Package ‘geohashTools’

October 21, 2023

Version 0.3.3
Title Tools for Working with Geohashes
Maintainer Michael Chirico <MichaelChirico4@gmail.com>
Depends R (>= 3.0.0)
Description Tools for working with Gustavo Niemeyer's geohash coordinate system, including API for interacting with other common R GIS libraries.
URL https://github.com/MichaelChirico/geohashTools
License MPL-2.0 | file LICENSE
Imports methods
Suggests sf, sp, testthat (>= 3.0.0), knitr, rmarkdown, ggplot2
Config/testthat/edition 3
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation yes
Author Michael Chirico [aut, cre], Dmitry Shkolnik [ctb]
Repository CRAN
Date/Publication 2023-10-21 20:10:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>gh_decode</td>
<td>2</td>
</tr>
<tr>
<td>gh_encode</td>
<td>3</td>
</tr>
<tr>
<td>gh_neighbors</td>
<td>4</td>
</tr>
<tr>
<td>gis_tools</td>
<td>5</td>
</tr>
<tr>
<td>utils</td>
<td>6</td>
</tr>
</tbody>
</table>

Index 8
Description

Convert geohash-encoded strings into latitude/longitude coordinates

Usage

gh_decode(geohashes, include_delta = FALSE, coord_loc = 'c')

Arguments

geohashes character or factor vector of input geohashes. There’s no need for all inputs to be of the same precision.
include_delta logical; should the cell half-width delta be included in the output?
coord_loc character specifying where in the cell points should be mapped to; cell centroid is mapped by default; case-insensitive. See Details.

Details

coord_loc can be the cell’s center ('c' or 'centroid'), or it can be any of the 8 corners (e.g. 's'/south for the midpoint of the southern boundary of the cell, or 'ne'/northeast' for the upper-right corner.

For factor input, decoding will be done on the levels for efficiency.

Value

list with the following entries:

latitude numeric vector of latitudes (y-coordinates) corresponding to the input geohashes, with within-cell position dictated by coord_loc
longitude numeric vector of longitudes (x-coordinates) corresponding to the input geohashes, with within-cell position dictated by coord_loc
delta_latitude numeric vector of cell half-widths in the y direction (only included if include_delta is TRUE
delta_longitude numeric vector of cell half-widths in the x direction (only included if include_delta is TRUE

Author(s)

Michael Chirico

References

http://geohash.org/ (Gustavo Niemeyer’s original geohash service)
gh_encode

Examples

Riddle me this
gh_decode('stq4s8c')

Cell half-widths might be convenient to include for downstream analysis
gh_decode('tjmd79', include_delta = TRUE)

gh_encode Geohash encoding

Description

Convert latitude/longitude coordinates into geohash-encoded strings

Usage

gh_encode(latitude, longitude, precision = 6L)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>latitude</td>
<td>numeric vector of input latitude (y) coordinates. Must be in [-90, 90).</td>
</tr>
<tr>
<td>longitude</td>
<td>numeric vector of input longitude (x) coordinates. Should be in [-180, 180).</td>
</tr>
<tr>
<td>precision</td>
<td>Positive integer scalar controlling the 'zoom level' – how many characters should be used in the output.</td>
</tr>
</tbody>
</table>

Details

precision is limited to at most 28. This level of precision encodes locations on the globe at a nanometer scale and is already more than enough for basically all applications.

Longitudes outside [-180, 180) will be wrapped appropriately to the standard longitude grid.

Value

character vector of geohashes corresponding to the input. NA in gives NA out.

Author(s)

Michael Chirico

References

http://geohash.org/ (Gustavo Niemeyer’s original geohash service)
Examples

scalar input is treated as a vector
gh_encode(2.345, 6.789)

geohashes are left-closed, right-open, so boundary coordinates are
associated to the east and/or north
gh_encode(0, 0)

gb_neighbors

Geohash neighborhoods

Description

Return the geohashes adjacent to input geohashes

Usage

gh_neighbors(geohashes, self = TRUE)
gh_neighbours(geohashes, self = TRUE)

Arguments

geohashes character vector of input geohashes. There’s no need for all inputs to be of the
same precision.

self Should the input also be returned as a list element? Convenient for one-line
usage / piping

Details

North/south-pole adjacent geohashes are missing three of their neighbors; these will be returned as
NA_character_.

Value

list with character vector entries in the direction relative to the input geohashes indicated by
their name (e.g. value$south gives all of the southern neighbors of the input geohashes).

The order is self (if self = TRUE), southwest, south, southeast, west, east, northwest, north,
northeast (reflecting an easterly, then northerly traversal of the neighborhood).

Author(s)

Michael Chirico

References

http://geohash.org/ (Gustavo Niemeyer’s original geohash service)
Examples

```r
gh_neighbors('d7q8u4')
```

Helpers for interfacing geohashes with sp/sf objects

Description

These functions smooth the gateway between working with geohashes and geospatial information built for the major geospatial packages in R, `sp` and `sf`.

Usage

```r
gh_to_sp(geohashes)
gh_to_spdf(...)  
gh_to_sf(...)
```

```r
gh_covering(SP, precision = 6L, minimal = FALSE)
```

```r
## Default S3 method:
gh_to_spdf(geohashes, ...)

## S3 method for class 'data.frame'
gh_to_spdf(gh_df, gh_col = 'gh', ...)
```

Arguments

- `geohashes`: character vector of geohashes to be converted to polygons.
- `...`: Arguments for subsequent methods.
- `SP`: A `Spatial` object (requires `bbox` and `proj4string` methods, and `over` if `minimal` is `TRUE`).
- `precision`: integer specifying the precision of geohashes to use, same as `gh_encode`.
- `minimal`: logical; if `FALSE`, the output will have all geohashes in the bounding box of `SP`; if `TRUE`, any geohashes not intersecting `SP` will be removed.
- `gh_df`: data frame which 1) contains a column of geohashes to be converted to polygons and 2) will serve as the data slot of the resultant `SpatialPolygonsDataFrame` object.
- `gh_col`: character column name saying where the geohashes are stored in `gh_df`.

Details

`gh_to_sp` relies on the `gh_decode` function. Note in particular that this function accepts any length of geohash (geohash-6, geohash-4, etc.) and is agnostic to potential overlap, though duplicates will be caught and excluded.
gh_to_spdf.data.frame will use match.ID = FALSE in the call to SpatialPolygonsDataFrame. Please file an issue if you’d like this to be more flexible.

gh_to_sf is just a wrapper of st_as_sf around gh_to_spdf; as such it requires both sp and sf packages to work.

Value
For gh_to_sp, a SpatialPolygons object.
For gh_to_spdf, a SpatialPolygonsDataFrame object.
For gh_to_sf, a sf object.

Examples

get the neighborhood of this geohash in downtown Apia as an sp object
downtown = "2jtc5x"
apia_nbhd = unlist(gh_neighbors(downtown))
apia_sp = gh_to_sp(apia_nbhd)

all geohashes covering a random sampling within Apia:
apia_covering = gh_covering(smp <- sp::spsample(apia_sp, 10L, 'random'))
apia_sf = gh_to_sf(apia_nbhd)

utils

Geohash utilities

Description
Various common functions that arise when working often with geohashes

Usage
gh_delta(precision)

Arguments

precision integer precision level desired.

Value
Length-2 numeric vector; the first element is the latitude (y-coordinate) half-width at the input precision, the second element is the longitude (x-coordinate).

Note
Caveat coder: not much is done in the way of consistency checking since this is a convenience function. So e.g. real-valued "precision”s will give results.
Author(s)

Michael Chirico

References

http://geohash.org/ (Gustavo Niemeyer’s original geohash service)

Examples

gh_delta(6)
Index

gh_covering (gis_tools), 5
gh_decode, 2, 5
gh_delta (utils), 6
gh_encode, 3, 5
gh_neighbors, 4
gh_neighbours (gh_neighbors), 4
gh_to_sf (gis_tools), 5
gh_to_sp (gis_tools), 5
gh_to_spdf (gis_tools), 5
gis_tools, 5

sf, 5, 6
sp, 5
Spatial, 5
SpatialPolygons, 6
SpatialPolygonsDataFrame, 5, 6
st_as_sf, 6

utils, 6