Package ‘germinationmetrics’

January 19, 2019

Title Seed Germination Indices and Curve Fitting

Version 0.1.3

Description Provides functions to compute various germination indices such as germinability, median germination time, mean germination time, mean germination rate, speed of germination, Timson’s index, germination value, coefficient of uniformity of germination, uncertainty of germination process, synchrony of germination etc. from germination count data. Includes functions for fitting cumulative seed germination curves using four-parameter hill function and computation of associated parameters. See the vignette for more, including full list of citations for the methods implemented.

Copyright 2017-2018, ICAR-NBPGR

License GPL-2 | GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

VignetteBuilder knitr

RoxygenNote 6.1.1

Imports broom, data.table, ggplot2, ggrepel, minpack.lm, plyr, Rdpack, utils, stats

Suggests knitr, rmarkdown, reshape2, pander, XML, httr, RCurl

RdMacros Rdpack

URL https://github.com/aravind-j/germinationmetrics,
    https://aravind-j.github.io/germinationmetrics/
    https://CRAN.R-project.org/package=germinationmetrics
    https://doi.org/10.5281/zenodo.1219630

BugReports https://github.com/aravind-j/germinationmetrics/issues

NeedsCompilation no
Author  J. Aravind [aut, cre] (<https://orcid.org/0000-0002-4791-442X>),
S. Vimala Devi [aut],
J. Radhamani [aut],
Sherry Rachel Jacob [aut],
Kalyani Srinivasan [aut],
ICAR-NBGPR [cph] (www.nbpgpr.ernet.in)

Maintainer  J. Aravind <j.aravind@icar.gov.in>

Repository  CRAN

Date/Publication  2019-01-19 22:30:03 UTC

\textbf{R topics documented:}

\begin{verbatim}
CUGerm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
FirstGermTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
FourPHFfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
gdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
germination.indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
GermPercent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
GermSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
GermSynchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
GermValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
MeanGermPercent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
MeanGermRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MeanGermTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
plot.FourPHFfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
t50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
TimsonsIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
WeightGermPercent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
\end{verbatim}

Index  43

\begin{verbatim}
CUGerm  Coefficient of uniformity of germination
\end{verbatim}

Description

Compute the Coefficient of uniformity of germination (CUG).

Usage

\begin{verbatim}
CUGerm(germ.counts, intervals, partial = TRUE)
\end{verbatim}
**Arguments**

- `germ.counts` (required): Germination counts at each time interval. Can be partial or cumulative as specified in the argument `partial`.
- `intervals` (required): The time intervals.
- `partial` (logical, default `TRUE`): If `TRUE`, `germ.counts` is considered as partial and if `FALSE`, it is considered as cumulative.

**Details**

CUG is computed as follows (Heydecker 1972; Bewley and Black 1994).

\[
CUG = \frac{\sum_{i=1}^{k} N_i}{\sum_{i=1}^{k} (T - T_i)^2 N_i}
\]

Where, \( T \) is the mean germination time, \( T_i \) is the time from the start of the experiment to the \( i \)th observation (day for the example); \( N_i \) is the number of seeds germinated in the \( i \)th time (not the accumulated number, but the number correspondent to the \( i \)th observation), and \( k \) is the last time of germination.

**Value**

The value of the coefficient of uniformity of germination as time\(^{-2}\).

**References**


**See Also**

- `germsynchrony`
- `meangermtime`

**Examples**

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#--------------------------------------------
CUGerm(germ.counts = x, intervals = int)

# From cumulative germination counts
#--------------------------------------------
CUGerm(germ.counts = y, intervals = int, partial = FALSE)
```
FirstGermTime  Time for first, last and peak germination

Description

Compute the following metrics:

FirstGermTime  Time of first germination or Germination time lag ($t_0$) (Edwards 1932; Czabator 1962; Goloff and Bazzaz 1975; Labouriau 1983; Ranal 1999; Quintanilla et al. 2000).

LastGermTime  Time of last germination ($t_g$) (Edwards 1932; Labouriau 1983; Ranal and de Santana 2006).


PeakGermTime  Peak time of germination or Modal time of germination (Ranal and de Santana 2006).

Usage

FirstGermTime(germ.counts, intervals, partial = TRUE)
LastGermTime(germ.counts, intervals, partial = TRUE)
PeakGermTime(germ.counts, intervals, partial = TRUE)
TimeSpreadGerm(germ.counts, intervals, partial = TRUE)

Arguments

germ.counts  Germination counts at each time interval. Can be partial or cumulative as specified in the argument partial.
intervals  The time intervals.
partial  logical. If TRUE, germ.counts is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.

Details

Time of first germination indicates time of germination of the faster seeds in a seedlot.
Lower value of time of first germination indicates faster initiation of germination and lower value of time of last germination indicates faster termination of germination.
Time spread of germination ($t_g - t_0$) indicates difference between faster and slower germinating members of a sample.
Peak time of germination is the time in which highest frequency of germinated seeds are observed. Multiple peak times of germination are possible and if detected are indicated by a warning message.
**FirstGermTime**

**Value**

For `FirstGermTime`, the time of first germination value in the same unit of time as specified in the argument `intervals`.

For `LastGermTime`, the time of last germination value in the same unit of time as specified in the argument `intervals`.

For `TimeSpreadGerm`, the time spread of germination value in the same unit of time as specified in the argument `intervals`.

For `PeakGermTime`, the time(s) of peak germination value(s) as a numeric vector in the same unit of time as specified in the argument `intervals`.

**References**


**Examples**

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0)
```
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 40, 40, 40)
z <- c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 0, 0)
int <- 1:length(x)

# From partial germination counts

FirstGermTime(germ.counts = x, intervals = int)
LastGermTime(germ.counts = x, intervals = int)
TimeSpreadGerm(germ.counts = x, intervals = int)
PeakGermTime(germ.counts = x, intervals = int)

# For multiple peak germination times

PeakGermTime(germ.counts = z, intervals = int)

# From cumulative germination counts

FirstGermTime(germ.counts = y, intervals = int, partial = FALSE)
LastGermTime(germ.counts = y, intervals = int, partial = FALSE)
TimeSpreadGerm(germ.counts = y, intervals = int, partial = FALSE)
PeakGermTime(germ.counts = y, intervals = int, partial = FALSE)

# For multiple peak germination time

PeakGermTime(germ.counts = cumsum(z), intervals = int, partial = FALSE)

---

**FourPHFfit**

*Fit four-parameter hill function*

**Description**

Fit a four-parameter hill function (El-Kassaby et al. 2008) to cumulative germination count data and compute the associated parameters.

**Usage**

FourPHFfit(germ.counts, intervals, total.seeds, partial = TRUE,
fix.y0 = TRUE, fix.a = TRUE, tmax, xp = c(10, 60), umin = 10,
umax = 90, tries = 3)

**Arguments**

- **germ.counts**: Germination counts at each time interval. Can be partial or cumulative as specified in the argument **partial**.
- **intervals**: The time intervals.
- **total.seeds**: Total number of seeds.
- **partial**: logical. If TRUE, germ.counts is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.
- **fix.y0**: Force the intercept of the y axis through 0.
- **fix.a**: Fix a as the actual maximum germination percentage at the end of the experiment.
**FourPHFfit**

- **tmax**: The time up to which AUC is to be computed.
- **xp**: Germination percentage value(s) for which the corresponding time is to be computed as a numeric vector. Default is c(10, 60).
- **umin**: The minimum germination percentage value for computing uniformity. Default is 10. Seed Details.
- **umax**: The maximum germination percentage value for computing uniformity. Default is 90. Seed Details.
- **tries**: The number of tries to be attempted to fit the curve. Default is 3.

**Details**

The cumulative germination count data of a seed lot can be modelled to fit a four-parameter hill function defined as follows (El-Kassaby et al. 2008):

\[ y = y_0 + \frac{ax^b}{e^b + x^b} \]

Where, \( y \) is the cumulative germination percentage at time \( x \), \( y_0 \) is the intercept on the y-axis, \( a \) is the asymptote, or maximum cumulative germination percentage, which is equivalent to germination capacity, \( b \) is a mathematical parameter controlling the shape and steepness of the germination curve (the larger the \( b \) parameter, the steeper the rise toward the asymptote \( a \), and the shorter the time between germination onset and maximum germination) and \( c \) is the "half-maximal activation level" and represents the time required for 50% of viable seeds to germinate (\( c \) is equivalent to the germination speed).

Once this function is fitted to the curve, FourPHFfit computes the time to 50% germination of total seeds (t50.total) or viable seeds (t50.Germinated). Similarly the time at any percentage of germination (in terms of both total and viable seeds) as specified in argument \( xp \) can be computed.

The time at germination onset (\( lag \)) can be computed as follows:

\[ lag = b \sqrt{-y_0 e^b \over a + y_0} \]

The value \( D_{lag-50} \) is defined as the duration between the time at germination onset (\( lag \)) and that at 50% germination (\( c \)).

The time interval between the percentages of viable seeds specified in the arguments \( umin \) and \( umax \) to germinate is computed as uniformity \( (U_{t_{max}-t_{min}}) \).

\[ U_{t_{max}-t_{min}} = t_{max} - t_{min} \]

The partial derivative of the four-parameter hill function gives the instantaneous rate of germination (\( s \)) as follows:

\[ s = \frac{\partial y}{\partial x} = \frac{abc^b x^{b-1}}{(c^b + x^b)^2} \]
From this function for instantaneous rate of germination, the time at maximum germination rate \((TMGR)\) can be estimated as follows:

\[
TMGR = b \sqrt{\frac{c(b - 1)}{b + 1}}
\]

\(TMGR\) represents the point in time when the instantaneous rate of germination starts to decline.

The area under the curve \((AUC)\) is obtained by integration of the fitted curve between time 0 and time specified in the argument \('tmax\). Integration of the fitted curve gives the value of mean germination time \((MGT)\) and the skewness of the germination curve is computed as the ratio of \(MGT\) and the time for 50% of viable seeds to germinate \((t_{50})\).

\[
Skewness = \frac{MGT}{t_{50}}
\]

If final germination percentage is less than 10%, a warning is given, as the results may not be informative.

**Value**

A list with the following components:

- **Parameters**
  A data.frame of parameter estimates, standard errors and p value.
- **Fit**
  A one-row data frame with estimates of model fitness such as log likelyhoods, Akaike Information Criterion, Bayesian Information Criterion, deviance and residual degrees of freedom.
- **a**
  The asymptote or the maximum cumulative germination percentage.
- **b**
  The mathematical parameter controlling the shape and steepness of the germination curve.
- **c**
  The half-maximal activation level
- **y0**
  The intercept on the y axis.
- **lag**
  Time at germination onset
- **Dlag50**
  duration between the time at germination onset (lag) and that at 50% germination.
- **t50.total**
  time required for 50% of total seeds to germinate.
- **txp.total**
  time required for x% (as specified in argument xp) of total seeds to germinate.
- **t50.Germinated**
  time required for 50% of viable/germinated seeds to germinate.
- **txp.Germinated**
  time required for x% (as specified in argument xp) of viable/germinated seeds to germinate.
- **Uniformity**
  Time interval between umin% and umax% of viable seeds to germinate.
- **TMGR**
  Time at maximum germination rate.
- **AUC**
  The estimate of area under the curve.
- **MGT**
  Mean germination time
- **Skewness**
  Skewness of mean germination time
- **msg**
  The message from nls.lm
- **isConv**
  Logical value indicating whether convergence was achieved.
References

Examples

x <- c(0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 4, 21, 31, 38, 39, 40, 40, 40, 40, 40)
int <- 1:length(x)
total.seeds = 50

# From partial germination counts
FourPHFfit(germ.counts = x, intervals = int, total.seeds = 50, tmax = 20)

# From cumulative germination counts
FourPHFfit(germ.counts = y, intervals = int, total.seeds = 50, tmax = 20, partial = FALSE)

gcdata

Germination count data

Description
An example germination count dataset. It includes germination count data over 14 days from five genotypes (G1 to G5) in three replications

Usage
gcdata

Format
A data frame with 17 columns:

Genotype The genotype.
Rep Replication.
Day01 Number of seeds that germinated (germination counts) on Day 1.
Day02 Number of seeds that germinated (germination counts) on Day 2.
Day03 Number of seeds that germinated (germination counts) on Day 3.
Day04 Number of seeds that germinated (germination counts) on Day 4.
Day05 Number of seeds that germinated (germination counts) on Day 5.
Day06 Number of seeds that germinated (germination counts) on Day 6.
Day07  Number of seeds that germinated (germination counts) on Day 7.
Day08  Number of seeds that germinated (germination counts) on Day 8.
Day09  Number of seeds that germinated (germination counts) on Day 9.
Day10  Number of seeds that germinated (germination counts) on Day 10.
Day11  Number of seeds that germinated (germination counts) on Day 11.
Day12  Number of seeds that germinated (germination counts) on Day 12.
Day13  Number of seeds that germinated (germination counts) on Day 13.
Day14  Number of seeds that germinated (germination counts) on Day 14.

Total Seeds  Total number of seeds tested.

Examples

data(gcdata)
library(ggplot2)
library(reshape2)

# Plot partial germination counts over time
#---------------------------------------------------------------
# Convert wide-from to long-form
gcdatamelt <- melt(gcdata[, !names(gcdata) %in% c("Total Seeds")],
                   id.vars = c("Genotype", "Rep"))

ggplot(gcdatamelt, aes(x = variable, y = value,
                       group = interaction(Genotype, Rep),
                       colour = Genotype)) +
geom_point(alpha = 0.7) +
geom_line(alpha = 0.7) +
ylab("Germination count (Partial)") +
xlab("Intervals") +
theme_bw()

# Plot partial germination counts over time
#---------------------------------------------------------------

# Convert wide-from to long-form
# Compute cumulative germination counts
gcdata2 <- gcdata
gcdata2[, !names(gcdata2) %in% c("Genotype", "Rep", "Total Seeds")]
         <- t(apply(gcdata2[, !names(gcdata2) %in% c("Genotype", "Rep", "Total Seeds")], 1, cumsum))

gcdatamelt2 <- melt(gcdata2[, !names(gcdata2) %in% c("Total Seeds")],
                     id.vars = c("Genotype", "Rep"))

ggplot(gcdatamelt2, aes(x = variable, y = value,
                         group = interaction(Genotype, Rep),
                         colour = Genotype)) +
geom_point(alpha = 0.7) +

germination.indices

`geom_line(alpha = 0.7) +
ylab("Germination count (Cumulative)") +
`xlab("Intervals") +
```theme_bw()

# Compute germination indices

```
germination.indices(gcdata, total.seeds.col = "Total Seeds",
counts.intervals.cols = counts.per.intervals,
intervals = 1:14, partial = TRUE, max.int = 5)
```

---

**germination.indices**

*Germination Indices*

---

**Description**

Compute germination indices from a data frame of germination counts recorded at specific time intervals for multiple samples in batch.

**Usage**

```
germination.indices(data, total.seeds.col, counts.intervals.cols, intervals, partial = TRUE, FirstGerminTime = TRUE, LastGerminTime = TRUE, PeakGerminTime = TRUE, TimeSpreadGermin = TRUE, t50 = TRUE, MeanGerminTime = TRUE, VarGerminTime = TRUE, SEGerminTime = TRUE, CVGerminTime = TRUE, MeanGerminRate = TRUE, CVG = TRUE, VarGerminRate = TRUE, SEGerminRate = TRUE, GermRateRecip = TRUE, GermSpeed = TRUE, GermSpeedAccumulated = TRUE, GermSpeedCorrected = TRUE, WeightGerminPercent = TRUE, MeanGerminPercent = TRUE, MeanGerminNumber = TRUE, TimsonIndex = TRUE, GermRateGeorge = TRUE, max.int, PeakValue = TRUE, GermValue = TRUE, gv.k = 10, CUGerm = TRUE, GermSynchrony = TRUE, GermUncertainty = TRUE)
```

**Arguments**

- **data**
  A data frame with the germination count data. It should possess columns with
  - Partial or cumulative germination counts per time interval (to be indicated by the argument `counts.intervals.cols` and
  - Total number of seeds tested (to be indicated by the argument `total.seeds.col`).

- **total.seeds.col**
  The name of the column in `data` with the total number of seeds tested.
counts.intervals.cols
The names of columns in data with the germination counts (partial or cumulative, as indicated by the argument partial) per time interval (indicated by the argument intervals).

intervals
The time intervals at which germination counts (in the columns specified in argument counts.intervals.cols) were recorded.

partial
logical. If TRUE, germination counts in counts.intervals.cols is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.

FirstGermTime
logical. If TRUE, the Time of first germination or Germination time lag ($t_0$) (Edwards 1932; Czabator 1962; Goloff and Bazzaz 1975; Labouriau 1983; Ranal 1999; Quintanilla et al. 2000) is computed. Default is TRUE.

LastGermTime
logical. If TRUE, the Time of last germination ($t_g$) (Edwards 1932; Labouriau 1983; Ranal and de Santana 2006) is computed. Default is TRUE.

PeakGermTime
logical. If TRUE, the Peak time of germination or Modal time of germination (Ranal and de Santana 2006) is computed. Default is TRUE.

TimeSpreadGerm
logical. If TRUE, the Time spread of germination (Al-Mudaris 1998; Kader 2005) or Germination distribution (Schrader and Graves 2000). is computed. Default is TRUE.

t50
logical. If TRUE, the Median germination time ($t_{50}$) (Coolbear et al. 1984; Farooq et al. 2005) is computed. Default is TRUE.

MeanGermTime
logical. If TRUE, the Mean germination time ($\overline{T}$) or Mean length of incubation time (Edmond and Drapala 1958; Czabator 1962; Ellis and Roberts 1980; Labouriau 1983; Ranal and de Santana 2006). or Sprouting index ($SI$) (Smith and Millet 1964) or Germination Resistance ($GR$) Gordon (1969, 1971) is computed. Default is TRUE.

VarGermTime
logical. If TRUE, the Variance of germination time ($s_T^2$) (Labouriau 1983; Ranal and de Santana 2006) is computed. Default is TRUE.

SEGermTime
logical. If TRUE, the Standard error of germination time ($s_{\overline{T}}$) (Labouriau 1983; Ranal and de Santana 2006). is computed. Default is TRUE.

CVGermTime
logical. If TRUE, the Coefficient of variation of the germination time ($CV_T$) (Ranal and de Santana 2006) is computed. Default is TRUE.

MeanGermRate
logical. If TRUE, the Mean germination rate ($\overline{V}$) (Labouriau and Valadares 1976; Labouriau 1983; Ranal and de Santana 2006). is computed. Default is TRUE.

CVG
logical. If TRUE, the Coefficient of velocity/rate of germination or Kotowski’s coefficient of velocity ($CVG$) (Kotowski 1926; Nichols and Heydecker 1968; Labouriau 1983; Scott et al. 1984; Bewley and Black 1994). is computed. Default is TRUE.

VarGermRate
logical. If TRUE, the Variance of germination rate ($s_{\overline{V}}^2$) (Labouriau 1983; Ranal and de Santana 2006) is computed. Default is TRUE.

SEGermRate
logical. If TRUE, the Standard error of germination rate ($s_{\overline{V}}$) (Labouriau 1983; Ranal and de Santana 2006) is computed. Default is TRUE.

GermRateRecip
logical. If TRUE, the Germination rate as reciprocal of median time ($v_{50}$) (Went 1957; Labouriau 1983; Ranal and de Santana 2006) is computed.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GermSpeed</td>
<td>logical. If TRUE, the Speed of germination or Germination rate index or Index of velocity of germination or Germination index or Emergence rate index (Throneberry and Smith 1955; Maguire 1962; Allan et al. 1962; Kendrick and Frankland 1969; Bouton et al. 1976; AOSA 1983; Khandakar and Bradbeer 1983; Bradbeer 1988; Wardle et al. 1991) considering both counts and percentages is computed.</td>
</tr>
<tr>
<td>GermSpeed Accumulated</td>
<td>logical. If TRUE, the Speed of accumulated germination (Bradbeer 1988; Wardle et al. 1991; Haugland and Brandsaeter 1996; de Santana and Ranal 2004) considering both counts and percentages is computed.</td>
</tr>
<tr>
<td>GermSpeed Corrected</td>
<td>logical. If TRUE, the Corrected speed of germination or Corrected germination rate index and the Corrected speed of accumulated germination (Evetts and Burnside 1972) is computed.</td>
</tr>
<tr>
<td>WeightGermPercent</td>
<td>logical. If TRUE, the Weighted germination percentage WGP or Weighted germination index WGI (Reddy 1978; Reddy et al. 1985) is computed.</td>
</tr>
<tr>
<td>MeanGermPercent</td>
<td>logical. If TRUE, the Mean/average germination percentage per unit time (GP) (Czabator 1962) is computed.</td>
</tr>
<tr>
<td>MeanGermNumber</td>
<td>logical. If TRUE, the Number of seeds germinated per unit time (N) (Khamassi et al. 2013) is computed.</td>
</tr>
<tr>
<td>TimsonsIndex</td>
<td>logical. If TRUE, the Timson’s index or Timson’s germination velocity index (Grose and Zimmer 1958; Timson 1965; Brown and Mayer 1988; Baskin and Baskin 1998) and it’s modifications by Labouriau (Ranal and de Santana 2006) and (Khan and Ungar 1984) is computed.</td>
</tr>
<tr>
<td>GermRateGeorge</td>
<td>logical. If TRUE, the George’s index George (1961) is computed.</td>
</tr>
<tr>
<td>max.int</td>
<td>The maximum interval value up to which Timson’s index/George’s germination rate is to be computed.</td>
</tr>
<tr>
<td>PeakValue</td>
<td>logical. If TRUE, the Peak value (PV) or Emergence Energy (EE) (Czabator 1962; Bonner 1967) is computed.</td>
</tr>
<tr>
<td>GermValue</td>
<td>logical. If TRUE, the Germination value (Czabator 1962; Djavanshir and Pourbeik 1976) and its modification considering duration from start of test instead of from onset of germination (Brown and Mayer 1988) is computed.</td>
</tr>
<tr>
<td>gv.k</td>
<td>The k Constant for computation of germination value. Default is 10.</td>
</tr>
<tr>
<td>CUGerm</td>
<td>logical. If TRUE, the Coefficient of uniformity of germination (CUG) (Heydecker 1972; Bewley and Black 1994) is computed.</td>
</tr>
<tr>
<td>GermSynchrony</td>
<td>logical. If TRUE, the Synchrony of germination (Z index) (Primack 1985; Ranal and de Santana 2006) is computed.</td>
</tr>
<tr>
<td>GermUncertainty</td>
<td>logical. If TRUE, the Synchronization index (E) or Uncertainty of the germination process (U) or Informational entropy (H) (Shannon 1948; Labouriau and Valadares 1976; Labouriau 1983) is computed.</td>
</tr>
</tbody>
</table>
germination.indices

Value

A data frame with the original data along with the various single-value germination indices specified in the function arguments.

References


Ellis RH, Roberts EH (1980). “Improved equations for the prediction of seed longevity.” *Annals of
Botany, 45(1), 13–30.


**See Also**

This function is a wrapper around the different functions for computation of single-value germination indices in *germinationmetrics* (*FirstGermTime, LastGermTime, PeakGermTime, TimeSpreadGerm, t50, MeanGermTime, VarGermTime, SEGermTime, CVGermTime, MeanGermRate, CVG, VarGermRate, SEGermRate, GermRateRecip, GermSpeed, GermSpeedAccumulated, GermSpeedCorrected, WeightGermPercent, MeanGermPercent, MeanGermPercent, TimsonsIndex, GermRateGeorge, GermValue, PeakValue, CUGerm, GermSynchrony, GermUncertainty*)

**Examples**

```r
data(gcdata)

germination.indices(gcdata, total.seeds.col = "Total Seeds", counts.intervals.cols = counts.per.intervals, intervals = 1:14, partial = TRUE, max.int = 5)
```

<table>
<thead>
<tr>
<th>GermPercent</th>
<th>Germination percentage</th>
</tr>
</thead>
</table>

**Description**

Compute the germination percentage or germinability.
Usage
GermPercent(germinated.seeds, germ.counts, total.seeds, partial = TRUE)

Arguments

- **germinated.seeds**
  Number of germinated seeds

- **germ.counts**
  Germination counts at each time interval. Can be partial or cumulative as specified in the argument `partial`.

- **total.seeds**
  Total number of seeds.

- **partial**
  logical. If `TRUE`, `germ.counts` is considered as partial and if `FALSE`, it is considered as cumulative. Default is `TRUE`.

Details

Germination percentage is computed as follows (ISTA 2015):

\[
GP = \frac{N_g}{N_t} \times 100
\]

Where, \(N_g\) is the number of germinated seeds and \(N_t\) is the total number of seeds.

The value of \(N_g\) can be either specified using the argument `germinated.seeds` or is computed from the `germ.counts` argument.

Value

The germination percentage (%) value.

References


Examples

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40)

# From partial germination counts
GermPercent(germ.counts = x, total.seeds = 50)

# From cumulative germination counts
GermPercent(germ.counts = y, total.seeds = 50, partial = FALSE)

# From number of germinated seeds
GermPercent(germinated.seeds = 40, total.seeds = 50)
```
Description

Compute the following metrics:

GermSpeed Speed of germination or Germination rate index or Index of velocity of germination or Germination index or Emergence Rate Index (Throneberry and Smith 1955; Maguire 1962; Allan et al. 1962; Kendrick and Frankland 1969; Bouton et al. 1976; AOSA 1983; Khandakar and Bradbeer 1983; Bradbeer 1988; Wardle et al. 1991).

GermSpeedAccumulated Speed of accumulated germination (Bradbeer 1988; Wardle et al. 1991; Haugland and Brandsaeter 1996; de Santana and Ranal 2004).

GermSpeedCorrected Corrected speed of germination or Corrected germination rate index (Evetts and Burnside 1972).

Usage

GermSpeed(germ.counts, intervals, partial = TRUE, percent = FALSE, total.seeds = NULL)

GermSpeedAccumulated(germ.counts, intervals, partial = TRUE, percent = FALSE, total.seeds = NULL)

GermSpeedCorrected(germ.counts, intervals, partial = TRUE, total.seeds, method = c("normal", "accumulated"))

Arguments

germ.counts Germination counts at each time interval. Can be partial or cumulative as specified in the argument partial.
intervals The time intervals.
partial logical. If TRUE, germ.counts is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.
percent logical. If TRUE, germination percentage is used instead of counts for computation. Default is FALSE.
total.seeds Total number of seeds. Mandatory for computation when percent = TRUE.
method The method for computing germination speed in GermSpeedCorrected. Either "normal" (GermSpeed) or "accumulated" (GermSpeedAccumulated).

Details

GermSpeed computes the speed of germination according to the following formula (Throneberry and Smith 1955; Maguire 1962; Allan et al. 1962; Kendrick and Frankland 1969; Bouton et al. 1976; AOSA 1983; Khandakar and Bradbeer 1983; Bradbeer 1988; Wardle et al. 1991).
Where, $N_1, N_2, N_3, \ldots, N_n$ are the number of germinated seeds observed at time (days or hours) $T_1, T_2, T_3, \ldots, T_n$ after sowing. (Not accumulated/cumulative number, but the number of seeds that germinated at the specific time).

GermSpeedAccumulated computes the speed of accumulated germination as follows (Bradbeer 1988; Wardle et al. 1991; Haugland and Brandsaeter 1996; de Santana and Ranal 2004).

$$ S_{\text{accumulated}} = \frac{N_1}{T_1} + \frac{N_1 + N_2}{T_2} + \frac{N_1 + N_2 + N_3}{T_3} + \cdots + \frac{N_1 + N_2 + \cdots + N_n}{T_n} $$

Where, $N_1, N_2, N_3, \ldots, N_n$ are the number of germinated seeds observed at time (days or hours) $T_1, T_2, T_3, \ldots, T_n$ after sowing. (Not accumulated/cumulative number, but the number of seeds that germinated at the specific time).

Speed of germination expresses the rate of germination in terms of the total number of seeds that germinate in a time interval. Higher values indicate greater and faster germination. This is useful for comparisons only when samples or treatments possess similar germinabilities. This is overcome by either using the corrected speed of germination or by using germination percentages instead of counts for computing speed.

GermSpeedCorrected computes the corrected speed of germination as follows (Evetts and Burnside 1972).

$$ S_{\text{corrected}} = \frac{S}{FGP} $$

Where, $FGP$ is the final germination percentage or germinability.

With percent = TRUE, germination percentage is used instead of counts for computation in GermSpeed and GermSpeedAccumulated.

**Value**

For GermSpeed, the value of germination speed as % time$^{-1}$.

For GermSpeedAccumulated, the value of accumulated germination speed as % time$^{-1}$.

For GermSpeedCorrected, the corrected speed of germination.

**References**


**Examples**

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
GermSpeed(germ.counts = x, intervals = int)
GermSpeedAccumulated(germ.counts = x, intervals = int)
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50, method = "normal")
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50, method = "accumulated")

# From partial germination counts (with percentages instead of counts)
GermSpeed(germ.counts = x, intervals = int, percent = TRUE, total.seeds = 50)
GermSpeedAccumulated(germ.counts = x, intervals = int, percent = TRUE, total.seeds = 50)
```
GermSynchrony

Synchrony and uncertainty of germination

Description

Compute the following metrics:

- **GermSynchrony** Synchrony of germination ($Z$ index) (Primack 1985; Ranal and de Santana 2006).
- **GermUncertainty** Synchronization index ($E$) or Uncertainty of the germination process ($U$) or Informational entropy ($H$) (Shannon 1948; Labouriau and Valadares 1976; Labouriau 1983).

Usage

- `GermSynchrony(germ.counts, intervals, partial = TRUE)`
- `GermUncertainty(germ.counts, intervals, partial = TRUE)`

Arguments

- `germ.counts` Germination counts at each time interval. Can be partial or cumulative as specified in the argument `partial`.
- `intervals` The time intervals.
- `partial` logical. If TRUE, `germ.counts` is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.

Details

GermSynchrony computes the value of synchrony of germination ($Z$ index) as follows (Primack 1985; Ranal and de Santana 2006).

$$Z = \frac{\sum_{i=1}^{k} C_{N_i,2}}{C_{\Sigma N_i,2}}$$
Where, $C_{N_i,2}$ is the partial combination of the two germinated seeds from among $N_i$, the number of seeds germinated on the $i$th time (estimated as $C_{N_i,2} = \frac{N_i(N_i-1)}{2}$) and $C_{\Sigma N_i,2}$ is the partial combination of the two germinated seeds from among the total number of seeds germinated at the final count, assuming that all seeds that germinated did so simultaneously.

GermUncertainty computes the value of synchronization index ($\mathcal{E}$) or uncertainty of the germination process ($U$) or informational entropy ($H$) as follows (Shannon 1948; Labouriau and Valadares 1976; Labouriau 1983).

$$\mathcal{E} = -\sum_{i=1}^{k} f_i \log_2 f_i$$

Where, $f_i$ is the relative frequency of germination (estimated as $f_i = \frac{N_i}{\sum_{i=1}^{N_i}}$), $N_i$ is the number of seeds germinated on the $i$th time and $k$ is the last day of observation.

Value

For GermUncertainty, the value of uncertainty of germination process.

For GermSynchrony, the value of synchrony of germination.

References


See Also

CUGerm

Examples

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
```

---

**GermSynchrony**

Where, $C_{N_i,2}$ is the partial combination of the two germinated seeds from among $N_i$, the number of seeds germinated on the $i$th time (estimated as $C_{N_i,2} = \frac{N_i(N_i-1)}{2}$) and $C_{\Sigma N_i,2}$ is the partial combination of the two germinated seeds from among the total number of seeds germinated at the final count, assuming that all seeds that germinated did so simultaneously.

GermUncertainty computes the value of synchronization index ($\mathcal{E}$) or uncertainty of the germination process ($U$) or informational entropy ($H$) as follows (Shannon 1948; Labouriau and Valadares 1976; Labouriau 1983).

$$\mathcal{E} = -\sum_{i=1}^{k} f_i \log_2 f_i$$

Where, $f_i$ is the relative frequency of germination (estimated as $f_i = \frac{N_i}{\sum_{i=1}^{N_i}}$), $N_i$ is the number of seeds germinated on the $i$th time and $k$ is the last day of observation.

Value

For GermUncertainty, the value of uncertainty of germination process.

For GermSynchrony, the value of synchrony of germination.

References


See Also

CUGerm

Examples

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
```
GermValue

Description

Compute the Peak value ($PV$) or Emergence Energy ($EE$) (Czabator 1962; Bonner 1967) and Germination value ($GV$) (Czabator 1962; Djavanshir and Pourbeik 1976; Brown and Mayer 1988).

Usage

PeakValue(germ.counts, intervals, total.seeds, partial = TRUE)

GermValue(germ.counts, intervals, total.seeds, partial = TRUE, method = c("czabator", "dp"), from.onset = TRUE, k = 10)

Arguments

germ.counts  Germination counts at each time interval. Can be partial or cumulative as specified in the argument partial.
intervals     The time intervals.
total.seeds   Total number of seeds.
partial       logical. If TRUE, germ.counts is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.
method        The method for computing germination value. Either "czabator" or "dp".
from.onset    logical. If TRUE, duration is considered only from the onset of germination. If FALSE, full duration of germination test is considered. Default is TRUE.
k             Constant (See Details). Default is 10.

Details

Peak value ($PV$) is the maximum quotient obtained by dividing successive cumulative germination values by the relevant incubation time (Czabator 1962). It represents the mean daily germination of the most vigorous component of the seed lot, and is a mathematical expression of the break, or shoulder, of a typical sigmoid germination curve (Djavanshir and Pourbeik 1976). It is the accumulated number of seeds germinated at the point on the germination curve at which the rate of germination starts to decrease. It is also described as Emergence energy (Bonner 1967).

For daily germination counts, germination value ($GV$) is computed as follows (Czabator 1962).
Germ Value

\[ GV = PV \times MDG \]

Where, \( PV \) is the peak value and \( MDG \) is the mean daily germination percentage from the onset of germination.

Germination value (\( GV \)) can also be computed for other time intervals of successive germination counts, by replacing \( MDG \) with the mean germination percentage per unit time (\( GP \)).

A new estimation of germination value was given by Djavanshir and Pourbeik (1976) as follows:

\[ GV = \frac{\sum DGS}{N} \times GP \times k \]

Where, \( DGS \) is the daily germination speed computed by dividing cumulative germination percentage by the number of days since the onset of germination, \( N \) is the frequency or number of DGS calculated during the test, \( GP \) is the germination percentage expressed over 100 and \( k \) is a constant.

The value of \( k \) is decided on the basis of average daily speed of germination (\( \frac{\sum DGS}{N} \)). If it is less than 10, then \( k \) value of 10 can be used and if it is more than 10, then value of 7 or 8 can be used for \( k \).

For both methods of computing \( GV \), only the duration from the onset of germination is considered by default. Alternatively, modified \( GV \) (\( GV_{mod} \)), where the entire duration from the beginning of the test is considered can be obtained by using the argument \texttt{from.onset = FALSE} (Brown and Mayer 1988).

Value

A list with the following components:

- Germination Value
- Calculations
- testend

References


**MeanGermPercent**

**Mean germination percentage and number of seeds per time interval**

**Description**

Compute the following metrics:

- **MeanGermPercent** Mean/average germination percentage per unit time (G\(P\)) (Czabator 1962).
- **MeanGermNumber** Number of seeds germinated per unit time (\(\bar{N}\)) (Khamassi et al. 2013).

**Usage**

MeanGermPercent(germinated.seeds, germ.counts, total.seeds, intervals, partial = TRUE)

MeanGermNumber(germ.counts, intervals, partial = TRUE)
MeanGermPercent

Arguments

- `germinated.seeds`  
  Number of germinated seeds

- `germ.counts`  
  Germination counts at each time interval. Can be partial or cumulative as specified in the argument `partial`.

- `total.seeds`  
  Total number of seeds.

- `intervals`  
  The time intervals.

- `partial`  
  Logical. If `TRUE`, `germ.counts` is considered as partial and if `FALSE`, it is considered as cumulative. Default is `TRUE`.

Details

Mean germination percentage per unit time ($GP$) is computed as follows (Czabator 1962).

$$G = \frac{GP}{T_n}$$

Where, $GP$ is the final germination percentage and $T_n$ is the total number of intervals (e.g. days) required for final germination.

Mean number of seeds germinated per unit time ($N$) is computed as follows (Khamassi et al. 2013).

$$N = \frac{N_g}{T_n}$$

Where, $N_g$ is the number of germinated seeds and $T_n$ is the total number of intervals (e.g. days) required for final germination.

Value

The value of mean germination percentage or mean number of seeds per time interval.

References


See Also

GerminPercent
MeanGermRate

Examples

x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 40, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#---------------------------------------------------------------
MeanGermPercent(germ.counts = x, total.seeds = 50, intervals = int)
MeanGermNumber(germ.counts = x, intervals = int)

# From cumulative germination counts
#---------------------------------------------------------------
MeanGermPercent(germ.counts = y, total.seeds = 50, intervals = int, partial = FALSE)
MeanGermNumber(germ.counts = y, intervals = int, partial = FALSE)

# From number of germinated seeds
#---------------------------------------------------------------
MeanGermPercent(germinated.seeds = 40, total.seeds = 50, intervals = int)

MeanGermRate  Germination rate

Description

Compute the following metrics:

MeanGermRate  Mean germination rate (\(\bar{V}\)) (Labouriau and Valadares 1976; Labouriau 1983; Ranal and de Santana 2006).
VarGermRate  Variance of germination rate (\(\sigma^2\)) (Labouriau 1983; Ranal and de Santana 2006).
SEGermRate  Standard error of germination rate (\(s_{\bar{V}}\)) (Labouriau 1983; Ranal and de Santana 2006).
CVG  Coefficient of velocity/rate of germination or Kotowski’s coefficient of velocity (\(CVG\)) (Kotowski 1926; Nichols and Heydecker 1968; Labouriau 1983; Scott et al. 1984; Bewley and Black 1994).
GermRateRecip  Germination rate as reciprocal of median time (\(v_{50}\)) (Went 1957; Labouriau 1983; Ranal and de Santana 2006).

Usage

MeanGermRate(germ.counts, intervals, partial = TRUE)
CVG(germ.counts, intervals, partial = TRUE)
VarGermRate(germ.counts, intervals, partial = TRUE)
SEGermRate(germ.counts, intervals, partial = TRUE)
GermRateRecip(germ.counts, intervals, partial = TRUE, method = c("coolbear", "farooq"))
MeanGermRate

Arguments

- **germ.counts**: Germination counts at each time interval. Can be partial or cumulative as specified in the argument `partial`.
- **intervals**: The time intervals.
- **partial**: logical. If TRUE, `germ.counts` is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.
- **method**: The method for computing median germination time. Either "coolbear" or "farooq".

Details

MeanGermRate computes the mean germination rate ($\overline{V}$) according to the following formula (Labouriau and Valadares 1976; Labouriau 1983; Ranal and de Santana 2006).

$$ \overline{V} = \frac{\sum_{i=1}^{k} N_i}{\sum_{i=1}^{k} N_i T_i} $$

Where, $T_i$ is the time from the start of the experiment to the $i$th observation, $N_i$ is the number of seeds germinated in the $i$th time (not the accumulated number, but the number correspondent to the $i$th observation) and $k$ is the last time of germination.

It is the inverse of mean germination time ($\overline{T}$).

$$ \overline{V} = \frac{1}{\overline{T}} $$

VarGermRate computes the variance of germination rate ($s_V^2$) according to the following formula (Labouriau 1983; Ranal and de Santana 2006).

$$ s_V^2 = \overline{V}^4 \times s_T^2 $$

Where, $s_T^2$ is the variance of germination time.

SEGermRate computes the standard error of germination time ($s_{\overline{V}}$) according to the following formula (Labouriau 1983; Ranal and de Santana 2006).

$$ s_{\overline{V}} = \sqrt{\frac{s_V^2}{\sum_{i=1}^{k} N_i}} $$

Where, $N_i$ is the number of seeds germinated in the $i$th time (not the accumulated number, but the number correspondent to the $i$th observation) and $k$ is the last time of germination.

CVG computes the coefficient of velocity/rate of germination or Kotowski’s coefficient of velocity ($CVG$) according to the following formula (Kotowski 1926; Nichols and Heydecker 1968; Labouriau 1983; Scott et al. 1984; Bewley and Black 1994).

$$ CVG = \frac{\sum_{i=1}^{k} N_i}{\sum_{i=1}^{k} N_i T_i} \times 100 $$
\[ CVG = \overline{V} \times 100 \]

Where, \( T_i \) is the time from the start of the experiment to the \( i \)th observation, \( N_i \) is the number of seeds germinated in the \( i \)th time (not the accumulated number, but the number correspondent to the \( i \)th observation) and \( k \) is the last time of germination.

GermRateRecip computes the germination rate (\( v_{50} \)) as the reciprocal of the median germination time (\( t_{50} \)) (Went 1957; Labouriau 1983; Ranal and de Santana 2006) computed according to the methods of Coolbear et al. (1984) or Farooq et al. (2005) as follows:

\[ v_{50} = \frac{1}{t_{50}} \]

**Value**

For MeanGermRate, the mean germination rate value as \( \text{time}^{-1} \).

For VarGermTime, the variance of germination rate value as \( \text{time}^{-2} \).

For SEGermTime, the standard error of germination rate as \( \text{time}^{-1} \).

For CVG, the value of Coefficient of of velocity/rate of germination or Kotowski’s coefficient of velocity.

For GermRateRecip, the value of germination rate as \( \text{time}^{-1} \).

**References**


Ranal MA, de Santana DG (2006). “How and why to measure the germination process?” *Brazilian*
**MeanGermTime**

*Journal of Botany, 29*(1), 1–11.


**See Also**

MeanGermTime, t50

**Examples**

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#-----------------------------------------------------------------------------------
MeanGermRate(germ.counts = x, intervals = int)
CVG(germ.counts = x, intervals = int)
VarGermRate(germ.counts = x, intervals = int)
SEGermRate(germ.counts = x, intervals = int)
GermRateRecip(germ.counts = x, intervals = int, method = "coolbear")
GermRateRecip(germ.counts = x, intervals = int, method = "farooq")

# From cumulative germination counts
#-----------------------------------------------------------------------------------
MeanGermRate(germ.counts = y, intervals = int, partial = FALSE)
CVG(germ.counts = y, intervals = int, partial = FALSE)
VarGermRate(germ.counts = y, intervals = int, partial = FALSE)
SEGermRate(germ.counts = y, intervals = int, partial = FALSE)
GermRateRecip(germ.counts = y, intervals = int,
method = "coolbear", partial = FALSE)
GermRateRecip(germ.counts = y, intervals = int,
method = "farooq", partial = FALSE)
```

---

**MeanGermTime**

**Germination time**

**Description**

Compute the following metrics:

MeanGermTime  Mean germination time (\(T\)) or Mean length of incubation time (Edmond and Drapala 1958; Czabator 1962; Ellis and Roberts 1980; Labouriau 1983; Ranal and de Santana 2006).
**MeanGermTime**

VarGermTime  Variance of germination time \( (s_T^2) \) (Labouriau 1983; Ranal and de Santana 2006).

SEGermTime  Standard error of germination time \( (s_T) \) (Labouriau 1983; Ranal and de Santana 2006).

CVGermTime  Coefficient of variation of the germination time \( (CV_T) \) (Ranal and de Santana 2006).

**Usage**

MeanGermTime(germ.counts, intervals, partial = TRUE)

VarGermTime(germ.counts, intervals, partial = TRUE)

SEGermTime(germ.counts, intervals, partial = TRUE)

CVGermTime(germ.counts, intervals, partial = TRUE)

**Arguments**

- **germ.counts**: Germination counts at each time interval. Can be partial or cumulative as specified in the argument `partial`.
- **intervals**: The time intervals.
- **partial**: logical. If `TRUE`, `germ.counts` is considered as partial and if `FALSE`, it is considered as cumulative. Default is `TRUE`.

**Details**

MeanGermTime computes the mean germination time according to the following formula (Edmond and Drapala 1958; Czabator 1962; Ellis and Roberts 1980; Labouriau 1983; Ranal and de Santana 2006).

\[
T = \frac{\sum_{i=1}^{k} N_i T_i}{\sum_{i=1}^{k} N_i}
\]

Where, \( T_i \) is the time from the start of the experiment to the \( i \)th observation, \( N_i \) is the number of seeds germinated in the \( i \)th time (not the accumulated number, but the number correspondent to the \( i \)th observation) and \( k \) is the last time of germination.

It is the same as Sprouting Index described by Smith and Millet (1964) \((SI)\) and Germination Resistance \((GR)\) described by Gordon (1969, 1971).

It is the inverse of mean germination rate \( (V) \).

\[
\overline{T} = \frac{1}{V}
\]

It indicates the average length of time required for maximum germination of a seed lot. Lower the \( \overline{T} \), faster the sample has germinated and reflects seed vigor.

VarGermTime computes the variance of germination time according to the following formula (Labouriau 1983; Ranal and de Santana 2006).
MeanGermTime

\[ s_T^2 = \frac{\sum_{i=1}^{k} N_i (T_i - \bar{T})^2}{\sum_{i=1}^{k} N_i - 1} \]

Where, \( T_i \) is the time from the start of the experiment to the \( i \)th observation, \( N_i \) is the number of seeds germinated in the \( i \)th time (not the accumulated number, but the number correspondent to the \( i \)th observation) and \( k \) is the last time of germination.

SEGermTime computes the standard error of germination time (\( s_T \)) according to the following formula (Labouriau 1983; Ranal and de Santana 2006).

\[ s_T = \sqrt{\frac{s_T^2}{\sum_{i=1}^{k} N_i}} \]

Where, \( N_i \) is the number of seeds germinated in the \( i \)th time (not the accumulated number, but the number correspondent to the \( i \)th observation) and \( k \) is the last time of germination.

It signifies the accuracy of the calculation of the mean germination time.

CVGermTime computes the coefficient of variation of germination time (\( CV_T \)) according to the following formula (Ranal and de Santana 2006).

\[ CV_T = \sqrt{\frac{s_T^2}{\bar{T}}} \]

This indicates the uniformity of germination and permits comparisons irrespective of the magnitude of mean germination time (\( \bar{T} \)).

Value

For MeanGermTime, the mean germination time value in the same unit of time as specified in the argument intervals.

For VarGermTime, the variance of germination time value as \( \text{time}^2 \).

For SEGermTime, the standard error of germination time in the same unit of time specified in the argument intervals.

For CVGermTime, the value of coefficient of variation of the germination time.

References


See Also

*MeanGermRate*

Examples

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#-------------------------------------------------------------
MeanGermTime(germ.counts = x, intervals = int)
VarGermTime(germ.counts = x, intervals = int)
SEGermTime(germ.counts = x, intervals = int)
CVGermTime(germ.counts = x, intervals = int)

# From cumulative germination counts
#-------------------------------------------------------------
MeanGermTime(germ.counts = y, intervals = int, partial = FALSE)
VarGermTime(germ.counts = y, intervals = int, partial = FALSE)
SEGermTime(germ.counts = y, intervals = int, partial = FALSE)
CVGermTime(germ.counts = y, intervals = int, partial = FALSE)
```

---

**plot.FourPHFfit**

Plot the four-parameter hill function fitted cumulative germination curve from a *FourPHFfit* object

Description

`plot.FourPHFfit` plots the four-parameter hill function fitted cumulative germination curve (FPHF curve) from a *FourPHFfit* object as an object of class `ggplot`. Further, the rate of germination curve (RoG curve) is plotted and different parameters annotated as specified in the different arguments.
plot.FourPHFfit

**Usage**

```r
## S3 method for class 'FourPHFfit'
plot(x, rog = TRUE, t50.total = TRUE,
     t50.germ = TRUE, tmgr = TRUE, mgt = TRUE, uniformity = TRUE,
     limits = TRUE, plotlabels = TRUE, ...)
```

**Arguments**

- `x` An object of class FourPHFfit obtained as output from the FourPHFfit function.
- `rog` If TRUE, plots the Rate of Germination curve (RoG). Default is TRUE.
- `t50.total` If TRUE, highlights the time required for 50% of total seeds to germinate (t_{50,TotGerm}) as a vertical line. Default is TRUE.
- `t50.germ` If TRUE, highlights the time required for 50% of viable/germinated seeds to germinate (t_{50,V Germ}) as a vertical line. Default is TRUE.
- `tmgr` If TRUE, highlights the Time at Maximum Germination Rate (TMGR) as a vertical line. Default is TRUE.
- `mgt` If TRUE, highlights the Mean Germination Time (MGT) as a vertical line. Default is TRUE.
- `uniformity` If TRUE, highlights the uniformity value (U_{max} - t_{min}) as a horizontal line. Default is TRUE.
- `limits` logical. If TRUE, set the limits of y axis (germination percentage) between 0 and 100 in the germination curve plot. If FALSE, limits are set according to the data. Default is TRUE.
- `plotlabels` logical. If TRUE, adds labels to the germination curve plot. Default is TRUE.
- `...` Default plot arguments.

**Value**

The plot of the cumulative germination curve as an object of class ggplot.

**See Also**

FourPHFfit

**Examples**

```r
x <- c(0, 0, 0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 0, 0, 0)
y <- c(0, 0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)
total.seeds = 50

# From partial germination counts
fit1 <- FourPHFfit(germ.counts = x, intervals = int,
```
total.seeds = 50, tmax = 20)

# From cumulative germination counts
#---------------------------------------------------------------
fit2 <- FourPHFit(germ.counts = y, intervals = int,
                   total.seeds = 50, tmax = 20, partial = FALSE)

# Default plots
plot(fit1)
plot(fit2)

# No labels
plot(fit1, plotlabels = FALSE)
plot(fit2, plotlabels = FALSE)

# Only the FPHF curve
plot(fit1, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
     tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
plot(fit2, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
     tmgr = FALSE, mgt = FALSE, uniformity = FALSE)

# Without y axis limits adjustment
plot(fit1, limits = FALSE)
plot(fit2, limits = FALSE)

---

**t50**

*Median germination time*

**Description**

Compute the median germination time ($t_{50}$). Median germination time is the time to reach 50% of final/maximum germination.

**Usage**

`t50(germ.counts, intervals, partial = TRUE, method = c("coolbear", "farooq"))`

**Arguments**

- `germ.counts` Germination counts at each time interval. Can be partial or cumulative as specified in the argument `partial`.
- `intervals` The time intervals.
- `partial` logical. If TRUE, `germ.counts` is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.
- `method` The method for computing median germination time. Either "coolbear" or "farooq".
Details

With argument method specified as "coolbear", median germination time is computed according to the formula by Coolbear et al. (1984) as follows:

\[ t_{50} = T_i + \frac{(N+1/2) - N_i)(T_j - T_i)}{N_j - N_i} \]

Where, \( t_{50} \) is the median germination time, \( N \) is the final number of germinated seeds and \( N_i \) and \( N_j \) are the total number of seeds germinated in adjacent counts at time \( T_i \) and \( T_j \) respectively, when \( N_i < \frac{N+1}{2} < N_j \).

Similarly with argument method specified as "farooq", median germination time is computed according to the formula by by Farooq et al. (2005) as follows:

\[ t_{50} = T_i + \frac{(N - N_i)(T_j - T_i)}{N_j - N_i} \]

Where, \( t_{50} \) is the median germination time, \( N \) is the final number of germinated seeds and \( N_i \) and \( N_j \) are the total number of seeds germinated in adjacent counts at time \( T_i \) and \( T_j \) respectively, when \( N_i < \frac{N}{2} < N_j \).

Value

The median germination time (\( t_{50} \)) value in the same unit of time as specified in the argument intervals.

References


See Also

MeanGermRate

Examples

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#------------------------------------------
t50(germ.counts = x, intervals = int, method = "coolbear")
t50(germ.counts = x, intervals = int, method = "farooq")
```
TimsonsIndex

Description

Compute George's index (George 1961), Timson's index or Timson's germination velocity index (Grose and Zimmer 1958; Timson 1965) and its modifications by Labouriau (Ranal and de Santana 2006) and (Khan and Ungar 1984).

Usage

\texttt{TimsonsIndex(germ.counts, intervals, partial = TRUE, total.seeds, max, modification = c("none", "labouriau", "khanungar"))}

\texttt{GermRateGeorge(germ.counts, intervals, partial = TRUE, max)}

Arguments

- \texttt{germ.counts}: Germination counts at each time interval. Can be partial or cumulative as specified in the argument \texttt{partial}.
- \texttt{intervals}: The time intervals.
- \texttt{partial}: Logical. If \TRUE, \texttt{germ.counts} is considered as partial and if \FALSE, it is considered as cumulative. Default is \TRUE.
- \texttt{total.seeds}: Total number of seeds.
- \texttt{max}: The maximum interval value up to which Timson's index/George's germination rate is to be computed.
- \texttt{modification}: The modification to be applied. Either "none", "labouriau" or "khanungar". Default is "none" (see Details).

Details

Timson's index (Timson 1965) is computed as follows (Grose and Zimmer 1958; Brown and Mayer 1988; Baskin and Baskin 1998).

\[
\sum_{i=1}^{t} n = \sum_{i=1}^{t} G_i
\]

Where, \( G_i \) is the cumulative germination percentage in time interval \( i \) and \( t \) is the total number of time intervals.
For example ten summation ($\Sigma 10$) is expressed as follows:

$$\sum_{i=1}^{10} = G_1 + G_2 + \cdots + G_{10}$$

Where $G_1, G_2, \cdots G_{10}$ are the cumulative germination percentage at day 1, 2, 3, \cdots, 10 respectively.

Similarly $\Sigma 5$ or $\Sigma 20$ can be estimated. For $\Sigma 10$, the value can range from 0 (no germination) to 1,000 (100% germination after 24 hours).

It is the progressive total of cumulative germination percentage recorded at specific intervals for a set period of time. It combines onset, rate and total percentage of germination and estimates the area under the cumulative germination percentage curve.

Goodchild and Walker (1971), described the same in terms of partial germination percentage as follows:

$$\sum_{i=1}^{n} = \sum_{i=1}^{t} g_i(t-j)$$

Where, $g_i$ is the germination (not cumulative, but partial germination) in time interval $i$ ($i$ varying from 0 to $t$) and $t$ is the total number of time intervals and $j = i - 1$.

Timson’s index is equivalent to the Germination Energy Index $GEI$ proposed by Grose and Zimmer (1958).

Timson’s index is similar to the germination rate proposed by George (1961) as follows (Tucker and Wright 1965; Nichols and Heydecker 1968).

$$GR = \sum_{i=1}^{t} N_i K_i$$

Where $N_i$ is the number of seeds germinated by $i$th interval and $K_i$ is the number of intervals (e.g. days) until the end of the test.

This index uses number of seeds germinated instead of germination percentage.

As Timson’s index is useful for comparison only when samples have similar germinabilities or final germination percentage, the following modification was suggested by Labouriau (Ranal and de Santana 2006).

$$T_{mod} = \frac{T}{\sum_{i=1}^{t} g_i}$$

Here Timson’s index ($t$) is divided by the sum of partial germination percentages.

Similarly another modification was proposed by (Khan and Ungar 1984), where Timson’s index ($t$) is divided by number of intervals ($t$).

$$T_{mod} = \frac{T}{t}$$
Value

For `TimsonsIndex` The value of Timson’s index.
For `GermRateGeorge` The value of George’s germination rate.

References


Examples

```r
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50)
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
  modification = "none")
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
  modification = "none")
```

WeightGermPercent

Weighted germination percentage

Description

Compute the Weighted germination percentage \( WGP \) or Weighted germination index \( WGI \) (Reddy 1978; Reddy et al. 1985).

Usage

\[
\text{WeightGermPercent}(\text{germ.counts}, \text{total.seeds}, \text{intervals}, \text{partial} = \text{TRUE})
\]

Arguments

- germ.counts: Germination counts at each time interval. Can be partial or cumulative as specified in the argument partial.
- total.seeds: Total number of seeds tested.
- intervals: The time intervals.
- partial: logical. If TRUE, germ.counts is considered as partial and if FALSE, it is considered as cumulative. Default is TRUE.
Details

Weighted germination percentage was calculated by giving maximum weight to the seeds that germinate first and decreasing weight to the seeds that germinate subsequently. It is computed as follows (Reddy 1978; Reddy et al. 1985):

\[
WGP = \sum_{i=1}^{t} \frac{(t - i + 1)N_i}{t \times N} \times 100
\]

Where, \( N_i \) is the number of seeds that germinated in the time interval \( i \) (not cumulative, but partial count), \( N \) is the total number of seeds tested and \( t \) is the total number of time intervals.

Value

The weighted germination percentage (\%) value.

References


Examples

```r
x <- c(0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0)
y <- c(0, 0, 0, 4, 21, 31, 38, 39, 40, 40, 40, 40)
int <- 1:length(x)

# From partial germination counts
#-------------------------------------------------------------
WeightGermPercent(germ.counts = x, total.seeds = 50, intervals = int)

# From cumulative germination counts
#-------------------------------------------------------------
WeightGermPercent(germ.counts = y, total.seeds = 50, intervals = int,
                  partial = FALSE)
```
Index

*Topic **datasets**

gcdata, 9

CUGerm, 2, 17, 23
CVG, 17
CVG (MeanGermRate), 28
CVGermTime, 17
CVGermTime (MeanGermTime), 31

FirstGermTime, 4, 17
FourPHFfit, 6, 35

gcdata, 9
germination.indices, 11
GermPercent, 17, 27
GermRateGeorge, 17
GermRateGeorge (TimsonsIndex), 38
GermRateRecip, 17
GermRateRecip (MeanGermRate), 28
GermSpeed, 17, 19
GermSpeedAccumulated, 17
GermSpeedAccumulated (GermSpeed), 19
GermSpeedCorrected, 17
GermSpeedCorrected (GermSpeed), 19
GermSynchrony, 3, 17, 22
GermUncertainty, 17
GermUncertainty (GermSynchrony), 22
GermValue, 17, 24

LastGermTime, 17
LastGermTime (FirstGermTime), 4

MeanGermNumber (MeanGermPercent), 26
MeanGermPercent, 17, 26
MeanGermRate, 17, 28, 34, 37
MeanGermTime, 3, 17, 31, 31

PeakGermTime, 17
PeakGermTime (FirstGermTime), 4
PeakValue, 17
PeakValue (GermValue), 24

plot.FourPHFfit, 34

SEGermRate, 17
SEGermRate (MeanGermRate), 28
SEGermTime, 17
SEGermTime (MeanGermTime), 31

t50, 17, 31, 36
TimeSpreadGerm, 17
TimeSpreadGerm (FirstGermTime), 4
TimsonsIndex, 17, 38

VarGermRate, 17
VarGermRate (MeanGermRate), 28
VarGermTime, 17
VarGermTime (MeanGermTime), 31

WeightGermPercent, 17, 41