Package ‘geoBayes’

April 6, 2022

Type Package

Title Analysis of Geostatistical Data using Bayes and Empirical Bayes Methods

Description Functions to fit geostatistical data. The data can be continuous, binary or count data and the models implemented are flexible. Conjugate priors are assumed on some parameters while inference on the other parameters can be done through a full Bayesian analysis of by empirical Bayes methods.

Version 0.7.1

Date 2022-04-06

Author Evangelos Evangelou <e.evangelou@maths.bath.ac.uk>, Vivekananda Roy <vroy@iastate.edu>

Maintainer Evangelos Evangelou <e.evangelou@maths.bath.ac.uk>

Imports coda, graphics, sp, stats, optimx

Depends R (>= 3.0.0)

Suggests geoR

LazyData true

Encoding UTF-8

License GPL (>= 2)

Classification/ACM 86A32, 62M30, 62F15

ByteCompile yes

NeedsCompilation yes

RoxygenNote 7.1.2

Repository CRAN

Date/Publication 2022-04-06 16:42:29 UTC

R topics documented:

 alik_cutoff ... 2
 alik_inla ... 3
Approximate log-likelihood calculation

Description

Calculate the likelihood approximation at different parameter values. This function is useful for choosing the skeleton set.

Plot likelihood approximation.

Usage

alik_cutoff(likopt, par_vals, likthreshold)

alik_plot(aliobj)
alik_inla

Arguments

likopt Output from the function alik_optim.
par_vals A named list with some of the components "linkp", "phi", "omg", "kappa".
likthreshold A threshold value proportion to calculate the cutoff. The cutoff will be calculated as that proportion relative to the maximum value of the log-likelihood.
alikobj Output from alik_cutoff.

Details

The input par_vals is meant to contain vector of parameter values for each parameter. For each element in par_vals, the other parameters are set equal to the maximisers given in likopt and the approximate likelihood is computed. The cutoff is calculated using linear interpolation provided by approx.

The plot can be used to visualise the Laplace approximation to the likelihood provided by the function alik_cutoff.

Value

A list with the log-likelihood approximation and cutoff values.

Draws a plot.

References

alik_inla Log-likelihood approximation

Description

Log-likelihood approximation.

Usage

alik_inla(par_vals, family = "gaussian", data, weights, subset, offset, atsample,
corrfcn = "matern",
np,
betm0,
betQ0,
ssqdf,
ssqsc,
tsqdf,
tsqsc,
dispersion = 1,
longlat = FALSE
)

Arguments

par_vals A data frame with the components "linkp", "phi", "omg", "kappa". The approximation will be computed at each row of the data frame.
formulaa A representation of the model in the form response ~ terms.
familya The distribution of the response. Can be one of the options in geoBayes_models or "transformed.gaussian".
data An optional data frame containing the variables in the model.
weights An optional vector of weights. Number of replicated samples for Gaussian and gamma, number of trials for binomial, time length for Poisson.
subset An optional vector specifying a subset of observations to be used in the fitting process.
offset See lm.
atat A formula in the form ~ x1 + x2 + ... + xd with the coordinates of the sampled locations.
corrfcn Spatial correlation function. Can be one of the choices in geoBayes_corrfcn.
np The number of integration points for the spatial variance parameter sigma^2. The total number of points will be 2*np + 1.
betm0 Prior mean for beta (a vector or scalar).
betQ0 Prior standardised precision (inverse variance) matrix. Can be a scalar, vector or matrix. The first two imply a diagonal with those elements. Set this to 0 to indicate a flat improper prior.
ssqdf Degrees of freedom for the scaled inverse chi-square prior for the partial sill parameter.
ssqsc Scale for the scaled inverse chi-square prior for the partial sill parameter.
tsqdf Degrees of freedom for the scaled inverse chi-square prior for the measurement error parameter.
tsqsc Scale for the scaled inverse chi-square prior for the measurement error parameter.
dispersion The fixed dispersion parameter.
longlat How to compute the distance between locations. If FALSE, Euclidean distance, if TRUE Great Circle distance. See spDists.
alik_optim

Details

Computes and approximation to the log-likelihood for the given parameters using integrated nested Laplace approximations.

Value

A list with components

- par_vals A data frame of the parameter values.
- aloglik The approximate log-likelihood at those parameter values.

References

Usage

alik_optim(
 paroptim,
 formula,
 family = "gaussian",
 data,
 weights,
 subset,
 offset,
 atsample,
 corrfcn = "matern",
 np,
 betm0,
 betQ0,
 ssqdf,
 ssqsc,
 dispersion = 1,
 longlat = FALSE,
 control = list()
)
Arguments

paroptim A named list with the components "linkp", "phi", "omg", "kappa". Each component must be numeric with length 1, 2, or 3 with elements in increasing order. If the component’s length is 1, then the corresponding parameter is considered to be fixed at that value. If 2, then the two numbers denote the lower and upper bounds for the optimisation of that parameter (infinities are allowed). If 3, these correspond to lower bound, starting value, upper bound for the estimation of that parameter.

formula A representation of the model in the form response ~ terms.

family The distribution of the response.

data An optional data frame containing the variables in the model.

weights An optional vector of weights. Number of replicated samples for Gaussian and gamma, number of trials for binomial, time length for Poisson.

subset An optional vector specifying a subset of observations to be used in the fitting process.

offset See \texttt{lm}.

atsample A formula in the form \(\sim x_1 + x_2 + \ldots + x_d\) with the coordinates of the sampled locations.

corrfcn Spatial correlation function. See \texttt{geoBayes_correlation} for details.

np The number of integration points for the spatial variance parameter \(\sigma^2\). The total number of points will be \(2*\text{np} + 1\).

betm0 Prior mean for beta (a vector or scalar).

betQ0 Prior standardised precision (inverse variance) matrix. Can be a scalar, vector or matrix. The first two imply a diagonal with those elements. Set this to 0 to indicate a flat improper prior.

ssqdf Degrees of freedom for the scaled inverse chi-square prior for the partial sill parameter.

ssqsc Scale for the scaled inverse chi-square prior for the partial sill parameter.

dispersion The fixed dispersion parameter.

longlat How to compute the distance between locations. If \text{FALSE}, Euclidean distance, if \text{TRUE} Great Circle distance. See \texttt{spDists}.

control A list of control parameters for the optimisation. See \texttt{optim}.

Details

Uses the "L-BFGS-B" method of the function \texttt{optim} to maximise the log-likelihood for the parameters \text{linkp}, \text{phi}, \text{omg}, \text{kappa}.

Value

The output from the function \texttt{optim}. The "value" element is the log-likelihood, not the negative log-likelihood.
References

bf1skel

Computation of Bayes factors at the skeleton points

Description

Function to compute the Bayes factors from MCMC samples.

Usage

```r
bf1skel(
  runs,
  bfsize1 = 0.8,
  method = c("RL", "MW"),
  reference = 1,
  transf = c("no", "mu", "wo")
)
```

Arguments

- `runs`: A list with outputs from the function `mcsglmm` or `mcstrga`.
- `bfsize1`: A scalar or vector of the same length as `runs` with all integer values or all values in (0, 1]. How many samples (or what proportion of the sample) to use for estimating the Bayes factors at the first stage. The remaining sample will be used for estimating the Bayes factors in the second stage. Setting it to 1 will perform only the first stage.
- `method`: Which method to use to calculate the Bayes factors: Reverse logistic or Meng-Wong.
- `reference`: Which model goes in the denominator.
- `transf`: Whether to use a transformed sample for the computations. If "no" or FALSE, it doesn't. If "mu" or TRUE, it uses the samples for the mean. If "wo" it uses an alternative transformation. The latter can be used only for the families indicated by `geoBayes_models$haswo`.

Details

Computes the Bayes factors using `method` with respect to `reference`.
Value

A list with components

- \texttt{logbf} A vector containing logarithm of the Bayes factors.
- \texttt{logLik1 logLik2} Matrices with the values of the log-likelihood computed from the samples for each model at the first and second stages.
- \texttt{isweights} A vector with the importance sampling weights for computing the Bayes factors at new points that will be used at the second stage. Used internally in \texttt{bf2new} and \texttt{bf2optim}.
- \texttt{controlvar} A matrix with the control variates computed at the samples that will be used in the second stage.
- \texttt{sample2} The MCMC sample for \(mu \) or \(z \) that will be used in the second stage. Used internally in \texttt{bf2new} and \texttt{bf2optim}.
- \texttt{N1, N2} Vectors containing the sample sizes used in the first and second stages.
- \texttt{distmat} Matrix of distances between locations.
- \texttt{betm0, betQ0, ssqdf, ssqsc, tsqdf, tsqsc, dispersion, response, weights, modelmatrix, locations, family, corrfcn, transf} Model parameters used internally in \texttt{bf2new} and \texttt{bf2optim}.
- \texttt{pnts} A list containing the skeleton points. Used internally in \texttt{bf2new} and \texttt{bf2optim}.

References

Examples

```r
## Not run:
data(rhizoctonia)
### Define the model
corr <- "spherical"
kappa <- 0
ssqdf <- 1
ssqsc <- 1
betm0 <- 0
betQ0 <- .01
family <- "binomial.probit"
### Skeleton points
philist <- c(100, 140, 180)
omglist <- c(.5, 1)
parlist <- expand.grid(linkp=0, phi=philist, omg=omglist, kappa = kappa)
### MCMC sizes
Nout <- 100
Nthin <- 1
```
bf2new

Nbi <- 0
Take MCMC samples
runs <- list()
for (i in 1:NROW(parlist)) {
 runs[[i]] <- mcsglmm(Infected ~ 1, family, rhizoctonia, weights = Total,
 atsample = ~ Xcoord + Ycoord,
 Nout = Nout, Nthin = Nthin, Nbi = Nbi,
 betm0 = betm0, betQ0 = betQ0,
 ssqdf = ssqdf, ssqsc = ssqsc,
 phi = parlist$phi[i], omg = parlist$omg[i],
 linkp = parlist$linkp[i], kappa = parlist$kappa[i],
 corrfcn = corrf,
 corrtuning=list(phi = 0, omg = 0, kappa = 0))
}
bf <- bf1skel(runs)
bf$logbf

End(Not run)

bf2new

\textit{Compute the Bayes factors at new points}

\textbf{Description}

Compute the Bayes factors.

\textbf{Usage}

\texttt{bf2new(bf1obj, linkp, phi, omg, kappa, useCV = TRUE)}

\textbf{Arguments}

\texttt{bf1obj} \hspace{1cm} Output from the function \texttt{bf1skel} which contains the Bayes factors and importance sampling weights.

\texttt{linkp, phi, omg, kappa}\hspace{1cm} Optional scalar or vector or NULL. If scalar or vector, the Bayes factors are calculated at those values with respect to the reference model used in \texttt{bf1skel}. If missing or NULL then the unique values from the MCMC chains that were inputted in \texttt{bf1skel} will be used.

\texttt{useCV} \hspace{1cm} Whether to use control variates for finer corrections.

\textbf{Details}

Computes the Bayes factors using the importance weights at the new points. The new points are taken from the grid derived by expanding the parameter values inputted. The arguments \texttt{linkp} \texttt{phi omg} \texttt{kappa} correspond to the link function, spatial range, relative nugget, and correlation function parameters respectively.
Value

An array of size length(linkp) * length(phi) * length(omg) * length(kappa) containing the Bayes factors for each combination of the parameters.

References

Examples

```r
## Not run:
data(rhizoctonia)
### Define the model
corrdf <- "spherical"
kappa <- 0
ssqdf <- 1
ssqsc <- 1
betm0 <- 0
betQ0 <- .01
family <- "binomial.probit"
### Skeleton points
philist <- c(100, 140, 180)
omglist <- c(.5, 1)
parlist <- expand.grid(linkp=0, phi=philist, omg=omglist, kappa = kappa)
### MCMC sizes
Nout <- 100
Nthin <- 1
Nbi <- 0
### Take MCMC samples
runs <- list()
for (i in 1:NROW(parlist)) {
  runs[[i]] <- mcsglmm(Infected ~ 1, family, rhizoctonia, weights = Total,
    atsample = ~ Xcoord + Ycoord,
    Nout = Nout, Nthin = Nthin, Nbi = Nbi,
    betm0 = betm0, betQ0 = betQ0,
    ssqdf = ssqdf, ssqsc = ssqsc,
    phi = parlist$phi[i], omg = parlist$omg[i],
    linkp = parlist$linkp[i], kappa = parlist$kappa[i],
    corrfcn = corrf,
    corrtuning=list(phi = 0, omg = 0, kappa = 0))
}
bf <- bf1skel(runs)
bfall <- bf2new(bf, phi = seq(100, 200, 10), omg = seq(0, 2, .2))
plotbf2(bfall, c("phi", "omg"))
## End(Not run)
```
bf2optim

Empirical Bayes estimator

Description

Estimation by empirical Bayes.

Usage

bf2optim(bf1obj, paroptim, useCV = TRUE, control = list())

Arguments

bf1obj Output from the function bf1skel which contains the Bayes factors and importance sampling weights.

paroptim A named list with the components "linkp", "phi", "omg", "kappa". Each component must be numeric with length 1, 2, or 3 with elements in increasing order but for the binomial family linkp is also allowed to be the character "logit" and "probit". If the component's length is 1, then the corresponding parameter is considered to be fixed at that value. If 2, then the two numbers denote the lower and upper bounds for the optimisation of that parameter (infinities are allowed). If 3, these correspond to lower bound, starting value, upper bound for the estimation of that parameter.

useCV Whether to use control variates for finer corrections.

control A list of control parameters for the optimisation. See optim.

Details

This function is a wrap around bf2new using the "L-BFGS-B" method of the function optim to estimate the parameters.

Value

The output from the function optim. The "value" element is the log-Bayes factor, not the negative log-Bayes factor.

Examples

Not run:
data(rhizoctonia)
Define the model
corrF <- "spherical"
kappa <- 0
ssqdf <- 1
ssqsc <- 1
betm0 <- 0
betQ0 <- .01
family <- "binomial.probit"

Skeleton points
philist <- c(100, 140, 180)
omglist <- c(.5, 1)
parlist <- expand.grid(linkp=0, phi=philist, omg=omglist, kappa = kappa)

MCMC sizes
Nout <- 100
Nthin <- 1
Nbi <- 0

Take MCMC samples
runs <- list()
for (i in 1:NROW(parlist)) {
 runs[[i]] <- mcsglmm(Infected ~ 1, family, rhizoctonia, weights = Total,
 atsample = ~ Xcoord + Ycoord, Nout = Nout*c(.8,.2), Nthin = Nthin, Nbi = Nbi,
 betm0 = betm0, betQ0 = betQ0, ssqdf = ssqdf, ssqsc = ssqsc,
 phi = parlist$phi[i], omg = parlist$omg[i],
 linkp = parlist$linkp[i], kappa = parlist$kappa[i],
 corrfcn = corrf,
 corrtuning=list(phi = 0, omg = 0, kappa = 0))
}

bf <- bf1skel(runs)
est <- bf2optim(bf, list(phi = c(100, 200), omg = c(0, 2)))
est

End(Not run)

bf2se

Empirical Bayes standard errors

Description

Standard errors for the empirical Bayes estimates of the parameters.

Usage

`bf2se(mcrun, transf = c("no", "mu", "wo"))`

Arguments

- `mcrun` The output from the function `mcsglmm` where the parameters `linkp, phi, omg, kappa` are set at their empirical Bayes estimates (output of `bf2optim`).
- `transf` The type of transformation to use.

Value

The precision (inverse covariance) matrix.
References

bmbfse

Batch means, Bayes factors standard errors

Description

Compute the standard errors for the Bayes factors estimates.

Usage

```r
bmbfse(
  pargrid,
  runs,
  bfsize1 = 0.8,
  nbatch1 = 0.5,
  nbatch2 = 0.5,
  S1method = c("RL", "MW"),
  bvmethod = c("Standard", "TukeyHanning", "Bartlett"),
  reference = 1,
  transf = c("no", "mu", "wo")
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pargrid</td>
<td>A data frame with components "linkp", "phi", "omg", "kappa". Each row gives a combination of the parameters to compute the new standard errors.</td>
</tr>
<tr>
<td>runs</td>
<td>A list with outputs from the function mcsglm or mcstrga.</td>
</tr>
<tr>
<td>bfsize1</td>
<td>A scalar or vector of the same length as runs with all integer values or all values in (0, 1]. How many samples (or what proportion of the sample) to use for estimating the Bayes factors at the first stage. The remaining sample will be used for estimating the standard errors in the second stage. Setting it to 1 will perform only the first stage.</td>
</tr>
<tr>
<td>nbatch1</td>
<td>A scalar or vector of the same length as runs. All values must be integers or less than 1. This is used for calculating how many batches to split each of the sample in runs for the calculation of the Bayes factors standard errors for the parameters corresponding to runs.</td>
</tr>
<tr>
<td>nbatch2</td>
<td>A scalar or vector of the same length as runs. All values must be integers or less than 1. This is used for calculating how many batches to split each of the sample in runs for the calculation of the Bayes factors standard errors for the parameters corresponding to pargrid.</td>
</tr>
</tbody>
</table>
Which method to use to calculate the Bayes factors in stage 1: Reverse logistic or Meng-Wong.

Which method to use for the calculation of the batch variance. The standard method splits to disjoint batches. The second and third method use the spectral variance method with different lag windows.

Which model goes in the denominator.

Whether to use a transformed sample for the computations. If "no" or FALSE, it doesn’t. If "mu" or TRUE, it uses the samples for the mean. If "wo" it uses an alternative transformation. The latter can be used only for the families indicated by .geoBayes_models$haswo.

Details
Uses the batch means method to compute the standard errors for Bayes factors.

Value
A list with components

- pargrid The inputted pargrid augmented with the computed log Bayes factors and standard errors.
- bfEstimate The estimates of the Bayes factors
- bfSigma The covariance matrix for the Bayes factors estimates.

References

geoBayes

The geoBayes package

Description
Analysis of geostatistical data using Bayes and Empirical Bayes methods.

Details
This package provides functions to fit geostatistical data. The data can be continuous, binary or count data and the models implemented are flexible. Conjugate priors are assumed on some parameters while inference on the other parameters can be done through a full Bayesian analysis of by empirical Bayes methods.

Some demonstration examples are provided. Type demo(package = "geoBayes") to examine them.
Author(s)

Evangelos Evangelou <e.evangelou@maths.bath.ac.uk> and Vivekananda Roy <vroy@iastate.edu>

References

See Also

geoR, geoRglm

Examples

```r
## Not run:
demo(package = "geoBayes")
demo(rhizoctonia3, package = "geoBayes")

## End(Not run)
```

geoBayes_correlation
Spatial correlation used in the geoBayes package

Description

This hidden variable contains a choice of correlation functions that can be fit with this package. The function can be chosen in the `corrfunc` input of the relevant function. This variable cannot be overwritten.

Usage

```r
.geoBayes_corrfunc
```

Format

An object of class `data.frame` with 5 rows and 4 columns.
geoBayes_models

Models used in the geoBayes package

Description

This hidden variable contains a choice of models that can be fit with this package. The model can be chosen in the family input of the relevant function. This variable cannot be overwritten.

Usage

`.geoBayes_models`

Format

An object of class `data.frame` with 12 rows and 7 columns.

linkfcn

Calculate the link function for exponential families

Description

Link function for the exponential family.

Usage

`linkfcn(mu, linkp, family = "gaussian")`

`linkinv(z, linkp, family = "gaussian")`

Arguments

- `mu` Numeric. The mean of the response variable.
- `linkp` The link function parameter. A scalar.
- `family` The distribution of the response variable from `.geoBayes_models`. Either an integer or the family name.
- `z` Numeric. The linear predictor.
linkfcn maps the mean of the response variable \(\mu \) to the linear predictor \(z \). \(\text{linkinv} \) is its inverse.

For the Gaussian family, if the link parameter is positive, then the extended link is used, defined by

\[
z = \frac{\text{sign}(\mu)|\mu|^\nu - 1}{\nu}
\]

In the other case, the usual Box-Cox link is used.

For the Poisson and gamma families, if the link parameter is positive, then the link is defined by

\[
z = \frac{\text{sign}(w)(e^{\nu|w|} - 1)}{\nu}
\]

where \(w = \log(\mu) \). In the other case, the usual Box-Cox link is used.

For the GEV binomial family, the link function is defined by

\[
\mu = 1 - \exp\{ - \max(0, 1 + \nu z)^\frac{1}{\nu} \}
\]

for any real \(\nu \). At \(\nu = 0 \) it reduces to the complementary log-log link.

The Wallace binomial family is a fast approximation to the robit family. It is defined as

\[
\mu = \Phi(\text{sign}(z)c(\nu)\sqrt{\nu\log(1 + z^2/\nu)})
\]

where \(c(\nu) = \frac{8\nu + 1}{8\nu + 3} \)

Value

A numeric array of the same dimension as the function’s first argument.

References

Examples

```r
## Not run:
mu <- seq(0.1, 0.9, 0.1)
linkfcn(mu, 7, "binomial") # robit(7) link function
linkfcn(mu, , "binomial.logit") # logit link function

mu <- seq(-3, 3, 1)
linkfcn(mu, 0.5, "gaussian") # sqrt transformation
linkinv(linkfcn(mu, 0.5, "gaussian"), 0.5, "gaussian")
curve(linkfcn(x, 0.5, "gaussian"), -3, 3)
```

End(Not run)
mcmcmake

Convert to an mcmc object

Description

Convert to an mcmc object.

Usage

mcmcmake(...)

Arguments

... Output(s) from the functions mentioned in the Details.

Details

This function takes as input the one or more output(s) from function mcsglmm or mcstrga and returns an mcmc object or an mcmc.list object for coda. The function requires the coda package to be installed.

The spatial random field components are assigned the names z_* where * is a number beginning at 1. Similarly, the regressor coefficients are assigned the names beta_* if not unique, or simply beta if there is only one regressor. The names ssq, tsq, phi, omg correspond to the partial sill, measurement error variance, spatial range, and relative nugget parameters respectively.

Value

An mcmc object.

See Also

Functions such as plot.mcmc and summary.mcmc in the coda package. The function do.call can be used to pass arguments stored in a list.

Examples

```r
## Not run:
### Load the data
data(rhizoctonia)
rhiz <- na.omit(rhizoctonia)
rhizSIR <- rhiz$Infected/rhiz$Total # Incidence rate of the
# rhizoctonia disease

### Define the model
corrf <- "spherical"
ssqdf <- 1
ssqsc <- 1
tsqdf <- 1
tsqsc <- 1
```
mcsglmm

MCMC samples from the Spatial GLMM

Description

Draw MCMC samples from the Spatial GLMM with known link function

Usage

mcsglmm(
 formula,
 family = "gaussian",
 data,
 weights,
 subset,
 offset,
 atsample,
 corrfcn = "matern",
 linkp,
 phi,
omg, kappa, Nout, Nthin = 1, Nbi = 0, betm0, betQ0, ssqdf, ssqsc, corrpriors, corrtuning, dispersion = 1, longlat = FALSE, test = FALSE
)

Arguments

formula A representation of the model in the form response ~ terms. The response must be set to NA’s at the prediction locations (see the examples on how to do this using the function stackdata). At the observed locations the response is assumed to be a total of replicated measurements. The number of replications is inputted using the argument weights.

family The distribution of the data. The "GEVbinomial" family is the binomial family with link the GEV link (see Details).

data An optional data frame containing the variables in the model.

weights An optional vector of weights. Number of replicated samples for Gaussian and gamma, number of trials for binomial, time length for Poisson.

subset An optional vector specifying a subset of observations to be used in the fitting process.

offset See lm.

atsample A formula in the form ~ x1 + x2 + ... + xd with the coordinates of the sampled locations.

corrfcn Spatial correlation function. See geoBayes.correlation for details.

linkp Parameter of the link function. A scalar value.

phi Optional starting value for the MCMC for the spatial range parameter phi. Defaults to the mean of its prior. If corrtuning["phi"] is 0, then this argument is required and it corresponds to the fixed value of phi. This can be a vector of the same length as Nout.

omg Optional starting value for the MCMC for the relative nugget parameter omg. Defaults to the mean of its prior. If corrtuning["omg"] is 0, then this argument is required and it corresponds to the fixed value of omg. This can be a vector of the same length as Nout.

kappa Optional starting value for the MCMC for the spatial correlation parameter kappa (Matern smoothness or exponential power). Defaults to the mean of its...
prior. If \texttt{corrtuning["kappa"]} is 0 and it is needed for the chosen correlation function, then this argument is required and it corresponds to the fixed value of kappa. This can be a vector of the same length as Nout.

- **Nout**: Number of MCMC samples to return. This can be a vector for running independent chains. 0 elements are dropped.
- **Nthin**: The thinning of the MCMC algorithm.
- **Nbi**: The burn-in of the MCMC algorithm.
- **betm0**: Prior mean for beta (a vector or scalar).
- **betQ0**: Prior standardised precision (inverse variance) matrix. Can be a scalar, vector or matrix. The first two imply a diagonal with those elements. Set this to 0 to indicate a flat improper prior.
- **ssqdf**: Degrees of freedom for the scaled inverse chi-square prior for the partial sill parameter.
- **ssqsc**: Scale for the scaled inverse chi-square prior for the partial sill parameter.
- **corrpriors**: A list with the components \(\phi \), \(\omg \) and \(\kappa \) as needed. These correspond to the prior distribution parameters. For \(\phi \) and \(\omg \) it must be a vector of length 4. The generalized inverse gamma prior is assumed and the input corresponds to the parameters scale, shape, exponent, location in that order (see Details). For \(\kappa \) it must be a vector of length 2. A uniform prior is assumed and the input corresponds to the lower and upper bounds in that order.
- **corrtuning**: A vector or list with the components \(\phi \), \(\omg \) and \(\kappa \) as needed. These correspond to the random walk parameter for the Metropolis-Hastings step. Smaller values increase the acceptance ratio. Set this to 0 for fixed parameter value.
- **dispersion**: The fixed dispersion parameter.
- **longlat**: How to compute the distance between locations. If \texttt{FALSE}, Euclidean distance, if \texttt{TRUE} Great Circle distance. See \texttt{spDists}.
- **test**: Whether this is a trial run to monitor the acceptance ratio of the random walk for \(\phi \) and \(\omg \). If set to \texttt{TRUE}, the acceptance ratio will be printed on the screen every 100 iterations of the MCMC. Tune the \texttt{phisc} and \texttt{omgsc} parameters in order to achieve 20 to 30% acceptance. Set this to a positive number to change the default 100. No thinning or burn-in are done when testing.

Details

The four-parameter prior for \(\phi \) is defined by

\[\propto (\phi - \theta_4)^{\theta_2} \exp\left\{ -\left(\frac{\phi - \theta_4}{\theta_1} \right)^{\theta_3} \right\} \]

for \(\phi > \theta_4 \). The prior for \(\omg \) is similar. The prior parameters correspond to scale, shape, exponent, and location. See \texttt{arXiv:1005.3274} for details of this distribution.

The GEV (Generalised Extreme Value) link is defined by

\[\mu = 1 - \exp\left\{ -\max(0, 1 + \nu x)^{\frac{1}{\nu}} \right\} \]

for any real \(\nu \). At \(\nu = 0 \) it reduces to the complementary log-log link.
Value

A list containing the objects MODEL, DATA, FIXED, MCMC and call. The MCMC samples are stored in the object MCMC as follows:

- z A matrix containing the MCMC samples for the spatial random field. Each column is one sample.
- mu A matrix containing the MCMC samples for the mean response (a transformation of z). Each column is one sample.
- beta A matrix containing the MCMC samples for the regressor coefficients. Each column is one sample.
- ssq A vector with the MCMC samples for the partial
- phi A vector with the MCMC samples for the spatial range parameter, if sampled.
- omg A vector with the MCMC samples for the spatial range parameter, if sampled.
- logLik A vector containing the value of the log-likelihood evaluated at each sample.
- acc_ratio The acceptance ratio for the joint update of the parameters phi and omg, if sampled.
- sys_time The total computing time for the MCMC sampling.
- Nout, Nbi, Nthin As in input. Used internally in other functions.

The other objects contain input variables. The object call contains the function call.

Examples

```r
## Not run:
data(rhizoctonia)

### Create prediction grid
predgrid <- mkpredgrid2d(rhizoctonia[c("Xcoord", "Ycoord")],
                           par.x = 100, chull = TRUE, exf = 1.2)

### Combine observed and prediction locations
rhizdata <- stackdata(rhizoctonia, predgrid$grid)

### Define the model
corrf <- "spherical"
family <- "binomial.probit"
kappa <- 0
ssqdf <- 1
ssqsc <- 1
betm0 <- 0
betQ0 <- .01
phiprior <- c(100, 1, 1000, 100) # U(100, 200)
phisc <- 3
omgprior <- c(2, 1, 1, 0)       # Exp(mean = 2)
omgsc <- .1

### MCMC sizes
Nout <- 100
```
Nthin <- 1
Nbi <- 0

Trial run
emt <- mcsglmm(Infected ~ 1, family, rhizdata, weights = Total,
atsample = ~ Xcoord + Ycoord,
Nout = Nout, Nthin = Nthin, Nbi = Nbi,
betm0 = betm0, betQ0 = betQ0, ssqdf = ssqdf, ssqsc = ssqsc,
corrpriors = list(phi = phi prior, omg = omg prior),
corrfcn = corrf, kappa = kappa,
corrtuning = list(phi = phisc, omg = omgsc, kappa = 0),
dispersion = 1, test = 10)

Full run
emc <- update(emt, test = FALSE)

emcmc <- mcmcmake(emc)
summary(emcmc[, c("phi", "omg", "beta", "ssq")])
plot(emcmc[, c("phi", "omg", "beta", "ssq")])

End(Not run)

mcsglmm_mala

MCMC samples from the Spatial GLMM

Description

Draw MCMC samples from the Spatial GLMM with known link function

Usage

```r
mcsglmm_mala(
  formula,
  family = "gaussian",
data,
weights,
subset,
offset,
atsample,
corrfcn = "matern",
linkp,
phi,
omg,
kappa,
Nout,
Nthin = 1,
Nbi = 0,
betm0,
betQ0,
```
Arguments

- **formula**: A representation of the model in the form \(\text{response} \sim \text{terms}\). The response must be set to \(\text{NA}'s\) at the prediction locations (see the examples on how to do this using the function `stackdata`). At the observed locations the response is assumed to be a total of replicated measurements. The number of replications is inputted using the argument `weights`.

- **family**: The distribution of the data. The "GEVbinomial" family is the binomial family with link the GEV link (see Details).

- **data**: An optional data frame containing the variables in the model.

- **weights**: An optional vector of weights. Number of replicated samples for Gaussian and gamma, number of trials for binomial, time length for Poisson.

- **subset**: An optional vector specifying a subset of observations to be used in the fitting process.

- **offset**: See `lm`.

- **atsample**: A formula in the form \(\sim x_1 + x_2 + \ldots + x_d\) with the coordinates of the sampled locations.

- **corrfcn**: Spatial correlation function. See `geoBayes_correlation` for details.

- **linkp**: Parameter of the link function. A scalar value.

- **phi**: Optional starting value for the MCMC for the spatial range parameter \(\phi\). Defaults to the mean of its prior. If `corrtuning`["\phi"] is 0, then this argument is required and it corresponds to the fixed value of \(\phi\). This can be a vector of the same length as `Nout`.

- **omg**: Optional starting value for the MCMC for the relative nugget parameter \(\omega\). Defaults to the mean of its prior. If `corrtuning`["\omega"] is 0, then this argument is required and it corresponds to the fixed value of \(\omega\). This can be a vector of the same length as `Nout`.

- **kappa**: Optional starting value for the MCMC for the spatial correlation parameter \(\kappa\) (Matern smoothness or exponential power). Defaults to the mean of its prior. If `corrtuning`["\kappa"] is 0 and it is needed for the chosen correlation function, then this argument is required and it corresponds to the fixed value of \(\kappa\). This can be a vector of the same length as `Nout`.

- **Nout**: Number of MCMC samples to return. This can be a vector for running independent chains.

- **Nthin**: The thinning of the MCMC algorithm.
mcsglmm_mala

Nbi The burn-in of the MCMC algorithm.
betm0 Prior mean for beta (a vector or scalar).
betQ0 Prior standardised precision (inverse variance) matrix. Can be a scalar, vector or matrix. The first two imply a diagonal with those elements. Set this to 0 to indicate a flat improper prior.
ssqdf Degrees of freedom for the scaled inverse chi-square prior for the partial sill parameter.
ssqsc Scale for the scaled inverse chi-square prior for the partial sill parameter.
corrpriors A list with the components phi, omg and kappa as needed. These correspond to the prior distribution parameters. For phi and omg it must be a vector of length 4. The generalized inverse gamma prior is assumed and the input corresponds to the parameters scale, shape, exponent, location in that order (see Details). For kappa it must be a vector of length 2. A uniform prior is assumed and the input corresponds to the lower and upper bounds in that order.
corrTuning A vector or list with the components phi, omg and kappa as needed. These correspond to the random walk parameter for the Metropolis-Hastings step. Smaller values increase the acceptance ratio. Set this to 0 for fixed parameter value.
malatuning Tuning parameter for the MALA updates.
dispersion The fixed dispersion parameter.
longlat How to compute the distance between locations. If FALSE, Euclidean distance, if TRUE Great Circle distance. See spDists.
test Whether this is a trial run to monitor the acceptance ratio of the random walk for phi and omg. If set to TRUE, the acceptance ratio will be printed on the screen every 100 iterations of the MCMC. Tune the phisc and omgsc parameters in order to achieve 20 to 30% acceptance. Set this to a positive number to change the default 100. No thinning or burn-in are done when testing.

Details

The four-parameter prior for phi is defined by
\[\propto (\phi - \theta_4)^{\theta_2 - 1} \exp\left\{ -\left(\frac{\phi - \theta_4}{\theta_3}\right)^{\theta_3} \right\} \]
for \(\phi > \theta_4 \). The prior for omg is similar. The prior parameters correspond to scale, shape, exponent, and location. See arXiv:1005.3274 for details of this distribution.

The GEV (Generalised Extreme Value) link is defined by
\[\mu = 1 - \exp\left\{ -\max(0, 1 + \nu x)^{\frac{1}{\nu}} \right\} \]
for any real \(\nu \). At \(\nu = 0 \) it reduces to the complementary log-log link.

Value

A list containing the objects MODEL, DATA, FIXED, MCMC and call. The MCMC samples are stored in the object MCMC as follows:
• z A matrix containing the MCMC samples for the spatial random field. Each column is one sample.
• mu A matrix containing the MCMC samples for the mean response (a transformation of z). Each column is one sample.
• beta A matrix containing the MCMC samples for the regressor coefficients. Each column is one sample.
• ssq A vector with the MCMC samples for the partial
• phi A vector with the MCMC samples for the spatial range parameter, if sampled.
• omg A vector with the MCMC samples for the relative nugget parameter, if sampled.
• logLik A vector containing the value of the log-likelihood evaluated at each sample.
• acc_ratio The acceptance ratio for the joint update of the parameters phi and omg, if sampled.
• sys_time The total computing time for the MCMC sampling.
• Nout, Nbi, Nthin As in input. Used internally in other functions.

The other objects contain input variables. The object call contains the function call.

Examples

Not run:
data(rhizoctonia)

Create prediction grid
predgrid <- mkpredgrid2d(rhizoctonia[c("Xcoord", "Ycoord")],
par.x = 100, chull = TRUE, exf = 1.2)

Combine observed and prediction locations
rhizdata <- stackdata(rhizoctonia, predgrid$grid)

Define the model
corr <- "spherical"
family <- "binomial.probit"
kappa <- 0
ssqdf <- 1
ssqsc <- 1
betm0 <- 0
betQ0 <- .01
phiprior <- c(100, 1, 1000, 100) # U(100, 200)
phisc <- 3
omgprior <- c(2, 1, 1, 0) # Exp(mean = 2)
omgsc <- .1

MCMC sizes
Nout <- 100
Nthin <- 1
Nbi <- 0

Trial run
emt <- mcsglmm_mala(Infected ~ 1, family, rhizdata, weights = Total,
mcstrga

MCMC samples from the transformed Gaussian model

Description

Draw MCMC samples from the transformed Gaussian model with known link function

Usage

```r
mcstrga(
  formula,
  data,
  weights,
  subset,
  offset,
  atsample = - Xcoord + Ycoord,
  Nout = Nout, Nthin = Nthin, Nbi = Nbi,
  betm0 = betm0, betQ0 = betQ0, ssqdf = ssqdf, ssqsc = ssqsc,
  corrpriors = list(phi = phiprior, omg = omgprior),
  corrfcn = corrf, kappa = kappa,
  corrtuning = list(phi = phisc, omg = omgsc, kappa = 0),
  malatuning = .003, dispersion = 1, test = 10)
```

```r
### Full run
emc <- update(emt, test = FALSE)
emcmc <- mcmcmake(emc)
summary(emcmc[, c("phi", "omg", "beta", "ssq")])
plot(emcmc[, c("phi", "omg", "beta", "ssq")])
```

End(Not run)
Arguments

formula
A representation of the model in the form response ~ terms. The response must be set to NA’s at the prediction locations (see the example in `mcsglmm` for how to do this using `stackdata`). At the observed locations the response is assumed to be a total of replicated measurements. The number of replications is inputted using the argument `weights`.

data
An optional data frame containing the variables in the model.

weights
An optional vector of weights. Number of replicated samples.

subset
An optional vector specifying a subset of observations to be used in the fitting process.

offset
See `lm`.

atsample
A formula in the form ~ x1 + x2 + ... + xd with the coordinates of the sampled locations.

corrfcn
Spatial correlation function. See `geoBayes_correlation` for details.

linkp
Parameter of the link function. A scalar value.

phi
Optional starting value for the MCMC for the spatial range parameter ϕ. Defaults to the mean of its prior. If `corrtuning`["phi"] is 0, then this argument is required and it corresponds to the fixed value of ϕ. This can be a vector of the same length as `Nout`.

omg
Optional starting value for the MCMC for the relative nugget parameter ω. Defaults to the mean of its prior. If `corrtuning`["omg"] is 0, then this argument is required and it corresponds to the fixed value of ω. This can be a vector of the same length as `Nout`.

kappa
Optional starting value for the MCMC for the spatial correlation parameter κ (Matern smoothness or exponential power). Defaults to the mean of its prior. If `corrtuning`["kappa"] is 0 and it is needed for the chosen correlation function, then this argument is required and it corresponds to the fixed value of κ. This can be a vector of the same length as `Nout`.

Nout
Number of MCMC samples to return. This can be a vector for running independent chains.

Nthin
The thinning of the MCMC algorithm.

Nbi
The burn-in of the MCMC algorithm.

betm0
Prior mean for beta (a vector or scalar).

betQ0
Prior standardised precision (inverse variance) matrix. Can be a scalar, vector or matrix. The first two imply a diagonal with those elements. Set this to 0 to indicate a flat improper prior.

ssqdf
Degrees of freedom for the scaled inverse chi-square prior for the partial sill parameter.
ssqsc Scale for the scaled inverse chi-square prior for the partial sill parameter.
tsqdf Degrees of freedom for the scaled inverse chi-square prior for the measurement error parameter.
tsqsc Scale for the scaled inverse chi-square prior for the measurement error parameter.
corrpriors A list with the components phi, omg and kappa as needed. These correspond to the prior distribution parameters. For phi and omg it must be a vector of length 4. The generalized inverse gamma prior is assumed and the input corresponds to the parameters scale, shape, exponent, location in that order (see Details). For kappa it must be a vector of length 2. A uniform prior is assumed and the input corresponds to the lower and upper bounds in that order.
corr tuning A vector or list with the components phi, omg and kappa as needed. These correspond to the random walk parameter for the Metropolis-Hastings step. Smaller values increase the acceptance ratio. Set this to 0 for fixed parameter value.
longlat How to compute the distance between locations. If FALSE, Euclidean distance, if TRUE Great Circle distance. See spDists.
test Whether this is a trial run to monitor the acceptance ratio of the random walk for phi and omg. If set to TRUE, the acceptance ratio will be printed on the screen every 100 iterations of the MCMC. Tune the phisc and omgsc parameters in order to achieve 20 to 30% acceptance. Set this to a positive number to change the default 100. No thinning or burn-in are done when testing.

Details
Simulates from the posterior distribution of this model.

Value
A list containing the objects MODEL, DATA, FIXED, MCMC and call. The MCMC samples are stored in the object MCMC as follows:

- z A matrix containing the MCMC samples for the spatial random field. Each column is one sample.
- mu A matrix containing the MCMC samples for the mean response (a transformation of z). Each column is one sample.
- beta A matrix containing the MCMC samples for the regressor coefficients. Each column is one sample.
- ssq A vector with the MCMC samples for the partial
- tsq A vector with the MCMC samples for the measurement error variance.
- phi A vector with the MCMC samples for the spatial range parameter, if sampled.
- omg A vector with the MCMC samples for the relative nugget parameter, if sampled.
- logLik A vector containing the value of the log-likelihood evaluated at each sample.
- acc_ratio The acceptance ratio for the joint update of the parameters phi and omg, if sampled.
- sys_time The total computing time for the MCMC sampling.
• Nout, Nbi, Nthin As in input. Used internally in other functions.

The other objects contain input variables. The object call contains the function call.

Examples

```r
## Not run:
### Load the data
data(rhizoctonia)
rhiz <- na.omit(rhizoctonia)
rhiz$IR <- rhiz$Infected/rhiz$Total # Incidence rate of the rhizoctonia disease

### Define the model
corrf <- "spherical"
ssqdf <- 1
ssqsc <- 1
tsqdf <- 1
tsqsc <- 1
betm0 <- 0
betQ0 <- diag(.01, 2, 2)
phiprior <- c(200, 1, 1000, 100) # U(100, 300)
phisc <- 1
omgprior <- c(3, 1, 1000, 0) # U(0, 3)
linkp <- 1

## MCMC parameters
Nout <- 100
Nbi <- 0
Nthin <- 1

samplt <- mcstrga(Yield ~ IR, data = rhiz, atsample = ~ Xcoord + Ycoord, corrf = corrf,
Nout = Nout, Nthin = Nthin,
Nbi = Nbi, betm0 = betm0, betQ0 = betQ0,
ssqdf = ssqdf, ssqsc = ssqsc,
tsqdf = tsqdf, tsqsc = tsqsc,
corrprior = list(phi = phiprior, omg = omgprior),
linkp = linkp,
corrtsuning = list(phi = phisc, omg = omgsc, kappa = 0),
test=10)

sample <- update(samplt, test = FALSE)

## End(Not run)
```

mcstrga_mala

MCMC samples from the transformed Gaussian model
Description

Draw MCMC samples from the transformed Gaussian model with known link function

Usage

mcstrga_mala(
 formula,
 data,
 weights,
 subset,
 offset,
 atsample,
 corrfcn = "matern",
 linkp,
 phi,
 omg,
 kappa,
 Nout,
 Nthin = 1,
 Nbi = 0,
 betm0,
 betQ0,
 ssqdf,
 ssqsc,
 tsqdf,
 tsqsc,
 corrpriors,
 corrtuning,
 malatuning,
 longlat = FALSE,
 test = FALSE
)

Arguments

 formula A representation of the model in the form response ~ terms. The response must be set to NA’s at the prediction locations (see the example in mcsglmm for how to do this using stackdata). At the observed locations the response is assumed to be a total of replicated measurements. The number of replications is inputted using the argument weights.
 data An optional data frame containing the variables in the model.
 weights An optional vector of weights. Number of replicated samples.
 subset An optional vector specifying a subset of observations to be used in the fitting process.
 offset See lm.
 atsample A formula in the form ~ x1 + x2 + ... + xd with the coordinates of the sampled locations.
Spatial correlation function. See `geoBayes_correlation` for details.

Parameter of the link function. A scalar value.

Optional starting value for the MCMC for the spatial range parameter phi. Defaults to the mean of its prior. If `corrtuning[['phi']]` is 0, then this argument is required and it corresponds to the fixed value of phi. This can be a vector of the same length as Nout.

Optional starting value for the MCMC for the relative nugget parameter omg. Defaults to the mean of its prior. If `corrtuning[['omg']]` is 0, then this argument is required and it corresponds to the fixed value of omg. This can be a vector of the same length as Nout.

Optional starting value for the MCMC for the spatial correlation parameter kappa (Matern smoothness or exponential power). Defaults to the mean of its prior. If `corrtuning[['kappa']]` is 0 and it is needed for the chosen correlation function, then this argument is required and it corresponds to the fixed value of kappa. This can be a vector of the same length as Nout.

Number of MCMC samples to return. This can be a vector for running independent chains.

The thinning of the MCMC algorithm.

The burn-in of the MCMC algorithm.

Prior mean for beta (a vector or scalar).

Prior standardised precision (inverse variance) matrix. Can be a scalar, vector or matrix. The first two imply a diagonal with those elements. Set this to 0 to indicate a flat improper prior.

Degrees of freedom for the scaled inverse chi-square prior for the partial sill parameter.

Scale for the scaled inverse chi-square prior for the partial sill parameter.

Degrees of freedom for the scaled inverse chi-square prior for the measurement error parameter.

Scale for the scaled inverse chi-square prior for the measurement error parameter.

A list with the components phi, omg and kappa as needed. These correspond to the prior distribution parameters. For phi and omg it must be a vector of length 4. The generalized inverse gamma prior is assumed and the input corresponds to the parameters scale, shape, exponent, location in that order (see Details). For kappa it must be a vector of length 2. A uniform prior is assumed and the input corresponds to the lower and upper bounds in that order.

A vector or list with the components phi, omg and kappa as needed. These correspond to the random walk parameter for the Metropolis-Hastings step. Smaller values increase the acceptance ratio. Set this to 0 for fixed parameter value.

Tuning parameter for the MALA updates.

How to compute the distance between locations. If FALSE, Euclidean distance, if TRUE Great Circle distance. See `spDists`.
Whether this is a trial run to monitor the acceptance ratio of the random walk for \(\phi \) and \(\omega \). If set to \texttt{TRUE}, the acceptance ratio will be printed on the screen every 100 iterations of the MCMC. Tune the \texttt{phisci} and \texttt{omgsci} parameters in order to achieve 20 to 30% acceptance. Set this to a positive number to change the default 100. No thinning or burn-in are done when testing.

Details

Simulates from the posterior distribution of this model.

Value

A list containing the objects \texttt{MODEL}, \texttt{DATA}, \texttt{FIXED}, \texttt{MCMC} and \texttt{call}. The MCMC samples are stored in the object \texttt{MCMC} as follows:

- \texttt{z} A matrix containing the MCMC samples for the spatial random field. Each column is one sample.
- \texttt{mu} A matrix containing the MCMC samples for the mean response (a transformation of \texttt{z}). Each column is one sample.
- \texttt{beta} A matrix containing the MCMC samples for the regressor coefficients. Each column is one sample.
- \texttt{ssq} A vector with the MCMC samples for the partial
- \texttt{tsq} A vector with the MCMC samples for the measurement error variance.
- \texttt{phi} A vector with the MCMC samples for the spatial range parameter, if sampled.
- \texttt{omg} A vector with the MCMC samples for the relative nugget parameter, if sampled.
- \texttt{logLik} A vector containing the value of the log-likelihood evaluated at each sample.
- \texttt{acc_ratio} The acceptance ratio for the joint update of the parameters \(\phi \) and \(\omega \), if sampled.
- \texttt{sys_time} The total computing time for the MCMC sampling.
- \texttt{Nout, Nbi, Nthin} As in input. Used internally in other functions.

The other objects contain input variables. The object \texttt{call} contains the function call.

Examples

```r
## Not run:
### Load the data
data(rhizoctonia)
rhiz <- na.omit(rhizoctonia)
rhiz$IR <- rhiz$Infected/rhiz$Total # Incidence rate of the rhizoctonia disease

### Define the model
corrf <- "spherical"
ssqdf <- 1
ssqsc <- 1
tsqdf <- 1
tsqsc <- 1
```
betm0 <- 0
betQ0 <- diag(.01, 2, 2)
phiprior <- c(200, 1, 1000, 100) # U(100, 300)
phisc <- 1
omgprior <- c(3, 1, 1000, 0) # U(0, 3)
omgsc <- 1
linkp <- 1

MCMC parameters
Nout <- 100
Nbi <- 0
Nthin <- 1

samplt <- mcstrga_mala(Yield ~ IR, data = rhiz,
 atsample = ~ Xcoord + Ycoord, corrf = corrf,
 Nout = Nout, Nthin = Nthin,
 Nbi = Nbi, betm0 = betm0, betQ0 = betQ0,
 ssqdf = ssqdf, ssqsc = ssqsc,
 tsqdf = tsqdf, tsqsc = tsqsc,
 corrprior = list(phi = phiprior, omg = omgprior),
 linkp = linkp,
 corrtuning = list(phi = phisc, omg = omgsc, kappa = 0),
 malatuning = .0002, test=10)

sample <- update(samplt, test = FALSE)

End(Not run)

mkpredgrid2d

Make prediction grid

Description

This function creates a grid for prediction.

Usage

```r
mkpredgrid2d(
  pnts.x,
  pnts.y,
  par.X,
  par.y,
  isby = FALSE,
  chull = FALSE,
  exf = 1
)
```
Arguments

- **pnts.x**: x coordinate of the domain. Could also be a two-column matrix containing the \(x \) and \(y \) coordinates.
- **pnts.y**: y coordinate of the domain. Should be omitted or set to `NULL` if the argument `pnts.x` is a two-column matrix.
- **par.x**: A scalar parameter for the \(x \) component of the new grid. This parameter corresponds to either the `by` or the `length.out` arguments of the function `seq`. Could also be a vector of two elements containing the parameter for \(x \) and \(y \).
- **par.y**: As in `par.x` for the \(y \) component of the new grid. Should be omitted or set to `NULL` if the argument `par.x` is a two-dimensional vector.
- **isby**: If `TRUE`, the arguments `par.x` and `par.y` correspond to the `by` argument of the function `seq`, otherwise they correspond to `length.out`.
- **chull**: Whether to calculate the convex hull of the points. Set this to `TRUE` if `pnts.x` and `pnts.y` denote the sampled locations. If they correspond to the borders of the domain, it is recommended to set this to `FALSE`.
- **exf**: An expansion factor of the convex hull of `cbind(pnts.x, pnts.y)`. Must be positive. If larger or smaller than 1, the convex hull is respectively expanded or contracted.

Details

If `chull` this function first calculates the convex hull of the points. If `exf` is not 1 the borders are expanded. Then the function calls `point.in.polygon` to select points that fall inside the borders.

Value

A list with components

- **grid**: A two-column matrix with the prediction grid.
- **xycoord**: A list with components "\(x \)" and "\(y \)" containing the sequence of points used to create the grid.
- **xygrid**: A matrix with the full square grid derived from `xycoord`.
- **borders**: The (expanded) borders of the domain.
- **inxygrid**: A logical vector indicating which rows of `xycoord` fall inside borders, and therefore correspond to the grid.

See Also

- `pred_grid`

Examples

```R
## Not run:
data(rhizoctonia)
predgrid <- mkpredgrid2d(rhizoctonia[,c("Xcoord", "Ycoord")],
                         par.x = 100, chull = TRUE, exf = 1.2)
```
plotbf2

Plot the estimated Bayes factors

Description

This function plots the estimated logarithm Bayes factors from the function `bf2new`.

Usage

```r
plotbf2(
  bf2obj,
  pars = c("linkp", "phi", "omg", "kappa"),
  profile = length(pars) > 2,
  ...
)
```

Arguments

- `bf2obj` Output from the function `bf2new`.
- `pars` A vector with the names of the parameters to plot.
- `profile` Whether it should produce a profile plot or a contour plot if the length of `pars` is 2.
- `...` Other input to be passed to either `plot` or `contour`.

Details

Depending on whether `pars` has length 1 or 2, this function creates a line or a contour plot of the estimated Bayes factors. If its length is 3 or 4, then it produces multiple profile plots. In this case the variable is fixed at different values and the maximum Bayes factor corresponding to the fixed value is plotted against that value.

Value

This function returns nothing.
Examples

```r
## Not run:
data(rhizoctonia)
### Define the model
corrf <- "spherical"
kappa <- 0
ssqdf <- 1
ssqsc <- 1
betm0 <- 0
betQ0 <- .01
family <- "binomial.probit"
### Skeleton points
philist <- c(100, 140, 180)
omglist <- c(.5, 1)
parlist <- expand.grid(linkp=0, phi=philist, omg=omglist, kappa = kappa)
### MCMC sizes
Nout <- 100
Nthin <- 1
Nbi <- 0
### Take MCMC samples
runs <- list()
for (i in 1:NROW(parlist)) {
  runs[[i]] <- mcsglmm(Infected ~ 1, family, rhizoctonia, weights = Total,
                       atsample = ~ Xcoord + Ycoord, Nout = Nout, Nthin = Nthin, Nbi = Nbi,
                       betm0 = betm0, betQ0 = betQ0, ssqdf = ssqdf, ssqsc = ssqsc,
                       phi = parlist$phi[i], omg = parlist$omg[i],
                       linkp = parlist$linkp[i], kappa = parlist$kappa[i],
                       corrfcn = corrf,
                       corrprop=list(phi = 0, omg = 0, kappa = 0))
}
bf <- bf1skel(runs)
bfall <- bf2new(bf, phi = seq(100, 200, 10), omg = seq(0, 2, .2))
plotbf2(bfall, c("phi", "omg"))
plotbf2(bfall, c("phi", "omg"), profile = TRUE, type = "b", ylab="log(BF)"
## End(Not run)
```

revlogreg
Reverse logistic regression estimation

Description

Perform the reverse logistic regression estimation

Usage

```
revlogreg(lglk, N)
```
Arguments

lglk The value of the loglikelihood at different samples and different parameters. This should be entered as a matrix where the rows are the values of the samples and the columns correspond to the parameters. The [i,j] element of the matrix is the value of the loglikelihood at the ith sample when all samples are put together evaluated at the jth parameter value.

N A vector of length ncol(lglk) or a scalar corresponding to the sample sizes from each model. Must sum(N) == nrow(lglk). The first N[1] samples come from model corresponding to the first set of parameters, then (N[1]+1):N[2] are from the model corresponding to the second set of parameters, and so on.

Details

Estimation is done by maximising the reverse logistic log likelihood.

Value

A vector containing the reverse logistic regression estimates of the logarithm of the Bayes factors. The first set of parameters is taken as the reference model so its estimate is always 0.

References

Description

Rhizoctonia root rot infections.

Usage

data(rhizoctonia)

Format

A data frame with 100 rows and 5 variables.

Details

A dataset containing the number of infected roots and the sample coordinate. The data were collected by Dr Jim Cook at Washington State University.

- Xcoord Longitude of the sampling location.
- Ycoord Latitude of the sampling location.
• Total number of roots sampled at that location.
• Infected Number of infected roots found at that location.
• Yield Barley yield at that location. These data were obtained by hand-harvesting a 4-square-meter area in the sampling location. One observation is missing.

Note

We acknowledge Hao Zhang for providing these data.

Source

http://www.biometrics.tibs.org/datasets/010434.txt

References

rsglmm

Simulation from a spatial model

Description

Simulate from a variety of spatial models.

Usage

```r
rsglmm(
  n,
  formula,
  family = "gaussian",
  data,
  weights,
  subset,
  offset,
  atsample,
  beta,
  linkp,
  phi,
  omg,
  kappa,
  ssq,
  corrfcn = "matern",
  longlat = FALSE,
  dispersion = 1,
  returnGRF = FALSE,
  warndisp = TRUE
)```
Arguments

\textbf{n} \hspace{1cm} \text{The number of instances to simulate}

\textbf{formula} \hspace{1cm} \text{A representation of the model in the form response} \sim \text{ terms}. The LHS can be omitted. If the LHS exists, it can be of the form \text{y}, \text{y} \mid \text{z}, or sums of terms at either side of the | to specify the names of the variables to include in the data frame.

\textbf{family} \hspace{1cm} \text{The distribution of the data to simulate from.}

\textbf{data} \hspace{1cm} \text{An optional data frame containing the variables in the model.}
weights An optional vector of weights. Number of replicated samples for Gaussian and gamma, number of trials for binomial, time length for Poisson.

subset An optional set of indices. Simulations will be provided for those locations only.

offset See \texttt{lm}.

atsample A formula of the form \textasciitilde Xcoord + Ycoord specifying the sampled locations.

beta A vector of the regressor coefficients to use.

linkp The link function parameter.

phi The spatial range parameter.

omg The relative nugget parameter.

kappa The spatial smoothness parameter.

ssq The partial sill parameter.

corrfcn The correlation function to use.

longlat How to compute the distance between locations. If \texttt{FALSE}, Euclidean distance, if \texttt{TRUE} Great Circle distance. See \texttt{spDists}.

dispersion The fixed dispersion parameter. When this is not 1 and the sample is from a binomial or a Poisson distribution, no such distribution exists so an approximate sample is returned. Use with caution.

returnGRF Whether to return the simulate Gaussian random field as well.

warndisp Whether to warn when sampling from a quasi distribution. This is the case for binomial and Poisson when the dispersion is not one.

Details

The spatial Gaussian random field is simulated using the Cholesky decomposition of the covariance matrix.

The sample from a quasi distribution uses a hack which matches the mean and the variance of the distribution. See the source code for details.

Value

A data frame containing the predictors, sampling locations, optional weights, and samples.

Examples

```r
Not run:
n <- 100
beta <- c(-2, 1)
phi <- .2
omg <- .3
linkp <- 0
ssq <- 1
l <- rep(10, n)
corrf <- "matern"
kappa <- .5
family <- "poisson"
```
Xcoord <- runif(n)
Ycoord <- runif(n)
f <- Xcoord + Ycoord
formula <- y|z ~ f
mydata <- rsglmm(1, formula, family, weights = 1,
                  atsample = ~ Xcoord + Ycoord, beta = beta, linkp = linkp,
                  phi = phi, omg = omg, kappa = kappa, ssq = ssq,
                  corrfcn = corrf, returnGRF = TRUE)

## End(Not run)

select_proposals

Selection of multiple importance sampling distributions

Description

Selection of multiple importance sampling distributions

Usage

select_proposals_SEQ(
pargrid,
K,
istart,
relativeSE = FALSE,
N1,
N2,
Nthin,
Nbi,
formula,
family = "gaussian",
data,
weights,
subset,
offset,
atsample,
corrfcn = "matern",
betm0,
betQ0,
ssqdf,
ssqsc,
dispersion = 1,
longlat = FALSE,
nbatch1 = 0.5,
nbatch2 = 0.5,
S1method = c("RL", "MW"),
bvmethod = c("Standard", "TukeyHanning", "Bartlett"),
transf = c("no", "mu", "wo")
select_proposals

)

select_proposals_MNX(
pargrid,
istart,
nfix,
relativeSE = FALSE,
N1,
N2,
Nthin,
Nbi,
cooling,
formula,
family = "gaussian",
data,
weights,
subset,
offset,
atsample,
corrfunc = "matern",
betm0,
betQ0,
ssqdf,
ssqsc,
dispersion = 1,
longlat = FALSE,
nbatch1 = 0.5,
nbatch2 = 0.5,
Simethod = c("RL", "MW"),
bvmethod = c("Standard", "TukeyHanning", "Bartlett"),
transf = c("no", "mu", "wo"),
verbose = FALSE
)

select_proposals_ENT(
pargrid,
istart,
nfix,
relativeSE = FALSE,
N1,
Nthin,
Nbi,
cooling,
formula,
family = "gaussian",
data,
weights,
subset,
offset,
atsample,
corrfcn = "matern",
betm0,
betQ0,
ssqdf,
ssqsc,
dispersion = 1,
longlat = FALSE,
nbatch1 = 0.5,
nbatch2 = 0.5,
S1method = c("RL", "MW"),
bvmethod = c("Standard", "TukeyHanning", "Bartlett"),
transf = c("no", "mu", "wo"),
verbose = FALSE
)

Arguments

pargrid A data frame with components "linkp", "phi", "omg", "kappa". Each row gives a combination of the parameters to compute the new standard errors.

K How many proposal densities in total to choose among the rows of pargrid. Needed for SEQ only. For MNX and ENT this is determined by the length of istart.

istart Start with these rows of pargrid. A vector of indices.

relativeSE Logical. Whether the choice is based on the standard error (FALSE), or relative standard error (TRUE).

N1 The sample size for stage 1.

N2 The sample size for stage 2.

Nthin Thinning

Nbi Burn-in

formula A representation of the model in the form response ~ terms. The response must be set to NA’s at the prediction locations (see the examples on how to do this using the function stackdata). At the observed locations the response is assumed to be a total of replicated measurements. The number of replications is inputted using the argument weights.

family The distribution of the data. The "GEVbinomial" family is the binomial family with link the GEV link (see Details).

data An optional data frame containing the variables in the model.

weights An optional vector of weights. Number of replicated samples for Gaussian and gamma, number of trials for binomial, time length for Poisson.

subset An optional vector specifying a subset of observations to be used in the fitting process.

offset See lm.
atsample

A formula in the form $\sim x_1 + x_2 + \ldots + x_d$ with the coordinates of the sampled locations.

corrfcn

Spatial correlation function. See \texttt{geoBayes_correlation} for details.

betm0

Prior mean for beta (a vector or scalar).

betQ0

Prior standardised precision (inverse variance) matrix. Can be a scalar, vector or matrix. The first two imply a diagonal with those elements. Set this to 0 to indicate a flat improper prior.

ssqdf

Degrees of freedom for the scaled inverse chi-square prior for the partial sill parameter.

ssqsc

Scale for the scaled inverse chi-square prior for the partial sill parameter.

dispersion

The fixed dispersion parameter.

longlat

How to compute the distance between locations. If \texttt{FALSE}, Euclidean distance, if \texttt{TRUE} Great Circle distance. See \texttt{spDists}.

nbatch1

A scalar or vector of the same length as \texttt{runs}. All values must be integers or less than 1. This is used for calculating how many batches to split each of the sample in \texttt{runs} for the calculation of the Bayes factors standard errors for the parameters corresponding to \texttt{runs}.

nbatch2

A scalar or vector of the same length as \texttt{runs}. All values must be integers or less than 1. This is used for calculating how many batches to split each of the sample in \texttt{runs} for the calculation of the Bayes factors standard errors for the parameters corresponding to \texttt{pargrid}.

S1method

Which method to use to calculate the Bayes factors: Reverse logistic or Meng-Wong.

bvmethod

Which method to use for the calculation of the batch variance. The standard method splits to disjoint batches. The second and third method use the spectral variance method with different lag windows.

transf

Whether to use a transformed sample for the computations. If "no" or \texttt{FALSE}, it doesn’t. If "mu" or \texttt{TRUE}, it uses the samples for the mean. If "wo" it uses an alternative transformation. The latter can be used only for the families indicated by \texttt{.geoBayes_models$haswo}.

nfix

In the case of MNX and ENT, the first \texttt{nfix} elements of \texttt{istart} will always be included.

cooling

A decreasing sequence of temperature values for the simulated annealing. All elements must be positive. A suggested value is $T_{\text{init}} / \log(((0:N) \%\% Tstp)*Tstp + \exp(1))$ for $N+1$ iterations, where $T_{\text{init}}$ is the initial temperature and $T_{\text{stp}}$ is the number of iterations before the temperature is reduced.

verbose

Logical. Prints information about the simulated annealing.

Details

\textbf{SEQ} is a sequential method starting with \texttt{istart} and adding to it until $K$ proposals have been selected. At each iteration, the point with the highest (relative?) standard error is added.

\textbf{MNX} is the minimax method. The chosen proposal corresponds to the lowest maximum (relative?) standard error.

\textbf{ENT} is the entropy method. The chosen proposal corresponds to the highest determinant of the (relative?) covariance matrix at the first stage.
**Value**

A list with components

- **selected** The rows of pargrid selected.
- **isel** The indices of the rows of pargrid selected.
- **se** The standard error corresponding to the selected parameters.
- **samples** A list containing the samples from the selected parameters.

**References**


**Examples**

```r
Not run:
data(rhizoctonia)
Define the model
corr <- "spherical"
kappa <- 0
ssqdf <- 1
ssqsc <- 1
betm0 <- 0
betQ0 <- .01
family <- "binomial.probit"
formula <- Infected ~ 1
atsample <- ~ Xcoord + Ycoord
Skeleton points
philist <- seq(100, 200, 10)
omglist <- 0
parlist <- expand.grid(linkp=0, phi=philist, omg=omglist, kappa = kappa)
MCMC sizes
Nout <- 100
Nthin <- 1
Nbi <- 10
Select proposals
K <- 3 # Choose 3 proposals
istart_SEQ <- 6 # Start with middle
istart_MNX <- istart_ENT <- c(6, 2, 10)
cooling_MNX <- .05/log((0:24)/5)*5 + exp(1))
cooling_ENT <- .3/log((0:49)/10)*10 + exp(1))
prop_SEQ <- select_proposals_SEQ(pargrid = parlist, K = K,
 istart = istart_SEQ,
 relativeSE = TRUE,
 N1 = Nout, N2 = Nout,
 Nthin = Nthin, Nbi = Nbi,
 formula = formula, family = family,
 data = rhizoctonia, weights = Total,
 atsample = atsample, corrfcn = corrf,
 betm0 = betm0, betQ0 = betQ0,
 ssqdf = ssqdf, ssqsc = ssqsc,
```
spcovariance

spcovariance <- select_proposals_MNX(pargrid = parlist,
  istart = istart_MNX, nfix = 1L,
  cooling = cooling_MNX,
  relativeSE = TRUE,
  N1 = Nout, N2 = Nout,
  Nthin = Nthin, Nbi = Nbi,
  formula = formula, family = family,
  data = rhizoctonia, weights = Total,
  atsample = atsample, corrfcn = corrf,
  betm0 = betm0, betQ0 = betQ0,
  ssqdf = ssqdf, ssqsc = ssqsc,
  dispersion = 1, longlat = FALSE,
  nbatch1 = 0.5, nbatch2 = 0.5,
  bvmethod = "TukeyHanning",
  transf = "mu",
  verbose = TRUE)

prop_ENT <- select_proposals_ENT(pargrid = parlist,
  istart = istart_ENT, nfix = 1L,
  cooling = cooling_ENT,
  relativeSE = TRUE,
  N1 = Nout,
  Nthin = Nthin, Nbi = Nbi,
  formula = formula, family = family,
  data = rhizoctonia, weights = Total,
  atsample = atsample, corrfcn = corrf,
  betm0 = betm0, betQ0 = betQ0,
  ssqdf = ssqdf, ssqsc = ssqsc,
  dispersion = 1, longlat = FALSE,
  nbatch1 = 0.5, nbatch2 = 0.5,
  bvmethod = "TukeyHanning",
  transf = "mu",
  verbose = TRUE)

## End(Not run)

spcovariance

Spatial variance-covariance matrix

Description

Calculates the spatial variance-covariance matrix for a selection of correlation functions.

Usage

spcovariance(...)
## S3 method for class 'formula'
spcovariance(
  formula,
  data,
  subset,
  corrfcn,
  ssq,
  phi,
  omg,
  kappa,
  longlat = FALSE,
  ...
)

## S3 method for class 'numeric'
spcovariance(x, corrfcn, ssq, phi, omg, kappa, ...)

## S3 method for class 'dist'
spcovariance(x, corrfcn, ssq, phi, omg, kappa, ...)

### Arguments

... Further arguments. Not currently in use.

formula A formula of the form ~ Xcoord + Ycoord specifying the sampled locations.

data An optional data frame containing the variables in the model.

subset An optional set of indices. The covariance will be calculated for those coordinates only.

corrfcn The correlation function to use.

ssq The partial sill parameter.

phi The spatial range parameter.

omg The relative nugget parameter.

kappa The spatial smoothness parameter.

longlat How to compute the distance between locations. If FALSE, Euclidean distance, if TRUE Great Circle distance. See spDists.

x A numerical object of distances.

### Value

For a formula input, a variance-covariance matrix. For a numeric input, an object of the the same dimensions as its first input.
sploglik

Spatial log likelihood

Description
Spatial joint log likelihood

Usage
sploglik(pargrid, runs, transf = c("no", "mu", "wo"))

Arguments

pargrid
A data frame with components "linkp", "phi", "omg", "kappa". Each row gives
a combination of the parameters to compute the log-likelihood.

runs
A list with outputs from the function mcsglmm or mcstrga.

transf
Whether to use a transformed sample for the computations. If "no" or FALSE, it doesn’t. If "mu" or TRUE, it uses the samples for the mean. If "wo" it uses an
alternative transformation. The latter can be used only for the families indicated
by .geoBayes_models$haswo.

Details
Computes the joint log likelihood \( \log f(y;T(z)|\text{parameters}) \) where \( T(z) \) is the transformation, for each
\((y,z)\) in runs and for parameters in pargrid up to a constant which does not depend on the parameters.
The parameters beta and \( \sigma^2 \) are integrated out.

Value
A matrix with number of rows the total number of samples in runs and number of columns the
number of rows in pargrid. The \([i,j]\) element of the matrix is the value of the loglikelihood at the \(i\)th
sample when all samples in runs are put together evaluated at the \(j\)th parameter value.

sploglik_cross

Spatial log likelihood

Description
Spatial joint log likelihood

Usage
sploglik_cross(runs, transf = c("no", "mu", "wo"))
Arguments

runs A list with outputs from the function `mcsglmm` or `mcstrga`.

transf Whether to use a transformed sample for the computations. If "no" or FALSE, it doesn’t. If “mu” or TRUE, it uses the samples for the mean. If "wo" it uses an alternative transformation. The latter can be used only for the families indicated by `geoBayes_models$haswo`. The input can also be a vector (of the same length as runs) to allow for different transformation to be used when evaluating each likelihood.

Details

Computes the joint log likelihood \( \log f(y,T(z)|\text{parameters}) \) where \( T(z) \) is the transformation, for each \((y,z)\) in runs and for parameters in runs up to a constant which does not depend on the parameters. The parameters beta and sigma^2 are integrated out.

Value

A matrix with number of rows the total number of samples in runs and number of columns the length of runs. The \([i,j]\) element of the matrix is the value of the loglikelihood at the ith sample when all samples in runs are put together evaluated at the jth parameter value.

Description

Combine data.frames

Usage

`stackdata(..., fillwith = NA, keepclass = FALSE)`

Arguments

... data.frames or objects that can be coerced to data.frames

fillwith Which value to use for missing variables. This could be a scalar, a named vector, or a named list with one value in each component; see Details.

keepclass Whether to preserve the class of each variable. The elements in fillwith are coerced to the corresponding variable’s class.

Details

This function combines data.frames by filling in missing variables. This is useful for combining data from sampled locations with prediction locations. If fillwith is a named object, its names must correspond to the names of variables in the data frames. If a variable is missing, then it is filled with the corresponding value in fillwith. fillwith can contain only one unnamed component which corresponds to the default filling.
subset.geomcmc

Value

A stacked data.frame.

Examples

```r
Not run:
d1 <- data.frame(w = 1:3, z = 4:6 + 0.1)
d2 <- data.frame(w = 3:7, x = 1:5, y = 6:10)
(d12a <- stackdata(d1, d2))
lapply(d12a, class)
(d12b <- stackdata(d1, d2, fillwith = c(x = NA, y = 0, z = -99)))
lapply(d12b, class)
(d12c <- stackdata(d1, d2, fillwith = c(x = NA, y = 0, z = -99),
 keepclass = TRUE))
lapply(d12c, class)
(d12d <- stackdata(d1, d2, fillwith = c(x = NA, 0)))
data(rhizoctonia)
predgrid <- mkpredgrid2d(rhizoctonia[c("Xcoord", "Ycoord")],
 par.x = 100, chull = TRUE, exf = 1.2)
rhizdata <- stackdata(rhizoctonia, predgrid$grid)
End(Not run)
```

Description

Return subset of MCMC chain.

Usage

```r
S3 method for class 'geomcmc'
subset(x, subset, ...)
```

Arguments

- `x` Output from the functions `mcsglmm` or `mcstrga`.
- `subset` Logical or integer vector.
- `...` Further arguments to be passed to or from other methods.

Value

A similar object as `x` with the subsetted chain.
Index

* datasets
  geoBayes_correlation, 15
  geoBayes_models, 16
* linkfcn
  linkfcn, 16
* package
  geoBayes, 14
  .geoBayes_corrfcn, 4
  .geoBayes_corrfcn
    (geoBayes_correlation), 15
  .geoBayes_models, 4, 16
  .geoBayes_models (geoBayes_models), 16
  alik_cutoff, 2, 3
  alik_inla, 3
  alik_optim, 3, 5
  alik_plot (alik_cutoff), 2
  approx, 3
  bf1skel, 7, 9, 11
  bf2new, 8, 9, 11, 36
  bf2optim, 8, 11, 12
  bf2se, 12
  bmbfse, 13
  class, 50
  do.call, 18
  geoBayes, 14
  geoBayes_correlation, 6, 15, 20, 24, 28, 32, 45
  geoBayes_models, 16
  linkfcn, 16
  linkin (linkfcn), 16
  lm, 4, 6, 20, 24, 28, 31, 41, 44
  mcmc, 18
  mcmc.list, 18
  mcmcmake, 18
  mcs Glenn, 7, 13, 18, 19, 28, 31, 49–51
  mcs Glenn_mala, 23
  mcresta, 7, 13, 18, 27, 49–51
  mcstrga_mala, 30
  mkpredgrid2d, 34
  optim, 6, 11
  plot.mcmc, 18
  plotbf2, 36
  point.in.polygon, 35
  pred_grid, 35
  revlogreg, 37
  rhizoctonia, 38
  rsglm, 39
  rsgrf (rsglm), 39
  rstrga (rsglm), 39
  select_proposals, 42
  select_proposals_ENT
    (select_proposals), 42
  select_proposals_MNX
    (select_proposals), 42
  select_proposals_SEQ
    (select_proposals), 42
  seq, 35
  spcovariance, 47
  spDists, 4, 6, 21, 25, 29, 32, 41, 45, 48
  sploglik, 49
  sploglik_cross, 49
  stackdata, 20, 24, 28, 31, 44, 50
  subset.geomcmc, 51
  summary.mcmc, 18