Package ‘geotopbricks’

February 11, 2020

Maintainer Emanuele Cordano <emanuele.cordano@gmail.com>
License GPL (>= 2)
Title An R Plug-in for the Distributed Hydrological Model GEOtop
Type Package
Author Emanuele Cordano, Daniele Andreis, Fabio Zottele
Description It analyzes raster maps and other information as input/output files from the Hydrological Distributed Model GEOtop. It contains functions and methods to import maps and other keywords from geotop.inpts file. Some examples with simulation cases of GEOtop 2.x/3.x are presented in the package. Any information about the GEOtop Distributed Hydrological Model source code is available on www.geotop.org. Technical details about the model are available in Endrizzi et al, 2014 (<http://www.geosci-model-dev.net/7/2831/2014/gmd-7-2831-2014.html>).

Version 1.5.4
Date 2020-02-10
Repository CRAN
Depends R (>= 2.10),methods,raster,stringr,zoo
Imports rgdal
Suggests soilwater
RoxygenNote 6.1.1
NeedsCompilation no
Date/Publication 2020-02-11 19:00:06 UTC

R topics documented:

 argsParser ... 2
 bondone .. 3
 brick ... 4
 brick.decimal.formatter ... 5
argsParser

Parser of an argument string

Description

This command parses ...DESCRIPTION TO DO !!!

Usage

argsParser(option, args, sep = " ", novalue_response = NULL)
Bondone Dataset

Description

It contains hourly meteorological data observed at MeteoTrentino T0327 station located at Monte Bondone-Viotte (Trentino, Easter Alps, Italy) from August 2004 to December 2012.

The zoo object 'meteo' contains:

Iprec Hourly Precipitation Depth expressed in millimeters

AirT Air Temperature expressed in Celsius Degree

RH Relative Humidity in PerCent

WinDir Wind Direction expressed in Degrees North Clockwise

WinSp Wind Direction expressed in meters per second

Swglob Short-Wave Radiation expressed in Watts per square meters

The corresponding time axis vector for each observation can be printed by typing index(meteo).
Usage

data(bondone)

Format

Data frame, ’zoo’ object

Details

This data set stores all meteorological information useful for a GEOtop simulation. The user can easily use the package with his/her own data after replacing the values of such variables.

Source

Original data are provided by Provincia Autonoma di Trento (https://www.meteotrentino.it/). This dataset is intended for research purposes only, being distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY.

Description

Added implementation for 'brick’ S4 method

@title brick

Usage

S4 method for signature 'zoo'
brick(x, layer = 1, timerange = NULL, time = NULL, rows = 1:nrow(x), crs = NULL, use.read.raster.from.url = TRUE)

S4 method for signature 'GeotopRasterBrick'
brick(x)

Arguments

x a ’zoo’ object returned by function pointer.to.maps.xyz.time or pointer.to.maps.xy.time or a GeotopRasterBrick-class object

layer layer at which raster maps are imported. If is NULL, maps ara no-layer distributed and zoo must be returned by pointer.to.maps.xy.time

timerange two-elements vector containing the time range at which geotop maps are imported

time vector of time instants at which geotop maps are imported
brick.decimal.formatter

rows

rows of zoo correspondig to the geotop maps that are imported. By default all
rows of zoo are considered. It is calculated by time or timerange if they are
not set as NULL.
crs

coordinate system see RasterBrick-class
use.read.raster.from.url

logical value. Default is TRUE. If TRUE the RasterLayer are read with read.raster.from.url,
instead of raster (otherwise). It is recomended in case the files whose paths are
contained in x are remote and are 'http' addresses. In this cases the stand-alone
method raster(x) does not always work and use.read.raster.from.url is
necessary.

Value

a RasterBrick-class containing the geopop maps indicated by x, which is already in a GeotopRasterBrick-class
object or a 'zoo' object returned by function pointer.to.maps.xyz.time or pointer.to.maps.xy.time.

See Also

getvalues.brick.at.depth, vertical.aggregate.brick.within.depth

Examples

TON TOSS
See the examples in the functions listed in the 'SeeAlso' section

brick.decimal.formatter

Imports a brick of raster ascii maps into a 'brick' object

Description

Imports a brick of raster ascii maps into a 'brick' object

Usage

brick.decimal.formatter(file = NULL, file_prefix, formatter = "%04d",
file_extension = ".asc", nlayers = 10,
use.read.raster.from.url = FALSE, crs = NULL,
start.from.zero = FALSE)

Arguments

file

filename of the 'brick' files containing the decimal formatter. It is NULL by
default, otherwise it replaces file_suffix, formatter and file_extension.
file_prefix

character string suffix name of the 'brick' files.
formatter

string value. Default is "%04d".
brickFromOutputSoil3DTensor

Description

Extracts a brick or a raster layer from a output 3D Tensor or 2D map respectively

Usage

```
brickFromOutputSoil3DTensor(x, when, layers = "SoilLayerThicknesses", one.layer = FALSE, suffix = "L%04dN%04d.asc", time_formatter = "N%04d", suffix_one.layer = "N%04d.asc", wpath = NULL, tz = "A", start_date_key = "InitDateDDMMYYYYhhmm", end_date_key = "EndDateDDMMYYYYhhmm", timestep = "OutputSoilMaps", use.read.raster.from.url = FALSE, crs = NULL, projfile = "geotop.proj", start.from.zero = FALSE, secondary.suffix = NULL, only.map.filename = FALSE, ...)```

```
rasterFromOutput2DMap(x, when, ...)```
brickFromOutputSoil3DTensor

Arguments

x string. GEOtop keyword related to the 3D or 2D variable to be imported in R.
when POSIXct-class for date and time on which the variable x is requested.
layers number of soil layer or geotop keyword for soil layer (e.g. SoilLayerThicknesses or SoilFile). Default is SoilLayerThicknesses.
one.layer logical value. If TRUE a RasterLayer-class object is imported, otherwise a RasterBrick-class object is returned. Default for brickFromOutputSoil3DTensor is FALSE
suffix character string containing the decimal formatter used by GEOtop in the output file names. Default is "L%04dN%04.asc". A simple user is recommended not to modify the value of this argument and use the default value.
time_formatter, suffix_one.layer character string (suffix_one.layer is used for 2Dxy map) containing the decimal formatter used by GEOtop in the output file names to indicate time instant. Default is "N%04.asc". A simple user is recommended not to modify the value of this argument and use the default value.
wpath, tz, use.read.raster.from.url see get.geotop.inpts.keyword.value
start_date_key, end_date_key initial and final dates and times of the GEOtop simulation or alternatively the respective keywords of *.inpts file (Default)
timestep time step expressed in seconds every which the raster file has been created. It can be a string corresponding to the geotop keyword in the inpts file. Default value is "OutputSoilMaps".
crs, start.from.zero see brick.decimal.formatter. If crs is not NULL (Default) , projfile is ignored.
projfile name of the *.proj file containing CRS information. See get.geotop.inpts.keyword.value. Default is "geotop.proj". If is NULL or NA or this file does not exist, it is not searched and read. In case use.read.raster.from.url is TRUE and no NULL or NA values are assinged, the *.proj file is searched.
secondary.suffix String secondary suffix which can be added at the end of the Map file name (optional). Default is NULL and no secondary suffix is added.
only.map.filename logical value. If it is TRUE, only map file names are returned and maps are not imported. Default is FALSE.
... additional arguments for get.geotop.inpts.keyword.value or brickFromOutputSoil3DTensor

Details

These functions brickFromOutputSoil3DTensor and rasterFromOutput2DMap return 3D or 2D Raster-class objects respectively. rasterFromOutput2DMap is a wrapper function of brickFromOutputSoil3DTensor with the option one.layer==TRUE. The functions work with the following output keywords:
"SoilAveragedTempTensorFile",
"SoilLiqContentTensorFile",
"SoilAveragedLiqContentTensorFile",
"SoilIceContentTensorFile",
"SoilAveragedIceContentTensorFile",
"SoilLiqWaterPressTensorFile",
"SoilTotWaterPressTensorFile" for `brickFromOutputSoil3DTensor`;
"FirstSoilLayerTempMapFile",
"FirstSoilLayerAveragedTempMapFile",
"FirstSoilLayerLiqContentMapFile",
"FirstSoilLayerIceContentMapFile",
"LandSurfaceWaterDepthMapFile",
"ChannelSurfaceWaterDepthMapFile",
"NetRadiationMapFile",
"InLongwaveRadiationMapFile",
"NetLongwaveRadiationMapFile",
"NetShortwaveRadiationMapFile",
"InShortwaveRadiationMapFile",
"DirectInShortwaveRadiationMapFile",
"ShadowFractionTimeMapFile",
"SurfaceHeatFluxMapFile",
"SurfaceSensibleHeatFluxMapFile",
"SurfaceLatentHeatFluxMapFile",
"SurfaceTempMapFile",
"PrecipitationMapFile",
"CanopyInterceptedWaterMapFile",
"SnowDepthMapFile",
"GlacierDepthMapFile",
"SnowMeltedMapFile",
"SnowSublMapFile",
"GlacierMeltedMapFile",
"GlacierSublimatedMapFile",
"AirTempMapFile",
"WindSpeedMapFile",
"WindDirMapFile",
"RelHumMapFile",
"SWEMapFile",

`brickFromOutputSoil3DTensor`

"GlacierWaterEqMapFile"
"SnowDurationMapFile",
"ThawedSoilDepthMapFile",
"ThawedSoilDepthFromAboveMapFile",
"WaterTableDepthMapFile",
"WaterTableDepthFromAboveMapFile",
"NetPrecipitationMapFile",
"EvapotranspirationFromSoilMapFile" for `rasterFromOutput2DMap`

Author(s)

Emanuele Cordano

See Also

`get.geotop.inpts.keyword.value`, `brick.decimal.formatter`

Examples

library(geotopbricks)
Not run:
The data containing in the link are only for educational use
wpath <- "https://www.rendena100.eu/public/geotopbricks/simulations/idroclim_test1"
x <- "SoilLiqContentTensorFile"
tz <- "Etc/GMT-1"
when <- as.POSIXct("2002-03-22",tz=tz)

Not Run because it elapses too long time!!!
Please Uncomment the following lines to run by yourself!!!
b <- brickFromOutputSoil3DTensor(x,when=when,wpath=wpath,tz=tz,use.read.raster.from.url=TRUE)

a 2D map:
x_e <- "SnowDepthMapFile"
Not Run: uncomment the following line
m <- rasterFromOutput2DMap(x_e,when=when,wpath=wpath,timestep="OutputSnowMaps",
tz=tz,use.read.raster.from.url=TRUE)

NOTE: set use.read.raster.from.url=FALSE (default)
if the "wpath" directory is in the local file system.
Not Run: uncomment the following line
plot(m)

End(Not run)
color.bar

Graphic Representation of a Color bar, function written by John Colby

Description

Graphic Representation of a Color bar, function written by John Colby

Usage

```r
color.bar(lut, min, max = -min, nticks = 11, ticks = seq(min, max, 
len = nticks), title = "", width = 1.75, height = 5, 
ncolmax = 100, digits = 4, pdf = NULL)
```

Arguments

- **lut**

- **min**

- **max**

- **nticks**

- **ticks**

- **title**

- **width, height**
 width and height of the device

- **ncolmax**
 maximum number of colors. Default is 100.

- **digits**
 specified number of significant digits

- **pdf**
 character value for pdf output file. Default is NULL and no pdf file is created.

Note

This function is taken from http://stackoverflow.com/questions/9314658/colorbar-from-custom-colorramppalette. Please visit the URL for major details and give your feedback if possible.

Author(s)

References

Examples

```r
color.bar(colorRampPalette(c("light green", "yellow", "orange", "red"))(100), -1)
```
color.bar.raster

Description

Graphic Representation of a Color legend of a Raster or Geotopbrick-Raster object as a Color bar, inspired by the function written by John Colby

Usage

color.bar.raster(x, col, min = NA, max = NA, ...)

Arguments

x a Raster or GeotopRasterBrick object
col the color palette used
max, min maximum and minimum value (used if you need to crop the scale legend within a cartein interval)
... arguments to be passed to color.bar

See Also
color.bar, setMinMax

Examples

library(geotopbricks)

Simulation working path

file <- system.file("rendena100/SnowDepthMapFile-2014-MA-mean-winter-2013-2014.asc", package="geotopbricks")
snow <- raster(file)

min <- 0 # snow depth expressed in millimeters
max <- 2500 # snow depth expressed in millimeters

colors <- terrain.colors(1000)

color.bar.raster(x=snow,col=colors,digits=2)
color.bar.raster(x=snow,col=colors,min=min,max=max,digits=2)
create.geotop.inpts.keyword

Description

Creates an 'geotop.inpts' file with the keyword and their values of a data.frame like the one returned by declared.geotop.inpts.keywords

Usage

create.geotop.inpts.keyword(df, file = "geotop.inpts.copy", wpath = NULL, comment.lines = "default", header = "default", ...)

Arguments

df
data frame returned by declared.geotop.inpts.keywords

file
connection or file name where to write 'df'

wpath
complete path to file (optional). Default is NULL.

comment.lines
string or vector of strings to add as comments for each keyword. If it is NULL the comment lines are omitted.

header
string or vector of strings to add as a header. If it is NULL the header is omitted.

...
further arguments for writeLines

Details

In case comment.lines and header are set equal to "default", they are suitably modified within the function code. See the example output.

See Also

writeLines, declared.geotop.inpts.keywords

Examples

library(geotopbricks)
Not run:
#Simulation working path
wpath <- 'https://www.rendena100.eu/public/geotopbricks/simulations/panola13_run2xC_test3'

df <- declared.geotop.inpts.keywords(wpath=wpath)
create.geotop.inpts.keyword(df=df)

End(Not run)
create.geotop.meteo.files

Creates geotop meteo files from (a list of) ‘zoo’ objects

Description

Creates geotop meteo files from (a list of) ‘zoo’ objects

Usage

create.geotop.meteo.files(x, format = "%d/%m/%Y %H:%M",
file_prefix = "meteo", file_extension = ".txt",
formatter = "%04d", na = "-9999", col.names = TRUE,
row.names = FALSE, date_field = "Date", sep = ",", level = NULL,
quote = FALSE, ...)

Arguments

x 'zoo' object or a list of 'zoo' object representing the meteorological station
format string format representing the date, see \code{as.POSIXlt}. Default is "%d/%m/%Y %H:%M" (which is the same format used in geotop.inpts keyword InitDateDDMMYYYYhhmm)
file_prefix string containing file prefix (full path). It correspos to the value of in geotop.inpts keyword MeteoFile
file_extension string containing the extensions of final files. Default is c(".txt")
formatter string value. It is the decimal formatter contained in the file name and used in case the tabular data are referred at several points. Default is "%04d". See \code{sprintf}.
na NA value indicator. Default is "-9999". See \code{write.table}.
col.names logical parameter. Default is TRUE. See \code{write.table}.
row.names logical parameter. Default is FALSE. See \code{write.table}.
date_field string value. Default is "Date", otherwise defined by the value of HeaderDateDDMMYYYYhhmmMeteo geotop keyword.
sep string value. Default is ",". See \code{write.table}.
level integer argument. See \code{get.geotop.inpts.keyword.value} for major details. Default is NULL and is ignored.
quote logical parameter. Default is TRUE. See \code{write.table}.
... further argurments for \code{write.table}

See Also

\code{write.table}, \code{get.geotop.inpts.keyword.value}
Examples

library(geotopbricks)
data(bondone)
Not Run - Uncomment the following line to run the example
create.geotop.meteo.files(x=meteo)

declared.geotop.inpts.keywords

Collects all keywords contained in the 'getop.inpts' configuration files and their values in a data frame object.

Description

Collects all keywords contained in the 'getop.inpts' configuration files and their values in a data frame object.

Usage

declared.geotop.inpts.keywords(wpath, inpts.file = "geotop.inpts", comment = "!", exceptions = "Date", warn = FALSE, no.comment = c("!>!", "!>>!"), ...)

Arguments

wpath working directory containing GEOtop files
inpts.file name of the GEOtop configuration file. Default is "geotop.inpts"
comment string indicator character. Default is "!"
exceptions string vector. If keywords contain an element of this vector, the blank spaces in Value " " will not be removed.
warn logical argument of readLines. Default is FALSE.
no.comment string indicators read as comment ones by GEOtop but they do not indicate comments by "geotopbricks" package.
... further arguments of readLines

Value

a data frame with two columns: Keyword and Value

See Also

gte.op.inpts.keyword.value
Description

desqtopbrick method bla bla bla

Usage

desqtopbrick(x = NULL, ...)

Default S3 method:
desqtopbrick(x, ...)

S3 method for class 'zoo'
desqtopbrick(x, layer = NULL, time = NULL, crs = NULL,
timerange = NULL, ...)

S3 method for class 'RasterLayer'
desqtopbrick(x, layer = NULL, time = NULL,
ascpath = zoo(NULL), ...)

S3 method for class 'RasterBrick'
desqtopbrick(x, layer = NULL, time = NULL,
ascpath = zoo(NULL), ...)

S3 method for class 'GeotopRasterBrick'
desqtopbrick(x, layer = NULL, time = NULL,
crs = NULL, timerange = NULL, ascpath = NULL, ...)

Arguments

x a 'zoo' object returned by function pointer.to.maps.xyz.time or pointer.to.maps.xy.time
or a GeotopRasterBrick-class object

... further arguments.

layer layer at which raster maps are imported. If is NULL, maps are no-
layer distributed and zoo must be returned by pointer.to.maps.xy.time

time vector of time instants at which geotop maps are imported

crs coordinate system see RasterBrick-class

timerange two-elements vector containing the time range at which geotop maps are im-
ported

ascpath NULL object or a "zoo" S3 object containing the names of ascii maps provided
by GEOtop
Value

a GeotopRasterBrick-class

Description

A GeotopRasterBrick: an object to manage raster maps provided by GEOtop!!

Details

- ascpath: A "zoo" S3 object containing the names of ascii maps provided by GEOtop
- index: A "POSIXt" S3 object containing time or dates on which raster layers of brick are referred
- layer: character. Name of the vertical layer at which raster map are referred
- brick: A "RasterBrick-class" S4 object containing the Raster-Layer maps imported from GEOtop output files

#' @note A GeotopRasterBrick object can be created by new("GeotopRasterBrick",...)

Author(s)

Emanuele Cordano

See Also

Raster-class

Examples

showClass("GeotopRasterBrick")
get.geotop.inpts.keyword.value

Importing a GEOtop Keyword and its Value into R

Description

It returns the values of a keyword of "geotop.inpts" file or data frame with the suitable format.

Usage

get.geotop.inpts.keyword.value(keyword, inpts.frame = NULL, vector_sep = NULL, col_sep = NULL, numeric = FALSE, format = "%d/%m/%Y %H:%M", date = FALSE, tz = "Etc/GMT-1", raster = FALSE, file_extension = ".asc", add_wpath = FALSE, wpath = NULL, use.read.raster.from.url = TRUE, data.frame = FALSE, formatter = "%04d", level = 1, date_field = "Date", isNA = -9999, matlab.syntax = TRUE, projfile = "geotop.proj", start_date = NULL, end_date = NULL, ContinuousRecovery = 0, ContinuousRecoveryFormatter = "_crec%04d", zlayer.formatter = NULL, z_unit = c("centimeters", "millimeters"), geotop_z_unit = "millimeters", add_suffix_dir = NULL, MAXNROW = 4, header.only = FALSE, ...)

Arguments

keyword keyword name
inpts.frame data frame returned by declared.geotop.inpts.keywords or NULL. Default is NULL.
vector_sep character value for the separator character if Keyword Value must be returned as a vector, otherwise it is NULL. Default is NULL, but if numeric or date are FALSE, vector_sep is set "," by default.
col_sep character value for the separator character of columns. It is used if Keyword Value is returned as a data frema or zoo object or list of these objects. Default is NULL, but is set ",".
numeric logical value. If TRUE the Value has numeric type, otherwise it is a string or string vector. Default is FALSE.
format string format representing the date, see as.POSIXlt, used if date is TRUE. Default is "%d/%m/%Y %H:%M" (which is the format used in geotop.inpts keyword InitDateDDMMYYYYhhmm)
date logical value. If TRUE the Value is retured as POSIXlt date, otherwise it is a string or string vector. Default is FALSE.
tz format string representing the time zone, see as.POSIXlt, used if date is TRUE. Default is "Etc/GMT-1" (until the previous version it was "A") which means UTC +1.
raster logical value. Default is FALSE. If TRUE function returns directly the raster map as `Raster-class` object built with `raster` method.

file_extension Extension to be added to the keyword if keyword is a file name. Default is ".asc"

add_wpath logical value. Default is FALSE. If TRUE, the wpath string is attached to the keyword string value. It is automatically set TRUE if raster is TRUE.

wpath working directory containing GEOtop files (included the inpts file). It is mandatory if raster is TRUE. See `declared.geotop.inpts.keywords`.

use.read.raster.from.url logical value. Default is TRUE. If TRUE the RasterLayer are read with `read.raster.from.url`, instead of `raster` (otherwise). It is recommended in case the files whose paths are contained in x are remote and are 'http' addresses. In this cases the stand-alone method raster(x) does not always work and use.read.raster.from.url is necessary.

data.frame logical value. It is an option for tabular data. If TRUE function returns directly a data frame or a list of data frames as `data.frame` or `zoo` objects imported from the keyword-related files using `read.table` function. In this case the argument wpath (see `declared.geotop.inpts.keywords`) is mandatory. Default is FALSE.

formatter string value. It is the decimal formatter contained in the file name and used in case the tabular data are referred at several points. Default is "%04d". It is used in case data.frame is TRUE.

level integer values. Numbers indicating all the identification numbers of the files containing the requested data frames. Default is 1, corresponding to the decimal formatter "0001". See examples.

date_field string value. Default is "Date", otherwise defined by the value of HeaderDateDDMMYYYYhhmmMeteo geotop keyword. It is used only if the argument data.frame is TRUE. If it is NULL or NA the function return a list of generic `data.frame` object(s), otherwise `link{zoo}` object(s). See the arguments tz and format for Date formatting.

isNA numeric value indicating NA in geotop ascii files. Default is -9999.00

matlab.syntax logical value. Default is FALSE. If TRUE a vector is written in a string according to *.m file syntax. Warning: this syntax is not read by GEOtop.

projfile filename of the GEOtop projection file. Default is geotop.proj.

start_date, end_date null objects or dates in POSIXlt format between which the variables are returned. It is enabled in case that date_field is not NULL or NA and data.frame is TRUE. Default is NULL.

ContinuousRecovery integer value. Default is 0. It is used for tabular output data and is the number of times GEOtop simulation broke during its running and was re-launched with 'Continuous Recovery' option.

ContinuousRecoveryFormatter character string. Default is '_crec%04d'. It is used only for tabular output data and if ContinuousRecovery is equal or greater than 1.
get.geotop.inpts.keyword.value

zlayer.formatter

decimal formatter. It is used if data.frame==TRUE and the columns refers to different soil depths. Default is NULL.

z_unit

z coordinate measurement unit. GEOtop values expressed in millimeters which are converted to centimeters by default. Default is c("centimeters", "millimeters"). Otherwise can be the ratio between the unit and one meter. It is used if zlayer.formatter=="z%04d" or similar.

geotop_z_unit

z coordinate measurement unit used by GEOtop. Default is millimeters. It is used if zlayer.formatter=="z%04d" or similar.

add_suffix_dir

character string. Add a suffix at the directory reported in the keyword value

MAXNROW

maximum number accepted for data.frame output. Default is 4. It is used in case of data.frame==TRUE. In case the number of records in the function output is less than MAXNROW, function returns neither data.frame nor zoo objects but only the keyword value.

header.only

logical value. Default is FALSE. If it is TRUE and data.frame==TRUE, only file header with variable names is returned by the function.

... further arguments of declared.geotop.inpts.keywords

Value

the keyword value

Note

If inpts.frame is NULL, inpts.frame will be obtained by calling the function declared.geotop.inpts.keywords with ... arguments.

Examples

library(geotopbricks)

#Simulation working path
Not run:

wpath <- 'https://www.rendera100.eu/public/geotopbricks/simulations/panola13_run2xC_test3'

prefix <- get.geotop.inpts.keyword.value("SoilLiqWaterPressTensorFile", wpath=wpath)

slope <- get.geotop.inpts.keyword.value("SlopeMapFile", raster=TRUE, wpath=wpath)

bedrock_depth <- get.geotop.inpts.keyword.value("BedrockDepthMapFile", raster=TRUE, wpath=wpath)

layers <- get.geotop.inpts.keyword.value("SoilLayerThicknesses", numeric=TRUE, wpath=wpath)

names(layers) <- paste("L", 1:length(layers), sep="")

set van genuchten parameters to estimate water volume

theta_sat <- get.geotop.inpts.keyword.value("ThetaSat", numeric=TRUE, wpath=wpath)

theta_res <- get.geotop.inpts.keyword.value("ThetaRes", numeric=TRUE, wpath=wpath)

alphaVG <- get.geotop.inpts.keyword.value("AlphaVanGenuchten",..."}
get.geotop.inpts.keyword.value

numeric=TRUE,wpath=wpath) # expressed in mm^-1

nVG <- get.geotop.inpts.keyword.value("NVanGenuchten",numeric=TRUE,wpath=wpath)

end set van genuchten parameters to estimate water volume

set meteo data

start <- get.geotop.inpts.keyword.value("InitDateDDMMYYYYhhmm",date=TRUE,wpath=wpath,tz="A")
end <- get.geotop.inpts.keyword.value("EndDateDDMMYYYYhhmm",date=TRUE,wpath=wpath,tz="A")
nmeteo <- get.geotop.inpts.keyword.value("NumberOfMeteoStations",numeric=TRUE,wpath=wpath)
level <- 1:nmeteo

Uncomment the following lises to run the R code:

set meteo data
Not run:
meteo <- get.geotop.inpts.keyword.value("MeteoFile",wpath=wpath,data.frame=TRUE,
 level=level,start_date=start,end_date=end)
End(Not run)

end set meteo data

IMPORTING AN OUTPUT SOIL MOISTURE PROFILE:

wpath <- 'https://www.rendena100.eu/public/geotopbricks/simulations/Muntatschini_pnt_1_225_B2_004'

Not run:
SMC <- get.geotop.inpts.keyword.value("SoilLiqContentProfileFile",
 wpath=wpath,data.frame=TRUE,date_field="Date12.DDMMYYYYhhmm.",
 formatter="%04d")

SMCz <- get.geotop.inpts.keyword.value("SoilLiqContentProfileFile",
 wpath=wpath,data.frame=TRUE,date_field="Date12.DDMMYYYYhhmm.",
 formatter="%04d",zlayer.formatter="z%04d")

End(Not run)
get.geotop.recovery.state

This function saves all spatially distributed information contained in the recovery folder into a comprehensive list object.

Description

This function saves all spatially distributed information contained in the recovery folder into a comprehensive list object.

Usage

get.geotop.recovery.state(recFolder, xx = "0000", formatter = "L%04d", extension = ".asc", nsoillayers = 10, layersFromDir = FALSE, ...)

Arguments

recFolder directory when recovery maps are set. In GEOTop it is ...
xx character String. Default is "0000"
formatter string character for the the decimal formatter to be used. Default is "L%04d".
extension file extension used for ascii recovery map files. It must contains '/quotesingle.Var/quotesingle.Var' as the first character. Default is "\.asc" .
nsoillayers number of soil layers used in the GEOTop simulation.
layersFromDir logical value. If is TRUE the number of soil/snow (vertical) layers used in the GEOTop simulation is automatically calculated and cannot be assigned through nsoillayers.
... further arguments

Value

a list object containining all recovery raster maps.

Note

This function has been used with the built 1.225-9 of GEOTop .

Author(s)

Emanuele Cordano

See Also

brick.decimal.formatter,
raster.set.geotop.recovery.state,
write.vectorized.geotop.recovery.read.vectorized.geotop.recovery
getProjection

Examples

```r
library(geotopbricks)
extemple_Rscript <- system.file("template/example.geotop.recovery.state.R",package="geotopbricks")
extemple_Rscript

# Not Run because it elapses too long time!!!
# Please Uncomment the following line to run by yourself!!!
# source(example_Rscript)
```

getProjection It reads the CRS metadata utilized in a GEOtop Simulation

Description

It reads the CRS metadata utilized in a GEOtop Simulation

Usage

```r
getProjection(x, cond = TRUE, ...)
```

Arguments

- `x` name and full path of the file containing CRS information
- `cond` logical value. If FALSE the function returns NA. Default is TRUE.
- `...` further arguments

Value

A string corresponding the projection and CRS if the argument cond is TRUE.

Examples

```r
library(geotopbricks)
wpah <- "https://www.rendena100.eu/public/geotopbricks/simulations/idroclim_test1"
## Not run:
x <- paste(wpath,"geotop.proj",sep="/"")

gets(x) <- getProjection(x)
## End(Not run)
```
getvalues.brick.at.depth

Interpolates the values of a 'brick' at a certain depth and returns the map of brick values at the "depth" level

Description

Interpolates the values of a 'brick' at a certain depth and returns the map of brick values at the "depth" level

Usage

getvalues.brick.at.depth(x, depth, layers, i0 = NULL, verify = FALSE, ...)

Arguments

x
a 'RasterBrick' or a three-dimensional array

depth
depth map, generally a 'RasterLayer' object

layers
vector of layer thickness

i0
a 'Raster' containing the number of soil layer just over the bedrock. Default is NULL and is then calculated.

verify
logical. Default is FALSE. If it is TRUE, it verifies that function is working correctly.

...
further argument

Value

a list of 'Raster' maps:

i0 a 'Raster' containing the number of soil layer just over the bedrock
val_z0 a 'Raster' containing the values of x at the i0-th layer
val_z1 a 'Raster' containing the values of x at the (i0+1)-th layer
z0 a 'Raster' containing the depth of the center of the i0-th layer
z1 a 'Raster' containing the depth of the center of the (i0+1)-th layer

Note

x and depth or i0 must cover the same spatial region.

See Also

codevertical.aggregate.brick.within.depth
Examples

library(geotopbricks)
The examples is the following R script conteined in a 'inst' directory of the package source
f <- system.file("doc/examples/example.getvalues.brick.at.depth.R",package="geotopbricks")
source(f) # Uncomment this line to run the example.
You can copy the example file using file.copy(from=f,to=....,...) See file.copy documentation

KML

Description

KML method for a GeotopRasterBrick object

Usage

S4 method for signature 'GeotopRasterBrick'
KML(x, filename,
 crs = as.character("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"),
 ...
)

Arguments

x the GeotopRasterBrick object
filename mane of the KML file to produce
crs character string containg the LatLon reference system. Default is "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" (see http://spatialreference.org/ref/epsg/4326/).
...
... further argument for S4 method KLM for Raster object.

Note

A coordinate transformation is made with projectRaster.

max_value

Description

Gets the maximum (scalar) values of a GeotopRasterBrick object

Usage

max_value(x, na.rm = TRUE, ...)

max_value
min_value

Arguments

- **x**: a `GeotopRasterBrick` object.
- **na.rm**, ...: further arguments for `max`.

Value

the maximum (scalar) values of a `GeotopRasterBrick` object

Description

Gets the minimum (scalar) values of a `GeotopRasterBrick` object

Usage

```r
min_value(x, na.rm = TRUE, ...)
```

Arguments

- **x**: a `GeotopRasterBrick` object.
- **na.rm**, ...: further arguments for `min`.

Value

the minimum (scalar) values of a `GeotopRasterBrick` object

Ops

Description

Ops

Usage

```r
## S4 method for signature 'GeotopRasterBrick,GeotopRasterBrick'
Ops(e1, e2)

## S4 method for signature 'GeotopRasterBrick,numeric'
Ops(e1, e2)

## S4 method for signature 'numeric,GeotopRasterBrick'
Ops(e1, e2)
```
plot

Arguments

e1, e2 the GeotopRasterBrick or numeric objects

Details

Ops method for a GeotopRasterBrick object

Note

If e1 or e2 time index is not taken into account.

Description

plot method for a GeotopRasterBrick object

Usage

S4 method for signature 'GeotopRasterBrick,ANY'
plot(x, y = NULL, ...)

Arguments

x the GeotopRasterBrick object

y further argument

... further argument for S4 method plot for Raster object.

See Also

KML

Examples

library(geotopbricks)
The examples is the following R script contained in a 'inst' directory of the package source
f <- system.file("doc/examples/example.plot.GeotopRasterBrick.R",package="geotopbricks")
source(f) # Uncomment this line to run the example.
You can copy the example file using file.copy(from=f,to=.....,....) See file.copy documentation
Description

'pointer.to.maps.xyz.time' function

Usage

pointer.to.maps.xyz.time(wpath, map.prefix = "thetaliq", suffix = "L%04dN%04d.asc", zoo.index = NULL, ntime, nlayers)

Arguments

wpath complete working path to *.asc maps are saved
map.prefix string prefix name map before
suffix z-time or time suffix plus file extension character string. Default for GEOtop application is "L%04dN%04d.asc" for xy+z+time maps or "N%04d.asc" for xy+time maps.
zoo.index time or date index. Default is NULL, otherwise function returns a zoo object with zoo.index as index.
ntime number of time instant. If zoo.index is not NULL, it is calculated from zoo.index length.
nlayers number of vertical layers.

Value

A dota.frame or zoo object containig the paths to maps for each time and z layer.

Author(s)

Emanuele Cordano

read.ascii.vectorized.brick

Read a text file containing values and metadata of a z-layer brick referred to a time instant (e.g. date). The file is formatted like an ascii format like 'geotop.inpts' file.

Description

Read a text file containing values and metadata of a z-layer brick referred to a time instant (e.g. date). The file is formatted like an ascii format like 'geotop.inpts' file.
Usage

```r
read.ascii.vectorized.brick(file = NULL, comment = "!", crs = "", NAflag = -9999, matlab.syntax = FALSE, ...)
```

Arguments

- `file` file name to write
- `comment` character. Comment indicator. Default is "!".
- `crs` Character or object of class CRS. PROJ4 type description of a Coordinate Reference System (map projection) (optional). See `brick` or `raster`.
- `NAflag` numeric. Default is -9999, see `writeRasterxGEOtop`.
- `matlab.syntax` logical value. Default is FALSE. If TRUE the file syntax is like the one of a *.m Matlab script file.
- `...` further arguments inserted as attribute

Value

the `RasterBrick-class` object

See Also

`write.ascii.vectorized.brick`

Examples

```r
# see the examples of read.ascii.vectorized.brick
```

read.raster-from-url

It imports a 'RasterLayer' object in Escri-Asci format from a URL 'http://....<FILENAME>.asc

Description

It imports a 'RasterLayer' object in Escri-Asci format from a URL 'http://....<FILENAME>.asc

Usage

```r
read.raster-from-url(x, header_nrow = 6, ...)
```

Arguments

- `x` the character string containing the URL address
- `...` additional arguments
Value

a `RasterLayer` object

Note

This function reads a local or remote text files formatted as http://en.wikipedia.org/wiki/Esri_grid and creates a `RasterLayer` object.

See Also

`raster.readLines`
replace.keyword

See Also

write.vectorized.geotop.recovery

Examples

see the examples of read.ascii.vectorized.brick

replace.keyword

It replaces some keyword values of geotop.inpts file with the ones of anoter *.inpts value

Description

It replaces some keyword values of geotop.inpts file with the ones of anoter *.inpts value

Usage

replace.keyword(x, y = "geotop.inpts", file.output = NULL, write.file.output = TRUE, wpath = NULL, ...)

Arguments

x filename of the *.inpts with the "new" keyword value
y filename of the *.inpts with the "old" keyword value. Default is "geotop.inpts".
file.output filename where to write the comprehensive new geotop.inpts file. If it is NULL (default), the filename is assigned by y.
write.file.output logical value. If it is TRUE, the output of the function is written in the file file.output.
wpath working path to the GEOtop simulation folder containing the x and y files.
... further arguments

Details

This function replaces some keyword values of y with the ones indicated in y. It is useful to replace the meteo station metadata, for instance, when the meteorological station of a study cases are modified. The function returns the new geotop.inpts file as a vector of character strings. If write.file.output==TRUE, the output is written in an external file, e.g. "geotop.inpts" newly (this option is suggested).

Author(s)

Emanuele Cordano
Examples

```r
library(geotopbricks)
wp <- system.file('template/meteo_ex', package="geotopbricks")
x <- 'meteo.inpts'
zl <- replace.keyword(x, wpath=wp, write.file.output=FALSE)
```

set.geotop.recovery.state

This function re-writes the recovery ascii raster maps in a given folder

Description

This function re-writes the recovery ascii raster maps in a given folder

Usage

```r
set.geotop.recovery.state(rec, newRecFolder, ...)
```

Arguments

- `rec` a list object returned by `get.geotop.recovery.state`
- `newRecFolder` directory where to write all recovery raster ascii maps
- `...` further arguments

Author(s)

Emanuele Cordano

See Also

- `get.geotop.recovery.state`
- `writeRasterxGEOtop`

Examples

```r
# See the examples of the 'get.geotop.recovery.state' function
```
vertical.aggregate.brick.within.depth

Aggregates with a mean or an addition on the vertical profile the values of a 'brick' within a certain depth and returns the vertical aggregated map

Description

Aggregates with a mean or an addition on the vertical profile the values of a 'brick' within a certain depth and returns the vertical aggregated map

Usage

vertical.aggregate.brick.within.depth(x, depth = NULL, layers = NULL, i0 = NULL, verify = FALSE, FUN = identity, divide.by.depth = FALSE, ...)

Arguments

x
a 'RasterBrick' or a three-dimensional array

depth
depth map, generally a 'RasterLayer' object

layers
vector of layer thickness

i0
a 'Raster' containing the number of soil layer just over the bedrock. Default is NULL and is then calculated.

verify
logical. Default is FALSE. If it is TRUE, it verifies that function is working correctly.

FUN
function used for aggregation. If missing, identity is the default value.

divide.by.depth
logical. If TRUE the function returns the 'mean' value, otherwise a a cumulate value. Default is FALSE.

...
further argument for FUN

Value

a list of 'Raster' maps:

i0 a 'Raster' containing the number of soil layer just over the bedrock

z0 a 'Raster' containing the depth of the center of the i0-th layer

result a 'Raster' containing the aggregated map

Note

x and depth or i0 must cover the same spatial region.
write.ascii.vectorized.brick

See Also

givevals.brick.at.depth.brick

Examples

library(geotopbricks)
The examples is the following R script contained
in a 'inst' directory of the package source
f <- system.file("doc/examples/example.vertical.aggregate.brick.within.depth.R",
 package="geotopbricks")
source(f) # Uncomment this line to run the example.
You can copy the example file using file.copy(from=f,to=........) See file.copy documentation

write.ascii.vectorized.brick

Write a z-layer brick referred to a time instant (e.g. date) in an ascii format like 'geotop.inpts' file.

Description

Writes a z-layer brick referred to a time instant (e.g. date) in an ascii format like 'geotop.inpts' file.

Usage

write.ascii.vectorized.brick(b, file = NULL, header = NULL,
 overwrite = TRUE, NAflag = -9999, matlab.syntax = FALSE, ...)

Arguments

b a RasterBrick-class or GeotopRasterBrick-class object
file file name to write
header character string vector for header text lines. If missing, a default header is written. Default is c("! header").
overwrite logical. Default is TRUE, see writeRaster.
NAflag numeric. Default is -9999, see writeRasterGEOtop.
matlab.syntax logical value. Default is FALSE. If TRUE the file syntax is like the one of a *.m Matlab script file.
... further arguments inserted as attribute
Value

the string vector possibly written in file.

Note

Add Quote if necessary. This function is NOT maintained and will be DEPRECATED.

See Also

read.ascii.vectorized.brick

Examples

```r
## Not Run
## library(geotopbricks)
## library(raster)
## file <- system.file("doc/examples/snowthickness",package="geotopbricks")
## file <- paste(file,"SnowThickness0000L%04d.asc",sep="/")
## b <- brick.decimal.formatter(file=file,nlayers=15)
## nlayers(b)
## names(b)
## file <- "snow.txt"
## btext <- write.ascii.vectorized.brick(b,Date="1/1/2009",file="snow.txt")
## The printed object
## str(btext)
## bb <- read.ascii.vectorized.brick(file = file)
## bf <- abs(as.matrix(bb[[1]]-b[[1]]))<.Machine$double.eps^0.5
```

write.geotop.table

```
Writes an R object (data.frame or zoo) into a CSV file readable by GEOtop.
```

Description

Writes an R object (data.frame or zoo) into a CSV file readable by GEOtop.

Usage

```r
write.geotop.table(x, file, wpath = NULL, tz = "Etc/GMT-1",
                   date_field = "Date12.DDMMYYHHmnm.", file_end = "",
                   sep = ",", format = "%d/%m/%Y %H:%M",
                   na = "-9999", ...)
```

Arguments

- **x**: R object (data.frame or zoo) to be exported and written.
- **file**: filename
- **wpath**: working path to the GEOtop simulation. If wpath is not NULL, filename will be put in wpath.
write.vectorized.geotop.recovery

It writes a list object returned by get.geotop.recovery.state as a string vector or in a text file, following *.inpts or Matlab-like syntax.

Description

It writes a list object returned by get.geotop.recovery.state as a string vector or in a text file, following *.inpts or Matlab-like syntax.

Usage

write.vectorized.geotop.recovery(rec, file = NULL, header = NULL, overwrite = TRUE, NAflag = -9999, matlab.syntax = TRUE, ...)

Arguments

rec a list object returned by get.geotop.recovery.state
file ascii text file name where to write the string vector
header character string vector for header text lines. If missing, a default header is written. Default is c("! header") or the one assigned by matlab.syntax.
overwrite logical. Default is TRUE, see writeRaster.
NAflag numeric. Default is -9999, see writeRasterxGEOtop.
matlab.syntax logical value. Default is TRUE. If TRUE the file syntax is like the one of a *.m Matlab script file.
... further arguments inserted as attribute

Value

a string vector containing the rec variables.
write.vectorized.variable.in.string

Note

Add Quote if necessary

See Also

get.geotop.recovery.state, set.geotop.recovery.state, write.vectorized.variable.in.string

Examples

See the examples of the 'get.geotop.recovery.state' function

write.vectorized.variable.in.string

Writes one or more variables (scalars, vectors or Rasters) in a string each, following *.inpts or Matlab-like syntax.

Description

Writes one or more variables (scalars, vectors or Rasters) in a string each, following *.inpts or Matlab-like syntax.

Usage

write.vectorized.variable.in.string(l, NAflag = -9999, matlab.syntax = FALSE, ...)

Arguments

l a codelist object contained the variables (scalars, vectors or Rasters) which will be written in a string each.
NAflag numeric. Default is -9999, see writeRasterxGE0top.
matlab.syntax logical value. Default is FALSE. If TRUE the file syntax is like the one of a *.m Matlab script file.
...

Value

the string vector <NAME_VARIABLE>==<VALUES_VARIABLE>.

Note

Add Quote if necessary
See Also

`read.ascii.vectorized.brick`

Examples

```r
a <- 1:5
l <- list(v=a,a=a)
out <- write.vectorized.variable.in.string(l,matlab.syntax=TRUE)
out
```

writeRasterxGEOtop

This function uses `writeRaster` to create .asc maps which can be read by GEOtop

Description

This function uses `writeRaster` to create .asc maps which can be read by GEOtop

Usage

```r
writeRasterxGEOtop(x, filename = NULL, overwrite = TRUE, NAflag = -9999, use.decimal.formatter = FALSE, start.from.zero = FALSE, keyword, wpath, suffix.ext = ".asc", ...)
```

Arguments

- **x**: a Raster object, see `writeRaster`. It can be also a `RasterBrick-class` object.
- **filename**: see `writeRaster`. It is a vector of string or one string containing a decimal formatter (see `brick.decimal.formatter`) in case `x` is a `RasterBrick-class` object.
- **overwrite**: logical. Default is `TRUE`, see `writeRaster`.
- **NAflag**: numeric. Default is `-9999`, see `writeRaster`.
- **use.decimal.formatter**: logical value. Default is `FALSE`. If it is `TRUE` or `x` is a `RasterBrick-class` object with `nlayers(x)!=length(filename)`, filename is considered as one string containing a decimal formatter (e.g. "%04d", see `brick.decimal.formatter`). Otherwise, if filename is considered as a vector string.
- **start.from.zero**: logical value. Default is `FALSE`. If TRUE the formatter starts from `0000`, otherwise it starts from `0001`.
- **keyword**: geotop keyword to be used to extract the raster file name from geotop.inpts file. This is enabled if filename is equal to `NULL`.
- **wpath**: simulation folder containing `geotop.inpts` file.
suffix.ext character string to be added to the keyword value, e.g. possible suffix and extension of the raster file name. Default is ".asc".

... further arguments of `get.geotop.inpts.keyword.value` or `writeRaster`.

Note

It makes use of `system` functions. It uses *.asc* format for raster files. In case the file name `filename` is missing and then `NULL`, it must be imported by the simulation `geotop.inpts` file.

Examples

```r
library(geotopbricks)

## Simulation working path

file <- system.file("rendena100/SnowDepthMapFile-2014-MA-mean-winter-2013-2014.asc", package="geotopbricks")
snow <- raster(file)

snowfile <- rasterTmpFile()
extension(snowfile) <- ".asc"

writeRasterxGEOtop(x=snow, file=snowfile)
```

zoo-class

A GeotopRasterBrick: an object to manage raster maps provided by GEOtop!!

Description

A GeotopRasterBrick: an object to manage raster maps provided by GEOtop!!

Examples

```r
showClass("zoo")
```
Index

*Topic classes
 GeotopRasterBrick-class, 16

*Topic dataset
 bondone, 3

*Topic methods
 Ops, 25

argsParser, 2
as.POSIXlt, 13, 17

bondone, 3
brick, 4, 6, 28, 29, 33
brick, GeotopRasterBrick-method (brick), 4
brick, zoo-method (brick), 4
brick.decimal.formatter, 5, 7, 9, 21, 37
brickFromOutputSoil3DTensor, 6, 7, 8

color.bar, 10, 11
color.bar.raster, 11
create.geotop.inpts.keyword, 12
create.geotop.meteo.files, 13

data.frame, 18
declared.geotop.inpts.keywords, 12, 14, 17–19

geotopbrick, 15
GeotopRasterBrick, 24–26
GeotopRasterBrick
 (GeotopRasterBrick-class), 16
GeotopRasterBrick-class, 16
get.geotop.inpts.keyword.value, 7, 9, 13, 14, 17, 35, 38
get.geotop.recovery.state, 21, 29, 31, 35, 36
getProjection, 22
getvalues.brick.at.depth, 5, 23, 33

identity, 32

KML, 24, 26
KML, GeotopRasterBrick-method (KML), 24

list, 29

max, 25
max_value, 24
meteo (bondone), 3
min, 25
min_value, 25

Ops, 25
Ops, GeotopRasterBrick, GeotopRasterBrick-method (Ops), 25
Ops, GeotopRasterBrick, numeric-method (Ops), 25
Ops, numeric, GeotopRasterBrick-method (Ops), 25

plot, 26
plot, GeotopRasterBrick, ANY-method (plot), 26

pointer.to.maps.xy.time, 4, 5, 15
pointer.to.maps.xy.time
 (pointer.to.maps.xyz.time), 27
pointer.to.maps.xyz.time, 4, 5, 15, 27
POSIXlt, 17
projectRaster, 24

raster, 5, 6, 18, 21, 28, 29
rasterFromOutput2DMap, 9
rasterFromOutput2DMap
 (brickFromOutputSoil3DTensor), 6
read.ascii.vectorized.brick, 27, 34, 37
read.raster.from.url, 5, 6, 18, 28
read.table, 18
read.vectorized.geotop.recovery, 21, 29
readLines, 14, 29
replace.keyword, 30
INDEX

set.geotop.recovery.state, 21, 31, 36
setMinMax, 11
sprintf, 13
system, 38

vertical.aggregate.brick.within.depth,
 5, 23, 32

write.ascii.vectorized.brick, 28, 33
write.geotop.table, 34
write.table, 13, 35
write.vectorized.geotop.recovery, 21,
 29, 30, 35
write.vectorized.variable.in.string,
 36, 36
writeLines, 12
writeRaster, 33, 35, 37, 38
writeRasterxGE0top, 28, 29, 31, 33, 35, 36,
 37

zoo, 3, 18
zoo-class, 38