpfit`: an object of class "gpfit" obtained by using `fit.gnbp`.
- `node`: a character string specifying the name of a continuous node in the domain.
- `std`: a numeric value specifying the number of standard deviations of marginal distribution within which the evidence is generated. A numeric vector of length = number of nodes, must be specified when `std.equal=False`.
- `length.out`: a positive integer giving the desired length of the sequence.
- `std.equal`: a logical value indicating whether same number of standard deviations should be used to generate evidence for all nodes. Default is TRUE.

Details

The evidence for a node in an RHugin domain is generated as a linear sequence within the specified standard deviation from the marginal mean of the node. The evidence can be given as an input to `absorb.gnbp`.

Value

A matrix of evidence for each specified node.
Author(s)
Janhavi Moharil<janhavim@buffalo.edu>

See Also
absorb.gnbp, fit.gnbp

Examples

```r
## Fit a network
data(mouse)
## Not run:
mouse.cgbn<-fit.gnbp(mouse[,1:5],mouse[,6:19],alpha=0.1)

## Generate a sequence of evidence for a single node
evidence<-gen.evidence(mouse.cgbn,node="Tlr12",std=2,length.out=20)
## End(Not run)
```

hdl

Mus Musculus HDL QTL data from Leduc et. al. (2012)

Description
HDL QTL data was obtained from a F2 inner-cross between inbred MRL/MpJ and SM/J strains of mice.

Usage
data(hdl)

Format
The data set hdl is a data frame of 280 observations of 15 variables: genotype data (genotype states at 5 SNP markers) and phenotype data (HDL levels and normalized expression values of 10 genes). Genotypes are of class factor and phenotypes are of class numeric.

Details
HDL QTL data was obtained from a F2 inner-cross between inbred MRL/MpJ and SM/J strains of mice.

Source
Mus Musculus Kidney eQTL data from Hageman et. al. (2011)

Description

Kidney eQTL data was obtained from a F2 inner-cross between inbred MRL/MpJ and SM/J strains of mice.

Usage

data(mouse)

Format

The data set mouse is a data frame consisting of 173 observations of 19 variables: genotype data (genotype states at 5 SNP markers) and phenotype data (normalized expression data of 14 genes). Genotype data is of class factor and phenotype data is of class numeric.

Details

Kidney eQTL data was obtained from a F2 inner-cross between inbred MRL/MpJ and SM/J strains of mice.

Source

Examples

```r
## Not run:
# load the data and fit a genotype-phenotype network
data(mouse)
fit.gnpb(mouse[,1:5],mouse[,6:19])
```

End(Not run)
Description

Plot methods for genotype-phenotype networks. plot.gnbp and plot.dbn can be used to plot networks in which evidence has been absorbed and propagated. The beliefs or Jeffrey's signed information for conditional gaussian and phenotypic states and Fold Changes for discrete bayesian networks is mapped onto the network. plot.gpfit and plot.dbnfit are plot methods for objects of class "gpfit" and "dbnfit" respectively.

Usage

```r
## S3 method for class 'gnbp'
plot(x, y="JSI", ncol = 1, col.palette, col.length = 100,
     fontsize=14, fontcolor="black",...)
## S3 method for class 'dbn'
plot(x, y="state", ncol = 1, col.palette, col.length = 100,
     fontsize=14, fontcolor="black",...)
## S3 method for class 'gpfit'
plot(x, fontsize=14, fontcolor="black",...)
## S3 method for class 'dbnfit'
plot(x, fontsize=14, fontcolor="black",...)
```

Arguments

- `x`: An object of class "gnbp" (plot.gnbp), "dbn" (plot.dbn), "gpfit" (plot.gpfit) or "dbnfit" (plot.dbnfit)
- `y`: A character string. Valid options are "JSI" (default) or "belief" for Conditional Gaussian network and "FC" or "state" for Discrete Bayesian networks. plot.dbn plots only discrete bayesian networks. Note that `y` will be ignored for plot.dbnfit and gpfit
- `ncol`: A positive integer specifying the column number of JSI / belief / FC to plot. By default, the first column will be used.
- `col.palette`: A list of character strings. For "JSI","belief" and "FC" a list of 6 elements specifying colors for colormap. All 6 elements should be character strings specifying the colour for `pos_high` = high end of gradient of positive values (default = "red" (JSI, belief), "darkmagenta",(FC)) `pos_low`=low end of gradient of positive values (default = "wheat1" (JSI, belief), "palegoldenrod",(FC)), `neg_high`=high end of gradient of positive values (default = "cyan" (JSI, belief), "palegoldenrod",(FC)), `neg_low`=low end of gradient of positive values (default = "blue" (JSI, belief), "gold2",(FC)) `dsep_col`= d-separated nodes (default = "white") `qt1_col`= discrete nodes (QTLs) (default = "grey") `node_abs_col`= nodes for which evidence has been absorbed (default = "palegreen2")
For "state", a list of 4 elements specifying colors for colormap should be specified. All 4 elements should be character strings specifying the colour for col_nodes - a vector of colors for phenotype states should be specified. The length of the vector should be equal to the maximum number of phenotype states possible. dsep_col = d-separated nodes (default = "white") qtl_col = discrete nodes (QTLs) (default = "grey") node_abs_col = nodes for which evidence has been absorbed (default = "palegreen2")

col.length a positive integer (default = 100) specifying the resolution of the colormap (number of colors) in case of "belief", "JSI" and "FC". For "state", this argument will be ignored.

fontsize a single numeric value. fontsize for node labels

fontcolor fontcolor for node labels

... further arguments to the function plot. These will be ignored

Details

plot.gpfit and plot.dbnfit are generic plot methods for objects of class "gpfit" and "dbnfit" respectively that are output from the fit-methods. These are networks in which evidence has not been absorbed and propagated.

plot.gnpb and plot.dbn are generic plot methods for objects of class "gnpb" and "dbn" that are outputs from the absorb methods. These functions plot the genotype-phenotype networks in which evidence has been absorbed and propagated and maps the quantitative system wide effects on the network. Both conditional gaussian and discrete bayesian networks are supported. Users can specify the colormap options such as end colors for the positive and negative gradients and the resolution of the colormap. The default node shapes are "ellipse" for the phenotype nodes and "box" for genotype nodes. The d-separated nodes are white while the colored nodes are d-connected, with the color indicating the strength and direction of change. The node for which evidence is absorbed is colored green (default color).

Value

x is invisibly returned

Author(s)

Janhavi Moharil <janhavim@buffalo.edu>

See Also

absorb.gnpb, absorb.dbn, fit.gnpb, fit.dbn

Examples

Fit, absorb and plot a genotype-phenotype network
data(mouse)
Not run:
mouse.cgbn<-fit.gnpb(mouse[,1:5],mouse[,6:19],alpha=0.1)
plot(mouse.cgbn)
mouse.cgbn.abs<-absorb.gnpb(mouse.cgbn,node="Tlr12",evidence=matrix(-0.99))
Toy example dataset

Description
Toy example, Simulated data set

Usage
data(toy)

Format
The data set toy is a data frame of 500 observations of 9 variables: genotype data (genotype states at 3 SNP markers) and phenotype data (6 variables). Genotypes are of class factor and phenotypes are of class numeric.

Details
The simulated dataset consists of 3 genotypes each with 2 states and 6 phenotypes.

Examples
Not run:
load the data and fit a genotype-phenotype network
data(toy)
fit.gnbp(toy[,1:3],toy[,4:9])
End(Not run)

Saccharomyces Cerevisiae eQTL data from Kruglak et. al. (2005)

Description
eQTL data from 112 F1 segregants from a cross between BY4716 and RM11-1a strains of Saccharomyces Cerevisiae.

Usage
data(yeast)
Format

The data set *yeast* is a data frame of 112 observations of 50 variables: genotype data (genotype states at 12 SNP markers) and phenotype data (normalized and discretized expression values of 38 genes). Both genotypes and phenotypes are of class *factor*.

Details

The *yeast* dataset is a subset of the widely studied yeast expression dataset comprising of 112 F1 segregants from a cross between BY4716 and RM11-1a strains of *Saccharomyces Cerevisiae*. The original dataset consists of expression values reported as log2(sample/ BY reference) for 6216 genes. The data can be accessed in Gene Expression Omnibus (GEO) by accession number (GSE1990). After linkage analysis and filtering based on location and significance of QTL, a final set of 38 genes and their corresponding 12 SNP markers were identified and included in the yeast dataset. The gene expression values are discretized around the median and have two states, 1 (above or equal to median) and -1 (below median). There are two genotype states: 1 or 2.

Thus the final dataset is a data frame of 112 observations (genotype) of 12 variables (SNP markers) and normalized gene expression of 38 variables (genes).

Source

Examples

```r
## Not run:
# load the data and fit a genotype-phenotype network
data(yeast)
fit.dbn(yeast[,1:12],yeast[,13:50])

## End(Not run)
```
Index

*Topic **datasets**
 hdl, 9
 mouse, 10
 toy, 13
 yeast, 13

absorb-methods, 3
absorb.dbn, 2, 7, 12
absorb.dbn (absorb-methods), 3
absorb.gnbp, 2, 7–9, 12
absorb.gnbp (absorb-methods), 3

bnlearn, 6

fast.iamb, 6
fit-methods, 5
fit.dbn, 2, 3, 7, 12
fit.dbn (fit-methods), 5
fit.gnbp, 2, 3, 9, 12
fit.gnbp (fit-methods), 5

gen.evidence, 4, 8
geneNetBP (geneNetBP-package), 2
geneNetBP-package, 2
gs, 6

hc, 6
hdl, 9

iamb, 6
inter.iamb, 6

mmhc, 6
mouse, 10

plot, 12
plot methods, 11
plot.dbn, 4
plot.dbn (plot methods), 11
plot.dbnfit, 7
plot.dbnfit (plot methods), 11
plot.gnbp, 4
plot.gnbp (plot methods), 11
plot.gpfit, 7
plot.gpfit (plot methods), 11
tabu, 6
toy, 13

yeast, 13