Package ‘genpathmox’

May 11, 2020

Title Generalized Pathmox Approach Segmentation Tree Analysis
Version 0.4
Description Provides a very interesting solution for handling segmentation variables in complex statistical methodology. It contains an extended version of the "Pathmox" algorithm (Lamberti, Sanchez and Aluja, (2016)<doi:10.1002/asmb.2168>) in the context of Partial Least Squares Path Modeling including the F-block test (to detect the responsible latent endogenous equations of the difference), the F-coefficient (to detect the path coefficients responsible of the difference) and the "invariance" test (to realize a comparison between the sub-models' latent variables). Furthermore, the package contains a generalized version of the "Pathmox" algorithm to approach different methodologies: linear regression and least absolute regression models.

Depends R (>= 3.1.2), stats, graphics, grDevices, utils, diagram, methods, mice, quantreg

License GPL-3
LazyData true
RoxygenNote 7.1.0
NeedsCompilation no
Author Giuseppe Lamberti [aut, cre]
Maintainer Giuseppe Lamberti <giuseppelamb@hotmail.com>
Repository CRAN
Date/Publication 2020-05-11 15:20:13 UTC

R topics documented:

fibtele ... 2
fibtelereg .. 4
info.pls_class ... 5
info.reg_class ... 5
invariance_test .. 5
Description

Fibtele

Usage

fibtele

Format

A data frame with 147 observations on the following 35 variables. The first ten variables are segmentation variables. The rest of the variables refer to five latent concepts: 1) Image=Image, 2) Qual.spec=Specific Quality, 3) Qual.gen=Generic Quality, 4) Value=Value, 5) Satis=Satisfaction.

Variables description

- Image: Generic students perception of ICT schools: (internationally recognized, ranges of courses, leader in research).
- Qual.spec: Perception about the achieved quality on the specific skills in the school.
- Qual.gen: Perception about achieved quality on the generic skills in the school (abilities in solving problem, communication skills).
- Value: The advantage or profit that the alumni may draw from the school degree (well paid job, motivated job, prospective in improvement and promotion).
- Satis: Degree of alumni satisfaction about the formation in school respect to their actual work conditions.

Manifest variables description

- ima1MV: It is the best college to study IE
- ima2MV: It is internationally recognized
- ima3MV: It has a wide range of courses
• ima4MV: The Professors are good
• ima5MV: Facilities and equipment are good
• ima6MV: It is leader in research
• ima7MV: It is well regarded by the companies
• ima8MV: It is oriented to new needs and technologies
• quaf1MV: Basic skills
• quaf2MV: Specific Technic skills
• quaf3MV: Applied skills
• qutr1MV: Achieved abilities in solving problem
• qutr2MV: Training in business management
• qutr3MV: The written and oral communication skills
• qutr4MV: Planning and time management acquired
• qutr5MV: Team-work skills
• val1MV: It has allowed me to find a well paid job
• val2MV: I have good prospectives in improvement and promotion
• val3MV: It has allowed me to find a job that motivates me
• val4MV: The training received is the basis on which I will develope my career
• sat1MV: I am satisfied with the training received
• sat2MV: I am satisfied with my current situation
• sat3MV: I think I will have a good career
• sat4MV: What do you think is the prestige of your work

Segmentation Variables description

• Career: a factor with levels EI ETS TEL
• Gender: a factor with levels female male
• Age: a factor with levels 25-26years 27-28years 29-30years 31years+
• Studying: a factor with levels no.stud yes.stud
• Contract: a factor with levels fix.cont other.cont temp.cont
• Salary: a factor with levels 18k >45k 25k 35k 45k
• Firmtype: a factor with levels priva publi
• Accgrade: a factor with levels 7-8accnote accnote<7 accnote>8
• Grade: a factor with levels <6.5note >7.5note 6.5-7note 7-7.5note
• Startwork: a factor with levels after.grad befor.grad

Source

Laboratory of Information Analysis and Modeling (LIAM). Facultat de Informatica de Barcelona, Universitat Politecnica de Catalunya.

References

Description

Fibtelereg dataset

Usage

fibtelereg

Format

A data frame with 147 observations on the following 18 variables. The first ten variables are segmentation variables. The rest of the variables refer to five variables 1) Image = Image, 2) Exp.spec = Specific Expectation, 3) Exp.gen = Generic Expectation, 4)Qual.spec = Specific Quality, 5) Qual.gen = Generic Quality, 6) Value = Value, 7) Satis = Satisfaction. Variables description

• Image: Generic students perception of ICT schools: (internationally recognized, ranges of courses, leader in research).
• Exp.spec: Specific Expectation on specific skills (technic or applied skills).
• Exp.gen: Generic Expectation on generic skills (abilities in problem solving, communication skills).
• Qual.spec: Perception about the achieved quality on the specific skills in the school.
• Qual.gen: Perception about achieved quality on the generic skills in the school (abilities in solving problem, communication skills).
• Value: The advantage or profit that the alumni may draw from the school degree (well paid job, motivated job, prospectives in improvement and promotion).
• Satis: Degree of alumni satisfaction about the formation in school respect to their actual work conditions.

Segmentation Variables description

• Career a factor with levels EI ETS TEL
• Gender a factor with levels female male
• Age a factor with levels 25-26years 27-28years 29-30years 31years+
• Studying a factor with levels no.stud yes.stud
• Contract a factor with levels fix.cont other.cont temp.cont
• Salary a factor with levels 18k >45k 25k 35k 45k
• Firm type a factor with levels priva publi
• Acc grade a factor with levels 7-8accnote accnote<7 accnote>8
• Grade a factor with levels <6.5note >7.5note 6.5-7note 7-7.5note
• Start work a factor with levels after.grad befor.grad
Source

Laboratory of Information Analysis and Modeling (LIAM). Facultat de Informatica de Barcelona, Universitat Politecnica de Catalunya.

References

info.pls_class

Description

info.pls is a S4 class that contains info on the variable and his levels that provides the best binary split and the the the Fischers statitistcs: F-global, F- block, F-coefficientes

info.reg_class

Description

info.pls is a S4 class that contains info on the variable and his levels that provides the best binary split and the the the Fischers statitistcs: F-global, F-coefficientes

invariance_test

Description

The invariance test is a test that allows to verify the existence of common weights for the different local PLS-PM models identified by one or more segmentation variable.

Usage

invariance_test(x, nodes, inner, outer, mode, scheme, scaled)
Arguments

- **x**: Matrix or data frame containing the manifest variables.
- **nodes**: List of vectors. Each vector contains the position of the individual that belongs to a specific node.
- **inner**: A square (lower triangular) boolean matrix representing the inner model (i.e. the path relationships between latent variables).
- **outer**: List of vectors with column indices or column names from `Data` indicating the sets of manifest variables forming each block (i.e. which manifest variables correspond to each block).
- **mode**: Character vector indicating the type of measurement for each block. Possible values are: "A", "B", "newA", "PLScore", "PLScow". The length of `mode` must be equal to the length of `outer`.
- **scheme**: String indicating the type of inner weighting scheme. Possible values are "centroid", "factorial", or "path".
- **scaled**: Whether manifest variables should be standardized. Only used when `scaling` = `NULL`. When (TRUE, data is scaled to standardized values (mean=0 and variance=1).

Details

The "x" refers to a matrix or a data frame that contains all individuals used for the global PLS-PM estimation. The "nodes" is a list of vectors. Each vector contains the position of the individual that belongs to a specific node. The position is identified by the number of row. For example, the row 4 corresponds to the individual 4. The other parameters are the classical parameters of the function "plspm".

Value

An data frame `res`. Basically a list with the following results:

- **chisq.statistic**: A Number; X^2 statistic
- **p.value**: A Number; p-value
- **dfH0**: A Number; degree of freedom null Hypothesis
- **dfH1**: A Number; degree of freedom alternative Hypothesis
- **avg.weights**: Data frame of the common weights if they exist
- **test**: Data frame with summary information of the invariance test

Author(s)

Giuseppe Lamberti
References

Examples

```r
## Not run:
## example of PLS-PM in alumni satisfaction

data(fibtele)

data.fib <- fibtele[,12:35]

# define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image, Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)

#define blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)

define de mode
modes.fib = rep("A", 5)

# apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

seg.fib = fibtele[,2:11]

seg.fib$Age = factor(seg.fib$Age, ordered=TRUE)
seg.fib$Salary = factor(seg.fib$Salary,
  levels=c("<18k","25k","35k","45k",">45k"), ordered=TRUE)
seg.fib$Accgrade = factor(seg.fib$Accgrade,
  levels=c("accnote<7","7-8accnote","accnote>8"), ordered=TRUE)
seg.fib$Grade = factor(seg.fib$Grade,
  levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=TRUE)

# pathmox Analysis
fib.pathmox=plspm.pathmox(pls.fib,seg.fib,signif=0.05,deep=2,size=0.2,n.node=20)

# select the terminal nodes
ls(fib.pathmox)
terminal.nodes=fib.pathmox$terminal[-1]
```
Invariance test
inv.test = invariance_test(data.fib, terminal.nodes, inner.fib, outer.fib, modes.fib, scheme="centroid", scaled=FALSE)
inv.test

End(Not run)

example of PLS-PM in alumni satisfaction

data(fibtele)
data.fib <- fibtele[,12:35]

#define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image, Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)

#define blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)

define de mode
modes.fib = rep("A", 5)

apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

seg.fib = fibtele[,2:11]
seg.fib$Age = factor(seg.fib$Age, ordered=TRUE)
seg.fib$Salary = factor(seg.fib$Salary, levels=c("<18k","25k","35k","45k",">45k"), ordered=TRUE)
seg.fib$Accgrade = factor(seg.fib$Accgrade, levels=c("accnote<7","7-8accnote","accnote>8"), ordered=TRUE)
seg.fib$Grade = factor(seg.fib$Grade, levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=TRUE)

pathmox Analysis
fib.pathmox = pls.pathmox(pls.fib, seg.fib, signif=0.05, deep=2, size=0.2, n.node=20)

terminal.nodes = fib.pathmox$terminal[-1]

Invariance test
inv.test = invariance_test(data.fib, terminal.nodes, inner.fib, outer.fib, modes.fib, scheme="centroid", scaled=FALSE)
Description

node is a S4 class that contains info on each node of the binary segmentation tree

Description

info.pls is a S4 class that contains element of the node class

Description

The function pathmox.pls calculates a binary segmentation tree in the context PLS-PM following the PATHMOX algorithm. The procedure can be resumed in the following way. It starts with the estimation of the global PLS Path Model at the root node. Then, using the segmentation variables, all possible binary splits of data are produced, and for each partition local models are calculated. Among all the splits, the best one is selected by means of the F-test comparing the inner models. This process is recursively applied for each child node. The stop criterion is based on the significance level of the p-value associated with the F statistic. Additionally, two stop parameters are also considered: the number of individuals in a node and the growing level of the depth of the tree. This function extends the pathmox algorithm introduced by Sanchez in 2009 including the two new test: the F-block test (to detect the responsible latent endogenous equations of the difference), the F-coefficient test (to detect the path coefficients responsible of the difference). The F-tests used in the split process are implemented following the classic least square estimation. An implementation of the tests following the LAD regression also are proposed to overcome the parametric hypothesis of the F-test.

Usage

```r
pls.pathmox(
 xpls,
 SVAR,
 signif,
 deep,
 method = "lm",
```

Arguments

xpls An object of class "plspm" returned by plspm.
SVAR A data frame of factors containing the segmentation variables.
signif A numeric value indicating the significance threshold of the F-statistic. Must be a decimal number between 0 and 1.
deep An integer indicating the depth level of the tree. Must be an integer greater than 1.
method A string indicating the criterion used to calculate the test can be equal to "lm" or "lad".
size A numeric value indicating the minimum size of elements inside a node.
X Optional dataset (matrix or data frame) used when argument dataset=NULL inside pls.
n.node It is the minimum number of individuals to consider a candidate partition (30 by default).
... Further arguments passed on to pls.pathmox.

Details

The argument xpls is object of class "plspm" returned by plspm.
The argument SVAR must be a data frame containing segmentation variables as factors. The number of rows in SVAR must be the same as the number of rows in the data used in pls.
The argument signif represent the p-value level takes as reference to stop the tree partitions.
The argument deep represent the depth level of the tree takes as reference to stop the tree partitions.
The argument method is a string containing the criterion used to calculate the tests; if method="lm" the classic least square approach is used to perform the tests; if method="lad" the LAD (least absolute deviation regression) is used.
The argument size is defined as a decimal value (i.e. proportion of elements inside a node).
The argument n.node is the minimum number of individuals to consider a candidate partition. If the candidate split produces a partition where the number of individuals is less then n.node, the partition is not considered.

When the object pls does not contain a data matrix (i.e. pls$data=NULL), the user must provide the data matrix or data frame in X.

Value

An object of class "xtree.pls". Basically a list with the following results:

MOX Data frame with the results of the segmentation tree
root List of elements contained in the root node
terminal List of elements contained in terminal nodes
nodes List of elements contained in all nodes: terminal and intermediate
candidates List of data frames containing the candidate splits of each node partition
Fg.r Data frame containing the results of the F-global test for each node partition
Fb.r List of data frames containing the results of the F-block test for each node partition
Fc.r A list of data frames containing the results of the F-coefficients test for each node partition
model Informations about the internal paramenters

Author(s)
Giuseppe Lamberti

References

Examples

```r
## Not run:
## example of PLS-PM in alumni satisfaction

data(fibtele)

data.fib <- fibtele[,12:35]

# define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image,Qual.spec, Qual.gen, Value, Satis)
```
plspathmox

```
colnames(inner.fib) = rownames(inner.fib)

# blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep("A", 5)

# apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

# re-ordering those segmentation variables with ordinal scale
seg.fib= fibtele[,2:11]
seg.fib$Age = factor(seg.fib$Age, ordered=T)
seg.fib$Salary = factor(seg.fib$Salary, levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
seg.fib$Accgrade = factor(seg.fib$Accgrade, levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
seg.fib$Grade = factor(seg.fib$Grade, levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

# Pathmox Analysis
fib.pathmox=pls.pathmox(pls.fib,seg.fib,signif=0.05,
deep=2,size=0.2,n.node=20)

## End(Not run)
```

```R
library(genpathmox)
data(fibtele)

# select manifest variables
data.fib <-fibtele[1:50,12:35]

# define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image,Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)

# blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep("A", 5)

# apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

# re-ordering those segmentation variables with ordinal scale
seg.fib = fibtele[1:50,c(2,7)]
seg.fib$Salary = factor(seg.fib$Salary,
```
levels = c("<18k","25k","35k","45k",">45k"), ordered=TRUE)

Pathmox Analysis
fib.pathmox = pls.pathmox(pls.fib, seg.fib, signif=0.5, deep=1, size=0.01, n.node=10)

PLS-PM results of terminal nodes from the Pathmox Segmentation Trees

Description

Calculates basic PLS-PM results for the terminal nodes of PATHMOX trees

Usage

```r
pls.treemodel(
  xpls,
  xtree,
  X = NULL,
  alpha = 0.05,
  terminal = TRUE,
  scaled = FALSE,
  label = FALSE,
  label.nodes = NULL,
  ...
)
```

Arguments

- **xpls**
 - An object of class "plspm" returned by `plspm`.
- **xtree**
 - An object of class "xtree.pls" returned by `pls.pathmox`.
- **X**
 - Optional dataset (matrix or data frame) used when argument `dataset=NULL` inside `xpls`.
- **alpha**
 - is numeric value indicating the significance threshold of the invariance test
- **terminal**
 - is string, if equal to `TRUE`, just the terminal nodes are considered for the output results, when it is equal to `FALSE`, the PLS-PM results are generated for all nodes of the tree
- **scaled**
 - to standardize the latent variables or not
- **label**
 - is a string. It is false for defect. If it is `TRUE`, `label.nodes` has to be fix.
- **label.nodes**
 - is a vector with the name of the nodes. It is null for defect.
- **...**
 - Further arguments passed on to `pls.treemodel`.
Details

The argument `xpls` must be the same used for calculating the `xtree` object. When the object `xpls` does not contain a data matrix (i.e. `pls$data=NULL`), the user must provide the data matrix or data frame in `X`.

The argument `xtree` is an object of class "xtree.pls" returned by `pls.pathmox`.

Value

An object of class "treemodel.pls". Basically a list with the following results:

- `inner`: Matrix of the inner relationship between latent variables of the PLS-PM model
- `invariance.test`: A data frame containing the results of the invariance test
- `weights`: Matrix of outer weights for each terminal node
- `loadings`: Matrix of loadings for each terminal node
- `paths`: Matrix of path coefficients for each terminal node
- `r2`: Matrix of r-squared coefficients for each terminal node
- `sign`: list of matrix with the significance for each terminal node

Author(s)

Giuseppe Lamberti

References

See Also

`pls.pathmox`
Examples

Not run:
example of PLS-PM in alumni satisfaction

data(fibtele)

select manifest variables
data.fib <- fibtele[,12:35]

define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image, Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)

blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep("A", 5)

apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

re-ordering those segmentation variables with ordinal scale
seg.fib = fibtele[,2:11]

seg.fib$Age = factor(seg.fib$Age, ordered=T)
seg.fib$Salary = factor(seg.fib$Salary, levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
seg.fib$Accgrade = factor(seg.fib$Accgrade, levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
seg.fib$Grade = factor(seg.fib$Grade, levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

Pathmox Analysis
fib.pathmox=pls.pathmox(pls.fib, seg.fib, signif=0.05, deep=2, size=0.2, n.node=20)

fib.comp=pls.treemodel(pls.fib, fib.pathmox)

End(Not run)

library(genpathmox)
data(fibtele)

select manifest variables
data.fib <- fibtele[,1:50,12:35]

define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image, Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)

blocks of indicators (outer model)
outer.fib = list(1:8, 9:11, 12:16, 17:20, 21:24)
modes.fib = rep("A", 5)

apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

re-ordering those segmentation variables with ordinal scale
seg.fib = fibtele[1:50, c(2,7)]
seg.fib$Salary = factor(seg.fib$Salary,
 levels=c("<18k","25k","35k","45k",">45k"), ordered=TRUE)

Pathmox Analysis
fib.pathmox = pls.pathmox(pls.fib, seg.fib, signif=0.5,
deep=1, size=0.01, n.node=10)

print.xtree.pls

Print function for the Pathmox Segmentation Trees: PLS-PM

Description

The function `print.xtree.pls` prints the `pls.pathmox` tree.

Usage

```r
## S3 method for class 'xtree.pls'
print(x, ...)
```

Arguments

- `x` An object of class "xtree.pls".
- `...` Further arguments are ignored.

Author(s)

Giuseppe Lamberti
References

Examples

```r
# Not run:
## example of PLS-PM in alumni satisfaction

data(fibtele)

# select manifest variables
data.fib <- fibtele[,12:35]

# define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image, Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)

# blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep(“A”, 5)

# apply pslpm
pls.fib = pslpm(data.fib, inner.fib, outer.fib, modes.fib)

# re-ordering those segmentation variables with ordinal scale
seg.fib = fibtele[,2:11]
seg.fib$Age = factor(seg.fib$Age, ordered=T)
seg.fib$Salary = factor(seg.fib$Salary, levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
seg.fib$Accgrade = factor(seg.fib$Accgrade, levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
```
seg.fib$Grade = factor(seg.fib$Grade,
 levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

Pathmox Analysis
fib.pathmox = pls.pathmox(pls.fib, seg.fib, signif=0.05,
 deep=2, size=0.2, n.node=20)

print(fib.pathmox)

End(Not run)

library(genpathmox)
data(fibtele)

select manifest variables
data.fib <- fibtele[1:50, 12:35]

define inner model matrix
Image = rep(0, 5)
Qual.spec = rep(0, 5)
Qual.gen = rep(0, 5)
Value = c(1, 1, 1, 0, 0)
Satis = c(1, 1, 1, 1, 0)
inner.fib = rbind(Image, Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)

blocks of indicators (outer model)
outer.fib = list(1:8, 9:11, 12:16, 17:20, 21:24)
modes.fib = rep("A", 5)

apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

re-ordering those segmentation variables with ordinal scale
seg.fib = fibtele[1:50, c(2, 7)]
seg.fib$Salary = factor(seg.fib$Salary,
 levels=c("<18k", "25k", "35k", "45k", ">45k"), ordered=TRUE)

Pathmox Analysis
fib.pathmox = pls.pathmox(pls.fib, seg.fib, signif=0.5,
 deep=1, size=0.01, n.node=10)

print(fib.pathmox)
Description

The function print.xtree.reg print the reg.pathmox tree

Usage

S3 method for class 'xtree.reg'
print(x, ...)

Arguments

x
An object of class "xtree.reg".

...
Further arguments are ignored.

Author(s)

Giuseppe Lamberti

References

summary.xtree.pls.

Examples

Not run:
##example of LM in alumni satisfaction

data(fibtelereg)

#identify the segmentation variables
segvar = fibtelereg[,2:11]

#select the variables
data.fib = fibtelereg[,12:18]

#re-ordering those segmentation variables with ordinal scale
segvar$Age = factor(segvar$Age, ordered=T)
segvar$Salary = factor(segvar$Salary, levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
segvar$Accgrade = factor(segvar$Accgrade, levels=c("<7","7-8accnote","accnote>8"), ordered=T)
segvar$Grade = factor(segvar$Grade, levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

fib.reg.pathmox=reg.pathmox(Satisfact~.,data=data.fib,segvar,
The function `reg.pathmox` calculates a binary segmentation tree in the context of linear regression following the PATHMOX algorithm. This function also generalizes the Pathmox algorithm introduced by Sanchez in 2009 to the context of linear and LAD regression.

Description

The function `reg.pathmox` calculates a binary segmentation tree in the context of linear regression following the PATHMOX algorithm. This function also generalizes the Pathmox algorithm introduced by Sanchez in 2009 to the context of linear and LAD regression.

Usage

```r
reg.pathmox(formula, SVAR, signif, deep, method, size, data = NULL, ...)
```

Arguments

- `formula` (An object of class "formula").
- `SVAR` (A data frame of factors containing the segmentation variables).
- `signif` (A numeric value indicating the significance threshold of the F-statistic. Must be a decimal number between 0 and 1).
- `deep` (An integer indicating the depth level of the tree. Must be an integer greater than 1).
- `method` (A string indicating the criterion used to calculate the test can be equal to "lm" or "lad" node).
- `size` (A numeric value indicating the minimum size of elements inside a node).
- `data` (an optional data frame).
- `...` (Further arguments passed on to `reg.pathmox`).
Details

The argument formula is an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.

The argument SVAR must be a data frame containing segmentation variables as factors. The number of rows in SVAR must be the same as the number of rows in the data.

The argument signif represent the p-value level takes as reference to stop the tree partitions.

The argument deep represent the p-value level takes as reference to stop the tree partitions.

The argument method is a string containing the criterion used to calculate the test; if method="lm" the classic least square approach is used to perform the test; if method="lad" the lad (least absolute deviation) is used.

The argument size has defined as a decimal value (i.e. proportion of elements inside a node).

Value

An object of class "xtree.reg". Basically a list with the following results:

- **MOX**: Data frame with the results of the segmentation tree
- **root**: element of containing in the root node
- **terminal**: element of containing in the terminal nodes
- **nodes**: element of containing in all nodes terminal and intermediate
- **candidates**: List of data frames containing the candidate splits of each node partition
- **Fg.r**: Data frame containing the results of the F-global test for each node partition
- **Fc.r**: A list of Data frames containing the results of the F-coefficients test for each node partition
- **model**: Information about the internal parameters

Author(s)

Giuseppe Lamberti

References

Examples

```r
## Not run:
##example of LM in alumni satisfaction

data(fibtelereg)
```
#identify the segmentation variables
segvar = fibtelereg[,2:11]

#select the variables
data.fib = fibtelereg[,12:18]

#re-ordering those segmentation variables with ordinal scale
segvar$Age = factor(segvar$Age, ordered=T)
segvar$Salary = factor(segvar$Salary, levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
segvar$Accgrade = factor(segvar$Accgrade, levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
segvar$Grade = factor(segvar$Grade, levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

#regression PATHMOX
fib.reg.pathmox = reg.pathmox(Satisfact~., data=data.fib, segvar, signif=0.05, deep=2, method="lm", size=0.15)

End(Not run)

data(fibtelereg)

#identify the segmentation variables
segvar = fibtelereg[1:50,3:4]

#select the variables
data.fib = fibtelereg[1:50,12:18]

fib.reg.pathmox = reg.pathmox(Satisfact~., data=data.fib, segvar, signif=0.05, deep=1, method="lm", size=0.15)

reg.treemodel
Regression results of terminal nodes from the Pathmox Segmentation Trees

Description
Calculates basic regression results for the terminal nodes of Pathmox Segmentation Trees: liner regression and LAD trees

Usage

```r
reg.treemodel(
  xtree.reg,
  terminal = TRUE,
  intercept = FALSE,
)```
Arguments

xtree.reg  An object of class "xtree.reg" returned by \texttt{reg.pathmox}.
terminal  is string, if equal to \texttt{TRUE}, just the terminal nodes are considered for the output results. when it is equal to \texttt{FALSE}, the regression results are generated for all nodes of the tree.
intercept  if equal to \texttt{TRUE} also the intercept is considered in the estimation.
label  is a boolean. \texttt{I} is false for defect. If it is \texttt{TRUE}, label.nodes has to be fix.
label.nodes  is a vector with the name of the nodes. It is null for defect.
...  Further arguments passed on to \texttt{reg.treemodel}.

Details

The argument \texttt{xtree.reg} is an object of class "xtree.reg" returned by \texttt{reg.pathmox}.

Value

An object of class "regtreemodel". Basically a list with the following results:

inner  Matrix of the inner relationship between latent variables of the PLS-PM model
method  A string containing the used method ("lm" or "lad"
coefficients  Matrix coefficients for each terminal node
Std.  Matrix of estandard deviation of coefficients for each terminal node
pval.coef  Matrix of p-value significance for each terminal node
r2  Matrix of r-squared coefficients for each terminal node

Author(s)

Giuseppe Lamberti

References


See Also

\texttt{pls.pathmox}
Examples

```r
Not run:
#example of LM in alumni satisfaction

data(fibtelereg)

#identify the segmentation variables
segvar= fibtelereg[,2:11]

#select the variables
data.fib= fibtelereg[,12:18]

segvar$Age = factor(segvar$Age, ordered=T)
segvar$Salary = factor(segvar$Salary,
levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
segvar$Accgrade = factor(segvar$Accgrade,
levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
segvar$Grade = factor(segvar$Grade,
levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

#regression PATHMOX
fib.reg.pathmox=reg.pathmox(Satisfact~.,data=data.fib,segvar,
signif=0.05,deep=2,method="lm",size=0.15)

#terminal nodes comparison
fib.node.comp=reg.treemodel(fib.reg.pathmox)
```

## End(Not run)

data(fibtelereg)

#identify the segmentation variables
segvar= fibtelereg[1:50,3:4]

#select the variables
data.fib=fibtelereg[1:50,12:18]

fib.reg.pathmox=reg.pathmox(Satisfact~.,data=data.fib,segvar,
signif=0.05,deep=1,method="lm",size=0.15)

fib.node.comp=reg.treemodel(fib.reg.pathmox)
```

summary.xtree.pls
Summary function for the Pathmox Segmentation Trees: PLS-PM

Description

The function `summary.xtree.pls` returns the most important results obtained by the function `pls.pathmox`. In order, it provides the parameters algorithm (threshold significance, node size
limit", tree depth level and the method used for the split partition), the basic characteristics of the tree (deep and number of terminal nodes), the basic characteristics of the nodes and the F-global the F-block and F-coefficients results. For the test results the significance level is also indicated.

Usage

```r
## S3 method for class 'xtree.pls'
summary(object, ...)
```

Arguments

- **object**: An object of class "xtree.pls".
- **...**: Further arguments are ignored.

Author(s)

Giuseppe Lamberti

References

Examples

```r
## Not run:
## example of PLS-PM in alumni satisfaction

# select manifest variables
data.fib <- fibtele[,12:35]

# define inner model matrix
Image     = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen  = rep(0,5)
Value     = c(1,1,1,0,0)
Satis     = c(1,1,1,1,0)
inner.fib = rbind(Image,Qual.spec, Qual.gen, Value, Satis)
```
summary.xtree.pls

```
colnames(inner.fib) = rownames(inner.fib)

# blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep("A", 5)

# apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

# re-ordering those segmentation variables with ordinal scale
seg.fib = fibtele[,2:11]
seg.fib$Age = factor(seg.fib$Age, ordered=T)
seg.fib$Salary = factor(seg.fib$Salary,
  levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
seg.fib$Accgrade = factor(seg.fib$Accgrade,
  levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
seg.fib$Grade = factor(seg.fib$Grade,
  levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

# Pathmox Analysis
fib.pathmox=pls.pathmox(pls.fib,seg.fib,signif=0.05,
  deep=2,size=0.2,n.node=20)
summary(fib.pathmox)

### End(Not run)

library(genpathmox)
data(fibtele)

# select manifest variables
data.fib <- fibtele[1:50,12:35]

# define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image,Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)

# blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep("A", 5)

# apply plspm
pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

# re-ordering those segmentation variables with ordinal scale
seg.fib = fibtele[1:50,c(2,7)]
```
seg.fib$Salary = factor(seg.fib$Salary,
levels=c("<18k","25k","35k","45k",">45k"), ordered=TRUE)

Pathmox Analysis
fib.pathmox = pls.pathmox(pls.fib,seg.fib,signif=0.5,
deep=1,size=0.01,n.node=10)

summary(fib.pathmox)

summary.xtree.reg

Summary function for the Pathmox Segmentation Trees: linear regression and LAD

Description

The function summary.xtree.reg returns the most important results obtained by the function reg.pathmox. In order, it provides the parameters algorithm (threshold significance, node size limit, tree depth level and the method used for the split partition), the basic characteristics of the tree (deep and number of terminal nodes), the basic characteristics of the nodes and the F-global and F-coefficients results. For the test results the significance level is indicated.

Usage

S3 method for class 'xtree.reg'
summary(object, ...)

Arguments

object An object of class "xtree.reg".
... Further arguments are ignored.

Author(s)

Giuseppe Lamberti

References

summary.xtree.pls, reg.pathmox.
Examples

```r
## Not run:
##example of LM in alumni satisfaction

data(fibtelereg)

#identify the segmentation variables
segvar = fibtelereg[,2:11]

#select the variables
data.fib = fibtelereg[,12:18]

#re-ordering those segmentation variables with ordinal scale
segvar$Age = factor(segvar$Age, ordered=T)
segvar$Salary = factor(segvar$Salary, levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
segvar$Accgrade = factor(segvar$Accgrade, levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
segvar$Grade = factor(segvar$Grade, levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

#regression PATHMOX
fib.reg.pathmox = reg.pathmox(Satisfact~.,data=data.fib,segvar, signif=0.05,deep=2,method="lm",size=0.15)

summary(fib.reg.pathmox)

## End(Not run)

data(fibtelereg)

#identify the segmentation variables
segvar= fibtelereg[1:50,3:4]

#select the variables
data.fib=fibtelereg[1:50,12:18]

fib.reg.pathmox=reg.pathmox(Satisfact~.,data=data.fib,segvar, signif=0.05,deep=1,method="lm",size=0.15)

summary(fib.reg.pathmox)
```

description

tree is a S4 class that contains info on the binary segmentation tree
Index

*Topic datasets
 fibtele, 2
 fibtelereg, 4

fibtele, 2
fibtelereg, 4

info.pls_class, 5
info.reg_class, 5
invariance_test, 5

node-class, 9
node.reg_class, 9

pls.pathmox, 9, 10, 13, 14, 23, 25
pls.treemodel, 13, 13
plspm, 10, 13
print.xtree.pls, 16
print.xtree.reg, 18

reg.pathmox, 20, 20, 23, 27
reg.treemodel, 22, 23

summary.xtree.pls, 17, 19, 24, 27
summary.xtree.reg, 27

tree-class, 28