Package ‘gfboost’

October 13, 2022

Type Package

Title Gradient-Free Gradient Boosting

Version 0.1.1

Maintainer Tino Werner <tino.werner1@uni-oldenburg.de>

Depends mvtnorm, pcaPP, mboost

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.1

VignetteBuilder knitr

Suggests testthat, knitr, rmarkdown

NeedsCompilation no

Author Tino Werner [aut, cre, cph]

Repository CRAN

Date/Publication 2022-01-07 09:10:01 UTC

R topics documented:

 CMB 2
 CMB.stabpath 4
 CMB.Stabsel 6
 CMB3S 9
 CV.CMB3S 12
 genDataFromExamples 15
 LocRank 16
 path.singboost 17
 random.CVind 18
 Rank 19
 RejStep 20
Description

Aggregates the selection frequencies of multiple SingBoost models. May be used with caution since there are not yet recommendations about good hyperparameters.

Usage

```r
CMB(
  D,
  nsing,
  Bsing = 1,
  alpha = 1,
  singfam = Gaussian(),
  evalfam = Gaussian(),
  sing = FALSE,
  M = 10,
  m_iter = 100,
  kap = 0.1,
  LS = FALSE,
  best = 1,
  wagg,
  robagg = FALSE,
  lower = 0,
  ...
)
```

Arguments

- **D**: Data matrix. Has to be an $n \times (p + 1)$-dimensional data frame in the format (X, Y). The X-part must not contain an intercept column containing only ones since this column will be added automatically.

- **nsing**: Number of observations (rows) used for the SingBoost submodels.

- **Bsing**: Number of subsamples based on which the SingBoost models are validated. Default is 1. Not to confuse with parameter B for the Stability Selection.

- **alpha**: Optional real number in $[0, 1]$. Defines the fraction of best SingBoost models used in the aggregation step. Default is 1 (use all models).
SingBoost is designed to detect variables that standard Boosting procedures may not but which may be relevant w.r.t. the target loss function. However, one may try to stabilize this "singular part" of the column measure by aggregating several SingBoost models in the sense that they are evaluated on a validation set and that the selection frequencies are averaged, maybe in a weighted manner according to the validation losses. Warning: This procedure does not replace a Stability Selection!

Value

Column measure Aggregated column measure as \((p + 1)\)-dimensional vector.

Selected variables Names of the variables with positive aggregated column measure.
Variables names
Names of all variables including the intercept.
Row measure
Aggregated row measure as n-dimensional vector.

References
Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020

Examples
```r
firis<-as.formula(Sepal.Length~.)
Xiris<-model.matrix(firis,iris)
Diris<-data.frame(Xiris[,1],iris$Sepal.Length)
colnames(Diris)[6]<-"Y"
set.seed(19931023)
cmb1<-CMB(Diris,nsing=100,Bsing=50,alpha=0.8,singfam=Rank(),
evalfam=Rank(),sing=TRUE,M=10,m_iter=100,
kap=0.1,LS=TRUE,wagg='weights1',robagg=FALSE,lower=0)
cmb1
set.seed(19931023)
cmb2<-CMB(Diris,nsing=100,Bsing=50,alpha=0.8,singfam=Rank(),
evalfam=Rank(),sing=TRUE,M=2,m_iter=100,
kap=0.1,LS=TRUE,wagg='weights1',robagg=FALSE,lower=0)
cmb2[[1]]
set.seed(19931023)
cmb3<-CMB(Diris,nsing=100,Bsing=50,alpha=0.8,singfam=Rank(),
evalfam=Rank(),sing=TRUE,M=10,m_iter=100,
kap=0.1,LS=TRUE,wagg='weights2',robagg=FALSE,lower=0)
cmb3[[1]]
```

CMB.stabpath

CMB stability paths

Description
Draws a Stability plot for CMB.

Usage
```r
CMB.stabpath(
  D,
  nsing,
  Bsing = 1,
  alpha = 1,
  singfam = Gaussian(),
  evalfam = Gaussian(),
  sing = FALSE,
  Mseq,
)```
m_iter = 100,
kap = 0.1,
LS = FALSE,
best = 1,
wagg,
robagg = FALSE,
lower = 0,
B,
ncmb,
...)

Arguments

D Data matrix. Has to be an \( n \times (p + 1) \)-dimensional data frame in the format \((X, Y)\). The \(X\)-part must not contain an intercept column containing only ones since this column will be added automatically.

nsing Number of observations (rows) used for the SingBoost submodels.

Bsing Number of subsamples based on which the SingBoost models are validated. Default is 1. Not to confuse with parameter \(B\) for the Stability Selection.

alpha Optional real number in \([0, 1]\). Defines the fraction of best SingBoost models used in the aggregation step. Default is 1 (use all models).

singfam A SingBoost family. The SingBoost models are trained based on the corresponding loss function. Default is \(\text{Gaussian()}\) (squared loss).

evalfam A SingBoost family. The SingBoost models are validated according to the corresponding loss function. Default is \(\text{Gaussian()}\) (squared loss).

sing If \(\text{sing=}\text{FALSE}\) and the \(\text{singfam}\) family is a standard Boosting family that is contained in the package \text{mboost}, the CMB aggregation procedure is executed for the corresponding standard Boosting models.

Mseq A vector of different values for \(M\).

m_iter Number of SingBoost iterations. Default is 100.

kap Learning rate (step size). Must be a real number in \([0, 1]\). Default is 0.1 It is recommended to use a value smaller than 0.5.

LS If a \(\text{singfamily}\) object that is already provided by \text{mboost} is used, the respective Boosting algorithm will be performed in the singular iterations if \(\text{LS}\) is set to \(\text{TRUE}\). Default is \(\text{FALSE}\).

best Needed in the case of localized ranking. The parameter \(K\) of the localized ranking loss will be computed by \(\text{best} \cdot n\) (rounded to the next larger integer). Warning: If a parameter \(K\) is inserted into the \text{LocRank} family, it will be ignored when executing SingBoost.

wagg Type of row weight aggregation. 'weights1' indicates that the selection frequencies of the (best) SingBoost models are averaged. 'weights2' respects the validation losses for each model and downweights the ones with higher validation losses.
robagg  Optional. If setting robagg=TRUE, the best SingBoost models are ignored when executing the aggregation to avoid inlier effects. Only reasonable in combination with lower.

lower  Optional argument. Only reasonable when setting robagg=TRUE. lower is a real number in $[0,1]$ (a rather small number is recommended) and indicates that the aggregation ignores the SingBoost models with the best performances to avoid possible inlier effects.

B  Number of subsamples of size $n_{cmb}$ of the training data for CMB aggregation.

ncmb  Number of samples used for CMB. Integer that must be smaller than the number of samples in $D_{train}$.

...  Optional further arguments

Value

relev  List of relevant variables (represented as their column number).

ind  Vector of relevant variables (represented as their column number).

References

Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020

---

**CMB.Stabsel**  
*Loss-adapted Stability Selection*

**Description**

Workhorse function for the Stability Selection variant where either a grid of thresholds or a grid of cardinalities is given so that the Boosting models are evaluated on a validation set according to all elements of the respective grid. The model which performs best is finally selected as stable model.

**Usage**

```r
CMB.Stabsel(
 Dtrain,
 nsing,
 Bsing = 1,
 B = 100,
 alpha = 1,
 singfam = Gaussian(),
 evalfam = Gaussian(),
 sing = FALSE,
 M = 10,
 m_iter = 100,
 kap = 0.1,
 LS = FALSE,
)```

Arguments

Dtrain Data matrix. Has to be an \(n \times (p + 1) \)-dimensional data frame in the format \((X, Y)\). The \(X\)-part must not contain an intercept column containing only ones since this column will be added automatically.

nsing Number of observations (rows) used for the SingBoost submodels.

Bsing Number of subsamples based on which the SingBoost models are validated. Default is 1. Not to confuse with parameter \(B \) for the Stability Selection.

B Number of subsamples based on which the CMB models are validated. Default is 100. Not to confuse with \(Bsing \) for CMB.

alpha Optional real number in \([0, 1]\). Defines the fraction of best SingBoost models used in the aggregation step. Default is 1 (use all models).

singfam A SingBoost family. The SingBoost models are trained based on the corresponding loss function. Default is \(\text{Gaussian()} \) (squared loss).

evalfam A SingBoost family. The SingBoost models are validated according to the corresponding loss function. Default is \(\text{Gaussian()} \) (squared loss).

sing If \(\text{sing}=\text{FALSE} \) and the \(\text{singfam} \) family is a standard Boosting family that is contained in the package \(\text{mboost} \), the CMB aggregation procedure is executed for the corresponding standard Boosting models.

M An integer between 2 and \(m_{iter} \). Indicates that in every \(M \)-th iteration, a singular iteration will be performed. Default is 10.

m_iter Number of SingBoost iterations. Default is 100.

kap Learning rate (step size). Must be a real number in \([0, 1]\). Default is 0.1 It is recommended to use a value smaller than 0.5.

LS If a \(\text{singfam} \) object that is already provided by \(\text{mboost} \) is used, the respective Boosting algorithm will be performed in the singular iterations if \(\text{LS} \) is set to \(\text{TRUE} \). Default is \(\text{FALSE} \).

best Needed in the case of localized ranking. The parameter \(K \) of the localized ranking loss will be computed by \(\text{best} \cdot n \) (rounded to the next larger integer). Warning: If a parameter \(K \) is inserted into the \(\text{LocRank} \) family, it will be ignored when executing SingBoost.
wagg

Type of row weight aggregation. 'weights1' indicates that the selection frequencies of the (best) SingBoost models are averaged. 'weights2' respects the validation losses for each model and downweights the ones with higher validation losses.

gridtype

Choose between 'pigrid' and 'qgrid'.

grid

The grid for the thresholds (in \([0, 1] \)) or the numbers of final variables (positive integers).

Dvalid

Validation data for selecting the optimal element of the grid and with it the best corresponding model.

ncmb

Number of samples used for CMB. Integer that must be smaller than the number of samples in Dtrain and higher than nsing.

robagg

Optional. If setting robagg=TRUE, the best SingBoost models are ignored when executing the aggregation to avoid inlier effects. Only reasonable in combination with lower.

lower

Optional argument. Only reasonable when setting robagg=TRUE. lower is a real number in \([0, 1] \) (a rather small number is recommended) and indicates that the aggregation ignores the SingBoost models with the best performances to avoid possible inlier effects.

singcoef

Default is FALSE. Then the coefficients for the candidate stable models are computed by standard linear regression (provided that the number of columns is smaller than the number of samples in the training set for each grid element). If set to TRUE, the coefficients are computed by SingBoost.

Mfinal

Optional. Necessary if singcoef=TRUE to determine the frequency of singular iterations in the SingBoost models.

...

Optional further arguments

Details

The Stability Selection in the packages stabs and mboost requires to fix two of three parameters which are the per-family error rate, the threshold and the number of variables which have to be selected in each model. Our Stability Selection is based on another idea. We also train Boosting models on subsamples but we use a validation step to determine the size of the optimal model. More precisely, if 'pigrid' is used as gridtype, the corresponding stable models for each threshold are computed by selecting all variables whose aggregated selection frequency exceeds the threshold. Then, these candidate stable models are validated according to the target loss function (inserted through evalfam) and the optimal one is finally selected. If 'qgrid' is used as gridtype, a vector of positive integers has to be entered instead of a vector of thresholds. The candidate stable models then consist of the best variables ordered by their aggregated selection frequencies, respectively. The validation step is the same.

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>colind.opt</td>
<td>The column numbers of the variables that form the best stable model as a vector.</td>
</tr>
<tr>
<td>coeff.opt</td>
<td>The coefficients corresponding to the optimal stable model as a vector.</td>
</tr>
<tr>
<td>aggnu</td>
<td>Aggregated empirical column measure (i.e., selection frequencies) as a vector.</td>
</tr>
<tr>
<td>aggzeta</td>
<td>Aggregated empirical row measure (i.e., row weights) as a vector.</td>
</tr>
</tbody>
</table>
References

Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020

CMB3S Column Measure Boosting with SingBoost and Stability Selection (CMB-3S)

Description

Executes CMB and the loss-based Stability Selection.

Usage

```r
CMB3S(Dtrain, nsing, Bsing = 1, B = 100, alpha = 1, singfam = Gaussian(), evalfam = Gaussian(), sing = FALSE, M = 10, m_iter = 100, kap = 0.1, LS = FALSE, best = 1, wagg, gridtype, grid, Dvalid, ncmb, robagg = FALSE, lower = 0, singcoef = FALSE, Mfinal = 10, ... )
```
Arguments

- **Dtrain**
 Data matrix. Has to be an $n \times (p + 1)$-dimensional data frame in the format (X, Y). The X-part must not contain an intercept column containing only ones since this column will be added automatically.

- **nsing**
 Number of observations (rows) used for the SingBoost submodels.

- **Bsing**
 Number of subsamples based on which the SingBoost models are validated. Default is 1. Not to confuse with parameter B for the Stability Selection.

- **B**
 Number of subsamples based on which the CMB models are validated. Default is 100. Not to confuse with $Bsing$ for CMB.

- **alpha**
 Optional real number in $[0, 1]$. Defines the fraction of best SingBoost models used in the aggregation step. Default is 1 (use all models).

- **singfam**
 A SingBoost family. The SingBoost models are trained based on the corresponding loss function. Default is Gaussian() (squared loss).

- **evalfam**
 A SingBoost family. The SingBoost models are validated according to the corresponding loss function. Default is Gaussian() (squared loss).

- **sing**
 If sing=FALSE and the singfam family is a standard Boosting family that is contained in the package mboost, the CMB aggregation procedure is executed for the corresponding standard Boosting models.

- **M**
 An integer between 2 and m_{iter}. Indicates that in every M-th iteration, a singular iteration will be performed. Default is 10.

- **m_iter**
 Number of SingBoost iterations. Default is 100.

- **kap**
 Learning rate (step size). Must be a real number in $[0, 1]$. Default is 0.1 It is recommended to use a value smaller than 0.5.

- **LS**
 If a singfamily object that is already provided by mboost is used, the respective Boosting algorithm will be performed in the singular iterations if LS is set to TRUE. Default is FALSE.

- **best**
 Needed in the case of localized ranking. The parameter K of the localized ranking loss will be computed by $best \cdot n$ (rounded to the next larger integer). Warning: If a parameter K is inserted into the LocRank family, it will be ignored when executing SingBoost.

- **wagg**
 Type of row weight aggregation. 'weights1' indicates that the selection frequencies of the (best) SingBoost models are averaged. 'weights2' respects the validation losses for each model and downweights the ones with higher validation losses.

- **gridtype**
 Choose between 'pgrid' and 'qgrid'.

- **grid**
 The grid for the thresholds (in $[0, 1]$) or the numbers of final variables (positive integers).

- **Dvalid**
 Validation data for selecting the optimal element of the grid and with it the best corresponding model.

- **ncmb**
 Number of samples used for CMB. Integer that must be smaller than the number of samples in Dtrain.
robagg Optional. If setting robagg=TRUE, the best SingBoost models are ignored when executing the aggregation to avoid inlier effects. Only reasonable in combination with lower.

lower Optional argument. Only reasonable when setting robagg=TRUE. lower is a real number in [0,1] (a rather small number is recommended) and indicates that the aggregation ignores the SingBoost models with the best performances to avoid possible inlier effects.

ingcoef Default is FALSE. Then the coefficients for the candidate stable models are computed by standard linear regression (provided that the number of columns is smaller than the number of samples in the training set for each grid element). If set to TRUE, the coefficients are computed by SingBoost.

Mfinal Optional. Necessary if singcoef=TRUE to determine the frequency of singular iterations in the SingBoost models.

... Optional further arguments

Details

See CMB and CMB.Stabsel.

Value

Final coefficients
The coefficients corresponding to the optimal stable model as a vector.

Stable column measure
Aggregated empirical column measure (i.e., selection frequencies) as a vector.

Selected columns
The column numbers of the variables that form the best stable model as a vector.

Used row measure
Aggregated empirical row measure (i.e., row weights) as a vector.

References

Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020

Examples

firis<-as.formula(Sepal.Length~.)
Xiris<-model.matrix(firis,iris)
Diris<-data.frame(Xiris[,,-1],iris$Sepal.Length)
CV.CMB3S

Cross-validated version of CMB-3S

Description

Cross-validates the whole loss-based Stability Selection by aggregating several stable models according to their performance on validation sets. Also computes a cross-validated test loss on a disjoint test set.

Usage

CV.CMB3S(
 D,
 nsing,
 Bsing = 1,
B = 100,
alpha = 1,
singfam = Gaussian(),
evalfam = Gaussian(),
sing = FALSE,
M = 10,
m_iter = 100,
kap = 0.1,
LS = FALSE,
best = 1,
wagg,
gridtype,
grid,
ncmb,
CVind,
targetfam = Gaussian(),
print = TRUE,
robagg = FALSE,
lower = 0,
singcoef = FALSE,
Mfinal = 10,
...
)

Arguments

D Data matrix. Has to be an $n \times (p + 1)$-dimensional data frame in the format (X, Y). The X-part must not contain an intercept column containing only ones since this column will be added automatically.

nsing Number of observations (rows) used for the SingBoost submodels.

Bsing Number of subsamples based on which the SingBoost models are validated. Default is 1. Not to confuse with parameter B for the Stability Selection.

B Number of subsamples based on which the CMB models are validated. Default is 100. Not to confuse with Bsing for CMB.

alpha Optional real number in $[0, 1]$. Defines the fraction of best SingBoost models used in the aggregation step. Default is 1 (use all models).

singfam A SingBoost family. The SingBoost models are trained based on the corresponding loss function. Default is Gaussian() (squared loss).

evalfam A SingBoost family. The SingBoost models are validated according to the corresponding loss function. Default is Gaussian() (squared loss).

sing If sing=FALSE and the singfam family is a standard Boosting family that is contained in the package mboost, the CMB aggregation procedure is executed for the corresponding standard Boosting models.

M An integer between 2 and m_iter. Indicates that in every M-th iteration, a singular iteration will be performed. Default is 10.

m_iter Number of SingBoost iterations. Default is 100.
kap Learning rate (step size). Must be a real number in \([0, 1]\). Default is 0.1. It is recommended to use a value smaller than 0.5.

LS If a `singfamily` object that is already provided by `mboost` is used, the respective Boosting algorithm will be performed in the singular iterations if `LS` is set to `TRUE`. Default is `FALSE`.

best Needed in the case of localized ranking. The parameter \(K\) of the localized ranking loss will be computed by \(best \cdot n\) (rounded to the next larger integer). Warning: If a parameter \(K\) is inserted into the `LocRank` family, it will be ignored when executing `SingBoost`.

wagg Type of row weight aggregation. 'weights1' indicates that the selection frequencies of the (best) SingBoost models are averaged. 'weights2' respects the validation losses for each model and downweights the ones with higher validation losses.

gridtype Choose between 'pigrid' and 'qgrid'.

grid The grid for the thresholds (in \([0, 1]\)) or the numbers of final variables (positive integers).

cmp Number of samples used for CMB. Integer that must be smaller than the number of samples in \(D\).

CVind A list where each element contains a vector on length \(n\) (number of samples in the data matrix \(D\)) which contains the strings 'tr' (training set), 'v' (validation set) and 'te' (test set). This list can be easily generated using the function `random_CVind`.

targetfam Target loss. Should be the same family as `evalfam`. Default is `Gaussian()` (squared loss).

print If set to `TRUE` (default), the number of the currently finished outer cross-validation loop is printed.

robagg Optional. If setting `robagg=TRUE`, the best SingBoost models are ignored when executing the aggregation to avoid inlier effects. Only reasonable in combination with `lower`.

lower Optional argument. Only reasonable when setting `robagg=TRUE`. `lower` is a real number in \([0, 1]\) (a rather small number is recommended) and indicates that the aggregation ignores the SingBoost models with the best performances to avoid possible inlier effects.

singcoef Default is `FALSE`. Then the coefficients for the candidate stable models are computed by standard linear regression (provided that the number of columns is smaller than the number of samples in the training set for each grid element). If set to `TRUE`, the coefficients are computed by `SingBoost`.

Mfinal Optional. Necessary if `singcoef=TRUE` to determine the frequency of singular iterations in the SingBoost models.

... Optional further arguments

Details

In `CMB3S`, a validation set is given based on which the optimal stable model is chosen. The `CV.CMB3S` function adds an outer cross-validation step such that both the training and the validation data sets...
(and optionally the test data sets) are chosen randomly by disjointly dividing the initial data set. The aggregated stable models form an "ultra-stable" model. It is strongly recommended to use this function in a parallelized manner due to huge computation time.

Value

- **Cross-validated loss**

 A vector containing the cross-validated test losses.

- **Ultra-stable column measure**

 A vector containing the aggregated selection frequencies of the stable models.

References

Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020

genDataFromExamples

Data generation

Description

Auxiliary function for generating simple artificial data sets with normally distributed coefficients and regressors. Note that we only report this function for reproducibility of the simulations from the PhD thesis of the author.

Usage

genDataFromExamples(
 p,
 n,
 s = 1,
 xmean = 0,
 betamean = 0,
 betasd = 1,
 snr = 2,
 rho = 0
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Number of variables (columns).</td>
</tr>
<tr>
<td>n</td>
<td>Number of observations (rows).</td>
</tr>
<tr>
<td>s</td>
<td>Sparsity. Real number between 0 and 1. s=1 (default) leads to a coefficient vector without zero entries.</td>
</tr>
<tr>
<td>xmean</td>
<td>Mean of each of the normally distributed columns. Default is 0.</td>
</tr>
<tr>
<td>betamean</td>
<td>Mean of each of the normally distributed coefficients. Default is 0.</td>
</tr>
</tbody>
</table>
betasd | Standard deviation of the normally distributed coefficients. Default is 1.
snr | Signal to noise ratio. Real number greater than zero. Default is 2.
rho | Parameter for a Toeplitz covariance structure of the regressors. Real number between -1 and 1. Default is 0 which corresponds to uncorrelated columns.

Value

D | Data matrix \((X, Y)\).
vars | A list of the relevant variables.

Examples

genDataFromExamples(10, 25, 0.3)

LocRank | Localized ranking family

Description

Gradient-free Gradient Boosting family for the localized ranking loss function including its fast computation.

Usage

LocRank(K)

Arguments

K | Indicates that we are interesting in the top \(K\) instances and their correct ordering. Must be an integer between 1 and the number \(n\) of observations.

Details

The localized ranking loss combines the hard and the weak ranking loss, i.e., it penalizes misrankings at the top of the list (the best \(K\) instances according to the response value) and “misclassification” in the sense that instances belonging to the top of the list are ranked lower and vice versa. The localized ranking loss already returns a normalized loss that can take values between 0 and 1. LocRank returns a family object as in the package mboost.

Value

A Boosting family object

References

Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020, Equation (5.2.5)
Examples

\{y<-c(-3, 10.3,-8, 12, 14,-0.5, 29,-1.1,-5.7, 119)
 yhat<-c(0.02, 0.6, 0.1, 0.47, 0.82, 0.04, 0.77, 0.09, 0.01, 0.79)
 LocRank(4)@risk(y,yhat)}

\{y<-c(-3, 10.3,-8, 12, 14,-0.5, 29,-1.1,-5.7, 119)
 yhat<-c(0.02, 0.6, 0.1, 0.47, 0.82, 0.04, 0.77, 0.09, 0.01, 0.79)
 LocRank(5)@risk(y,yhat)}

\begin{verbatim}

path.singboost

Coefficient paths for SingBoost

Description

Runs SingBoost but saves the coefficients paths. If no coefficient path plot is needed, just use singboost.

Usage

path.singboost(
 D,
 M = 10,
 m_iter = 100,
 kap = 0.1,
 singfamily = Gaussian(),
 best = 1,
 LS = FALSE
)

Arguments

D
 Data matrix. Has to be an \(n \times (p + 1) \)–dimensional data frame in the format \((X, Y)\). The \(X \)–part must not contain an intercept column containing only ones since this column will be added automatically.

M
 An integer between 2 and \(m_iter \). Indicates that in every \(M \)–th iteration, a singular iteration will be performed. Default is 10.

m_iter
 Number of SingBoost iterations. Default is 100.

kap
 Learning rate (step size). Must be a real number in \([0, 1]\). Default is 0.1 It is recommended to use a value smaller than 0.5.

singfamily
 A Boosting family corresponding to the target loss function. See \(\text{mboost} \) for families corresponding to standard loss functions. May also use the loss functions for ranking losses provided in this package. Default is \(\text{Gaussian()} \) for which SingBoost is just standard \(L_2 \)–Boosting.

best
 Needed in the case of localized ranking. The parameter \(K \) of the localized ranking loss will be computed by \(\text{best} \cdot n \) (rounded to the next larger integer). Warning: If a parameter \(K \) is inserted into the \(\text{LocRank} \) family, it will be ignored when executing SingBoost.

\end{verbatim}
If a `singfamily` object that is already provided by `mboost` is used, the respective Boosting algorithm will be performed in the singular iterations if `Ls` is set to `TRUE`. Default is `FALSE`.

Value

<table>
<thead>
<tr>
<th>Selected variables</th>
<th>Names of the selected variables.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients</td>
<td>The selected coefficients as an ((p + 1))-dimensional vector (i.e., including the zeroes).</td>
</tr>
<tr>
<td>Freqs</td>
<td>Selection frequencies and a matrix for intercept and coefficient paths, respectively.</td>
</tr>
<tr>
<td>Intercept path</td>
<td>The intercept path as an (m_{iter})-dimensional vector.</td>
</tr>
<tr>
<td>Coefficient path</td>
<td>The coefficient paths as a (2 \cdot m_{iter} \times 2)-dimensional matrix.</td>
</tr>
</tbody>
</table>

random.CVind

Cross validation index generator

Description

Simple auxiliary function for randomly generating the indices for training, validation and test data for cross validation.

Usage

`random.CVind(n, n cmb, n val, CV)`

Arguments

- `n` Number of observations (rows).
- `n cmb` Number of training samples for the SingBoost models in CMB. Must be an integer between 1 and \(n\).
- `n val` Number of validation samples in the CMB aggregation procedure. Must be an integer between 1 and \(n - n cmb - 1\).
- `CV` Number of cross validation steps. Must be a positive integer.

Details

The data set consists of \(n\) observations. \(n cmb\) of them are used for the CMB aggregation procedure. Note that within CMB itself, only a subset of these observations may be used for SingBoost training. The Stability Selection is based on the validation set consisting of \(n val\) observations. The cross-validated loss of the final model is evaluated on the test data set with \(n - n cmb - n val\) observations. Clearly, all data sets need to be disjoint.
Value

CVind List of row indices for training, validation and test data for each cross validation loop.

Description

Gradient-free Gradient Boosting family for the hard ranking loss function including its fast computation.

Usage

Rank()

Details

The hard ranking loss is used to compare different orderings, usually the true ordering of instances of a data set according to their responses with the predicted counterparts. The usage of the pcaPP package avoids the cumbersome computation that would require

\[
\frac{1}{2} \binom{n}{2} (n - 1)
\]

comparisons. Rank returns a family object as in the package mboost.

Value

A Boosting family object

References

Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020, Equations (5.2.2) and (5.2.3)

Examples

\{y<-c(-3, 10.3, -8, 12, 14, -0.5, 29, -1.1, -5.7, 119)
 yhat<-c(0.02, 0.6, 0.1, 0.47, 0.82, 0.04, 0.77, 0.09, 0.01, 0.79)
 Rank()@risk(y,yhat)}
\{x<-1:6
 z<-6:1
 Rank()@risk(x,z)}
RejStep

CMB validation step

Description

Validation step to combine different SingBoost models.

Usage

RejStep(
 D,
 nsing,
 Bsing = 1,
 ind,
 sing = FALSE,
 singfam = Gaussian(),
 evalfam = Gaussian(),
 M = 10,
 m_iter = 100,
 kap = 0.1,
 LS = FALSE,
 best = 1
)

Arguments

D Data matrix. Has to be an \(n \times (p + 1) \)–dimensional data frame in the format \((X, Y)\). The \(X\)–part must not contain an intercept column containing only ones since this column will be added automatically.

nsing Number of observations (rows) used for the SingBoost submodels.

Bsing Number of subsamples based on which the SingBoost models are validated. Default is 1. Not to confuse with parameter \(B \) for the Stability Selection.

ind Vector with indices for dividing the data set into training and validation data.

sing If \(\text{sing}=\text{FALSE} \) and the \text{singfam} family is a standard Boosting family that is contained in the package \text{mboost}, the CMB aggregation procedure is executed for the corresponding standard Boosting models.

singfam A SingBoost family. The SingBoost models are trained based on the corresponding loss function. Default is \text{Gaussian()} (squared loss).

evalfam A SingBoost family. The SingBoost models are validated according to the corresponding loss function. Default is \text{Gaussian()} (squared loss).

M An integer between 2 and \(m_\text{iter} \). Indicates that in every \(M \)–th iteration, a singular iteration will be performed. Default is 10.

m_iter Number of SingBoost iterations. Default is 100.

kap Learning rate (step size). Must be a real number in \([0, 1]\). Default is 0.1 It is recommended to use a value smaller than 0.5.
SingBoost is a Boosting method that can deal with complicated loss functions that do not allow for a gradient. SingBoost is based on L2-Boosting in its current implementation.

Usage

```r
singboost(
  D,
  M = 10,
  m_iter = 100,
  kap = 0.1,
  singfamily = Gaussian(),
  best = 1,
  LS = FALSE
)
```
Arguments

D
Data matrix. Has to be an $n \times (p + 1)$-dimensional data frame in the format (X, Y). The X-part must not contain an intercept column containing only ones since this column will be added automatically.

M
An integer between 2 and m_{iter}. Indicates that in every M-th iteration, a singular iteration will be performed. Default is 10.

m_iter
Number of SingBoost iterations. Default is 100.

kap
Learning rate (step size). Must be a real number in $[0, 1]$. Default is 0.1. It is recommended to use a value smaller than 0.5.

singfamily
A Boosting family corresponding to the target loss function. See `mboost` for families corresponding to standard loss functions. May also use the loss functions for ranking losses provided in this package. Default is `Gaussian()` for which SingBoost is just standard L_2-Boosting.

best
Needed in the case of localized ranking. The parameter K of the localized ranking loss will be computed by $best \cdot n$ (rounded to the next larger integer). Warning: If a parameter K is inserted into the LocRank family, it will be ignored when executing SingBoost.

LS
If a `singfamily` object that is already provided by `mboost` is used, the respective Boosting algorithm will be performed in the singular iterations if `LS` is set to `TRUE`. Default is `FALSE`.

Details

Gradient Boosting algorithms require convexity and differentiability of the underlying loss function. SingBoost is a Boosting algorithm based on L_2-Boosting that allows for complicated loss functions that do not need to satisfy these requirements. In fact, SingBoost alternates between standard L_2-Boosting iterations and singular iterations where essentially an empirical gradient step is executed in the sense that the baselearner that performs best, evaluated in the complicated loss, is selected in the respective iteration. The implementation is based on `glmboost` from the package `mboost` and using the L_2-loss in the singular iterations returns exactly the same coefficients as L_2-Boosting.

Value

Selected variables
Names of the selected variables.

Coefficients
The selected coefficients as an $(p + 1)$-dimensional vector (i.e., including the zeroes).

Freqs
Selection frequencies and a matrix for intercept and coefficient paths, respectively.

VarCoef
Vector of the non-zero coefficients.

References

Examples

```r
{glmres<-glmboost(Sepal.Length~.,iris)
 glmres
 attributes(varimp(glmres))$self
 attributes(varimp(glmres))$var
 firis<-as.formula(Sepal.Length~.)
 Xiris<-model.matrix(firis,iris)
 Diris<-data.frame(Xiris[,!],iris$Sepal.Length)
 colnames(Diris)[6]<-"Y"
 coef(glmboost(Xiris,iris$Sepal.Length))
 singboost(Diris)
 singboost(Diris,LS=TRUE))
 {glmres2<-glmboost(Sepal.Length~Petal.Length+Sepal.Width:Species,iris)
 finter<-as.formula(Sepal.Length~Petal.Length+Sepal.Width:Species-1)
 Xinter<-model.matrix(finter,iris)
 Dinter<-data.frame(Xinter,iris$Sepal.Length)
 singboost(Dinter)
 coef(glmres2)}
 {glmres3<-glmboost(Xiris,iris$Sepal.Length,control=boost_control(mstop=250,nu=0.05))
 coef(glmres3)
 attributes(varimp(glmres3))$self
 singboost(Diris,m_iter=250,kap=0.05)
 singboost(Diris,LS=TRUE,m_iter=250,kap=0.05))
 {glmquant<-glmboost(Sepal.Length~.,iris,family=QuantReg(tau=0.75))
 coef(glmquant)
 attributes(varimp(glmquant))$self
 singboost(Diris,singfamily=QuantReg(tau=0.75),LS=TRUE)
 singboost(Diris,singfamily=QuantReg(tau=0.75),LS=TRUE,M=2))
 {singboost(Diris,singfamily=Rank(),LS=TRUE)
 singboost(Diris,singfamily=Rank(),LS=TRUE,M=2)}

--------

singboost.plot  Plot function for the SingBoost coefficient paths

Description

Plot function for the SingBoost coefficient paths

Usage

singboost.plot(mod, M, m_iter, subnames = FALSE)
Arguments

mod

  singboost object.

M

  An integer between 2 and m_iter. Indicates that in every M-th iteration, a singular iteration will be performed. Default is 10.

m_iter

  Number of SingBoost iterations. Default is 100.

subnames

  Use it only if the variable names are of the form "letter plus number". Better just ignore it.

Value

Nothing. Plots SingBoost coefficient paths

Examples

{glmres<-glmboost(Sepal.Length~.,iris)
glmres
attributes(varimp(glmres))$self
attributes(varimp(glmres))$var
firis<-as.formula(Sepal.Length~.)
Xiris<-model.matrix(firis,iris)
Diris<-data.frame(Xiris[-1],iris$Sepal.Length)
plot(glmres)
singpath<-path.singboost(Diris)
singboost.plot(singpath,10,100,subnames=FALSE)
**WeakRankNorm**

**Value**

A Boosting family object

**References**

Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020, Remark (5.2.1)


**Examples**

```r
Example 1
y<-c(-3, 10.3,-8, 12, 14,-0.5, 29,-1.1,-5.7, 119)
yhat<-c(0.02, 0.6, 0.1, 0.47, 0.82, 0.04, 0.77, 0.09, 0.01, 0.79)
WeakRank(4)@risk(y,yhat)

Example 2
y<-c(-3, 10.3,-8, 12, 14,-0.5, 29,-1.1,-5.7, 119)
yhat<-c(0.02, 0.6, 0.1, 0.47, 0.82, 0.04, 0.77, 0.09, 0.01, 0.79)
WeakRank(5)@risk(y,yhat)
```

---

<table>
<thead>
<tr>
<th>WeakRankNorm</th>
<th>Weak ranking family (normalized)</th>
</tr>
</thead>
</table>

**Description**

Gradient-free Gradient Boosting family for the normalized weak ranking loss function.

**Usage**

`WeakRankNorm(K)`

**Arguments**

- **K**

  Indicates that we are only interesting in the top `K` instances. Must be an integer between 1 and the number `n` of observations.

**Details**

A more intuitive loss function than the weak ranking loss thanks to its normalization to a maximum value of 1. For example, if a number `c` of the top `K` instances has not been ranked at the top of the list, the normalized weak ranking loss is `c/K`. `WeakRankNorm` returns a family object as in the package `mboost`.

**Value**

A Boosting family object
References

Werner, T., Gradient-Free Gradient Boosting, PhD Thesis, Carl von Ossietzky University Oldenburg, 2020, Remark (5.2.4)

Index

CMB, 2
CMB.stabpath, 4
CMB.Stabsel, 6
CMB3S, 9
CV.CMB3S, 12

genDataFromExamples, 15
LocRank, 16
path.singboost, 17
random.CVind, 18
Rank, 19
RejStep, 20

singboost, 21
singboost.plot, 23

WeakRank, 24
WeakRankNorm, 25