Package ‘getmstatistic’

March 30, 2020

Title Quantifying Systematic Heterogeneity in Meta-Analysis

Version 0.2.1

Description Quantifying systematic heterogeneity in meta-analysis using R. The M statistic aggregates heterogeneity information across multiple variants to, identify systematic heterogeneity patterns and their direction of effect in meta-analysis. It's primary use is to identify outlier studies, which either show "null" effects or consistently show stronger or weaker genetic effects than average across, the panel of variants examined in a GWAS meta-analysis. In contrast to conventional heterogeneity metrics (Q-statistic, I-squared and tau-squared) which measure random heterogeneity at individual variants, M measures systematic (non-random) heterogeneity across multiple independently associated variants. Systematic heterogeneity can arise in a meta-analysis due to differences in the study characteristics of participating studies. Some of the differences may include: ancestry, allele frequencies, phenotype definition, age-of-disease onset, family-history, gender, linkage disequilibrium and quality control thresholds. See <https://magosil86.github.io/getmstatistic/> for statistical theory, documentation and examples.

Depends R (>= 3.1.0)

License MIT + file LICENSE

URL https://magosil86.github.io/getmstatistic/

BugReports https://github.com/magosil86/getmstatistic/issues

LazyData true

Imports ggplot2 (>= 1.0.1), gridExtra (>= 0.9.1), gtable (>= 0.1.2), metaphor (>= 1.9-6), psych (>= 1.5.1), stargazer (>= 5.1)

Suggests foreign (>= 0.8-62), knitr (>= 1.10.5), testthat, covr

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Lerato E Magosi [aut], Jemma C Hopewell [aut], Martin Farrall [aut], Lerato E Magosi [cre]
draw_table

Maintainer Lerato E Magosi <magosil86@gmail.com>

Repository CRAN

Date/Publication 2020-03-30 08:50:06 UTC

R topics documented:

`draw_table` 2
`getmstatistic` 3
`heartgenes214` 7

`draw_table` 9

draw_table
Helper function to draw table grobs.

Description

`draw_table()` Pre and post version: 2.0.0 gridExtra packages handle drawing tables differently.
`draw_table()` determines the installed version of gridExtra and applies the appropriate syntax. If
gridExtra version < 2.0.0 then it uses old gridExtra syntax to build table Grob(graphical object) else
uses new syntax.

Usage

`draw_table(body, heading, ...)`

Arguments

`body`
A dataframe. Table body.

`heading`
A string. Table title.

`...`
Further arguments to control the gtable.

Details

prints tables without rownames.

Acknowledgements

Thanks to Ryan Welch, https://github.com/welchr/LocusZoom/issues/16
getmstatistic

Examples

```r
library(gridExtra)

## Not run:
# Table of iris values
iris_dframe <- head(iris)
title_iris_dframe <- paste("Table: Length and width measurements (cm) of sepals and petals,",
"for 50 flowers from 3 species of iris (setosa, versicolor,",
"and virginica). \n", sep = " ")
# Wrap title text at column 60
title_iris_dframe <- sapply(strwrap(title_iris_dframe, width = 60, simplify = FALSE),
paste, collapse = "\n")
# Draw table
table_influential_studies <- draw_table(body = iris_dframe, heading = title_iris_dframe)

# Table of mtcars values
mtcars_dframe <- head(mtcars)
"for fuel consumption, \nautomobile design and performance.\n", sep = " ")
# Wrap title text at column 60
title_mtcars_dframe <- sapply(strwrap(title_mtcars_dframe, width = 60, simplify = FALSE),
paste, collapse = "\n")
# Draw table
table_influential_studies <- draw_table(body = mtcars_dframe, heading = title_mtcars_dframe)

## End(Not run)
```

getmstatistic

Quantifying Systematic Heterogeneity in Meta-Analysis.

Description

getmstatistic computes *M* statistics to assess the contribution of each participating study in a meta-analysis. The *M* statistic aggregates heterogeneity information across multiple variants to identify systematic heterogeneity patterns and their direction of effect in meta-analysis. It’s primary use is to identify outlier studies, which either show "null" effects or consistently show stronger or weaker genetic effects than average, across the panel of variants examined in a GWAS meta-analysis.

Usage

```r
getmstatistic(beta_in, lambda_se_in, study_names_in, variant_names_in, ...)
```

Default S3 method:

```r
getmstatistic(beta_in, lambda_se_in, study_names_in, variant_names_in, save_dir = getwd(), tau2_method = "DL",
```
\begin{verbatim}
\texttt{x_axis_increment_in = 0.02, x_axis_round_in = 2,}
\texttt{produce_plots = TRUE, verbose_output = FALSE, ...}
\end{verbatim}

Arguments

- **beta_in**
 A numeric vector of study effect-sizes e.g. log odds-ratios.

- **lambda_se_in**
 A numeric vector of standard errors, genomically corrected at study-level.

- **study_names_in**
 A character vector of study names.

- **variant_names_in**
 A character vector of variant names e.g. rsIDs.

- **...**
 Further arguments.

- **save_dir**
 A character scalar specifying a path to the directory where plots should be stored (optional). Required if `produce_plots = TRUE`.

- **tau2_method**
 A character scalar, method to estimate heterogeneity: either "DL" or "REML" (Optional). Note: The REML method uses the iterative Fisher scoring algorithm (step length = 0.5, maximum iterations = 10000) to estimate tau2.

- **x_axis_increment_in**
 A numeric scalar, value by which x-axis of M scatterplot will be incremented (Optional).

- **x_axis_round_in**
 A numeric scalar, value to which x-axis labels of M scatterplot will be rounded (Optional).

- **produce_plots**
 A boolean to generate plots (optional).

- **verbose_output**
 An optional boolean to display intermediate output.

Details

In contrast to conventional heterogeneity metrics (Q-statistic, I-squared and tau-squared) which measure random heterogeneity at individual variants, \(M \) measures systematic (non-random) heterogeneity across multiple independently associated variants.

Systematic heterogeneity can arise in a meta-analysis due to differences in the study characteristics of participating studies. Some of the differences may include: ancestry, allele frequencies, phenotype definition, age-of-disease onset, family-history, gender, linkage disequilibrium and quality control thresholds. See the getmstatistic website for statistical theory, documentation and examples.

\texttt{getmstatistic} uses summary data i.e. study effect-sizes and their corresponding standard errors to calculate \(M \) statistics (One \(M \) for each study in the meta-analysis).

In particular, \texttt{getmstatistic} employs the inverse-variance weighted random effects regression model provided in the \texttt{metafor} R package to extract SPREs (standardized predicted random effects) which are then aggregated to formulate \(M \) statistics.

Value

Returns a list containing:

- **Mstatistic_expected_mean**
 A numeric scalar for the expected mean for \(M \)

- **Mstatistic_expected_sd**
 A numeric scalar for the expected standard deviation for \(M \)
• number_studies, A numeric scalar for the number of studies
• number_variants, A numeric scalar for the number of variants
• Mstatistic_crit_alpha_0_05, A numeric scalar of the critical M value at the 5 percent significance level.
• M_dataset (dataframe) A dataset of the computed M statistics, which includes the following fields:
 – M, Mstatistic
 – M_sd, standard deviation of M
 – M_se, standard error of M
 – lowerbound, lowerbound of M 95
 – upperbound, upperbound of M 95
 – bonf_pvalue, 2-sided bonferroni pvalues of M
 – qvalue, false discovery rate adjusted pvalues of M
 – tau2, tau_squared, DL estimates of between-study heterogeneity
 – I2, I_squared, proportion of total variation due to between study variance
 – Q, Cochran’s Q
 – xb, fitted values excluding random effects
 – usta, standardized predicted random effect (SPRE)
 – xbu, fitted values including random effects
 – stdxbu, standard error of prediction (fitted values) including random effects
 – hat, diagonal elements of the projection hat matrix
 – study, study numbers
 – snp, variant numbers
 – beta_mean, average variant effect size
 – oddsratio, average variant effect size as oddsratio
 – beta_n, number of variants in each study
• influential_studies_0_05 (dataframe) A dataset of influential studies significant at the 5 percent level.
• weaker_studies_0_05 (dataframe) A dataset of under-performing studies significant at the 5 percent level.

Methods (by class)
• default: Computes M statistics

See Also
rma.uni function in metafor for random effects model, and https://magosil86.github.io/getmstatistic/ for getmstatistic website.
Examples

library(getmstatistic)
library(gridExtra)

Basic M analysis using the heartgenes214 dataset.
heartgenes214 is a multi-ethnic GWAS meta-analysis dataset for coronary artery disease.
To learn more about the heartgenes214 dataset ?heartgenes214

Running an M analysis on 20 GWAS significant variants (p < 5e-08) in the first 10 studies

heartgenes44_10studies <- subset(heartgenes214, studies <= 10 & fdr214_gwas46 == 2)
heartgenes20_10studies <- subset(heartgenes44_10studies, variants %in% unique(heartgenes44_10studies$variants)[1:20])

Set directory to store plots, this can be a temporary directory
or a path to a directory of choice e.g. plots_dir <- "~/Downloads"
plots_dir <- tempdir()

getmstatistic_results <- getmstatistic(heartgenes20_10studies$beta_flipped,
heartgenes20_10studies$gcse,
heartgenes20_10studies$variants,
heartgenes20_10studies$studies,
save_dir = plots_dir)

getmstatistic_results

Explore results generated by getmstatistic function

Retrieve dataset of M statistics
dframe <- getmstatistic_results$M_dataset
str(dframe)

Retrieve dataset of stronger than average studies (significant at 5% level)
getmstatistic_results$influential_studies_0_05

Retrieve dataset of weaker than average studies (significant at 5% level)
getmstatistic_results$weaker_studies_0_05

Retrieve number of studies and variants
getmstatistic_results$number_studies
getmstatistic_results$number_variants

Retrieve expected mean, sd and critical M value at 5% significance level
getmstatistic_results$M_expected_mean
getmstatistic_results$M_expected_sd
getmstatistic_results$M_crit_alpha_0_05

To view plots stored in a temporary directory, call `tempdir()` to view the directory path
heartgenes214 is a multi-ethnic GWAS meta-analysis dataset for coronary artery disease.
Usage

heartgenes214

Format

A data frame with seven variables:

- **beta_flipped**: Effect-sizes expressed as log odds ratios. Numeric
- **gcse**: Standard errors
- **studies**: Names of participating studies
- **variants**: Names of genetic variants/SNPs
- **cases**: Number of cases in each participating study
- **controls**: Number of controls in each participating study
- **fdr214_gwas46**: Flag indicating GWAS significant variants, 1: Not GWAS-significant, 2: GWAS-significant

Details

It comprises summary data (effect-sizes and their corresponding standard errors) for 48 studies (68,801 cases and 123,504 controls), at 214 lead variants independently associated with coronary artery disease \((P < 0.00005, \text{FDR} < 5\%)\). Of the 214 lead variants, 44 are genome-wide significant \((p < 5e-08)\). The meta-analysis dataset is based on individuals of: African American, Hispanic American, East Asian, South Asian, Middle Eastern and European ancestry.

The study effect-sizes have been flipped to ensure alignment of the effect alleles.

Standard errors were genomically corrected at the study-level.

Source

https://magosil86.github.io/getmstatistic/
Index

*Topic datasets
 heartgenes214, 7

draw_table, 2

gem (getmstatistic), 3
gemstat (getmstatistic), 3
gemstatistic, 3

heartgenes214, 7

Rgemstatistic (getmstatistic), 3
rma.uni, 5