Package ‘gfilmm’

July 12, 2022

Type Package

Title Generalized Fiducial Inference for Normal Linear Mixed Models

Version 2.0.5

Description Simulation of the generalized fiducial distribution for normal linear mixed models with interval data. Fiducial inference is somehow similar to Bayesian inference, in the sense that it is based on a distribution that represents the uncertainty about the parameters, like the posterior distribution in Bayesian statistics. It does not require a prior distribution, and it yields results close to frequentist results. Reference: Cisewski and Hannig (2012) <doi:10.1214/12-AOS1030>.

License GPL-3

URL https://github.com/stla/gfilmm

BugReports https://github.com/stla/gfilmm/issues

Depends R (>= 3.1.0)

Imports forcats, lazyeval, Matrix, parallel, Rcpp (>= 1.0.0), spatstat (>= 2.0.0), spatstat.geom, stats, utils

Suggests AOV1R, car, emmeans, GGally, kde1d, knitr, lmerTest, markdown, testthat

LinkingTo Rcpp, RcppEigen

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.0

SystemRequirements C++11

NeedsCompilation yes

Author Stéphane Laurent [aut, cre], Jessi Cisewski [aut, ctb] (author of the original Matlab code, <https://orcid.org/0000-0002-9656-2272>)

Maintainer Stéphane Laurent <laurent_step@outlook.fr>
Description

Fiducial cumulative distribution function of a parameter of interest.

Usage

`gfiCDF(parameter, gfi)`

Arguments

- `parameter`: a right-sided formula defining the parameter of interest, like `~ sigma_error/(Intercept)`
- `gfi`: a `gfilm` object (output of `gfilm` or `gfilmPredictive`)

Value

The fiducial cumulative distribution function of the parameter.

Examples

```r
h <- 0.01
gfi <- gfilm(
  ~ cbind(yield-h, yield+h), ~ 1, ~ block, data = npk, N = 5000, nthreads = 2
)
F <- gfiCDF(~ sqrt(sigma_block^2 + sigma_error^2)/(Intercept)`, gfi)
plot(F, xlim = c(0, 0.3), main = "Coefficient of variation",
     ylab = expression("Pr("<="x")
F(0.2)
```
gfiConfInt

Fiducial confidence interval

Description
Fiducial confidence interval of a parameter of interest.

Usage
gfiConfInt(parameter, gfi, conf = 0.95)

Arguments
- parameter: a right-sided formula defining the parameter of interest, like `~ sigma_error/(Intercept)`
- gfi: a gfilmm object (output of gfilmm or gfilmmPredictive)
- conf: confidence level

Value
The fiducial confidence interval of the parameter.

Examples
```r
h <- 0.01
gfi <- gfilmm(~ cbind(yield-h, yield+h), ~ 1, ~ block, data = npk, N = 5000, nthreads = 2)
gfiConfInt(~ sqrt(sigma_block^2 + sigma_error^2)/(Intercept), gfi)
```

gfilmm

Generalized fiducial inference

Description
Samples the fiducial distributions.

Usage
gfilmm(
 y,
 fixed,
 random,
 data,
 N,
 thresh = N/2,
 long = FALSE
)
seed = NULL,
nthreads = parallel::detectCores()
)

S3 method for class 'gfilm'
print(x, ...)

Arguments

y a right-sided formula of the form ~ cbind(lower, upper) for the interval data
fixed a right-sided formula for the fixed effects
random a right-sided formula for the random effects, or NULL for no random effect
data the data, a dataframe
N desired number of simulations
thresh threshold, default N/2; for experts only
long logical, whether to use long doubles instead of doubles in the algorithm
seed the seed for the C++ random numbers generator, a positive integer, or NULL to use a random seed
nthreads number of threads to run the algorithm with parallelized blocks of code
x a gfilm object
...

Value

A list with two components: a dataframe VERTEX, and a vector WEIGHT. It has class gfilm.

References

Examples

```r
h <- 0.01
gfi <- gfilm(  
  ~ cbind(yield-h, yield+h), ~ 1, ~ block, data = npk, N = 5000, nthreads = 2
)

# fiducial cumulative distribution function of the intercept:
Fintercept <- gfiCDF(~ \( \text{Intercept} \), gfi)
plot(Fintercept, xlim = c(40, 65))

# fiducial confidence interval of the intercept:
gfiConfInt(~ \( \text{Intercept} \), gfi)

# fiducial density function of the intercept:
library(kde1d)
kfit <- kde1d(gfi$VERTEX["(Intercept)"], weights = gfi$WEIGHT)
curve(dkde1d(x, kfit), from = 45, to = 65)
```
gfilmmPredictive
Generalized fiducial predictive distributions

Description

Simulations of the generalized fiducial predictive distributions.

Usage

```r
gfilmmPredictive(gfi, newdata)
```

Arguments

- `gfi`: a `gfilm` object
- `newdata`: dataframe in which to look for variables with which to predict, or NULL if the model is an intercept-only model without random effect

Value

A list with two fields: FPD, a dataframe containing the simulations, and WEIGHT, their weight. This is a `gfilm` object.

Note

Actually the levels of the random effects given in `newdata` can be different from the original levels. For instance, in the example provided below, we enter `block = c("4", "6")`, but we could also enter `block = c("A", "B")`, even though "A" and "B" are not some levels of the block factor. Both options only mean that the two observations to predict are in two different blocks.

Examples

```r
gfi <- gfilm(
  ~ cbind(yield-0.1, yield+0.1), ~ N, ~ block, npk, 2000, nthreads = 2
)
fpd <- gfilmmPredictive(gfi, data.frame(N = c("0","1"), block = c("4","6")))
gfiSummary(fpd)
```

gfiQuantile
Quantiles of a fiducial distribution

Description

Quantiles of the fiducial distribution of a parameter of interest.

Usage

```r
gfiQuantile(parameter, gfi, probs)
```
Arguments

- **parameter**: a right-sided formula defining the parameter of interest, like ~ sigma_error/(Intercept)
- **gfi**: a `gfilm` object (output of `gfilm` or `gfilmPredictive`)
- **probs**: numeric vector of probabilities

Value

A numeric vector of quantiles, of the same length as `probs`.

Examples

```r
h <- 0.01
gfi <- gfilm(~ cbind(yield-h, yield+h), ~ 1, ~ block, data = npk, N = 5000, nthreads = 2)
gfiQuantile(~ sqrt(sigma_block^2 + sigma_error^2), gfi, c(25, 50, 75)/100)
```

gfiSummary

Summary of fiducial distributions

Description

Summary of the fiducial distributions.

Usage

```r
gfiSummary(gfi, conf = 0.95)
```

Arguments

- **gfi**: a `gfilm` object (output of `gfilm` or `gfilmPredictive`)
- **conf**: confidence level

Value

A matrix with summary statistics: means, medians, confidence intervals, and probabilities that the standard deviations equal 0.

Examples

```r
data(KM41)
h <- 0.005
gfi <- gfilm(~ cbind(y-h, y+h), ~ 1, ~ Batch, data = KM41, N = 5000, nthreads = 2)
gfiSummary(gfi)
```
Description

The dataset used in Krishnamoorthy & Mathew's example 4.1.

Usage

```r
data(KM41)
```

Format

A data frame with 25 rows and 2 columns.

References

Examples

```r
data(KM41)
str(KM41)
table(KM41$Batch)
```

pHdata

pH dataset

Description

A dataset from ?? (I don’t remember).

Usage

```r
data(pHdata)
```

Format

A data frame with 160 rows and 4 columns. Column SIRE is a factor nested in column DAM.

Examples

```r
data(pHdata)
str(pHdata)
table(droplevels(pHdata[pHdata$DAM=="D1","SIRE"]))
table(droplevels(pHdata[pHdata$DAM=="D2","SIRE"]))
table(droplevels(pHdata[pHdata$DAM=="D3","SIRE"]))
```
Index

* data
 KM41, 7
 pHdata, 7

gfiCDF, 2

gfiConfInt, 3

gfilm, 2, 3, 3, 5, 6

gfilmPredictive, 2, 3, 5, 6

gfiQuantile, 5

gfiSummary, 6

KM41, 7

pHdata, 7

print.gfilm(gfilm), 3