Package ‘genomicper’

October 13, 2022

Type Package
Title Circular Genomic Permutation using Genome Wide Association p-Values
Version 1.7
Date 2021-05-06
Author Claudia P Cabrera [aut, cre],
Pau Navarro [aut],
Chris S Haley [aut]
Maintainer Claudia P Cabrera <c.cabrera@qmul.ac.uk>
Imports stats,grDevices,utils,graphics,DBI,reactome.db,AnnotationDbi
Description Circular genomic permutation approach uses genome wide association studies (GWAS) results to establish the significance of pathway/gene-set associations whilst accounting for genomic structure(Cabrera et al (2012) <doi:10.1534/g3.112.002618>). All single nucleotide polymorphisms (SNPs) in the GWAS are placed in a ‘circular genome’ according to their location. Then the complete set of SNP association p-values are permuted by rotation with respect to the SNPs’ genomic locations. Two testing frameworks are available: permutations at the gene level, and permutations at the SNP level. The permutation at the gene level uses Fisher’s combination test to calculate a single gene p-value, followed by the hypergeometric test. The SNP count methodology maps each SNP to pathways/gene-sets and calculates the proportion of SNPs for the real and the permuted datasets above a predefined threshold. Genomicper requires a matrix of GWAS association p-values and SNPs annotation to genes. Pathways can be obtained from within the package or can be provided by the user.
License GPL-2
NeedsCompilation no
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2021-05-08 08:00:05 UTC

R topics documented:

 genomicper-package .. 2
demo ... 4
Circular Genomic Permutations

Description

Description: Circular genomic permutation approach uses genome wide association studies (GWAS) results to establish the significance of pathway/gene-set associations whilst accounting for genomic structure. All single nucleotide polymorphisms (SNPs) in the GWAS are placed in a 'circular genome' according to their location. Then the complete set of SNP association p-values are permuted by rotation with respect to the SNPs' genomic locations. Two testing frameworks are available: permutations at the gene level, and permutations at the SNP level. The permutation at the gene level uses Fisher’s combination test to calculate a single gene p-value, followed by the hypergeometric test. The SNP count methodology maps each SNP to pathways/gene-sets and calculates the proportion of SNPs for the real and the permuted datasets above a pre-defined threshold. Genomicper requires a matrix of GWAS association p-values and SNPs annotation to genes. Pathways can be obtained from within the package or can be provided by the user.

Details

Package: genomicper
Type: Package
Version: 1.7
Date: 2020-05-06
License: GPL-2

Author(s)

Claudia P. Cabrera, Pau Navarro, Chris S. Haley
Maintainer: Claudia Cabrera <c.cabrera@qmul.ac.uk>
References

SNP-level Permutations:
Genomicper: genome-wide association SNP-set analysis
Claudia P. Cabrera*, Pau Navarro*, Jennifer E. Huffman, Alan F. Wright, Caroline Hayward, Harry Campbell, James F. Wilson, Igor Rudan, Nicholas D. Hastie, Veronique Vitart, Chris S. Haley*

Gene-level Permutations:
Uncovering Networks from Genome-Wide Association Studies via Circular Genomic Permutation. G3: Genes|Genomes|Genetics 2, 1067-1075.
Claudia P. Cabrera*, Pau Navarro*, Jennifer E. Huffman, Alan F. Wright, Caroline Hayward, Harry Campbell, James F. Wilson, Igor Rudan, Nicholas D. Hastie, Veronique Vitart, Chris S. Haley*

See Also

Genomicper functions: 1) read_pvals, 2) genome_order, 3) get_pathways, 4) read2_paths, 5A) snps_permutation, 5B) genes_permutation, 6) get_results, 7) plot_results

Examples

```r
# Genomicper functions
# 1) read_pvals(data_name="", snps_ann="")
# 2) genome_order(all_data="")
# 3) get_pathways(source="reactome", all_paths="", envir="")
# 4) read2_paths(ordered_alldata="", gs_loc="", sets_from="", sets_prefix="RHSA", level="")
# 5A) snps_permutation(ordered_alldata="", pers_ids="", ntraits="", nper="", saveto="", threshold="", gs_locs=gs_locs, envir = "")
# 5B) genes_permutation(ordered_alldata="", pers_ids="", pathways="", ntraits="", nper="", threshold="", saveto="", gs_locs=gs_locs, envir = "")
# 6) get_results(res_pattern="Permus", level="snp", from="workspace", threshold=0.05, envir = "")
# 7) plot_results(results = "", by = "", plot_all = TRUE, var = "", save_plot = TRUE, plot_name = "", bf = FALSE, save_qq = TRUE)
```

DEMO: SNP-level

```r
# SNPs annotation and Pathways provided by user
# all data stored at the WORKSPACE

data(demo, SNPsAnnotation)
all_data <- read_pvals(data_name=demo, snps_ann=SNPsAnnotation)

# Order data according to the genome
genome_results <- genome_order(all_data=all_data)
# Results from genome_order
ordered_alldata <- genome_results$ordered_alldata
gs_locs <- genome_results$gs_locs
```
GWAS p-values demo data

Description

GWAS p-values (tab delimited file). First Column must contain the SNP ids and the column name = "name"
Usage

data(demo)

Format

A data frame with SNPs identifiers and gwas p-values of association

name a character vector
Trait1 a numeric vector
Trait2 a numeric vector
Trait3 a numeric vector
Trait4 a numeric vector
Trait5 a numeric vector
Trait6 a numeric vector
Trait7 a numeric vector
Trait8 a numeric vector
Trait9 a numeric vector

name Trait1 Trait2 Trait3 Trait4 Trait5 Trait6
rs100000010 0.9122360 0.30088096 0.2332038 0.5193068 0.1255104 0.07253145
rs10000023 0.8642906 0.52064064 0.9243443 0.7177759 0.9512171 0.81716250
rs10000030 0.2832705 0.99021664 0.8359339 0.9662707 0.8491221 0.50208681

Examples

#Read input demo file for "read_pvals" function
data(demo)

genes_permutation Gene-level Permutations

Description

Performs gene-level circular genomic permutations. In each permutation, the complete set of SNP association p-values are permuted by rotation with respect to the SNPs' genomic locations. Once these 'simulated' p-values are assigned, the joint gene p-values are calculated using Fisher's combination test, and pathways' association tested using the hypergeometric test

Usage

genes_permutation(ordered_alldata = "", pers_ids = "", pathways = "", ntraits = "", nper = 100, threshold = 0.05, seed=10, saveto = "workspace", gs_locs="", envir = "")
Arguments

ordered_alldata
Return variable from "genome_order". Ordered genome and trait p-values

gs_locs
Return variable from "genome_order". SNP indexes

pers_ids
Return variable "per_ors" from "read2_paths". Gene indexes

pathways
Return variable "pathways" from "read2_paths"

ntraits
Traits INDEX to be analysed. Index according to "ordered_alldata".
Trait Columns index must start at 7. Example: ntraits=c(7:9), ntraits=7

nper
Number of permutations. Example: nper=1000

threshold
Threshold to be set by the hypergeometric test. threshold=0.05

seed
Set a number for random sampling

saveto
Save permutation results to "workspace" OR "directory"

envir
R environment to save the data to when saveto is set to "workspace"

Value

Returns "Permus_trait" variables or files (permutation datasets).

References

Imports phyper (from stats)

See Also

snps_permutation

Examples

#load data
data(demo,SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)

Prepare Genome
genome_results <- genome_order(all_data=all_data)
Results from genome_order
ordered_alldata <- genome_results$ordered_alldata
gs_locs <- genome_results$gs_locs

Create new environment to save data:
gper.env <- new.env()

Get pathways
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)

Map Genes to pathways
paths_res <- read2_paths(ordered_alldata=ordered_alldata,gs_locs=gs_locs,
sets_from="workspace",sets_prefix="RHSA",level="gene",envir=gper.env)
pers_ids <- paths_res$per_ors
```r
code
pathways<- paths_res$pathways

# Perform Permutations:
genes_permutation(ordered_alldata=ordered_alldata,
pers_ids=pers_ids,pathways=pathways,ntraits=c(7:9),
nper=10,threshold=0.05, saveto="workspace",
gs_locs=gs_locs,envir = gper.env)

# Results
results <- get_results(res_pattern="Permus",level="gene",
from="workspace",threshold=0.05,envir= gper.env)
```

genome_order

Genome Order

Description

Orders the SNPs according to their genomic location

Usage

```r
gene_order(all_data = "")
```

Arguments

- `all_data` SNPs to Genes Annotation and Trait Pvalues of Association
 - `all_data` = (read_pvals output) OR matrix/dataframe.

Details

Input Columns with "*" must be included for analysis

NOTE: Trait p-values must start at Column #7

- *Column 1: "name" (SNP.IDs - any SNP ID as character)
- *Column 2: Chromosome Location
- *Column 3: SNP Location
- *Column 4: Gene ID
- Column 5: Symbol (OR Annotation Field 1)
- Column 6: Annotaiton Field 2
- *Column 7: First trait pvalues of association
- Column N: Next trait pvalues of association

Example Input Data:

<table>
<thead>
<tr>
<th>name</th>
<th>Chromosome</th>
<th>Location</th>
<th>GENE_ID</th>
<th>Symbol</th>
<th>Orientation</th>
<th>abpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs10000010</td>
<td>4</td>
<td>21618674</td>
<td>80333</td>
<td>KCNIP4</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>rs10000023</td>
<td>4</td>
<td>95733906</td>
<td>658</td>
<td>BMPR1B</td>
<td>+</td>
<td>0.86</td>
</tr>
<tr>
<td>rs10000092</td>
<td>4</td>
<td>21895517</td>
<td>80333</td>
<td>KCNIP4</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>rs1000022</td>
<td>13</td>
<td>100461219</td>
<td>171425</td>
<td>CLYBL</td>
<td>+</td>
<td>0.26</td>
</tr>
<tr>
<td>rs10000300</td>
<td>4</td>
<td>40466547</td>
<td>54502</td>
<td>RBM47</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Value

ordered_alldata
SNPs annotated to Genes and Trait p-values

gs_locs
Gene annotations, location indexes and number of observations

Format

SNPs annotated to Genes and Trait p-values

#ordered_alldata[1:5,1:8]
name Chromosome Location GENE_ID Symbol Orientation Trait1 Trait2
rs3934834 1 1005806 NA <NA> <NA> 0.97 0.92
rs3737728 1 1021415 54991 C1orf159 - 0.91 0.69
rs6687776 1 1030565 54991 C1orf159 - 0.71 0.45
rs9651273 1 1031540 54991 C1orf159 - 0.22 0.60
rs4970405 1 1048955 54991 C1orf159 - 0.77 0.56

Gene annotations, location indexes and number of observations

#gs_locs[1:5,]

Symbol Chromosome Location Gene_ID Start_Indx Observations
[1,] "A1BG" "19" "58864479" "1" "293976" "1"
[2,] "A2M" "12" "9232268" "2" "215264" "5"
[3,] "NAT1" "8" "18077310" "9" "151804" "1"
[4,] "NAT2" "8" "18257280" "10" "151831" "2"
[5,] "SERPINA3" "14" "95080803" "12" "249519" "2"

See Also

read2_paths

Examples

DEMO WORKSPACE

data(demo,SNPsAnnotation)
all_data<read_pvals(data_name=demo,snps_ann=SNPsAnnotation)
GENOME ORDER
genome_results <- genome_order(all_data=all_data)
ordered_alldata <- genome_results$orderd_alldata
gs_locs <- genome_results$gs_locs

get_pathways

Pathways

Description

Helper function to download pathways and their gene identifiers. reactome.db used for pathway annotations.
Usage

```r
get_pathways(source="reactome",all_paths=TRUE,envir = "")
```

Arguments

- **source**: "reactome"
- **all_paths**: TRUE or FALSE. If FALSE a subset will be asked by the function
- **envir**: R environment to save Pathways to

Value

Returns "Pathways description" All downloaded pathways are saved in the workspace User will be prompt to set a prefix.

See Also

- `read2_paths`

Examples

```r
## Not run:
# get pathways source = "reactome"
if (!require("reactome.db")) install.packages("reactome.db")
library(reactome.db)

# Create new environment to save data:
gper.env <- new.env()
paths <- get_pathways(source="reactome",all_paths=FALSE,envir=gper.env)
# when prompted introduce species as listed
Homo sapiens
# when prompted introduce prefix. Avoid characters "-" and "_" (e.g mypath, or leave blank)
# if all_paths set to TRUE. All pathways are downloaded automatically
# IF all_paths set to FALSE, select a subset of pathway identifiers from
# list. Separated by ",".
R-HSA-8964572,R-HSA-9613354,R-HSA-8876384,R-HSA-446343,R-HSA-9620244

## End(Not run)
```

get_results

Circular Permutation Results

Description

Creates a summary dataframe of the genomic permutations datasets
Usage

get_results(res_pattern="Permus", level="snp", from="workspace", threshold=0.05, envir = "")

Arguments

res_pattern Pattern of the Permutation files/variable. eg. res_pattern="Permus"
level Permutation level performed. level values "snp" or "gene"
from Location of the permutation datasets. from values "workspace" or "directory"
threshold Threshold of significance set
envir R environment where save the data to

Value

results Data frame with Pathway ID, Trait, Threshold set by permutations,
Gene results include the theoretical hypergeometric p-value and the,
observed (Empirical Hypergeometric p-values)
SNP results include the count of significant SNPs and the overall score
Score is the proportion of tests observed with more significant results

Format

SNP level results
<table>
<thead>
<tr>
<th>PathID</th>
<th>Trait</th>
<th>Threshold</th>
<th>RealCount</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa00010</td>
<td>abpi</td>
<td>0</td>
<td>0</td>
<td>0.037</td>
</tr>
<tr>
<td>hsa00010</td>
<td>abpildfa</td>
<td>0</td>
<td>0</td>
<td>0.040</td>
</tr>
<tr>
<td>hsa04720</td>
<td>abpi</td>
<td>2</td>
<td>0</td>
<td>0.311</td>
</tr>
</tbody>
</table>

Gene level results
<table>
<thead>
<tr>
<th>PathID</th>
<th>Trait</th>
<th>Threshold</th>
<th>P-Value</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa00010</td>
<td>abpi</td>
<td>0.040441176</td>
<td>0.058823529</td>
<td>1.0000000</td>
</tr>
<tr>
<td>hsa00020</td>
<td>abpi</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>0.1666667</td>
</tr>
<tr>
<td>hsa00030</td>
<td>abpi</td>
<td>0.040441176</td>
<td>0.058823529</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Examples

data(demo, SNPsAnnotation)
all_data <- read_pvals(data_name=demo, snps_ann=SNPsAnnotation)
gene_results <- genome_order(all_data=all_data)
Results from genome_order
ordered_alldata <- gene_results$ordered_alldata
gs_locs <- gene_results$gs_locs

Create new environment to save data
gper.env <- new.env()

Get pathways
data(RHSA164843, RHSA446343, RHSA8876384, RHSA8964572, RHSA109582, RHSA1474244, envir=gper.env)
paths_res <- read2_paths(ordered_alldata=ordered_alldata,gs_locs=gs_locs,
sets_from="workspace",sets_prefix="RHSA",level="snp",envir=gper.env)
pers_ids <- paths_res$per_ors
pathways<- paths_res$pathways

snps_permutation(ordered_alldata=ordered_alldata,pers_ids=pers_ids,
ntraits=c(7,9),nper=10,saveto="workspace",threshold=0.05,
gs_locs=gs_locs,envir= gper.env)

results <- get_results(res_pattern="Permus",level="snp",
from="workspace",threshold=0.05,envir = gper.env)

hyprbg

Hyprgeometric Test (phyper)

Description

Performs Hypergeometric test (phyper() from R)

Usage

`hyprbg(Sig_in_Paths, uniSig, gns_in_Paths, universe)`

Arguments

- **Sig_in_Paths**: Number of significant genes in the pathway
- **uniSig**: Number of significant genes in the dataset
- **gns_in_Paths**: Number of genes in the pathway
- **universe**: Number of genes in the dataset

Value

Returns hypergeometric test

References

hyprbg Imports phyper() (from stats)
plot_results

Plot Results Circular Permutation

Description

QQ plots

Usage

```r
plot_results(results="", by="", plot_all=TRUE, var="", save_plot=TRUE, plot_name="", bf=FALSE, save_qq=TRUE)
```

Arguments

- `results`: Results dataframe from "get_results()"
- `by`: Visualize results by "trait" OR by "set"
- `plot_all`: `plot_all = TRUE` plots all the variables in the results dataframe and saves a pdf file in the working directory. Setting `plot_all = FALSE` plots a single variable (trait or set). The argument "var" must be declared.
- `var`: Variable name to plot
- `save_plot`: `save_plot = TRUE` saves the plots in the working directory. `save_plot = FALSE` the plot is visualized at the console. `save_plot = FALSE` can be used only when `plot_all` is set to `FALSE`. The plot displayed at the console is interactive, clicking on a point displays the points name.
- `plot_name`: Argument used to save the file name for the plots. Default value = Results_genomicper_[set/trait]
- `bf`: Displays the bonferroni correction
- `save_qq`: `TRUE` returns the qq plot values

Value

- `qq`: Data frame with qq plot values

See Also

- `get_results`

Examples

```r
data(demo, SNPsAnnotation)
all_data <- read_pvals(data_name=demo, snps_ann=SNPsAnnotation)
genome_results <- genome_order(all_data=all_data)
# Results from genome_order
ordered_alldata <- genome_results$ordered_alldata
gs_locs <- genome_results$gs_locs
```
Create new environment to save the data:
gper.env <- new.env()

Load Pathways
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)

paths_res <- read2_paths(ordered_alldata=ordered_alldata, gs_locs=gs_locs,
sets_from="workspace", sets_prefix="RHSA", level="snp", envir=gper.env)
pers_ids <- paths_res$per_ors
pathways <- paths_res$pathways

snps_permutation(ordered_alldata=ordered_alldata, pers_ids=pers_ids,
ntraits=c(7,9), nper=10, saveto="workspace", threshold=0.05,
gs_locs=gs_locs, envir = gper.env)

results <- get_results(res_pattern="Permus", level="snp",
from="workspace", threshold=0.05, envir = gper.env)

saves plots to working directory
Not run:
qq <- plot_results(results=results, by="set", plot_all=TRUE)
qq <- plot_results(results=results, by="trait", plot_all=FALSE, var="trait1")
qq <- plot_results(results=results, by="set", plot_all=FALSE, var="R-HSA-8964572",
save_plot=FALSE) ## IMPORTANT: to EXIT interactive plot
right click on the plot to stop
End(Not run)

read2_paths
Read to SNPs to sets; Map SNPs to gene-sets/pathways

Description
Reads the sets/pathways, map the SNPs and genes to the gene-sets/pathways. read2_paths uses the "genome_order" output(ordered_alldata, gs_locs) to assign genomic location indexes to each element in the gene-set. The permutation method must be defined (i.e. level = "snp" OR level = "gene").

Usage
```
read2_paths(ordered_alldata="", gs_locs="", sets_from="workspace",
sets_prefix="RHSA", level="snp", envir="")
```

Arguments

ordered_alldata
Ordered data according to the SNPs genomic location. Traits start at column 7

Return variable from:
genome_results <- genome_order(all_data=all_data)
ordered_alldata <- genome_results$ordered_alldata

gs_locs
Gene annotation, indexes and number of observations
Return variable from genome_order():
gs_locs <- genome_results$gs_locs

sets_from
Location of the gene-sets. Default set to "workspace"
sets_from = "workspace" OR sets_from = "directory"
"directory", only will search for information in the working directory.

sets_prefix
Prefix of the gene-set variables or files.
Default set to sets_prefix= "RHSA" e.g. Variables "RHSA164843","RHSA446343","RHSA8876384"
each variable/file contains the list of gene identifiers part of that pathway

level
The level at which the permutations will be performed. Assigns the indexes
according to snps or genes
Default value "snp" level values = "snp" OR "gene"

envir
R environment where pathway data is stored. e.g(envir=.GlobalEnv, envir=gper.env)

Value

pathways
Pathway Id, Description, Number of Genes in the pathway, Number of genes
found in the dataset, Number of SNPs found in the dataset

per_ors
A list of identifiers mapped to each pathway

Format

Input: Ordered_alldata

<table>
<thead>
<tr>
<th>name</th>
<th>Chromosome</th>
<th>Location</th>
<th>GENE_ID</th>
<th>Symbol</th>
<th>Orientation</th>
<th>Trait1</th>
<th>Trait2</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1001567</td>
<td>1</td>
<td>9194614</td>
<td><NA></td>
<td><NA></td>
<td><NA></td>
<td>0.96</td>
<td>0.89</td>
</tr>
<tr>
<td>rs1000313</td>
<td>1</td>
<td>15405489</td>
<td>23254</td>
<td>KIAA1026</td>
<td>+</td>
<td>0.93</td>
<td>0.57</td>
</tr>
<tr>
<td>rs1002365</td>
<td>1</td>
<td>19797248</td>
<td><NA></td>
<td><NA></td>
<td><NA></td>
<td>0.68</td>
<td>0.58</td>
</tr>
<tr>
<td>rs1002706</td>
<td>1</td>
<td>25051153</td>
<td><NA></td>
<td><NA></td>
<td><NA></td>
<td>0.71</td>
<td>0.02</td>
</tr>
<tr>
<td>rs1002487</td>
<td>1</td>
<td>26865971</td>
<td>6195</td>
<td>RPS6KA1</td>
<td>+</td>
<td>0.98</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Input: gs_locs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Chromosome</th>
<th>Location</th>
<th>Gene_ID</th>
<th>Start_Indx</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,] "ACYP2"</td>
<td>"2"</td>
<td>"54399633"</td>
<td>"98"</td>
<td>"35"</td>
<td>"1"</td>
</tr>
<tr>
<td>[2,] "AMPD3"</td>
<td>"11"</td>
<td>"10514707"</td>
<td>"272"</td>
<td>"898"</td>
<td>"1"</td>
</tr>
<tr>
<td>[3,] "ANK2"</td>
<td>"4"</td>
<td>"113830885"</td>
<td>"287"</td>
<td>"479"</td>
<td>"4"</td>
</tr>
</tbody>
</table>

Input: pathway example

RHSA8964572

[1] 1149 128486 161247 29923 345275 63924

Output: pathways

<table>
<thead>
<tr>
<th>ID</th>
<th>GenesInPath</th>
<th>GenesFound</th>
<th>SNPsInPath</th>
</tr>
</thead>
</table>
```
"RHSA109582" "681" "8" "11"
"RHSA1474244" "418" "7" "10"
"RHSA164843" "11" "0" "0"
"RHSA446343" "4" "1" "1"
"RHSA8876384" "32" "1" "1"
"RHSA8964572" "6" "1" "1"
```

See Also

- `genes_permutation`
- `snps_permutation`
- `genome_order`

Examples

```r
## DEMO - SNP Level data stored in workspace ###########################
# library(genomicper)
data(demo,SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)
geno_results <- genome_order(all_data=all_data)
ordered_alldata <- geno_results$ordered_alldata
gs_locs <- geno_results$gs_locs

# Create new environment to save variables (e.g. pathways, permutations):
gper.env <- new.env()
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)

paths_res <- read2_paths(ordered_alldata=ordered_alldata,
gs_locs=gs_locs,sets_from="workspace",sets_prefix="RHSA",
level="snp",envir=gper.env)
pers_ids <- paths_res$per_ors
pathways <- paths_res$pathways
```

read_pvals

Read GWAS p-values of association and Merge with SNP annotations

Description

Read GWAS p-values of association and Merge with SNP annotations for analysis

Usage

```r
read_pvals(data_name="",snps_ann="",from="workspace")
```
Arguments

- `data_name`
 GWAS p_values (tab delimited file)(SNP_IDs Trait1 Trait2 ...TraitN)

- `snps_ann`
 SNPs Annotation (SNPsAnnotation). Genomicper uses entrez gene ids to annotate associated SNPs-to genes-pathways
 The annotation MUST match your data input (coordinates and chromosome format)
 Any SNP ID is valid, as long the ID is set as character
 The examples below show an option on how to annotate the SNPs prior the use of genomicper

- `from`
 Datasets location. Values "workspace" OR "directory"

Value

Dataframe: name; chromosome; Location; GeneID; Symbol; Orientation; Trait1; TraitN

Formats

GWAS p_values (tab delimited file)(SNP_IDs Trait1 Trait2 ...TraitN)

```
name  Trait1  Trait2  TraitN
rs10000010 0.9122360 0.30088096 0.2332038
rs10000023 0.8642906 0.52064064 0.9243443
rs10000030 0.2832705 0.99021664 0.8359339
```

SNPs Annotation (SNPsAnnotation)

```
name  Chromosome  Location  GENE_ID  Symbol  Orientation
rs1000313  1  15405489  23254  KIAA1026  +
rs1000533  1  168282491  9095  TBX19  +
rs1000731  1  231963491  27185  DISC1  +
```

Output:

```
name  Chromosome  Location  GENE_ID  Symbol  Orientation  Trait1
rs10000010  4  21618674  80333  KCNIP4  -  0.9122360
rs10000023  4  95733906  658  BMPR1B  +  0.8642906
rs10000030  4  103374154  NA  <NA>  <NA>  0.2832705
```

See Also

- `genome_order`

Examples

```r
## DEMO // WORKSPACE
data(demo,SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)
```
Reactome Pathway examples

Description
Each file "RHSAXXXX" contains the gene identifiers.

Usage
```
data(RHSA164843)
```

Format
The format is: num [1:6] 11168 155030 155348 155459 155908 2547...

Source
reactome.db

Examples
```
data(RHSA164843)
```

SNPsAnnotation

SNPs-Genes annotation to Distance 0 (SNPs within a gene)

Description
SNPs annotated to genes. Annotation only when the SNPs fall within start and end of transcription of the genes.

Usage
```
data(SNPsAnnotation)
```

Format
Sample data frame with 339096 SNP observations on the following 6 variables.

```
name a character vector
Chromosome a character vector
Location a numeric vector of the SNP location
GENE_ID a numeric vector with entrez geneID
Symbol a character vector; other annotation slot 1
Orientation a character vector; other annotation slot 2
```
snps_permutation

<table>
<thead>
<tr>
<th>name</th>
<th>Chromosome</th>
<th>Location</th>
<th>GENE_ID</th>
<th>Symbol</th>
<th>Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1000313</td>
<td>1</td>
<td>15405489</td>
<td>23254</td>
<td>KIAA1026</td>
<td>+</td>
</tr>
<tr>
<td>rs1000533</td>
<td>1</td>
<td>168282491</td>
<td>9095</td>
<td>TBX19</td>
<td>+</td>
</tr>
<tr>
<td>rs1000731</td>
<td>1</td>
<td>231963491</td>
<td>27185</td>
<td>DISC1</td>
<td>+</td>
</tr>
</tbody>
</table>

Source

Examples

```r
data(SNPsAnnotation)
```

snps_permutation
SNP-level permutations

Description

Performs SNP-level circular genomic permutations. In each permutation,
the complete set of SNP association p-values are permuted by rotation
with respect to the SNPs' genomic locations.
Once these 'simulated' p-values are assigned, the proportion of SNPs per
set above a pre-defined threshold is calculated.

Usage

```r
snps_permutation(ordered_alldata = "", pers_ids = "", ntraits = "", 
nper = 100, threshold = 0.05, seed=10, saveto = "workspace", 
gs_locs = "", envir ="")
```

Arguments

- `ordered_alldata`
 - Return variable from "genome_order". Ordered genome and trait p-values
- `gs_locs`
 - Return variable from "genome_order". SNP indexes
- `pers_ids`
 - Return variable "per_ors" from "read2_paths". SNP indexes
- `ntraits`
 - Traits INDEX to be analysed. Index according to "ordered_alldata".
 Trait Columns index must start at 7. Example: ntraits=c(7:9), ntraits=7
- `nper`
 - Number of permutations. Example: nper=1000
- `threshold`
 - Threshold to be set by the hypergeometric test. threshold=0.05
- `seed`
 - Set number for random sampling
- `saveto`
 - Save permutation results to "workspace" OR "directory"
- `envir`
 - R environment to save the Permutations to when saveto is set to "workspace"
Value

Returns "Permus_genesetsname" variables or files (permutation datasets).

See Also

genes_permutation

Examples

data(demo,SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)
genome_results <- genome_order(all_data=all_data)
Results from genome_order
ordered_alldata <- genome_results$ordered_alldata
gs_locs <- genome_results$gs_locs

Create new environment to save the permutations to:
gper.env <- new.env()
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)
paths_res <- read2_paths(ordered_alldata=ordered_alldata,gs_locs=gs_locs,
sets_from="workspace",sets_prefix="RHSA",level="snp",envir=gper.env)
pers_ids <- paths_res$per_ors
pathways<- paths_res$pathways

SNP permutations
snps_permutation(ordered_alldata=ordered_alldata,pers_ids=pers_ids,
ntraits=c(7,9),nper=10,saveto="workspace",threshold=0.05,
gs_locs=gs_locs,envir = gper.env)

Get results
results <- get_results(res_pattern="Permus",level="snp",
from="workspace",threshold=0.05,envir = gper.env)
Index

* annotation
 get_pathways, 8
 read2_paths, 13
* datasets
 demo, 4
 RHSAXXXXX, 17
 SNPsAnnotation, 17
* gene-level
 genes_permutation, 5
* gene-set
 read2_paths, 13
* genome_order
 genome_order, 7
* gwas
 genes_permutation, 5
 snps_permutation, 18
* package
 genomicper-package, 2
* pathways
 get_pathways, 8
 read2_paths, 13
* permutations
 genes_permutation, 5
 snps_permutation, 18
* pvalues
 read_pvals, 15
* results
 get_results, 9
 plot_results, 12
* snp-level
 snps_permutation, 18

hyprbg, 11

plot_results, 3, 12

read2_paths, 3, 8, 9, 13
read_pvals, 3, 15
RHSAB109582 (RHSAXXXXX), 17
RHSAB1474244 (RHSAXXXXX), 17
RHSAB164843 (RHSAXXXXX), 17
RHSAB446343 (RHSAXXXXX), 17
RHSAB8876384 (RHSAXXXXX), 17
RHSAB8964572 (RHSAXXXXX), 17
RHSAXXXXX, 17

snps_permutation, 3, 6, 15, 18
SNPsAnnotation, 17

demo, 4

genes_permutation, 3, 5, 15, 19
genome_order, 3, 7, 15, 16
genomicper (genomicper-package), 2
genomicper-package, 2
get_pathways, 3, 8
get_results, 3, 9, 12