Package ‘genogeographer’

September 27, 2019

Type Package
Title Methods for Analysing Forensic Ancestry Informative Markers
Version 0.1.19
Author Torben Tvedebrink
Maintainer Torben Tvedebrink <tvede@math.aau.dk>
Depends R (>= 3.1.0)
Imports leaflet, shiny, shinyjs, knitr, DT, shinycssloaders, purrr,
dplyr, magrittr, tidyrr, ggplot2, tibble, forcats, readr,
markdown, rio, maps, shinyWidgets, rlang
Suggests tidyverse
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-09-27 10:20:08 UTC

R topics documented:

app_genogeo .. 2
bar_colour ... 2
error_bar_plot ... 3
exponent_tilt ... 3
genogeo ... 4
genogeographer .. 5
kidd_loci ... 5
LR_table ... 6
main_alleles .. 7
app_genogeo

Shiny application for GenoGeoGrapher

Description
Shiny application for GenoGeoGrapher

Usage

```r
app_genogeo(db_list = NULL, reporting_panel = TRUE)
```

Arguments

- `db_list` A named list of databases of reference populations. Each component is expected to be returned from `pops_to_DB`.
- `reporting_panel` Logical. Should report generate and download be available after sample analysis.

bar_colour

Description

Creates the colour scale for the accepted and rejected populations based on z-score and the log likelihood (log P).

Usage

```r
bar_colour(df, alpha = 1)
```

Arguments

- `df` A data.frame with at least three columns. The first column is the logP, the second logical (z_score accept/reject), the third a unique naming column.
- `alpha` Should the alpha opacity be applied? And what value, 1 = solid, 0 = transparent.
error_bar_plot

Plot log likelihoods of profiles with approximate confidence intervals

Description

Plots the estimated profile probabilities in each population. The colour depends on the profiles likelihood and rejection/acceptance (blue/red) based on z-score

Usage

error_bar_plot(data)

Arguments

data The output from the genogeo function

Value

A barplot of the log likelihoods for each population with confidence limits

Author(s)

Torben Tvedebrink, <tvede@math.aau.dk>

Examples

df_ <- simulate_pops(pop_n = 20, aims_n = 50)
df_db <- pops_to_DB(df_)
profile <- random_AIMs_profile(df_db, keep_pop = TRUE)
profile$pop[1] # The true population
result <- genogeo(profile[,c("locus","x0")], df = df_db)
error_bar_plot(result)

exponent_tilt

P-values from Importing Sampling using Exponential tilting

Description

P-values from Importing Sampling using Exponential tilting

Usage

exponent_tilt(x0, x1, n, p_limit = 0.1, B = 500, return_all = FALSE)
Arguments

- \(x_0 \): Allele count of profile
- \(x_1 \): Population allele count
- \(n \): Sampled alleles in total in population
- \(p_{\text{limit}} \): Upper limit to which we use the normal approximation
- \(B \): An integer specifying the number of importance samples.
- \(\text{return_all} \): Default is FALSE. If TRUE: Returns p-value, standard deviation, and method (and diagnostics).

Details

The method of importance sampling described in Tvedebrink et al (2018), Section 2.3 is implemented. It relies on exponential tilting of the proposal distribution using in the importance sampling.

Value

If \(\text{return_all} = \text{FALSE} \) the p-value is returned. Otherwise list of elements (see \(\text{return_all} \)) is returned.

Description

Computes the likelihood ratio test statistics for each population in a database of reference populations.

Usage

```r
genogeo(profile, df, CI = 0.95, min_n = 75, grouping = "pop",
        tilt = FALSE, ...)
```

Arguments

- \(\text{profile} \): The AIMS profile encoded as returned by the \text{profile_AA_x0} function.
- \(\text{df} \): The database of reference populations as returned by the \text{pops_to_DB} function.
- \(\text{CI} \): The confidence level used to reject or accept the various hypotheses (between 0 and 1).
- \(\text{min_n} \): Minimum number of individuals in each database sample
- \(\text{grouping} \): should "pop" (the default) or "meta" be used for aggregating the results. Can also be "cluster" if this variable is defined in the input database.
- \(\text{tilt} \): Should exponential titling be used to obtain more accurate p-values in the distribution’s tail (currently not implemented)
- ... Further arguments that are passed to other functions
Value

A tibble containing the z-scores, p-values etc for each population.

Examples

df_ <- simulate_pops(pop_n = 20, aims_n = 50)
df_db <- pops_to_DB(df_)
profile <- random_AIMs_profile(df_db, keep_pop = TRUE)
profile$pop[1] # The true population
result <- gengeo(profile[,c("locus","x0")], df = df_db)

Description

The genogeographer package provides: gengeo()

genogeo functions

See ?gengeo

kidd_loci

Kenn Kidd Lab markers

Description

List of markers identified by Kenn Kidd lab.

Usage

kidd_loci

Format

List of 55 markers

locus Locus/Marker names

Source

LR_table

Compute pairwise likelihood ratios

Description

For each pair of a specified vector of profiles the likelihood ratios are computed. The list can include all populations in the data or only a subset. We may for inferential purposes restrict to ratios including at least one "accepted" population.

Usage

LR_table(result_df, lr_populations = NULL, only_accepted = TRUE, CI = 0.95, digits = NULL, keep_logP = FALSE)

Arguments

result_df The output from genogeo
lr_populations A vector of population names (pop in result_df). If NULL all populations are used.
only_accepted Restrict the ratios to include minimum one accepted population.
CI The level of confidence interval to be computed
digits If rounding of the output should be performed.
keep_logP Logical. Should the logP's be returned in output

Value

A tibble with numerator and denominator populations with their log10 LR and uncertainty.

Author(s)

Torben Tvedebrink <tvede@math.aau.dk>

Examples

df_ <- simulate_pops(pop_n = 4, aims_n = 50)
df_db <- pops_to_DB(df_)
profile <- random_AIMs_profile(df_db, keep_pop = TRUE)
profile$pop[1] # The true population
result <- genogeo(profile[,c("locus","x0")], df = df_db)
LR_table(result)
main_alleles

AIMs markers in Precision ID Ancestry Panel (Thermo Fisher Scientific)

Description
List of markers with their main and alternative allele. The markers is the union of Seldin’s and Kidd’s markers.

Usage
main_alleles

Format
List of 164 markers

locus Locus/Marker names
main_allele The main allele (alleles are in lexicographic order)
other_allele The other variant

map_plot
Plot LTR z-scores on map

Description
Plots the results from LRT on a map based on lat/lon info in the database. If no location is found in the data (e.g. using simulte_pops) nothing is plotted.

Usage
map_plot(data)

Arguments
data The output from the genogeo function

Value
A map with population z-scores at their geographic origin

Author(s)
Torben Tvedebrink, <tvede@math.aau.dk>
pops_to_DB

Pre-compute the scores for a given reference database

Description

Convert the counts from each population over a range of AIMs SNPs to observed likelihood ratio test, its mean and variance. Based on these pre-computed the evaluation of a specific profile is done using genogeo with the resulting dataframe as df.

Usage

pops_to_DB(db, ...)

Arguments

db

A dataframe with columns similar to those of simulate_pops(). If db contains information (recommended!) about "meta" (meta population) and "lat"/"lon" (location) these are carried over into the calculations

... Additional arguments passed to score_add_df

Value

A tibble with population and locus specific score information

Examples

df_ <- simulate_pops(pop_n = 4, aims_n = 50)
df_db <- pops_to_DB(df_)
profile <- random_AIMs_profile(df_db, keep_pop = TRUE)
profile$pop[1] # The true population
result <- genogeo(profile[, c("locus", "x0")], df = df_db, min_n = 0)
result$lon <- runif(n = 4, min = -125, max = 125)
result$lat <- runif(n = 4, min = -50, max = 80)
Not run: map_plot(result)
profile_AA_x0

Function that compute the genotype probability for each population (rows in df)

Description
Function that compute the genotype probability for each population (rows in df)

Usage
profile_AA_x0(AA_profile, df, select = c("locus", "x0"),
keep_dropped = FALSE)

Arguments
- **AA_profile**: A tibble/data.frame with columns 'locus', 'A1' and 'A2' holding the separated version of a genotype, eg. AG -> A1: A, A2: G
- **df**: The database with main alleles per locus
- **select**: Which columns to return
- **keep_dropped**: Logical. Keep the non-matching alleles (compared to 'db') and those with genotype 'NN'

profile_admixture

Compute the z-score (and more) for admixed hypotheses

Description
Compute the z-score (and more) for admixed hypotheses

Usage
profile_admixture(x0, df, hyp = NULL, grouping = "meta",
return_all = FALSE, calc_logP = TRUE, ...)

Arguments
- **x0**: A data frame/tibble with two columns: 'locus' and 'x0'
- **df**: A tibble of reference profiles (as for 'genogeo')
- **hyp**: If NULL all levels of 'grouping' is crossed and looped over as pairwise hypotheses. If a single level of 'grouping', this value is crossed with the remaining levels. If vector of two levels this is the only tested hypothesis.
- **grouping**: Should the calculations be for meta populations ("meta") or sample populations ("pop")?
- **return_all**: Should z-score be returned (FALSE) or all locus results (TRUE)?
- **calc_logP**: Should log P(Geno|Hyp) be calculated (TRUE) or not (FALSE)?
- **...**: additional arguments passed on to other functions
Value

A tibble of z-scores, or a list of pairwise results if ‘return_all = TRUE’

random_AIMs_profile Simulate a random AIMs profile

Description

Use the information from pops_to_DB to simulate a profile from a random or given population. The sampling is done with respect to the null hypothesis, such that the total count is adjusted accordingly. For further details see Tvedebrink et al (2018), Section 3.1 (Simulations).

Usage

random_AIMs_profile(df, grouping = "pop", population = NULL, n = FALSE, keep_pop = FALSE)

Arguments

df: Database of reference profiles as returned by pops_to_DB

<df>

procedure: Simualte from pop (default) or meta.

<procedure>

population: The population to sample from. If NULL chosen at random.

<population>

n: Use numbers of samples as weights to choose the population randomly

<n>

keep_pop: Keep information on population

<keep_pop>

Author(s)

Torben Tvedebrink <tvede@math.aau.dk>

seldin_loci Seldin Lab markers

Description

List of markers identified by Seldin lab.

Usage

seldin_loci

Format

List of 122 markers

locus Locus/Marker names
simulate_pops

Source

simulate_pops
Simulate random populations

Description

Simulate random populations

Usage

```r
simulate_pops(pop_n = 100, pop_names = NULL, pop_totals = NULL,
               aims_n = 50, aims_names = NULL)
```

Arguments

- `pop_n` Number of populations to simulate
- `pop_names` Their names. If NULL: The names are "pop_001" through "pop_pop_n"
- `pop_totals` How many observations/sampled individuals per population. If one number this is used as parameter in a Poisson distribution
- `aims_n` Number of AIMs
- `aims_names` Their names. If NULL: The names are "rs_001" through "rs_aims_n"

Author(s)

Torben Tvedebrink <tvede@math.aau.dk>
Index

*Topic datasets
 kidd_loci, 5
 main_alleles, 7
 seldin_loci, 10

app_genogeo, 2

bar_colour, 2

error_bar_plot, 3
exponent_tilt, 3

genogeo, 4
genogeographer, 5
genogeographer-package
 (genogeographer), 5

kidd_loci, 5
LR_table, 6

main_alleles, 7
map_plot, 7

pops_to_DB, 8
profile_AA_x0, 9
profile_admixture, 9

random_AIMs_profile, 10

seldin_loci, 10
simulate_pops, 11