Package 'gfmR'

Type Package
Title Implements Group Fused Multinomial Regression
Version 1.1-0
Date 2018-03-13
Author Brad Price
Maintainer Brad Price <brad.price@mail.wvu.edu>
Depends R (>= 3.1.0), parallel, nnet, faraway
Suggests knitr, rmarkdown
VignetteBuilder knitr
Description Software to implement methodology to preform automatic response category combinations in multinomial logistic regression. There are functions for both cross validation and AIC for model selection. The method provides regression coefficient estimates that may be useful for better understanding the true probability distribution of multinomial logistic regression when category probabilities are similar. These methods are not recommended for a large number of predictor variables.
License GPL-2
LazyLoad yes
NeedsCompilation yes
URL https://www.r-project.org
Repository CRAN
Date/Publication 2018-03-14 14:41:11 UTC

R topics documented:

GFMR.cv .. 2
GroupFusedMulti .. 3
predict.gfmR ... 5
print.gfmR .. 7
print.gfmR.cv .. 8

Index 10
GFMR.cv

Tuning parameter selection using validation likelihood for GFMR.

Description

This routine implements K fold cross validation for group fused multinomial regression.

Usage

GFMR.cv(Y,X,lamb,sampID,H,n.cores=1,rho=10^-8,...)

Arguments

Y A matrix of response category counts where the columns represent the categories and rows represent the observations. Currently supported for n=1.
X A matrix of predictor variables. The columns represent predictors and rows represent observations.
lamb tuning parameter for fusion penalty
sampID An identified or the sampleID for the cross validation routine. Should take values 1:k and be user supplied.
H An indicator matrix representing the edge set of the penalty set. The matrix is square and symmetric with dimension number of response categories, and if two categories are in the penalty set a 1 should be in the row column combination.
n.cores The number of cores for the mclapply function
rho Step Size parameter of ADMM
... Other arguments for Group fused multinomial regression

Details

This routine implements the validation likelihood approach proposed by Price et. al. to obtain the tuning parameter for Group Fused Multinomial Regression which automatically combines response categories in multinomial regression. Show to do well with regard to predicting the true category probabilities.

Value

A list is returned with elements

v1 The validation likelihood for all tuning parameters
v1.sd The standard deviation of the validation likelihood
lambda tuning parameter used
v1.mat Validation likelihood for each
GroupFusedMulti

Author(s)

Brad Price, <brad.price@mail.wvu.edu>.

References

Examples

```r
## Not run: data(nes96)
attach(nes96)
Response=matrix(0,944,7)
for(i in 1:944){
  if(PID[i]=="strRep" ){Response[i,1]=1}
  if(PID[i]=="weakRep" ){Response[i,2]=1}
  if(PID[i]=="indRep" ){Response[i,3]=1}
  if(PID[i]=="indind" ){Response[i,4]=1}
  if(PID[i]=="indDem" ){Response[i,5]=1}
  if(PID[i]=="weakDem" ){Response[i,6]=1}
  if(PID[i]=="strDem" ){Response[i,7]=1}
}
Hmat=matrix(1,dim(Response)[2],dim(Response)[2])
diag(Hmat)=0
ModMat<-lm(popul~age,x=TRUE)$x
X=cbind(ModMat[,1],apply(ModMat[-1],2,scale))

set.seed(1010)
N=dim(Response)[1]
sampID=rep(5,N)
samps=sample(1:N)
m=round(N/5)
for(j in 1:4){
sampID[samps[(j-1)*mine+1]:((j)*mine)]=j
}
o1<-GFMR.cv(Response,X,lamb = 2^seq(4.2,4.3,.1),H=Hmat2,sampID = sampID,n.cores =5)
which(o1$vl==max(o1$vl))
```

End(Not run)

GroupFusedMulti Group Fused Multinomial Logistic Regression
Description
This routine fits the group fused multinomial logistic regression model, which uses fusion shrinkage to automatically combine response categories.

Usage
GroupFusedMulti(Y,X,lambda,H, tol1=10^-7, tol2=10^-7, TD=2, rho=10^-8, tau1=10^-9, iter=1e3)

Arguments
Y A matrix of response category counts where the columns represent the categories and rows represent the observations. Currently supported for n=1.
X A matrix of predictor variables. The columns represent predictors and rows represent observations.
lambda tuning parameter for fusion penalty
H An indicator matrix representing the edge set of the penalty set. The matrix is square and symmetric with dimension number of response categories, and if two categories are in the penalty set a 1 should be in the row column combination.
tol1 Convergence tolerance for ADMM
tol2 Convergence tolerance of ADMM
TD Step size Adjustment for iterative step size
rho ADMM step-size parameter, iterative implementation
tau1 The threshold parameter to 0 for final estimates
iter Maximum number of iterations of the algorithm

Details
Implements the ADMM algorithm for the group fused multinomial regression estimates proposed by Price et. al.

Value
The function returns a list:

Coeff Final coefficient estimates for the gfmr model
Approx Final iterates of beta before threshold
Z Final iterate of Z in the ADMM algorithm
lambda Tuning Parameter
Converge Indicator of algorithm convergence
NGroups Number of groups in final estimates
Groups The response category groups in the final estimates

Author(s)
Brad Price, <brad.price@mail.wvu.edu>.
References

Examples

```r
## Not run: data(nes96)
attach(nes96)
Response=matrix(0.944,7)
for(i in 1:944){
  if(PID[i]=="strRep") {Response[i,1]=1}
  if(PID[i]=="weakRep") {Response[i,2]=1}
  if(PID[i]=="indRep") {Response[i,3]=1}
  if(PID[i]=="indind") {Response[i,4]=1}
  if(PID[i]=="indDem") {Response[i,5]=1}
  if(PID[i]=="weakDem") {Response[i,6]=1}
  if(PID[i]=="strDem") {Response[i,7]=1}
}
Hmat=matrix(1, dim(Response)[2], dim(Response)[2])
diag(Hmat)=0
ModMat<-lm(popul~age,x=TRUE)$x
X=cbind(ModMat[,1], apply(ModMat[,-1],2,mean))
mod<-GroupFusedMulti(Response, X, lambda=2*4.3, H=Hmat, rho=10^-2, iter=50, tol1=10^-4, tol2=10^-4)
predict(mod, X[1,])
## End(Not run)
```

predict.gfmR

Predict method for group fused multinomial logistic regression

Description

This routine fits the group fused multinomial logistic regression model, which uses fusion shrinkage to automatically combine response categories.

Usage

```r
## S3 method for class 'gfmR'
predict(object, newdata, type="probs",...)
```

Arguments

- **object** A gfmr object which specifically is the output from the GroupFusedMulti function.
- **newdata** value to be predicted in model matrix form
predict.gfMR

Details

Prediction function for GFMR

Value

A vector or a matrix corresponding to type return.

Author(s)

Brad Price, <brad.price@mail.wvu.edu>.

References

Examples

```r
## Not run: data(nes96)
attach(nes96)
Response=matrix(0,944,7)
for(i in 1:944){
  if(PID[i]=="strRep"){Response[i,1]=1}
  if(PID[i]=="weakRep"){Response[i,2]=1}
  if(PID[i]=="indRep"){Response[i,3]=1}
  if(PID[i]=="indind"){Response[i,4]=1}
  if(PID[i]=="indDem"){Response[i,5]=1}
  if(PID[i]=="weakDem"){Response[i,6]=1}
  if(PID[i]=="strDem"){Response[i,7]=1}
}
Hmat=matrix(1,dim(Response)[2],dim(Response)[2])
diag(Hmat)=0
ModMat<-lm(popul~age,x=TRUE)$x
X=cbind(ModMat[,1],apply(ModMat[,-1],2,scale))
mod<-GroupFusedMulti(Response,X,lambda=2^4.3,H=Hmat2,rho=10^2,iter=50,tol1=10^-4,tol2=10^-4)
predict(mod,X[1,1])

## End(Not run)
```
Description

This routine fits the group fused multinomial logistic regression model, which uses fusion shrinkage to automatically combine response categories.

Usage

```r
## S3 method for class 'gfR'
print(x,...)
```

Arguments

- `x` A `gfR` object which specifically is the output from the `GroupFusedMulti` function.
- `...` Other arguments

Details

Prediction function for GFMR

Value

A vector or a matrix corresponding to type return.

Author(s)

Brad Price, <brad.price@mail.wvu.edu>.

References

Examples

```r
## Not run: data(nes96)
attach(nes96)
Response=matrix(0,944,7)
for(i in 1:944){
  if(PID[i]=="strRep")Response[i,1]=1
  if(PID[i]=="weakRep")Response[i,2]=1
  if(PID[i]=="indRep")Response[i,3]=1
  if(PID[i]=="indind")Response[i,4]=1
  if(PID[i]=="indDem")Response[i,5]=1
  if(PID[i]=="weakDem")Response[i,6]=1
```
Description

This routine fits the group fused multinomial logistic regression model, which uses fusion shrinkage to automatically combine response categories. This specifically focuses on tuning parameter selection with validation likelihood.

Usage

```r
## S3 method for class 'gfmR.cv'
print(x, ...)
```

Arguments

- `x`
 A `gfmR.cv` object which specifically is the output from the `GroupFusedMulti` function.

- `...`
 Other arguments

Details

print method for `gfmR.cv` objects.

Value

A readable printout of cross validation

Author(s)

Brad Price, <brad.price@mail.wvu.edu>.
References

Examples

```r
## Not run: data(nes96)
attach(nes96)
Response=matrix(0,944,7)
for(i in 1:944){
  if(PID[i]=="strRep"{Response[i,1]=1}
  if(PID[i]=="weakRep"{Response[i,2]=1}
  if(PID[i]=="indRep"{Response[i,3]=1}
  if(PID[i]=="indind"{Response[i,4]=1}
  if(PID[i]=="indDem"{Response[i,5]=1}
  if(PID[i]=="weakDem"{Response[i,6]=1}
  if(PID[i]=="strDem"{Response[i,7]=1}
}
Hmat=matrix(1,dim(Response)[2],dim(Response)[2])
diag(Hmat)=0
ModMat<-lm(popul~age,x=TRUE)$x
X=cbind(ModMat[,1],apply(ModMat[-1],2,scale))
set.seed(1010)
n=dim(Response)[1]
sampID=rep(5,n)
samps=sample(1:n)
mine=floor(n/5)
for(j in 1:4){
  sampID[samps[(((j-1)*mine+1):(j*mine))]]=j
}
o1<-GFM.R.cv(Response,X,lamb = 2*seq(4.2,4.3,.1),H=Hmat2,sampID = sampID,n.cores =5)
o1
## End(Not run)
```
Index

*Topic regression
 GFMR.cv, 2
 GroupFusedMulti, 3
 predict.gfmR, 5
 print.gfmR, 7
 print.gfmR.cv, 8

GFMR.cv, 2
GroupFusedMulti, 3
predict.gfmR, 5
print.gfmR, 7
print.gfmR.cv, 8