Package ‘gesso’

November 30, 2021

Type Package
Title Hierarchical GxE Interactions in a Regularized Regression Model
Version 1.0.2
Date 2021-11-28
Author Natalia Zemlianskaia
Maintainer Natalia Zemlianskaia <natasha.zemlianskaia@gmail.com>
Description The method focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.
License MIT + file LICENSE
Imports Rcpp (>= 1.0.3), Matrix, bigmemory, methods
Depends dplyr, R (>= 3.5)
Suggests glmnet, testthat, knitr, rmarkdown, ggplot2
LinkingTo Rcpp, RcppEigen, RcppThread, BH, bigmemory
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-11-30 07:30:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>topic</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesso-package</td>
<td>2</td>
</tr>
<tr>
<td>data.gen</td>
<td>2</td>
</tr>
<tr>
<td>gesso.coef</td>
<td>4</td>
</tr>
<tr>
<td>gesso.coefnum</td>
<td>5</td>
</tr>
<tr>
<td>gesso.cv</td>
<td>6</td>
</tr>
<tr>
<td>gesso.fit</td>
<td>7</td>
</tr>
<tr>
<td>gesso.predict</td>
<td>9</td>
</tr>
<tr>
<td>selection.metrics</td>
<td>10</td>
</tr>
</tbody>
</table>

Index 12
gesso-package

Hierarchical GxE Interactions in a Regularized Regression Model

Description

The method focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.

Author(s)

Natalia Zemlianskaia

Maintainer: Natalia Zemlianskaia <natasha.zemlianskaia@gmail.com>

References

data.gen

Data Generation

Description

Generates genotypes data matrix G (sample_size by p), vector of environmental measurements E, and an outcome vector Y of size sample_size. Simulates training, validation, and test datasets.

Usage

```r
data.gen(sample_size = 100, p = 20, n_g_non_zero = 15, n_gxe_non_zero = 10, 
       family = "gaussian", mode = "strong_hierarchical", 
       normalize = FALSE, normalize_response = FALSE, 
       seed = 1, pG = 0.2, pE = 0.3, 
       n_confounders = NULL)
```

Arguments

- `sample_size`: sample size of the data
- `p`: total number of main effects
- `n_g_non_zero`: number of non-zero main effects to generate
- `n_gxe_non_zero`: number of non-zero interaction effects to generate
- `family`: "gaussian" for continuous outcome Y and "binomial" for binary 0/1 outcome
mode either "strong_hierarchical", "hierarchical", or "anti_hierarchical". In the strong hierarchical mode the hierarchical structure is maintained (beta_g = 0 then beta_gxe = 0) and also |beta_g| >= |beta_gxe|. In the hierarchical mode the hierarchical structure is maintained, but |beta_g| < |beta_gxe|. In the anti_hierarchical mode the hierarchical structure is violated (beta_g = 0 then beta_gxe != 0).

normalize TRUE to normalize matrix G and vector E
normalize_response TRUE to normalize vector Y
pG genotypes prevalence, value from 0 to 1
pE environment prevalence, value from 0 to 1
seed random seed
n_confounders number of confounders to generate, either NULL or >1

Value
A list of simulated datasets and generating coefficients

G_train, G_valid, G_test generated genotypes matrices
E_train, E_valid, E_test generated vectors of environmental values
Y_train, Y_valid, Y_test generated outcome vectors
C_train, C_valid, C_test generated confounders matrices
GxE_train, GxE_valid, GxE_test generated GxE matrix
Beta_G main effect coefficients vector
Beta_GxE interaction coefficients vector
beta_0 intercept coefficient value
beta_E environment coefficient value
Beta_C confounders coefficient values

index_beta_non_zero, index_beta_gxe_non_zero, index_beta_zero, index_beta_gxe_zero inner data generation variables
n_g_non_zero number of non-zero main effects generated
n_gxe_non_zero number of non-zero interactions generated
n_total_non_zero total number of non-zero variables
SNR_g signal-to-noise ratio for the main effects
SNR_gxe signal-to-noise ratio for the interactions

family, p, sample_size, mode, seed input simulation parameters
Examples

```r
data = data.gen(sample_size=100, p=100)
G = data$G_train; GxE = data$GxE_train
E = data$E_train; Y = data$Y_train

model = gesso.cv(data$G_train, data$E_train, data$Y_train, grid_size=20,
parallel=TRUE, nfolds=3)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g
```

Description

A function to obtain coefficients from the model fit object corresponding to the desired pair of tuning parameters \(\lambda = (\lambda_1, \lambda_2) \).

Usage

```r
gesso.coef(fit, lambda)
```

Arguments

- `fit`: model fit object obtained either by using function `gesso.fit` or `gesso.cv`
- `lambda`: a pair of tuning parameters organized in a tibble (ex: `lambda = tibble(lambda_1=grid[1], lambda_2=grid[1])`

Value

A list of model coefficients corresponding to \(\lambda \) values of tuning parameters

- `beta_0`: estimated intercept value
- `beta_e`: estimated environmental coefficient value
- `beta_g`: a vector of estimated main effect coefficients
- `beta_c`: a vector of estimated confounders coefficients
- `beta_gxe`: a vector of estimated interaction coefficients

Examples

```r
data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train, grid_size=20,
parallel=TRUE, nfolds=3)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g
```
gesso.coefnum

Get model coefficients with specified number of non-zero interactions

Description

A function to obtain coefficients with target_b_gxe_non_zero specified to control the desired sparsity of interactions in the model.

Usage

gesso.coefnum(cv_model, target_b_gxe_non_zero, less_than = TRUE)

Arguments

cv_model cross-validated model fit object obtained by using function gesso.cv
target_b_gxe_non_zero number of non-zero interactions we want to include in the model
less_than TRUE if we want to control a number of at most non-zero interactions, FALSE if we want to control a number of at least non-zero interactions

Value

A list of model coefficients corresponding to the best model that contains at most or at least target_b_gxe_non_zero non-zero interaction terms.

The target model is selected based on the averaged cross-validation (cv) results: for each pair of parameters lambda=(lambda_1, lambda_2) in the grid and each cv fold we obtain a number of non-zero estimated interaction terms, then average cv results by lambda and choose the tuning parameters corresponding to the minimum average cv loss that have at most or at least target_b_gxe_non_zero non-zero interaction terms. Returned coefficients are obtained by fitting the model on the full data with the selected tuning parameters.

Note that the number of estimated non-zero interactions will only approximately reflect the numbers obtained on cv datasets.

beta_0 estimated intercept value
beta_e estimated environmental coefficient value
beta_g a vector of estimated main effect coefficients
beta_gxe a vector of estimated interaction coefficients
beta_c a vector of estimated confounders coefficients

Examples

data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
model_coefficients = gesso.coefnum(model, 5)
gxe_coefficients = model_coefficients$beta_gxe; sum(gxe_coefficients!=0)
Description

Performs nfolds-fold cross-validation to tune hyperparameters \(\lambda_1 \) and \(\lambda_2 \) for the gesso model.

Usage

```r
gesso.cv(G, E, Y, C = NULL, normalize = TRUE, normalize_response = FALSE, grid = NULL,
grid_size = 20, grid_min_ratio = NULL, alpha = NULL, family = "gaussian",
type_measure = "loss", fold_ids = NULL, nfolds = 4,
parallel = TRUE, seed = 42, tolerance = 1e-3, max_iterations = 5000,
min_working_set_size = 100, verbose = TRUE)
```

Arguments

- **G**: matrix of main effects of size \(n \times p \), variables organized by columns
- **E**: vector of environmental measurements
- **Y**: outcome vector. Set `family="gaussian"` for the continuous outcome and `family="binomial"` for the binary outcome with 0/1 levels
- **C**: matrix of confounders of size \(n \times m \), variables organized by columns
- **normalize**: TRUE to normalize matrix G and vector E
- **normalize_response**: TRUE to normalize vector Y (for `family="gaussian"`)
- **grid**: grid sequence for tuning hyperparameters, we use the same grid for \(\lambda_1 \) and \(\lambda_2 \)
- **grid_size**: specify `grid_size` to generate grid automatically. Grid is generated by calculating \(\text{max}_{\lambda_2} \) from the data (smallest lambda such that all the coefficients are zero). \(\text{min}_{\lambda_2} \) is calculated as a product of \(\text{max}_{\lambda_2} \) and `grid_min_ratio`. The program then generates `grid_size` values equidistant on the log10 scale from \(\text{min}_{\lambda_2} \) to \(\text{max}_{\lambda_2} \)
- **grid_min_ratio**: parameter to determine \(\text{min}_{\lambda_2} \) (smallest value for the grid of lambdas), default is 0.1 for \(p > n \), 0.01 otherwise
- **alpha**: if `NULL` independent 2D grid is used for \((\lambda_1, \lambda_2)\), else 1D grid is used where \(\lambda_2 = \alpha \times \lambda_1 \), i.e. \((\lambda_1, \alpha \times \lambda_1)\)
- **family**: "gaussian" for continuous outcome and "binomial" for binary
- **type_measure**: loss to use for cross-validation. Specify `type_measure="loss"` for negative log likelihood or `type_measure="auc"` for AUC (for `family="binomial"` only)
- **fold_ids**: option to input custom folds assignments
- **tolerance**: tolerance for the dual gap convergence criterion
- **max_iterations**: maximum number of iterations
gesso.fit

min_working_set_size minimum size of the working set
n folds number of cross-validation splits
parallel TRUE to enable parallel cross-validation
seed set random seed to control random folds assignments
verbose TRUE to print messages

Value

A list of objects

- **cv_result** a tibble with cross-validation results: averaged across folds loss and the number of non-zero coefficients for each value of \((\lambda_1, \lambda_2)\) path. Could be used for custom parameters tuning (ex: select \((\lambda_1, \lambda_2)\) with a certain number of non-zero main effects and/or a certain number of interactions).
 - **mean_loss** averaged across folds loss value, vector of size \(\lambda_1 \times \lambda_2\)
 - **mean_beta_g_nonzero** averaged across folds number of non-zero main effects, vector of size \(\lambda_1 \times \lambda_2\)
 - **mean_beta_gxe_nonzero** averaged across folds number of non-zero interactions, vector of size \(\lambda_1 \times \lambda_2\)
 - **\lambda_1\lambda_1** pass, decreasing
 - **\lambda_2\lambda_2** pass, oscillating

- **lambda_min** a tibble of optimal \((\lambda_1, \lambda_2)\) values, tuning parameter values that give minimum cross-validation loss (mean_loss)

- **fit** list, return of the function gesso.fit on the full data

- **grid** vector of values used for hyperparameters tuning

- **full_cv_result** inner variables

Examples

data = data.gen()
tune_model = gesso.cv(data$G_train, data$E_train, data$Y_train, grid_size=20, parallel=TRUE, nfolds=3)
gxe_coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)$beta_g

gesso.fit gesso fit

Description

Fits gesso model over the two dimensional grid of hyperparameters \(\lambda_1\) and \(\lambda_2\), returns estimated coefficients for each pair of hyperparameters.
Usage

gesso.fit(G, E, Y, C = NULL, normalize = TRUE, normalize_response = FALSE,
grid = NULL, grid_size = 20, grid_min_ratio = NULL,
alpha = NULL, family = "gaussian", weights = NULL,
tolerance = 1e-3, max_iterations = 5000,
min_working_set_size = 100,
verbose = FALSE)

Arguments

G matrix of main effects of size n x p, variables organized by columns
E vector of environmental measurements
Y outcome vector. Set family="gaussian" for the continuous outcome and family="binomial"
for the binary outcome with 0/1 levels
C matrix of confounders of size n x m, variables organized by columns
normalize TRUE to normalize matrix G and vector E
normalize_response TRUE to normalize vector Y
grid grid sequence for tuning hyperparameters, we use the same grid for lambda_1 and lambda_2
grid_size specify grid_size to generate grid automatically. Grid is generated by calculating max_lambda from the data (smallest lambda such that all the coefficients are zero). min_lambda is calculated as a product of max_lambda and grid_min_ratio. The program then generates grid_size values equidistant on the log10 scale from min_lambda to max_lambda
grid_min_ratio parameter to determine min_lambda (smallest value for the grid of lambdas), default is 0.1 for p > n, 0.01 otherwise
alpha if NULL independent 2D grid is used for (lambda_1, lambda_2), else 1D grid is used where lambda_2 = alpha * lambda_1, i.e. (lambda_1, alpha * lambda_1)
family "gaussian" for continuous outcome and "binomial" for binary
tolerance tolerance for the dual gap convergence criterion
max_iterations maximum number of iterations
min_working_set_size minimum size of the working set
weights inner fitting parameter
verbose TRUE to print messages

Value

A list of estimated coefficients and other model fit metrics for each pair of hyperparameters (lambda_1, lambda_2)

beta_0 vector of estimated intercept values of size lambda_1*lambda_2
beta_e vector of estimated environment coefficients of size lambda_1*lambda_2
gesso.predict

Description

Predict new outcome vector based on the new data and estimated model coefficients.

Usage

gesso.predict(beta_0, beta_e, beta_g, beta_gxe, new_G, new_E,
 beta_c=NULL, new_C=NULL, family = "gaussian")

Examples

data = data.gen()
fit = gesso.fit(G=data$G_train, E=data$E_train, Y=data$Y_train, normalize=TRUE)
plot(fit$beta_g_nonzero, pch=19, cex=0.4,
 ylab="num of non-zero features", xlab="lambdas path")
points(fit$beta_gxe_nonzero, pch=19, cex=0.4, col="red")
Arguments

- **beta_0**
 estimated intercept value

- **beta_e**
 estimated environmental coefficient value

- **beta_g**
 a vector of estimated main effect coefficients

- **beta_gxe**
 a vector of estimated interaction coefficients

- **new_G**
 matrix of main effects, variables organized by columns

- **new_E**
 vector of environmental measurements

- **beta_c**
 a vector of estimated confounders coefficients

- **new_C**
 matrix of confounders, variables organized by columns

- **family**
 set family="gaussian" for the continuous outcome and family="binomial" for the binary outcome with 0/1 levels

Value

Returns a vector of predicted values

Examples

```r
data = data.gen()
tune_model = gesso.cv(data$G_train, data$E_train, data$Y_train)
coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)
beta_0 = coefficients$beta_0; beta_e = coefficients$beta_e
beta_g = coefficients$beta_g; beta_gxe = coefficients$beta_gxe

new_G = data$G_test; new_E = data$E_test
new_Y = gesso.predict(beta_0, beta_e, beta_g, beta_gxe, new_G, new_E)
corr(new_Y, data$Y_test)^2
```

selection.metrics
Selection metrics

Description

Calculates principal selection metrics for the binary zero/non-zero classification problem (sensitivity, specificity, precision, auc).

Usage

```
selection.metrics(true_b_g, true_b_gxe, estimated_b_g, estimated_b_gxe)
```

Arguments

- **true_b_g**
 vector of true main effect coefficients

- **true_b_gxe**
 vector of true interaction coefficients

- **estimated_b_g**
 vector of estimated main effect coefficients

- **estimated_b_gxe**
 vector of estimated interaction coefficients
Selection metrics

Value

A list of principal selection metrics

- `b_g_non_zero` number of non-zero main effects
- `b_gxe_non_zero` number of non-zero interactions
- `mse_b_g` mean squared error for estimation of main effects effect sizes
- `mse_b_gxe` mean squared error for estimation of interactions effect sizes
- `sensitivity_g` recall of the non-zero main effects
- `specificity_g` recall of the zero main effects
- `precision_g` precision with respect to non-zero main effects
- `sensitivity_gxe` recall of the non-zero interactions
- `specificity_gxe` recall of the zero interactions
- `precision_gxe` precision with respect to non-zero interactions
- `auc_g` area under the curve for zero/non-zero binary classification problem for main effects
- `auc_gxe` area under the curve for zero/non-zero binary classification problem for interactions

Examples

```r
data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g
selection.metrics(data$Beta_G, data$Beta_GxE, g_coefficients, gxe_coefficients)
```
Index

* package
 gesso-package, 2

data.gen, 2

gesso (gesso-package), 2
gesso-package, 2
gesso.coef, 4
gesso.coefnum, 5
gesso.cv, 6
gesso.fit, 7
gesso.predict, 9

selection.metrics, 10