Package ‘geospt’

Type Package

Title Geostatistical Analysis and Design of Optimal Spatial Sampling Networks

Version 1.0-4

Date 2024-02-19

Author Carlos Melo <cmelo@udistrital.edu.co>, Ali Santacruz, Oscar Melo <oomelom@unal.edu.co>

Maintainer Ali Santacruz <amsantac@unal.edu.co>

Depends R (>= 3.5.0), gstat, genalg, MASS, sp, minqa

Imports limSolve, fields, gsl, plyr, TeachingDemos, sgeostat, grDevices, stats, methods, graphics, utils

Description Estimation of the variogram through trimmed mean, radial basis functions (optimization, prediction and cross-validation), summary statistics from cross-validation, pocket plot, and design of optimal sampling networks through sequential and simultaneous points methods.

License GPL (>= 2)

BugReports https://github.com/amsantac/geospt/issues

URL https://github.com/amsantac/geospt

Encoding UTF-8

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2024-02-20 05:20:08 UTC

R topics documented:

geospt-package ... 2
ariari .. 3
ariprec ... 3
A set of functions for: estimation of the variogram through trimmed mean, radial basis functions (optimization, prediction and cross-validation), summary statistics from cross-validation, pocket plot, and design of optimal sampling networks through sequential and simultaneous points methods.
Author(s)
Carlos Melo <cmelo@udistrital.edu.co>, Ali Santacruz, Oscar Melo <oomelom@unal.edu.co>
Maintainer: Ali Santacruz <amsantac@unal.edu.co>

See Also
rbf, est.variograms, seqPtsOptNet, simPtsOptNet

ariari

Ariari Map.

Description
Map Basin Map. Spatial reference system: UTM 18S

Usage
data(ariari)

Format
The format is: Formal class 'SpatialPolygonsDataFrame' [package "sp"]

Examples
data(ariari)
pts <- spsample(ariari, n=25000, type="regular")
plot(pts)

ariiprec

Data from climatic stations of the Ariari River (Meta-Colombia Department)

Description
Data from climatic stations of the Ariari River (Meta-Colombia Department) associated with the rainfall variable

Usage
data(ariprec)
Format

A data frame with 18 observations on the following 6 variables:

- **Obs** a numeric vector; observation number
- **Nombre** a character vector; station name
- **x** a numeric vector; x-coordinate
- **y** a numeric vector; y-coordinate
- **ELEV** a numeric vector; Elevation above sea level
- **PRECI_TOT** a numeric vector; the target variable

Examples

data(ariprec)
summary(ariprec)

bestnet

Generate a SpatialPoints object corresponding to the best result obtained in an optimized network

Description

Generate a SpatialPoints object with the x and y coordinates corresponding to the best result obtained in an optimized network. The parameter to be passed to this function must be the result of `seqPtsOptNet` or `simPtsOptNet`.

Usage

`bestnet(optimnet)`

Arguments

- **optimnet** object of class rbga resulting from `seqPtsOptNet` or `simPtsOptNet`

Value

- a SpatialPoints object

See Also

See function `rbga` in the genalg package; for examples see `seqPtsOptNet` and `simPtsOptNet`
bp.with.outlier.label

Description
geospt internal function

Note
This function is not meant to be called by users directly

C0Sha10
Soil organic carbon database at a sampling depth of 0-10 cm

Description
Soil organic carbon database of samples taken in several soil and land cover types at La Libertad Research Center at a sampling depth of 0-10 cm

Usage
data(C0Sha10)

Format
A data frame with 122 observations on the following 10 variables:

ID ID of each sampling site
x x-coordinate of each site. Spatial reference system: UTM 18N
y y-coordinate of each site. Spatial reference system: UTM 18N
DA10 measured soil bulk density (g cm\(^{-3}\))
CO10 measured soil carbon concentration (%)
COB1r land cover at each sampling site in 2007. See details below
S_UDS soil type at each sampling site. See details below
C0Sha10 calculated total soil carbon stock (t ha\(^{-1}\)). See details below
Cor4DAidep total soil carbon stock (t ha\(^{-1}\)) corrected by soil compaction factors
CorT corrected total soil carbon stock with Box-Cox transformation applied
Details

A total of 150 samples for a 0-10 cm depth was collected and analyzed for soil bulk density and organic carbon concentration in 2007 at La Libertad Research Center in Villavicencio, Colombia. The samples were taken in soils under different land cover types: rice crops (Az), citrus crops (Ci), forest plantations (Cpf), annual crops (Ctv), grasses (P), and oil palm crops (Pl). In the soil type names, the first two letters correspond to the short name of the soil series, the lower-case letters indicate the slope class, and the number denotes the type of soil drainage.

Total soil carbon stock $COSha$ was calculated as follows (Guo & Gifford, 2002):

$$COSha = DA \times CO \times d$$

where DA is soil bulk density (g cm$^{-3}$), CO is soil organic carbon concentration (%) and d is sampling depth (cm).

Given that the data did not fit a normal distribution, a Box-Cox transformation was applied (Box & Cox, 1964). Some samples were discarded for the design of sampling networks. The complete database and description can be found in Santacruz (2010) and in Santacruz et al., (2014).

Source

References

See Also

COSha10map

Examples

data(COSha10)
str(COSha10)
Map of total soil carbon stock (t/ha) at 0-10 cm depth

Description

Map of total soil carbon stock (t ha\(^{-1}\)) at 0-10 cm depth at La Libertad Research Center. The map was obtained through ordinary kriging interpolation. Spatial reference system: UTM 18N

Usage

data(COSha10map)

Format

The format is: Formal class 'SpatialPixelsDataFrame' [package "sp"]

Source

References

See Also

COSha10

Examples

data(COSha10map)
data(lalib)
summary(COSha10map)
l1 = list("sp.polygons", lalib)
spplot(COSha10map, "var1.pred", main="Soil carbon stock (t/ha) at 0-10 cm depth", col.regions=bpy.colors(100), scales = list(draw =TRUE), xlab ="East (m)", ylab = "North (m)", sp.layout=list(l1))
Soil organic carbon database at a sampling depth of 0-30 cm

Description

Soil organic carbon database of samples taken in several soil and land cover types at La Libertad Research Center at a sampling depth of 0-30 cm

Usage

data(COSha30)

Format

A data frame with 118 observations on the following 10 variables:

- **ID**: ID of each sampling site
- **x**: x-coordinate of each site. Spatial reference system: UTM 18N
- **y**: y-coordinate of each site. Spatial reference system: UTM 18N
- **DA30**: measured soil bulk density (g cm$^{-3}$)
- **CO30**: measured soil carbon concentration (%)
- **COB1r**: land cover at each sampling site in 2007. See details below
- **S_UDS**: soil type at each sampling site. See details below
- **COSha30**: calculated total soil carbon stock (t ha$^{-1}$). See details below
- **Cor4DAidep**: total soil carbon stock (t ha$^{-1}$) corrected by soil compaction factors
- **CorT**: corrected total soil carbon stock with Box-Cox transformation applied

Details

A total of 150 samples for a 0-30 cm depth was collected and analyzed for soil bulk density and organic carbon concentration in 2007 at La Libertad Research Center in Villavicencio, Colombia. The samples were taken in soils under different land cover types: rice crops (Az), citrus crops (Ci), forest plantations (Cpf), annual crops (Ctv), grasses (P), and oil palm crops (Pl). In the soil type names, the first two letters correspond to the short name of the soil series, the lower-case letters indicate the slope class, and the number denotes the type of soil drainage. Total soil carbon stock $COSha$ was calculated as follows (Guo & Gifford, 2002):

$$COSha = DA \times CO \times d$$

where DA is soil bulk density (g cm$^{-3}$), CO is soil organic carbon concentration (%) and d is sampling depth (cm).

Given that the data did not fit a normal distribution, a Box-Cox transformation was applied (Box & Cox, 1964). Some samples were discarded for the design of sampling networks. The complete database and description can be found in Santacruz (2010) and in Santacruz et al., (2014).
Source

References

See Also

COSha30map

Examples

data(COSha30)
str(COSha30)

COSha30map

Map of total soil carbon stock (t/ha) at 0-30 cm depth

Description

Map of total soil carbon stock (t ha\(^{-1}\)) at 0-30 cm depth at La Libertad Research Center. The map was obtained through ordinary kriging interpolation. Spatial reference system: UTM 18N

Usage

data(COSha30map)

Format

The format is: Formal class ’SpatialPixelsDataFrame’ [package "sp"]

Source

References

See Also

COSha30

Examples

data(COSha30map)
data(lalib)
summary(COSha30map)
l1 = list("sp.polygons", lalib)
spplot(COSha30map, "var1.pred", main="Soil carbon stock (t/ha) at 0-30 cm depth",
col.regions=bpy.colors(100), scales=list(draw=TRUE), xlab="East (m)",
ylab="North (m)", sp.layout=list(l1))

criteria.cv

Cross-validation summaries

Description

Generate a data frame of statistical values associated with cross-validation

Usage

criteria.cv(m.cv)

Arguments

m.cv data frame containing: the coordinates of data, prediction columns, prediction variance of cross-validation data points, observed values, residuals, zscore (residual divided by kriging standard error), and fold. If the rbf.tcv function is used, the prediction variance and zscore (residual divided by standard error) will have NA’s

Value

data frame containing: mean prediction errors (MPE), average kriging standard error (AKSE), root-mean-square prediction errors (RMSPE), mean standardized prediction errors (MSPE), root-mean-square standardized prediction errors (RMSSPE), mean absolute percentage prediction errors (MAPPE), coefficient of correlation of the prediction errors (CCPE), coefficient of determination (R2) and squared coefficient of correlation of the prediction errors (pseudoR2)
Examples

library(gstat)
data(meuse)
coordinates(meuse) <- ~x+y
m <- vgm(.59, "Sph", 874, .04)

leave-one-out cross validation:
out <- krig.cv(log(zinc)-1, meuse, m, nmax = 40)
criterio.cv(out)

multiquadratic function
data(preci)
coordinates(preci) <- ~x+y

predefined eta
tab <- rbf.tcv(prec~x+y, preci, eta=1.488733, rho=0, n.neigh=9, func="M")
criterio.cv(tab)

criterio.cv

Cross-validation summaries

Description

Generate a data frame of statistical values associated with cross-validation

Usage

criterio.cv(m.cv)

Arguments

m.cv data frame containing: the coordinates of data, prediction columns, prediction variance of cross-validation data points, observed values, residuals, zscore (residual divided by kriging standard error), and fold. If the rbf.tcv function is used, the prediction variance and zscore (residual divided by standard error) will have NA’s

Value

data frame containing: mean prediction errors (MPE), average kriging standard error (ASEPE), root-mean-square prediction errors (RMSPE), mean standardized prediction errors (MSPE), root-mean-square standardized prediction errors (RMSSPE), mean absolute percentage prediction errors (MAPPE), coefficient of correlation of the prediction errors (CCPE), coefficient of determination (R2) and squared coefficient of correlation of the prediction errors (pseudoR2)
Examples

```r
library(gstat)
data(meuse)
coordinates(meuse) <- ~x+y
m <- vgm(.59, "Sph", 874, .04)

# leave-one-out cross validation:
out <- krige.cv(log(zinc)~1, meuse, m, nmax = 40)
criterio.cv(out)

# multiquadratic function
data(preci)
coordinates(preci) <- ~x+y

# predefined eta
tab <- rbf.tcv(prec~x+y, preci, eta=1.488733, rho=0, n.neigh=9, func="M")
criterio.cv(tab)
```

est.variograms

Variogram Estimator

Calculate empirical variogram estimates. An object of class variogram contains empirical variogram estimates which are generated from a point object and a pair object. A variogram object is stored as a data frame containing seven columns: lags, bins, classic, robust, med, trim and n. The length of each vector is equal to the number of lags in the pair object used to create the variogram object, say l. The lags vector contains the lag numbers for each lag, beginning with one (1) and going to the number of lags (l). The bins vector contains the spatial midpoint of each lag. The classic, robust, med and trim mean vectors contain: the classical, robust, median, and trimmed mean, respectively, which are given, respectively, by (see Cressie, 1993, p. 75)

Classical

\[
\gamma_c(h) = \frac{1}{n} \sum_{(i,j) \in N(h)} (z(x_i) - z(x_j))^2
\]

Robust

\[
\gamma_m(h) = \frac{\left(\frac{1}{n} \sum_{(i,j) \in N(h)} \left(\sqrt{|z(x_i) - z(x_j)|} \right)^4 \right)}{0.457 + \frac{0.494}{n}}
\]

Median

\[
\gamma_{me}(h) = \frac{\left(\text{median}_{(i,j) \in N(h)} \left(\sqrt{|z(x_i) - z(x_j)|} \right)^4 \right)}{0.457 + \frac{0.494}{|N(h)|}}
\]

And trimmed mean

\[
\gamma_{tm}(h) = \frac{\left(\text{trimmed.mean}_{(i,j) \in N(h)} \left(\sqrt{|z(x_i) - z(x_j)|} \right)^4 \right)}{0.457 + \frac{0.494}{|N(h)|}}
\]

The n vector contains the number |N(h)| of pairs of points in each lag N(h).
est.variograms

Usage

est.variograms(point.obj, pair.obj, a1, a2, trim)

Arguments

point.obj a point object generated by point()
pair.obj a pair object generated by pair()
a1 a variable to calculate semivariogram for
a2 an optional variable name, if entered cross variograms will be created between a1 and a2
trim percent of trimmed mean

Value

A variogram object:

lags vector of lag identifiers
bins vector of midpoints of each lag
classic vector of classic variogram estimates for each lag
robust vector of robust variogram estimates for each lag
med vector of median variogram estimates for each lag
trimmed.mean vector of trimmed mean variogram estimates for each lag
n vector of the number of pairs in each lag

Note

Based on the est.variogram function of the sgeostat package

References

See Also

point, pair
Examples

```r
library(sgeostat, pos=which(search()=="package:gstat")+1)
data(maas)
maas.point <- point(maas)
maas.pair <- pair(maas.point, num.lags=24, maxdist=2000)
maas.v <- est.variograms(maas.point,maas.pair,'zinc',trim=0.1)
maas.v
```

Description

geospt internal function

Note

This function is not meant to be called by users directly

graph.idw

Graph that describes the behavior of the optimized p smoothing parameter.

Description

Function for plotting the RMSPE for several values of the p smoothing parameter with the same dataset. A curve is fitted to the points, and then the optimal p that provides the smallest RMSPE is determined from the curve, by the optimize function from the stats package.

Usage

```r
graph.idw(formula, data, locations, np, p.dmax, P.T=NULL, nmax=Inf, nmin=0, pleg, progress=F, iter, ...)
```

Arguments

- `formula`: formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name `z`, for a idw detrended use `z~1`
- `data`: SpatialPointsDataFrame: should contain the dependent variable, independent variables, and coordinates.
- `locations`: object of class Spatial, or (deprecated) formula defines the spatial data locations (coordinates) such as `-x+y`
- `np`: number of points, where the idw is calculated
graph.idw

Parameters

- **p.dmax**: maximum value of the range of the p parameter that will be evaluated by the `optimize` function.
- **P.T**: logical. Print Table (TRUE) or not (FALSE). Default P.T=NULL.
- **nmax**: maximum number of nearest observations that should be used for an \(idw\) prediction, where nearest is defined in terms of the spatial locations. By default, all observations are used.
- **nmin**: minimum number of nearest observations that should be used for an \(idw\) prediction, where nearest is defined in terms of the spatial locations. See `krige`.
- **pleg**: the x and y co-ordinates to be used to position the legend. They can be specified by keyword or in any way which is accepted by `xy.coords`, by default pleg=“topright.”
- **progress**: logical. Use TRUE to see the percentage of progress of the process and FALSE otherwise. Default progress=FALSE.
- **iter**: The maximum allowed number of function evaluations.
- **...**: further parameters to be passed to the minimization functions `optimize` or `bobyqa`, typically arguments of the type `control()` which control the behavior of the minimization algorithm. See documentation about the selected minimization function for further details.

Value

Returns a graph that describes the behavior of the optimized p parameter associated with the RM-SPE, and a table of values associated with the graph including optimal smoothing p parameter, which generates the lowest RMSPE.

References

Examples

```r
## Not run:
data(ariari)
data(ariprec)
# p optimization
gp <- graph.idw(PRECI_TOT ~ 1, ~x+y, data=ariprec, np=50, p.dmax=4, nmax=15, 
nmin=15,pleg = "center", progress=T)
gp
gp$p

library(sp)
library(fields)
plot(ariari)
gridAri <- spsample(ariari,20000,"regular")
plot(gridAri)

idw.p <- idw(PRECI_TOT ~ 1, ~ x+y, ariprec, gridAri, nmax=15, nmin=15, idp=2)
```
pal2 <- colorRampPalette(c("snow3", "royalblue1", "blue4"))

Inverse Distance Interpolations Precipitation Weighted (P = 2)
p1 <- spplot(idw.p[1], col.regions=pal2(100), cuts =60, scales = list(draw =T),
 xlab ="East (m)", ylab = "North (m)",
 main = "", auto.key = F)

split.screen(rbind(c(0, 1,0,1), c(1,1,0,1)))
split.screen(c(1,2), screen=1)-> ind
screen(ind[1])
p1
screen(ind[2])
image.plot(legend.only=TRUE, legend.width=0.5, col=pal2(100),
 smallplot=c(0.6,0.68, 0.5,0.75),
 zlim=c(min(idw.p$var1.pred),max(idw.p$var1.pred)),
 axis.args = list(cex.axis = 0.7))
close.screen(all=TRUE)

End(Not run)

class(graph.rbf) <- 'graph.rbf'

graph.rbf

Graph that describes the behavior of the optimized eta and rho parameters, associated with a radial basis function

Description

Function for plotting the RMSPE for several values of the smoothing parameter eta with the same dataset. A curve is fitted to the points, and then the optimal eta that provides the smallest RMSPE is determined from the curve, by the optimize function from the stats package.

Usage

graph.rbf(formula, data, eta.opt, rho.opt, n.neigh, func, np, x0, eta.dmax, rho.dmax, P.T, iter, ...)

Arguments

formula formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \(z\), for a rbf detrended use \(z\sim f\); for a rbf with trend, suppose \(z\) is linearly dependent on \(x\) and \(y\), use the formula \(z\sim x+y\) (linear trend).

data SpatialPointsDataFrame: should contain the dependent variable, independent variables, and coordinates.

eta.opt logical, indicating whether the parameter \(eta\) should be regarded as fixed (eta.opt = FALSE) or should be estimated (eta.opt = TRUE)

rho.opt logical, indicating whether the parameter \(rho\) should be regarded as fixed (rho.opt = FALSE) or should be estimated (rho.opt = TRUE)
n.neigh number of nearest observations that should be used for a rbf prediction, where nearest is defined in terms of the spatial locations

func function to be optimized. The following radial basis function model types are currently available: gaussian "GAU", exponential "EXPON", trigonometric "TRI", thin plate spline "TPS", completely regularized spline "CRS", spline with tension "ST", inverse multiquadratic "IM", and multiquadric "M", are currently available

np number of points, where the radial basis function is calculated

x0 starting point for searching the optimum. Defaults to c(0.5, 0.5), eta and rho respectively. Use this statement only if eta and rho are equal to TRUE.

eta.dmax maximum value of the range of the eta parameter that will be evaluated by the optimize function

rho.dmax maximum value of the range of the rho parameter that will be evaluated by the optimize function

P.T logical. Print Table (TRUE) or not (FALSE). Default P.T=NULL.

iter The maximum allowed number of function evaluations.

... further parameters to be passed to the minimization functions optimize or bobyqa, typically arguments of the type control() which control the behavior of the minimization algorithm. See documentation about the selected minimization function for further details.

Value

Returns a graph that describes the behavior of the optimized eta or rho parameter, and a table of values associated with the graph including optimal smoothing eta or rho parameters. If both eta and rho are FALSE simultaneously, then the function returns a list with the best value obtained from the combinations smoothing eta and rho parameters and a lattice plot of class "trellis" with RMSPE pixel values associated with combinations of eta and rho parameters. Finally if both eta and rho are TRUE, the function will return a list with the best combination of values of the smoothing eta or rho parameters and the RMSPE associated with these.

References

Examples

data(preci)
Not run:
coordinates(preci)<-~x+y
optimizing eta
graph.rbf(prec~1, preci, eta.opt=TRUE, rho.opt=FALSE, n.neigh=9, func="TPS", np=40, eta.dmax=0.2, P.T=TRUE)
optimizing rho
graph.rbf(prec~x+y, preci, eta.opt=FALSE, rho.opt=TRUE, n.neigh=9, func="M", np=20, rho.dmax=2, P.T=TRUE)
optimizing eta and rho
tps.lo <- graph.rbf(prec~1, preci, eta.opt=TRUE, rho.opt=TRUE, n.neigh=9, func="TPS", eta.dmax=2, rho.dmax=2, x0=c(0.1,0.1), iter=40)
tps.lo$Opt # best combination of eta and rho obtained

other optimization options
opt.u <- uobyqa(c(0.1,0.1), rbf.cv1, control = list(maxfun=40), formula=prec~1, data=preci, n.neigh=9, func="TPS")

opt.n <- newuoa(c(0.1,0.1), rbf.cv1, control = list(maxfun=40), formula=prec~1, data=preci, n.neigh=9, func="TPS")

lattice of RMSPE values associated with a range of eta and rho, without optimization
tps.l <- graph.rbf(prec~1, preci, eta.opt=FALSE, rho.opt=FALSE, n.neigh=9, func="TPS", np=10, eta.dmax=2, rho.dmax=2)
tps.l$opt.table # best combination of eta and rho obtained from lattice
tps.ls$pplot # lattice of RMSPE

End(Not run)

idw.cv
idw cross validation leave-one-out

Description

Generate the RMSPE value, which is given by the idw function with p smoothing parameter.

Usage

`idw.cv(formula, locations, data, nmax = Inf, nmin = 0, p = 2, progress=FALSE, ...)`

Arguments

- **formula**: formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name z, for a idw detrended use `z~1`
- **data**: SpatialPointsDataFrame: should contain the dependent variable, independent variables, and coordinates.
- **locations**: object of class Spatial, or (deprecated) formula defines the spatial data locations (coordinates) such as ~x+y
- **nmax**: number of nearest observations that should be used for a idw prediction, where nearest is defined in terms of the spatial locations. By default, all observations are used.
- **nmin**: if the number of nearest observations within distance maxdist is less than nmin, a missing value will be generated; see maxdist.
- **p**: value of smoothing parameter; we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation. Default is 2.
- **progress**: logical. Use TRUE to see the percentage of progress of the process and FALSE otherwise). Default progress=FALSE.
- **...**: Other arguments passed to idw
Value

returns the RMSPE value

See Also

idw

Examples

data(preci)
idw.cv(prec~1, ~x+y, preci, nmax=9, nmin=9, p=2, progress=TRUE)

lalib Map of boundary enclosing La Libertad Research Center

Description

Map of boundary enclosing La Libertad Research Center

Usage

data(lalib)

Format

The format is: Formal class 'SpatialPolygonsDataFrame' [package "sp"]

Details

Map of boundary enclosing La Libertad Research Center. Spatial reference system: UTM 18N

Source

References

Examples

data(lalib)
summary(lalib)
plot(lalib)

network.design
Generating AKSE associated with a conditioned network design

Description
Generates a sampling network for a given sampling distance or type (configuration), and calculates the average kriging standard error (AKSE) associated with the spatial configuration for a given predefined variogram

Usage

network.design(formula, vgm.model, xmin, xmax, ymin, ymax, npoint.x, npoint.y, npoints, boundary=NULL, type, ...)

Arguments

formula formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name z, for ordinary and simple kriging use the formula z~1; for simple kriging also define beta (see below); for universal kriging, suppose z is linearly dependent on x and y, use the formula z~x+y
vgm.model variogram model of dependent variable (or its residuals), defined by a call to vgm or fit.variogram
npoint.x number of points to generate on the x-axis
npoint.y number of points to generate on the y-axis
npoints (approximate) sample size inside (shapefile) border
xmin minimum x-coordinate of the study area.
ymin minimum y-coordinate of the study area.
xmax maximum x-coordinate of the study area.
ymax maximum y-coordinate of the study area.
boundary SpatialPolygons or SpatialPolygonsDataFrame object
type character; "random" for completely spatial random; "regular" for regular (systematically aligned) sampling; "stratified" for stratified random (one single random location in each "cell"); "nonaligned" for nonaligned systematic sampling (nx random y coordinates, ny random x coordinates); "hexagonal" for sampling on a hexagonal lattice; "cluustered" for clustered sampling; "Fibonacci" for Fibonacci sampling on the sphere (see references). By default type ="regular".
...

further arguments will be passed of the krige and spsample functions.
network.design

Value

returns the AKSE value associated with the spatial distribution of points and the kriging method used.

References

See Also

krige, krige.cv, spsample, point.in.polygon, sample

Examples

Not run:
regular grid 10x10
vgmok <- vgm(112.33, "Sph", 4.3441, 0)
vgmsk <- vgm(74.703, "Sph", 3.573, 0)
vgmuk <- vgm(53.064, "Sph", 2.8858, 0)
vgmuk2 <- vgm(19.201, "Sph", 1.5823, 0)

network: ordinary kriging (without boundary)
net1.ok <- network.design(z~1, vgmok, xmin=0, xmax=10, ymin=0, ymax=10, npoint.x=10, npoint.y=10, nmax=6)
net2.ok <- network.design(z~1, vgmok, xmin=0, xmax=10, ymin=0, ymax=10, npoint.x=20, npoint.y=20, nmax=6)

it's worth noting that the variograms are different in each kriging

network: simple kriging (without boundary)
net1.sk <- network.design(z~1, vgmok, xmin=0, xmax=10, ymin=0, ymax=10, npoint.x=10, npoint.y=10, nmax=6, beta=2)
net2.sk <- network.design(z~1, vgmok, xmin=0, xmax=10, ymin=0, ymax=10, npoint.x=20, npoint.y=20, nmax=6, beta=2)

network: universal kriging, second order trend (without boundary)
net1.uk <- network.design(z~x + y + x*y + I(x^2)+I(y^2), vgmuk, xmin=0, xmax=10, ymin=0, ymax=10, npoint.x=10, npoint.y=10, nmax=8)
net2.uk <- network.design(z~x + y + x*y + I(x^2)+I(y^2), vgmuk2, xmin=0, xmax=10, ymin=0, ymax=10, npoint.x=20, npoint.y=20, nmax=8)

Creating the grid with the prediction and plotting points
library(geoR)
data(ca20)
Sr1 <- Polygon(ca20$boundaries)
Polygons = Polygons(list(Sr1), "s1")
vgmok.ca <- vgm(112.33, "Sph", 244.9, 0)
vgmsk.ca <- vgm(100, "Sph", 150.2, 0)
vgmuk.ca <- vgm(85.57, "Sph", 110.5, 0)
vgmuk2.ca <- vgm(62.14, "Sph", 89.7, 0)

network: ordinary kriging (with boundary)
pocket.plot graphs the probability or standardized variance in the directions north-south or east-west

Description

The pocket-plot (so named because of its use in detecting pockets of non-stationarity) is a technique necessary to identify a localized area that is atypical with respect to the stationarity model. It is built to exploit the spatial nature of the data through the coordinates of rows and columns (east "X" and north "Y", respectively).

Usage

pocket.plot(data, graph, X, Y, Z, Iden=F, ...)

Arguments

data data frame should contain the dependent variable and coordinates X and Y, data must be gridded

graph type of graph associated with the probability or standardized variance plot pocket in the directions north-south or east-west: Probabilities PocketPlot by rows, ie horizontal "south-north" (PPR), Probabilities PocketPlot by columns, ie vertical "east-west" (PPC), PocketPlot of variance by rows, ie horizontal "south-north" (PVR) and PocketPlot of variance by columns, ie vertical "east-west" (PVC)

X defined by the spatial coordinates

Y defined by the spatial coordinates

Z regionalized variable with which you construct the statistics associated with the probability or standardized variance, these are plotted in the so-called pocket plot

Iden logical. The users can identify the points by themselves, TRUE or FALSE. FALSE by default is used.

... arguments to be passed to ...
Details

For identifying outliers, this function uses a modification of the boxplot.with.outlier.label function, available at https://www.r-statistics.com/2011/01/how-to-label-all-the-outliers-in-a-boxplot/

Value

returns (or plots) the pocket plot

References

Examples

Core measurements (in % coal ash) at reoriented locations.
Units on the vertical axis are % coal ash.

These data was found in mining samples originally reported by
Gomez and Hazen (1970), and later used by Cressie (1993).

These data are available in the sp and gstat packages

library(gstat)
data(coalash)
plot(coalash[,1:2], type="n", xlab="x", ylab="y")
text(coalash$x,coalash$y,coalash$coalash,cex=0.6)

Pocket plot in the north-south direction.
Units on the vertical axis are root (% coal ash)

Plot generated with the function pocket.plot
Clearly rows 2, 6, and 8 are atypical

This serves as verification that these rows are potentially problematic

Analysis of local stationarity in probabilities of the coal in south-north direction
pocket.plot(coalash, "PPR", coalash$x, coalash$y, coalash$coalash, FALSE)

Analysis of local stationarity in variance of the coal in south-north direction
pocket.plot(coalash, "PVR", coalash$x, coalash$y, coalash$coalash, FALSE)

Analysis of local stationarity in probabilities of the coal in east-west direction
pocket.plot(coalash, "PPC", coalash$x, coalash$y, coalash$coalash, FALSE)

Analysis of local stationarity in variance of the coal in east-west direction
prec

Empirical data related to rainfall

Description
Empirically generated data in 10 arbitrary locations associated with the rainfall variable

Usage
data(prec)

Format
A data frame with 10 observations on the following 4 variables:

<table>
<thead>
<tr>
<th>Obs</th>
<th>a numeric vector; observation number</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>a numeric vector; x-coordinate; unknown reference</td>
</tr>
<tr>
<td>y</td>
<td>a numeric vector; y-coordinate; unknown reference</td>
</tr>
<tr>
<td>prec</td>
<td>a numeric vector; the target variable</td>
</tr>
</tbody>
</table>

Examples
data(prec)
summary(prec)

rbf

gaussian, exponential, trigonometric, thin plate spline, inverse multiquadratic, and multiquadratic radial basis function prediction

Description
Function for gaussian (GAU), exponential (EXPON), trigonometric (TRI), thin plate spline (TPS), completely regularized spline (CRS), spline with tension (ST), inverse multiquadratic (IM), and multiquadratic (M) radial basis function (rbf), where rbf is in a local neighbourhood

Usage
rbf(formula, data, eta, rho, newdata, n.neigh, func)
Arguments

formula: A formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \(z \), for a \(\text{rbf} \) detrended use \(z \sim 1 \), for a \(\text{rbf} \) with trend, suppose \(z \) is linearly dependent on \(x \) and \(y \), use the formula \(z \sim x+y \) (linear trend).

data: A SpatialPointsDataFrame: should contain the dependent variable, independent variables, and coordinates.

eta: The optimal smoothing parameter, we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation.

rho: The optimal parameter robustness, we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation. eta and rho parameters can be optimized simultaneously, through the `bobyqa` function from `nloptr` or `minqa` packages.

newdata: A data frame or spatial object with prediction/simulation locations; should contain attribute columns with the independent variables (if present) and (if locations is a formula) the coordinates with names, as defined in locations where you want to generate new predictions.

n.neigh: The number of nearest observations that should be used for a \(\text{rbf} \) prediction, where nearest is defined in terms of the spatial locations.

func: The radial basis function model type, e.g. "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" and "M", are currently available.

Details

\(\text{rbf} \) function generates individual predictions from Gaussian (GAU), exponential (EXPON), trigonometric (TRI) thin plate spline (TPS), completely regularized spline (CRS), spline with tension (ST), inverse multiquadratic (IM), and multiquadratic (M) functions.

Value

Attributes columns contain coordinates, predictions, and the variance column contains NA's.

Examples

data(preci)
coordinates(preci) <- ~x+y

prediction case: one point
point <- data.frame(3,4)
names(point) <- c("x","y")
coordinates(point) <- ~x+y
rbf(prec~x+y, preci, eta=0.1460814, rho=0, newdata=point, n.neigh=10, func="TPS")

prediction case: a grid of points
puntos<-.expand.grid(x=seq(min(preci$x),max(preci$x),0.05), y=seq(min(preci$y), max(preci$y),0.05))
coordinates(puntos) <- ~x+y
pred.rbf <- rbf(prec~x+y, preci, eta=0.1460814, rho=0, newdata=puntos, n.neigh=10, func="TPS")
coordinates(pred.rbf) = c("x", "y")
gridded(pred.rbf) <- TRUE

show prediction map
spplot(pred.rbf["var1.pred"], cuts=40, col.regions=bpy.colors(100),
main = "rainfall map TPS", key.space=list(space="right", cex=0.8))

rbf.cv
rbf cross validation leave-one-out

Description

Generate the RMSPE value, which is given by the radial basis function with smoothing parameter \(\eta\) and robustness parameter \(\rho\).

Usage

`rbf.cv(formula, data, eta, rho, n.neigh, func)`

Arguments

- **formula**: formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \(z\), for a \(rbf\) detrended use \(z^{-1}\), for a \(rbf\) with trend, suppose \(z\) is linearly dependent on \(x\) and \(y\), use the formula \(z^{-x+y}\) (linear trend).
- **data**: `SpatialPointsDataFrame`: should contain the dependent variable, independent variables, and coordinates.
- **eta**: the optimal smoothing parameter; we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation.
- **rho**: value of optimal robustness parameter; we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation. \(eta\) and \(rho\) parameters can be optimized simultaneously, through the `bobyqa` function from `nloptr` or `minqa` packages.
- **n.neigh**: number of nearest observations that should be used for a \(rbf\) prediction, where nearest is defined in terms of the spatial locations.
- **func**: radial basis function model type, e.g. "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" and "M", are currently available.

Value

returns the RMSPE value

See Also

`rbf`
rbf.cv1

Examples

data(preci)
coordinates(preci)<-~x+y
rbf.cv(prec~1, preci, eta=0.2589, rho=0, n.neigh=9, func="M")

rbf.cv1 Generates a RMSPE value, result of cross validation leave-one-out

Description

Generate the RMSPE value, which is given by the radial basis function with smoothing parameter \textit{eta} and robustness parameter \textit{rho}.

Usage

\texttt{rbf.cv1(param, formula, data, n.neigh, func)}

Arguments

\begin{description}
 \item[\texttt{param}] vector starting points (\textit{eta} and \textit{rho} respectively) for searching the \textit{RMSPE} optimum.
 \item[\texttt{formula}] formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \textit{z}, for a \textit{rbf} detrended use \texttt{z~I}, for a \textit{rbf} with trend, suppose \textit{z} is linearly dependent on \textit{x} and \textit{y}, use the formula \texttt{z~x+y} (linear trend).
 \item[\texttt{data}] \texttt{SpatialPointsDataFrame}: should contain the dependent variable, independent variables, and coordinates.
 \item[\texttt{n.neigh}] number of nearest observations that should be used for a \textit{rbf} prediction, where nearest is defined in terms of the spatial locations
 \item[\texttt{func}] radial basis function model type, e.g. "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" and "M", are currently available
\end{description}

Value

returns the RMSPE value

See Also

\texttt{rbf}
Examples

```r
## Not run:
data(preci)
coordinates(preci) <- ~x+y
bobyqa(c(0.5, 0.5), rbf.cv1, lower=c(1e-05,0), upper=c(2,2), formula=prec~x+y, data=preci,
n.neigh=9, func="TRI")
# obtained with the optimal values previously estimated
rbf.cv1(c(0.2126191,0.1454171), prec~x+y, preci, n.neigh=9, func="TRI")
## End(Not run)
```

RBF.phi

radial basis function evaluation

Description

generate the value associated with radial basis functions; gaussian (GAU), exponential (EXPON),
trigonometric (TRI), thin plate spline (TPS), completely regularized spline (CRS), spline with ten-
sion (ST), inverse multiquadratic (IM), and multiquadratic (M)

Usage

```r
RBF.phi(distance, eta, func)
```

Arguments

- `distance` corresponds to the Euclidean distance between two points in space
- `eta` the optimal smoothing parameter is found by minimizing the root-mean-square
 prediction errors using cross-validation
- `func` radial basis function model type, e.g. "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" and "M", are currently available

Value

value obtained from the radial basis function generated with a distance, a `eta` smoothing parameter,
and a function "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" or "M"

Examples

```r
data(preci)
d1 <- dist(rbind(preci[1,], preci[2,]))
RBF.phi(distance=d1, eta=0.5, func="TPS")
```
Description

Generates a table with the results of the evaluation of radial basis functions (rbf): gaussian (GAU), exponential (EXPON), trigonometric (TRI), thin plate spline (TPS), completely regularized spline (CRS), spline with tension (ST), inverse multiquadratic (IM), and multiquadratic (M) from the leave-one-out cross validation method.

Usage

`rbf.tcv(formula, data, eta, rho, n.neigh, func)`

Arguments

- `formula` formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name `z`, for a rbf detrended use `z~1`, for a rbf with trend, suppose `z` is linearly dependent on `x` and `y`, use the formula `z~x+y` (linear trend).
- `data` SpatialPointsDataFrame: should contain the dependent variable, independent variables, and coordinates.
- `eta` the optimal smoothing parameter; we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation
- `rho` value of optimal parameter robustness; we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation. `eta` and `rho` parameters can be optimized simultaneously, through the `bobyqa` function from `nloptr` or `minqa` packages
- `n.neigh` number of nearest observations that should be used for a rbf prediction, where nearest is defined in terms of the spatial locations
- `func` radial basis function model type, e.g. "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "MI" and "M", are currently available

Details

Leave-one-out cross validation (LOOCV) visits a data point, predicts the value at that location by leaving out the observed value, and proceeds with the next data point. The observed value is left out because rbf would otherwise predict the same value.

Value

Data frame contain the data coordinates, prediction columns, observed values, residuals, the prediction variance, zscore (residual divided by standard error) which left with NA's, and the fold column which is associated to cross-validation count. Prediction columns and residuals are obtained from cross-validation data points.
samplePts

See Also

rbf

Examples

data(preci)
coordinates(preci)<-x+y
rbf.tcv(prec~x+y, preci, eta=0.1460814, rho=0, n.neigh=9, func="TPS")

Description

sample location points within a square area, a grid, a polygon, or on a spatial line, using regular or random sampling methods. The function spsample from the package sp is used iteratively to find exactly n sample locations

Usage

samplePts(x, n, type, ...)

Arguments

x Spatial object; see the sp package for details
n exact sample size
type character; "random" for completely spatial random; "regular" for regular (systematically aligned) sampling; "stratified" for stratified random (one single random location in each "cell"); "nonaligned" for nonaligned systematic sampling (nx random y coordinates, ny random x coordinates); "hexagonal" for sampling on a hexagonal lattice; "clustered" for clustered sampling; "Fibonacci" for Fibonacci sampling on the sphere. See the sp package for details
...
other arguments to be passed to spsample

Value

an object of class SpatialPoints-class

See Also

See spsample in the sp package
Examples

data(lalib)
hexPts <- samplePts(lalib, 5, "hexagonal")
plot(lalib, xlim=c(bbox(lalib)[1], bbox(lalib)[3]), ylim=c(bbox(lalib)[2], bbox(lalib)[4]))
plot(hexPts, add=TRUE)
Not run:
randomPts <- samplePts(lalib, 5, "random")
plot(lalib, xlim=c(bbox(lalib)[1], bbox(lalib)[3]), ylim=c(bbox(lalib)[2], bbox(lalib)[4]))
plot(randomPts, add=TRUE)
End(Not run)

seqPtsOptNet

Design of optimal sampling networks through the sequential points method

Description

Search for the optimum location of one additional point to be added to an initial network, minimizing the average standard error of kriging through a genetic algorithm. It takes, as input for the optimization, the minimum and maximum values of the coordinates that enclose the study area. This function uses previous samples information to direct additional sampling. The location of the new point is searched randomly.

Usage

seqPtsOptNet(formula, loc=NULL, data, fitmodel, BLUE=FALSE, n=1, prevSeqs=NULL, popSize, generations, xmin, ymin, xmax, ymax, plotMap=FALSE, spMap=NULL, ...)

Arguments

formula formula that defines the interpolation method to be used. In this parameter, a dependent variable is defined as a linear model of independent variables. Suppose the dependent variable has name z, for ordinary and simple kriging use the formula z~1; for simple kriging also define beta; for universal kriging, suppose z is linearly dependent on x and y, use the formula z~x+y. See the gstat package for details
loc object of class Spatial, or (deprecated) formula that defines the spatial data locations (coordinates) such as ~x+y; see the gstat package for details
data data frame containing the dependent variable, independent variables, and coordinates; see the gstat package for details
fitmodel variogram model of dependent variable (or its residuals), defined by a call to vgm or fit.variogram; see the gstat package for details
BLUE logical; if TRUE return the BLUE trend estimates only, if FALSE return the BLUP predictions (kriging); see `predict.gstat` in the gstat package for details

n by default, set to 1 for the sequential points method

prevSeqs if NULL, the function finds the first optimum sequential point. Otherwise, an object of class SpatialPoints containing optimum points previously found must be provided

popSize population size; see the genalg package for details

generations number of iterations. Usually, hundreds or thousands are required. See the genalg package for details

xmin minimum x-coordinate of the study area

ymin minimum y-coordinate of the study area

xmax maximum x-coordinate of the study area

ymax maximum y-coordinate of the study area

plotMap logical; if TRUE, the optimized spatial locations of additional points are plotted

spMap an object of class Spatial; it must be provided if plotMap is set to TRUE

... other arguments to be passed to gstat or rbga

Value

an object of class rbga containing the population and the evaluation of the objective function for each chromosome in the last generation, the best and mean evaluation value in each generation, and additional information

References

See Also

See rbga in the genalg package and krig in the gstat package

Examples

```r
## Not run:
## Load data
data(COSha10)
data(COSha10map)
data(lalib)
```
Calculate the sample variogram for data, generate the variogram model and fit ranges and/or sills from the variogram model to the sample variogram.

```r
ve <- variogram(CorT ~ 1, loc = ~x+y, data = COSha10, width = 230.3647)
P0I <- 0.0005346756; RAN <- 1012.6411; NUG <- 0.0005137079
m.esf <- vgm(P0I, "Sph", RAN, NUG)
(m.f.esf <- fit.variogram(ve, m.esf))
```

Optimize the location of the first additional point.

Only 15 generations are evaluated in this example (using ordinary kriging).

Users can visualize how the location of the additional point is optimized if plotMap is set to TRUE.

```r
old.par <- par(no.readonly = TRUE)
par(ask=FALSE)
optpt <- seqPtsOptNet(CorT ~ 1, loc = ~x+y, COSha10, m.f.esf, popSize=30, generations=15, xmin=bbox(lalib)[1], ymin=bbox(lalib)[2], xmax=bbox(lalib)[3], ymax=bbox(lalib)[4], plotMap=TRUE, spMap=lalib)
par(old.par)
```

Summary of the genetic algorithm results.

```r
summary(optpt, echo=TRUE)
```

Graph of best and mean evaluation value of the objective function (average standard error) along generations.

```r
plot(optpt)
```

Find and plot the best set of additional points (best chromosome) in the population in the last generation.

```r
(bnet1 <- bestnet(optpt))
l1 = list("sp.polygons", lalib)
l2 = list("sp.points", bnet1, col="green", pch="*", cex=5)
spplot(COSha10map, "var1.pred", main="Location of the optimized point",
       col.regions=bpy.colors(100), scales = list(draw =TRUE), xlab ="East (m)",
       ylab = "North (m)", sp.layout=list(l1,l2))
```

Average standard error of the optimized sequential point.

```r
min(optpt$evaluations)
```

Optimize the location of the second sequential point, taking into account the first one.

```r
old.par <- par(no.readonly = TRUE)
par(ask=FALSE)
optpt2 <- seqPtsOptNet(CorT ~ 1, loc = ~x+y, COSha10, m.f.esf, prevSeqs=bnet1, popSize=30, generations=15, xmin=bbox(lalib)[1], ymin=bbox(lalib)[2], xmax=bbox(lalib)[3], ymax=bbox(lalib)[4], plotMap=TRUE, spMap=lalib)
par(old.par)
```

Find the second optimal sequential point and use it, along with the first one, to find another optimal sequential point, and so on iteratively.

```r
bnet2 <- bestnet(optpt2)
bnet <- rbind(bnet1, bnet2)
```
old.par <- par(no.readonly = TRUE)
par(ask=FALSE)
optpt3 <- seqPtsOptNet(CorT~ 1, loc=~x+y, COSha10, m.f.esf, prevSeqs=bnet,
popSize=30, generations=25, xmin=bbox(lalib)[1], ymin=bbox(lalib)[2],
xmax=bbox(lalib)[3], ymax=bbox(lalib)[4], plotMap=TRUE, spMap=lalib)
par(old.par)

End(Not run)

Multivariate prediction is also enabled:
Not run:
ve <- variogram(CorT~ DA10, loc=~x+y, data=COSha10, width = 230.3647)
(m.f.esf <- fit.variogram(ve, m.esf))
optptMP <- seqPtsOptNet(CorT~ DA10, loc=~x+y, COSha10, m.f.esf, popSize=30,
generations=25, xmin=bbox(lalib)[1], ymin=bbox(lalib)[2], xmax=bbox(lalib)[3],
ymax=bbox(lalib)[4], plotMap=TRUE, spMap=lalib)

End(Not run)

simPtsOptNet
Design of optimal sampling networks through the simultaneous points method

Description

Search for an optimum set of simultaneous additional points to an initial network that minimize the average standard error of kriging, using a genetic algorithm. It takes, as input for the optimization, the minimum and maximum values of the coordinates that enclose the study area. This function uses previous samples information to direct additional sampling for minimum average standard error. The algorithm generates random sampling schemes.

Usage

```r
simPtsOptNet(formula, loc=NULL, data, fitmodel, BLUE=FALSE, n, popSize,
generations, xmin, ymin, xmax, ymax, plotMap=FALSE, spMap=NULL, ...)
```

Arguments

- `formula`
 formula that defines the interpolation method to be used. In this parameter, a dependent variable is defined as a linear model of independent variables. Suppose the dependent variable has name `z`, for ordinary and simple kriging use the formula `z~1`; for simple kriging also define `beta`; for universal kriging, suppose `z` is linearly dependent on `x` and `y`, use the formula `z~x+y`. See the gstat package for details.

- `loc`
 object of class Spatial, or (deprecated) formula that defines the spatial data locations (coordinates) such as `~x+y`; see the gstat package for details.
data frame containing the dependent variable, independent variables, and coordinates; see the \texttt{gstat} package for details

fitmodel variogram model of dependent variable (or its residuals), defined by a call to \texttt{vgm} or \texttt{fit.variogram}; see the \texttt{gstat} package for details

BLUE logical; if TRUE return the BLUE trend estimates only, if FALSE return the BLUP predictions (kriging); see \texttt{predict.gstat} in the \texttt{gstat} package for details

\(n \) number of additional points to be added to the original network

popSize population size; see the \texttt{genalg} package for details

generations number of iterations. Usually, hundreds or thousands are required. See the \texttt{genalg} package for details

\(x_{\text{min}} \) minimum \(x \)-coordinate of the study area

\(y_{\text{min}} \) minimum \(y \)-coordinate of the study area

\(x_{\text{max}} \) maximum \(x \)-coordinate of the study area

\(y_{\text{max}} \) maximum \(y \)-coordinate of the study area

plotMap logical; if TRUE, the optimized spatial locations of additional points are plotted

spMap an object of class Spatial; it must be provided if \texttt{plotMap} is set to TRUE

... other arguments to be passed to \texttt{gstat} or \texttt{rbga}

Value

an object of class \texttt{rbga} containing the population and the evaluation of the objective function for each chromosome in the last generation, the best and mean evaluation value in each generation, and additional information

References

See Also

See \texttt{rbga} in the \texttt{genalg} package and \texttt{krige} in the \texttt{gstat} package
Examples

Not run:
Load data
data(COSHa30)
data(COSHa30map)
data(lalib)

Calculate the sample variogram for data, generate the variogram model and
fit ranges and/or sills from the variogram model to the sample variogram
ve <- variogram(CorT~ 1, loc=~x+y, data=COSHa30, width = 236.0536)
PSI <- 0.0001531892; RAN <- 1031.8884; NUG <- 0.0001471817
m.esf <- vgm(PSI, "Sph", RAN, NUG)
(m.f.esf <- fit.variogram(ve, m.esf))

Number of additional points to be added to the network
npoints <- 5

Optimize the location of the additional points
Only 20 generations are evaluated in this example (using ordinary kriging)
Users can visualize how the location of the additional points is optimized
if plotMap is set to TRUE
old.par <- par(no.readonly = TRUE)
par(ask=FALSE)
optnets <- simPtsOptNet(CorT~ 1, loc=~x+y, COSHa30, m.f.esf, n=npoints,
popSize=30, generations=20, xmin=bbox(lalib)[1], ymin=bbox(lalib)[2],
xmax=bbox(lalib)[3], ymax=bbox(lalib)[4], plotMap=TRUE, spMap=lalib)
par(old.par)

Summary of the genetic algorithm results
summary(optnets, echo=TRUE)

Graph of best and mean evaluation value of the objective function
(average standard error) along generations
plot(optnets)

Find and plot the best set of additional points (best chromosome) in
the population in the last generation
(bnet <- bestnet(optnets))
l1 = list("sp.polygons", lalib)
l2 = list("sp.points", bnet, col="green", pch="*", cex=5)
spplot(COSHa30map, "var1.pred", main="Location of the optimized points",
col.regions=bpy.colors(100), scales = list(draw =TRUE), xlab ="East (m)",
ylab = "North (m)", sp.layout=list(l1,l2))

Average standard error of the optimized additional points
min(optnets$evaluations)

End(Not run)

Multivariate prediction is also enabled:
Not run:
ve <- variogram(CorT~ DA30, loc=~x+y, data=COSHa30, width = 236.0536)
(m.f.esf <- fit.variogram(ve, m.esf))

optnetsMP <- simPtsOptNet(CorT~ DA30, loc=~x+y, COSha30, m.f.esf, n=npoints,
 popSize=30, generations=25, xmin=bbox(lalib)[1], ymin=bbox(lalib)[2],
 xmax=bbox(lalib)[3], ymax=bbox(lalib)[4], plotMap=TRUE, spMap=lalib)

End(Not run)
Index

* datasets
 ariari, 3
 ariprec, 3
 COSha10, 5
 COSha10map, 7
 COSha30, 8
 COSha30map, 9
 lalib, 19
 preci, 24

* package
 geospt-package, 2

* spatial
 bestnet, 4
 bp.with.outlier.label, 5
 criteria.cv, 10
 criterio.cv, 11
 est.variograms, 12
 extractFormula, 14
 geospt-package, 2
 graph.idw, 14
 graph.rbf, 16
 idw, 19
 idw.cv, 18
 network.design, 20
 pocket.plot, 22
 rbf, 24
 rbf.cv, 26
 rbf.cv1, 27
 RBF.phi, 28
 rbf.tcv, 29
 samplePts, 30
 seqPtsOptNet, 31
 simPtsOptNet, 34

ariari, 3
ariprec, 3

bestnet, 4
bobyqa, 15, 17
bp.with.outlier.label, 5

COSha10, 5, 7
COSha10map, 6, 7
COSha30, 8, 10
COSha30map, 9, 9
criteria.cv, 10
 criterio.cv, 11
est.variogram, 13
est.variograms, 3, 12
extractFormula, 14
geospt (geospt-package), 2
geospt-package, 2
graph.idw, 14
graph.rbf, 16
idw, 19
idw.cv, 18
krige, 15, 20, 21, 32, 35
krige.cv, 21
lalib, 19
network.design, 20
optimize, 14–17
pair, 13
pocket.plot, 22
point, 13
point.in.polygon, 21
preci, 24
predict.gstat, 32, 35
rbf, 3, 24, 26, 27, 30
rbf.cv, 26
rbf.cv1, 27
RBF.phi, 28
rbf.tcv, 29
rbga, 4, 32, 35
INDEX

sample, 21
samplePts, 30
seqPtsOptNet, 3, 4, 31
simPtsOptNet, 3, 4, 34
spsample, 20, 21, 30

xy.coords, 15