Package ‘gfilmm’

June 25, 2021

Type Package

Title Generalized Fiducial Inference for Normal Linear Mixed Models

Version 2.0.4

Description Simulation of the generalized fiducial distribution for normal linear mixed models with interval data. Fiducial inference is somehow similar to Bayesian inference, in the sense that it is based on a distribution that represents the uncertainty about the parameters, like the posterior distribution in Bayesian statistics. It does not require a prior distribution, and it yields results close to frequentist results. Reference: Cisewski and Hannig (2012) <doi:10.1214/12-AOS1030>.

License GPL-3

SystemRequirements C++11

Depends R (>= 3.1.0)

Imports Rcpp (>= 1.0.0), lazyeval, stats, spatstat (>= 2.0.0), spatstat.geom, utils, forcats, rgr, Matrix, parallel

Suggests kde1d, knitr, markdown, lmerTest, emmeans, testthat, AOV1R, GGally, car

LinkingTo Rcpp, RcppEigen

RoxygenNote 7.1.1

Encoding UTF-8

LazyData true

VignetteBuilder knitr

URL https://github.com/stla/gfilmm

BugReports https://github.com/stla/gfilmm/issues

NeedsCompilation yes

Author Stéphane Laurent [aut, cre], Jessi Cisewski [aut, ctb] (author of the original Matlab code, <https://orcid.org/0000-0002-9656-2272>)

Maintainer Stéphane Laurent <laurent_step@outlook.fr>

Repository CRAN

Date/Publication 2021-06-25 11:30:18 UTC
R topics documented:

- gfiCDF .. 2
- gfiConfInt .. 3
- gfiilm .. 3
- gfiilmPredictive 5
- gfiQuantile .. 5
- gfiSummary .. 6
- KM41 .. 7
- pHdata .. 7

Index 8

gfiCDF Fiducial cumulative distribution function

Description

Fiducial cumulative distribution function of a parameter of interest.

Usage

```r
gfiCDF(parameter, gfi)
```

Arguments

- **parameter**: a right-sided formula defining the parameter of interest, like `~ sigma_error/\(\text{Intercept}\)`
- **gfi**: a gfiilm object (output of `gfiilm` or `gfiilmPredictive`)

Value

The fiducial cumulative distribution function of the parameter.

Examples

```r
h <- 0.01
gfi <- gfiilm(
  ~ cbind(yield-h, yield+h), ~ 1, ~ block, data = npk, N = 5000, nthreads = 2
)
F <- gfiCDF(~ sqrt(sigma_block^2 + sigma_error^2)/\(\text{Intercept}\)`, gfi)
plot(F, xlim = c(0, 0.3), main = "Coefficient of variation",
     ylab = expression("Pr("<="x")"))
F(0.2)
```
gfiConfInt

Fiducial confidence interval

Description

Fiducial confidence interval of a parameter of interest.

Usage

```
gfiConfInt(parameter, gfi, conf = 0.95)
```

Arguments

- `parameter`: a right-sided formula defining the parameter of interest, like `~ sigma_error/\(\text{Intercept}\)`
- `gfi`: a gfilmm object (output of `gfilmm` or `gfilmmPredictive`)
- `conf`: confidence level

Value

The fiducial confidence interval of the parameter.

Examples

```r
h <- 0.01
gfi <- gfilmm(~ cbind(yield-h, yield+h), ~ 1, ~ block, data = npk, N = 5000, nthreads = 2)
gfiConfInt(~ sqrt(sigma_block^2 + sigma_error^2)/\(\text{Var}\)(Intercept)/\(\text{Var}\), gfi)
```

gfilmm

Generalized fiducial inference

Description

Samples the fiducial distributions.

Usage

```
gfilmm(
  y,
  fixed,
  random,
  data,
  N,
  thresh = N/2,
  long = FALSE,
)```
seed = NULL,
nthreads = parallel::detectCores()

## S3 method for class 'gfilmm'
print(x, ...)

Arguments

- **y**: a right-sided formula of the form `~ cbind(lower, upper)` for the interval data
- **fixed**: a right-sided formula for the fixed effects
- **random**: a right-sided formula for the random effects, or NULL for no random effect
- **data**: the data, a dataframe
- **N**: desired number of simulations
- **thresh**: threshold, default `N/2`; for experts only
- **long**: logical, whether to use long doubles instead of doubles in the algorithm
- **seed**: the seed for the C++ random numbers generator, a positive integer, or NULL to use a random seed
- **nthreads**: number of threads to run the algorithm with parallelized blocks of code
- **x**: a gfilmm object
- **...**: ignored

Value

A list with two components: a dataframe `VERTEX`, and a vector `WEIGHT`. It has class `gfilmm`.

References


Examples

```r
h <- 0.01
gfi <- gfilmm(~ cbind(yield-h, yield+h), ~ 1, ~ block, data = npk, N = 5000, nthreads = 2)

fiducial cumulative distribution function of the intercept:
Fintercept <- gfiCDF(~ ('Intercept'), gfi)
plot(Fintercept, xlim = c(40, 65))

fiducial confidence interval of the intercept:
gfiConfInt(~ ('Intercept'), gfi)

fiducial density function of the intercept:
library(kde1d)
kfit <- kde1d(gfi$VERTEX[, "Intercept"], weights = gfi$WEIGHT)
curve(dkde1d(x, kfit), from = 45, to = 65)
```
gfilmmPredictive  Generalized fiducial predictive distributions

Description
Simulations of the generalized fiducial predictive distributions.

Usage
gfilmmPredictive(gfi, newdata)

Arguments
gfi  a gfilmm object
newdata  dataframe in which to look for variables with which to predict, or NULL if the model is an intercept-only model without random effect

Value
A list with two fields: FPD, a dataframe containing the simulations, and WEIGHT, their weight. This is a gfilmm object.

Note
Actually the levels of the random effects given in newdata can be different from the original levels. For instance, in the example provided below, we enter block = c("4", "6"), but we could also enter block = c("A", "B"), even though "A" and "B" are not some levels of the block factor. Both options only mean that the two observations to predict are in two different blocks.

Examples
gfi <- gfilmm(
  ~ cbind(yield-0.1, yield+0.1), ~ N, ~ block, npk, 2000, nthreads = 2
)
fpd <- gfilmmPredictive(gfi, data.frame(N = c("0","1"), block = c("4","6")))
gfiSummary(fpd)

gfiQuantile  Quantiles of a fiducial distribution

Description
Quantiles of the fiducial distribution of a parameter of interest.

Usage
gfiQuantile(parameter, gfi, probs)
Arguments

- **parameter**: a right-sided formula defining the parameter of interest, like $\sim \sigma_{\text{error}}/(\text{Intercept})$
- **gfi**: a **gfilmm** object (output of **gfilmm** or **gfilmmPredictive**)
- **probs**: numeric vector of probabilities

Value

A numeric vector of quantiles, of the same length as `probs`.

Examples

```r
h <- 0.01
gfi <- gfilmm(~ cbind(yield-h, yield+h), ~ 1, ~ block, data = npk, N = 5000, nthreads = 2)
gfiQuantile(~ sqrt(sigma_block^2 + sigma_error^2), gfi, c(25, 50, 75)/100)
```

---

**Description**

Summary of the fiducial distributions.

**Usage**

`gfiSummary(gfi, conf = 0.95)`

**Arguments**

- **gfi**: a **gfilmm** object (output of **gfilmm** or **gfilmmPredictive**)
- **conf**: confidence level

**Value**

A matrix with summary statistics: means, medians, confidence intervals, and probabilities that the standard deviations equal 0.

**Examples**

```r
data(KM41)
h <- 0.005
gfi <- gfilmm(~ cbind(y-h, y+h), ~ 1, ~ Batch, data = KM41, N = 5000, nthreads = 2)
gfiSummary(gfi)
```
KM41  

Krishnamoorthy & Mathew's example 4.1

Description

The dataset used in Krishnamoorthy & Mathew's example 4.1.

Usage

data(KM41)

Format

A data frame with 25 rows and 2 columns.

References


Examples

data(KM41)  
str(KM41)  
table(KM41$Batch)

pHdata  
pH dataset

Description

A dataset from ?? (I don’t remember).

Usage

data(pHdata)

Format

A data frame with 160 rows and 4 columns. Column SIRE is a factor nested in column DAM.

Examples

data(pHdata)  
str(pHdata)  
table(droplevels(pHdata[pHdata$DAM=="D1","SIRE")))  
table(droplevels(pHdata[pHdata$DAM=="D2","SIRE")))  
table(droplevels(pHdata[pHdata$DAM=="D3","SIRE")))
Index

* data
  KM41, 7
  pHdata, 7

 gfiCDF, 2
 gfiConfInt, 3
 gfilm, 2, 3, 3, 5, 6
 gfilmPredictive, 2, 3, 5, 6
 gfiQuantile, 5
 gfiSummary, 6

 KM41, 7

 pHdata, 7
 print.gfilm(gfilm), 3