Package ‘ggDoE’

February 10, 2024

Type Package

Title Modern Graphs for Design of Experiments with 'ggplot2'

Version 0.8

Maintainer Jose Toledo Luna <toledo60@protonmail.com>

Description Generate commonly used plots in the field of design of experiments using 'ggplot2'. 'ggDoE' currently supports the following plots: alias matrix, box cox transformation, boxplots, lambda plot, regression diagnostic plots, half normal plots, main and interaction effect plots for factorial designs, contour plots for response surface methodology, Pareto plot, and two dimensional projections of a latin hypercube design.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://ggdoe.netlify.app

BugReports https://github.com/toledo60/ggDoE/issues

Imports ggplot2 (>= 3.4.0), insight (>= 0.19.5)

Suggests roxygen2, tibble, MASS, viridisLite, ggrepel, patchwork, unrepx, geomtextpath, rsm, lhs, DoE.base

RoxygenNote 7.3.1

Depends R (>= 3.7.0)

Language en-US

NeedsCompilation no

Author Jose Toledo Luna [aut, cre] (<https://orcid.org/0000-0001-8559-0027>)

Repository CRAN

Date/Publication 2024-02-10 04:50:02 UTC
R topics documented:

- adapted_epitaxial
- aliased_design
- alias_matrix
- boxcox_transform
- design_to_tibble
- gg_boxplots
- gg_lm
- gg_rsm
- girder_experiment
- half_normal
- interaction_effects
- lambda_plot
- main_effects
- original_epitaxial
- pair_plots
- pareto_plot
- pulp_experiment
- theme_bw_nogrid
- viridisPalette

Index

adapted_epitaxial Adapted epitaxial layer experiment

Description

Same factors and levels as original epitaxial layer experiment but different data

Usage

adapted_epitaxial

Format

A tibble with 16 rows, 4 factors (A,B,C,D), and three responses (ybar,s2,lns2)

Source

D-efficient minimal aliasing design for five factors in 12 runs

Usage

aliased_design

Format

A tibble with 12 rows, 5 factors

Color Map on Correlations

Usage

alias_matrix(
 design,
 midpoint = 0.5,
 digits = 3,
 color_palette = "viridis",
 alpha = 1,
 direction = 1,
 showplot = TRUE
)

Arguments

design Design of experiment (Without response)
midpoint A midpoint value between (0,1) to split the color scheme of three colors
digits number of digits to round correlation values. Default is 3
color_palette A character string indicating the color map option to use. Eight options are available: "viridis","cividis","magma","inferno","plasma","rocket","mako","turbo"
alpha The alpha transparency, a number in [0,1]
direction Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed
showplot logical indicating to show the correlation plot. If false, the correlation/alias matrix is returned. Default is TRUE
Value

correlation matrix between main effects and interaction effects from the model.matrix. Alias matrix is also returned

Examples

```r
alias_matrix(design=aliased_design)
alias_matrix(design=aliased_design, color_palatte = "plasma")
alias_matrix(design=aliased_design, color_palatte = "magma", direction = -1)
```

boxcox_transform
Box-Cox Transformations

Description

Box-Cox Transformations

Usage

```r
boxcox_transform(
  model,
  lambda = seq(-2, 2, 1/10),
  showlambda = TRUE,  
  lambdaSF = 3,
  showplot = TRUE
)
```

Arguments

- `model`: Model used for Box-Cox transformation
- `lambda`: sequence of lambda values to consider for plot. Default is `seq(-2,2,1/10)`
- `showlambda`: Default is TRUE, show lambda values in plot
- `lambdaSF`: Digits to round lambda values shown in plot
- `showplot`: Default is TRUE, if false plot will not be shown and a tibble is returned with a 95% confidence interval for lambda and lambda value which maximizes log-likelihood

Value

Box-Cox transformation plot with 95% confidence interval of lambda values to consider

Examples

```r
model <- lm(s2 ~ (A+B+C+D),data = adapted_epitaxial)
boxcox_transform(model,lambda = seq(-5,5,0.2))
boxcox_transform(model,lambda = seq(-5,5,0.2),showplot=FALSE)
```
design_to_tibble

Convert an object of class 'design' to 'tibble'

Description

Convert an object of class 'design' to 'tibble'

Usage

```r
design_to_tibble(design)
```

Arguments

- `design` An object of class 'design'

Value

Converted design to tibble

Examples

```r
dat <- DoE.base::fac.design(factor.names = list(temp = c(16,32),
   time = c(4,12)), replications = 5, randomize = FALSE)
Thk <- c(116.1, 106.7, 116.5, 123.2, 116.9, 107.5, 115.5, 125.1, 112.6, 105.9,
   119.2, 124.5, 118.7, 107.1, 114.7, 124, 114.9, 106.5, 118.3, 124.7)
design <- DoE.base::add.response(dat, Thk)
design
design_to_tibble(design)
```

gg_boxplots

Boxplots using ggplot2

Description

Boxplots using ggplot2

Usage

```r
gg_boxplots(
   data,
   x,
   y,
   group_var = NULL,
   jitter_points = FALSE,
   horizontal = FALSE,
   point_size = 1,
   ```
alpha = 1,
color_palette = NA,
direction = 1,
show_mean = FALSE
)

Arguments

data provided dataset
x A character string indicating the factor of the data
y A character string indicating the response of the data
group_var A character string indicating the groups for facet_wrap
jitter_points Overlay jittered points to boxplots. Default is FALSE.
horizontal Determine whether to change the orientation of the plot. Default is FALSE
point_size Change size of points (outliers) in boxplots
alpha The alpha transparency, a number in [0,1]
color_palette A character string indicating the color map option to use. Eight options are available: "viridis","cividis","magma","inferno","plasma","rocket","mako","turbo"
direction Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed
show_mean Display the mean for each boxplot. Default is FALSE

Value

Boxplots created with ggplot2

Examples

data <- ToothGrowth
data$dose <- factor(data$dose,levels = c(0.5, 1, 2),labels = c("D0.5", "D1", "D2"))
gg_boxplots(data,y= "len",x= "dose",alpha=0.6)
gg_boxplots(data,y = "len",x= "dose",group_var = "supp",alpha=0.6,color_palette = 'viridis',jitter_points=TRUE)

Description

Regression Diagnostic Plots with ggplot2
Usage

```r
gg_lm(
  model,
  which_plots = 1:4,
  cooksD_type = 1,
  standard_errors = FALSE,
  point_size = 1.5,
  theme_color = "#21908CFF",
  n_columns = 2
)
```

Arguments

- **model**: Model of class "lm" or "glm"
- **which_plots**: Choose which diagnostic plots to choose from. Options are 1 = 'residual vs fitted', 2 = 'Normal-QQ', 3 = 'Scale-location', 4 = 'Residual vs Leverage', 5 = 'Cook's Distance'. 6 = 'Collinearity'. Default is 1:4
- **cooksD_type**: An integer between 1 and 4 indicating the threshold to be computed for Cook's Distance plot. Default is 1. See details for threshold computation
- **standard_errors**: Display confidence interval around geom_smooth, FALSE by default
- **point_size**: Change size of points in plots
- **theme_color**: Change color of the geom_smooth line and text labels for the respective diagnostic plot
- **n_columns**: number of columns for grid layout. Default is 2

Details

Plot 5: "Cook's Distance": A data point having a large Cook's distance indicates that the data point strongly influences the fitted values of the model. The default threshold used for detecting or classifying observations as outers is $4/n$ (i.e. cooksD_type=1) where n is the number of observations. The thresholds computed are as follows:

- **cooksD_type = 1**: $4/n$
- **cooksD_type = 2**: $4/(n-p-1)$
- **cooksD_type = 3**: $1/(n-p-1)$
- **cooksD_type = 4**: $3 \times \text{mean(cook's distance values)}$

where n is the number of observations and p is the number of predictors.

Plot 6: "Collinearity": Considers the variance inflation factor (VIF) for multicollinearity: Tolerance $= 1 - R_j^2$, VIF $= 1/$Tolerance where R_j^2 is the coefficient of determination of a regression of predictor j on all the other predictors. A general rule of thumb is that VIFs exceeding 4 warrant further investigation, while VIFs exceeding 10 indicates a multicollinearity problem.
Value

Regression diagnostic plots

References

Examples

model <- lm(mpg ~ wt + am + gear, data = mtcars)
gg_lm(model)

Description

Contour plot(s) of a fitted linear model in ggplot2

Usage

gg_rsm(
 rsm_model,
 formula,
 decode = FALSE,
 n_columns = 2,
 text_size = 3,
 bins = 6,
 ...
)

Arguments

rsm_model Model of class "rsm"
formula A formula, or a list of formulas
decode This has an effect only if x is an rsm object or other model object that supports coded.data. In such cases, if decode is TRUE, the coordinate axes are transformed to their decoded values.
n_columns number of columns for grid layout. Default is 2
text_size size of text for labelled contour lines. Default is 3
bins Number of contour bins. Overridden by binwidth
... Other arguments passed on to contour(). For help with more arguments see ?rsm::contour.lm
Value
A grid of contour plot(s) of a fitted linear model in ‘ggplot2’

Examples

```r
## Not run:
# heli.rsm <- rsm::rsm(ave ~ SO(x1, x2, x3), data = rsm::heli)

# gg_rsm(heli.rsm, formula = ~x1+x2+x3, at = rsm::xs(heli.rsm), n_columns=3)
```

```
## End(Not run)
```

girder_experiment

Girder experiment

Description
An experiment (Narayanan and Adorisio, 1983) to compare four methods for predicting the shear strength for steel plate girders. Data for nine girders in the form of the ratio of predicted to observed load for these procedures are given. Each of the four methods was used to predict the strength of each of the nine girders.

Usage

girder_experiment

Format
A tibble with 36 rows and 3 variables

- **girders** A factor denoting one of the nine girders
- **method** A factor denoting one of the four methods for predicting the shear strength for steel plate girders: Aarau, Karlsruhe, Lehigh, Cardiff
- **response** The shear strength for steel plate girders

Source

Examples

```r
lm(response ~ method + girders, data = girder_experiment) |> anova()
```
half_normal

Half-Normal Effects Plots

Description

Half-Normal Effects Plots

Usage

describe

```r
half_normal(model, method = "Lenth", alpha = 0.05, label_active = FALSE, ref_line = FALSE, margin_errors = FALSE, point_color = "#21908CFF", showplot = TRUE)
```

Arguments

- **model**: object of class "lm"
- **method**: Character value. Method to calculate PSE. Default is Lenth. Options include: Zahn, WZahn, Lenth, RMS, Dong, JuanPena, Daniel. See Details.
- **alpha**: specify the significance level to compute margin of errors. Numeric significance level, between 0 and 1. Default is alpha=0.05
- **label_active**: If TRUE, active effects are labeled if the effects cross the computed margin of error (ME). See method argument for more details
- **ref_line**: Default is TRUE, if FALSE the abline with slope (1/PSE) is not displayed. Reference line should follow along most points that are not considered outliers.
- **margin_errors**: Default is FALSE, if TRUE the cutoffs for margin of errors (ME) and simultaneous margin of error (SME) are shown
- **point_color**: Change color of points in plot
- **showplot**: Default is TRUE, if FALSE plot will not be shown and a tibble is returned used to create the plot along with the calculated PSE,ME,SME

Details

The method argument is a simple wrapper for the function PSE() from the unrepx R package. For more details you can use ?unrepx::PSE(). The method argument implements methods of estimating the standard error of effects estimates from unreplicated designs. The methods include

Daniel: The 68.3rd quantile of the absolute effects. See Daniel (1959)
Dong: The RMS method, applied after excluding all effects that exceed 2.5 * PSE(effects, "SMedian") in absolute value. See Dong (1993)

JuanPena: An iterated median method whereby we repeatedly calculate the median of the absolute effects that don’t exceed 3.5 times the previous median, until it stabilizes. The estimate is the final median, divided by .6578. See Juan and Pena (1992).

Lenth (Default): The SMedian method, applied after excluding all effects that exceed 2.5 * PSE(effects, "SMedian") in absolute value. See Lenth (1989)

RMS: Square root of the mean of the squared effects. This is not a good PSE in the presence of active effects, but it is provided for sake of comparisons

SMedian: 1.5 times the median of the absolute effects

Zahn, WZahn: The Zahn method is the slope of the least-squares line fitted to the first m points of unrepx::hnplot(effects, horiz = FALSE), where m = floor(.683 * length(effects)). (This line is fitted through the origin.) The WZahn method is an experimental version of Zahn’s method, based on weighted least-squares with weights decreasing linearly from m - .5 to .5, but bounded above by .65m

Value

A tibble with the absolute effects and half-normal quantiles. A ggplot2 version of halfnormal plot for factorial effects is returned

References

Lenth, R (1989) Quick and Easy Analysis of Unrelicated Factorials Technometrics 31(4), 469-473

Examples

model <- lm(ybar ~ (A+B+C+D)^4, data=adapted_epitaxial)
half_normal(model)
half_normal(model, method='Zahn', alpha=0.1, ref_line=TRUE, label_active=TRUE, margin_errors=TRUE)
interaction_effects Two-Factor interaction effects plot for a factorial design

Description
Two-Factor interaction effects plot for a factorial design

Usage

interaction_effects(
 design,
 response,
 exclude_vars = c(),
 linetypes = c("solid", "dashed"),
 colors = c("#4260c9", "#d6443c"),
 n_columns = 2,
 showplot = TRUE
)

Arguments

design Design of experiment (Factorial Design)
response A character string indicating the response of the data
exclude_vars A vector containing variables to exclude
linetypes Change linetypes. Default are ("solid","dashed")
colors Change color of lines/points. Default are ("#4260c9","#d6443c")
n_columns number of columns for facet grid. Default is 2
showplot logical indicating to show the interaction effect plots. If false, a list of tibbles is returned used to obtain the interaction effects for each factor. Default is TRUE

Value

interaction effects plot between two factors

Examples

interaction_effects(adapted_epitaxial,response = 'ybar',exclude_vars = c('s2','lns2'))
lambda_plot

Lambda Plot: Trace of t-statistics

Description

Lambda Plot: Trace of t-statistics

Usage

lambda_plot(
 model,
 lambda = seq(-2, 2, by = 0.1),
 color_palette = "viridis",
 alpha = 1,
 direction = 1,
 showplot = TRUE
)

Arguments

model Model of class "lm" or "glm"
lambda sequence of lambda values to consider for plot. Default is seq(-2,2,0.1)
color_palette A character string indicating the color map option to use. Eight options are available: "viridis","cividis","magma","inferno","plasma","rocket","mako","turbo". Default is 'viridis'
alpha The alpha transparency, a number in [0,1]
direction Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed
showplot logical indicating to show the main effect plots. If false, a list of tibbles is returned used to obtain the main effects for each factor. Default is TRUE

Value

Lambda plot for tracing t-statitics across different values of lambda (in ggplot2)

Examples

mod <- lm(s2 ~ (A+B+C)^2, data=original_epitaxial)
lambda_plot(mod)
lambda_plot(mod, lambda = seq(0,2,0.1))
lambda_plot(mod, lambda = seq(0,2,0.1), showplot = FALSE)
main_effects

Obtain main effect plots in a factorial design

Description

Obtain main effect plots in a factorial design

Usage

```r
main_effects(
  design,  # Design of experiment (Factorial Design)
  response,  # A character string indicating the response of the data
  exclude_vars = c(),  # A vector containing variables to exclude
  n_columns = 2,  # number of columns for facet grid. Default is 2
  color_palette = NA,  # A character string indicating the color map option to use. Eight options are available: "viridis","cividis","magma","inferno","plasma","rocket","mako","turbo"
  alpha = 1,  # The alpha transparency, a number in [0,1]
  direction = 1,  # Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed
  showplot = TRUE  # logical indicating to show the main effect plots. If false, a list of data.frames is returned used to obtain the main effects for each factor. Default is TRUE
)
```

Arguments

- **design**: Design of experiment (Factorial Design)
- **response**: A character string indicating the response of the data
- **exclude_vars**: A vector containing variables to exclude
- **n_columns**: number of columns for facet grid. Default is 2
- **color_palette**: A character string indicating the color map option to use. Eight options are available: "viridis","cividis","magma","inferno","plasma","rocket","mako","turbo"
- **alpha**: The alpha transparency, a number in [0,1]
- **direction**: Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed
- **showplot**: logical indicating to show the main effect plots. If false, a list of data.frames is returned used to obtain the main effects for each factor. Default is TRUE

Value

Main effects plots, or a list of tibble with calculated main effects for each factors if showplot=FALSE.

Examples

```r
main_effects(original_epitaxial,response='s2',exclude_vars = c('ybar','lns2'))
main_effects(original_epitaxial,response='ybar',exclude_vars=c('A','s2','lns2'),n_columns=3)
```
Description

One of the initial steps in fabricating integrated circuit (IC) devices is to grow an epitaxial layer on polished silicon wafers. The wafers are mounted on a six-faceted cylinder (two wafers per facet), called a susceptor, which is spun inside a metal bell jar. The jar is injected with chemical vapors through nozzles at the top of the jar and heated. The process continues until the epitaxial layer grows to a desired thickness.

Usage

original_epitaxial

Format

A tibble with 16 observations, 4 factors (A,B,C,D), and three responses (ybar,s2,lns2)

Factor A Susceptor-rotation method. Low level is oscillating and high level is continuous

Factor B Nozzle position. Low level is 2 and high level is 6

Factor C Deposition temperature (Celsius). Low level is 1210 and high level is 1220

Factor D Deposition time. Low level is low and high level is high

ybar average thickness

s2 variance of thickness

lns2 log variance of thickness

Details

In the epitaxial layer growth process, suppose that the four experimental factors, susceptor rotation method, nozzle position, deposition temperature, and deposition time (labeled A, B, C, and D) are to be investigated at the two levels each.

The purpose of this experiment is to find process conditions, that is, combinations of factor levels for A, B, C, and D, under which the average thickness is close to the target 14.5 micrometre with variation as small as possible. The most basic experimental design or plan is the full factorial design, which studies all possible combinations of factors at two levels.

Source

pair_plots

Two Dimensional Projections of Latin Hypercube Designs

Description

Two Dimensional Projections of Latin Hypercube Designs

Usage

```r
pair_plots(
  design,  # A Latin hypercube design. Can be matrix, or data.frame
  point_color = "#21908CFF",  # Change color of points in plots
  grid = FALSE,  # Logical argument. Specify if a grid should be added to each projection. The grid is constructed using seq(0,1,length=nrows(design)+1). Default is FALSE
  point_size = 1.5,  # Change size of points in plots
  n_columns = 2  # number of columns for grid layout. Default is 2
)
```

Arguments

- `design`: A Latin hypercube design. Can be matrix, or data.frame
- `point_color`: Change color of points in plots
- `grid`: Logical argument. Specify if a grid should be added to each projection. The grid is constructed using `seq(0,1,length=nrows(design)+1)`. Default is `FALSE`
- `point_size`: Change size of points in plots
- `n_columns`: Number of columns for grid layout. Default is 2

Value

A grid of scatter plots from all two dimensional projections of a Latin hypercube design.

Examples

```r
set.seed(10)
X <- lhs::randomLHS(n=15,k=4)
pair_plots(X,n_columns = 3)
```
Description

Pareto Plot of Effects

Usage

```r
pareto_plot(
  model,
  alpha = 0.05,
  method = "Lenth",
  effect_colors = c("#F8766D", "#00BFC4"),
  margin_errors = TRUE,
  showplot = TRUE
)
```

Arguments

- `model` Model of class "lm"
- `alpha` specify the significance level to compute margin of errors. Numeric significance level, between 0 and 1. Default is alpha=0.05
- `method` Character value. Method to calculate PSE. Default is Lenth. Options include: Zahn, WZahn, Lenth, RMS, Dong, JuanPena, Daniel. See Details.
- `effect_colors` Change colors of effects. Default are ("#F8766D","#00BFC4") for negative and positive effects, respectively.
- `margin_errors` Default is TRUE, if false the cutoffs for margin of errors (ME) and simultaneous margin of error (SME) are not shown
- `showplot` Default is TRUE, if false plot will not be shown and a tibble is returned with data used to create the pareto plot

Details

The method argument is a simple wrapper for the function `PSE()` from the unrepx R package. For more details you can use `?unrepx::PSE()`. The `method` argument implements methods of estimating the standard error of effects estimates from unreplicated designs. The methods include

- **Daniel**: The 68.3rd quantile of the absolute effects. See Daniel (1959)
- **Dong**: The RMS method, applied after excluding all effects that exceed 2.5 * PSE(effects, "SMe-dian") in absolute value. See Dong (1993)
- **JuanPena**: An iterated median method whereby we repeatedly calculate the median of the absolute effects that don’t exceed 3.5 times the previous median, until it stabilizes. The estimate is the final median, divided by .6578. See Juan and Pena (1992).
Lenth (Default): The SMedian method, applied after excluding all effects that exceed 2.5 * PSE(effects, "SMedian") in absolute value. See Lenth (1989)

RMS: Square root of the mean of the squared effects. This is not a good PSE in the presence of active effects, but it is provided for sake of comparisons

SMedian: 1.5 times the median of the absolute effects

Zahn, WZahn: The Zahn method is the slope of the least-squares line fitted to the first m points of unrepX::hnplot(effects, horiz = FALSE), where m = floor(.683 * length(effects)). (This line is fitted through the origin.) The WZahn method is an experimental version of Zahn’s method, based on weighted least-squares with weights decreasing linearly from m -.5 to .5, but bounded above by .65m

Value

A bar plot with ordered effects, margin of error (ME) and simultaneous margin of error (SME) cutoffs.

References

Lenth, R (1989) Quick and Easy Analysis of Unrelicated Factorials Technometrics 31(4), 469-473

Examples

```r
m1 <- lm(lns2 ~ (A+B+C+D)^4, data=original_epitaxial)
pereo_plot(m1)
pereo_plot(m1, method='Zahn', alpha=0.1)
```
Description

Plant performance is based on pulp brightness as measured by a reflectance meter. Each of the four shift operators (denoted by A, B, C, and D) made five pulp handsheets from unbleached pulp. Reflectance was read for each of the handsheets using a brightness tester.

Usage

pulp_experiment

Format

A tibble with 5 rows, and 4 variables (A,B,C,D)

Source

theme_bw_nogrid

Description

Theme for plots used in 'ggDoE'

Usage

theme_bw_nogrid()

Value

A simple black and white theme without grid.major and grid.minor for ggplot objects.

Examples

library(ggplot2)
data <- ToothGrowth
data$dose <- factor(data$dose, levels = c(0.5, 1, 2),
 labels = c("D0.5", "D1", "D2"))
ggplot(data, aes(x=dose, y=len)) +
geom_boxplot() +
theme_bw_nogrid()
viridisPalette

Simple viridisLite wrapper

Description
Simple viridisLite wrapper

Usage

```
viridisPalette(
  total_colors, 
  color_palette = "viridis", 
  alpha = 1, 
  direction = 1
)
```

Arguments

- `total_colors` number of colors desired
- `color_palette` A character string indicating the color map option to use. Eight options are available: "viridis", "cividis", "magma", "inferno", "plasma", "rocket", "mako", "turbo"
- `alpha` The alpha transparency, a number in [0,1]
- `direction` Sets the order of colors in the scale. If 1, the default, colors are ordered from darkest to lightest. If -1, the order of colors is reversed

Value

Specified color palette of length `total_colors`

Examples

```
viridisPalette(5)
viridisPalette(5, color_palette='magma', alpha=0.5)
viridisPalette(5, color_palette='plasma', alpha=0.6, direction=-1)
```
Index

* datasets
 adapted_epitaxial, 2
 aliased_design, 3
 girder_experiment, 9
 original_epitaxial, 15
 pulp_experiment, 18

adapted_epitaxial, 2
alias_matrix, 3
aliased_design, 3

boxcox_transform, 4
design_to_tibble, 5
gg_boxplots, 5
gg_lm, 6
gg_rsm, 8
girder_experiment, 9

half_normal, 10
interaction_effects, 12
lambda_plot, 13
main_effects, 14
original_epitaxial, 15

pair_plots, 16
pareto_plot, 17
pulp_experiment, 18

theme_bw_nogrid, 19
viridisPalette, 20